JP2007334087A - Method of manufacturing optical component - Google Patents

Method of manufacturing optical component Download PDF

Info

Publication number
JP2007334087A
JP2007334087A JP2006167024A JP2006167024A JP2007334087A JP 2007334087 A JP2007334087 A JP 2007334087A JP 2006167024 A JP2006167024 A JP 2006167024A JP 2006167024 A JP2006167024 A JP 2006167024A JP 2007334087 A JP2007334087 A JP 2007334087A
Authority
JP
Japan
Prior art keywords
substrate
thin film
support portion
optical thin
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006167024A
Other languages
Japanese (ja)
Inventor
Minoru Kazama
稔 風間
Kunihiko Yano
邦彦 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006167024A priority Critical patent/JP2007334087A/en
Publication of JP2007334087A publication Critical patent/JP2007334087A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical component having an excellent optical characteristic even after being formed with an optical thin film without expending considerable man-hours. <P>SOLUTION: Adjustment of the relative position between an outer side support part 10 and a center side support part 8 which are disposed on a fixture plate 7 is performed by adjusting a distance between the outer side support part 10 and the center side support part 8. The adjustment is performed on the basis of the fixture plate 7 and therefore the adjustment can be performed arbitrarily in a fine unit, even to a fine distance and with excellent reproducibility. As a result, a deformation applied to a base plate 2 can be also arbitrarily adjusted in a fine unit, even to a fine distance and with excellent reproducibility. In a method of forming the optical thin film 3, thermal expansion of base plate 2 and residual stress of the optical thin film 3 get to a subtly different value for different base plate depending on the distance and angle between the base plate 2, and a material source of the optical thin film 3 and a heating source or the like of the base plate 2. In the invention, the adjustment is performed for each base plate 2 and therefore subtle adjustment can be also performed in accordance with such a thermal expansion or residual stress. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板に光学薄膜を形成する光学部品の製造方法に関する。   The present invention relates to a method for manufacturing an optical component in which an optical thin film is formed on a substrate.

光学薄膜としての蒸着膜を施した弾性を有する光学機体(以下、基板と言う)において、光学薄膜の内部応力による反りの量に等しいだけ、予め反対方向に基板の光学薄膜の形成面を凹面または凸面に研磨加工することで、内部応力による基板の反り問題を解決する技術が、開示されている(例えば、特許文献1参照)。   In an elastic optical body (hereinafter referred to as a substrate) having a vapor-deposited film as an optical thin film, the surface on which the optical thin film is formed on the substrate in the opposite direction in advance is concave or A technique for solving the problem of warping of the substrate due to internal stress by polishing the convex surface has been disclosed (see, for example, Patent Document 1).

特開昭58−113901(1、2頁、第3図)JP-A-58-113901 (1st, 2nd page, Fig. 3)

しかしながら、基板に光学薄膜の内部応力による反りの量に等しいだけ、予め反対方向へ一枚毎、研磨加工を施す必要があり、この加工に多大の工数がかかっていた。
本発明は、このような点に鑑み成されたものであり、多大な工数をかけることなく、光学薄膜の形成後も優れた光学特性を有する光学部品の製造方法を提供することを目的とする。
However, it is necessary to polish each substrate in the opposite direction in advance in the opposite direction as much as the amount of warpage due to the internal stress of the optical thin film, and this processing takes a lot of man-hours.
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an optical component having excellent optical characteristics even after the formation of an optical thin film without taking a great deal of man-hours. .

上述の目的を達成するために、本発明の光学部品の製造方法は、基板に光学薄膜を形成したときに生じる反りの把握の結果に基づいて、前記光学薄膜の形成面を基準面とし、前記形成面が前記基準面に対して前記反りとは略面対称の反りになるように、前記基板に変形を加える事前変形工程と、前記変形を加えた状態で、前記基板に前記光学薄膜を形成する薄膜形成工程とを有することを特徴とする。
この発明によれば、光学薄膜を形成する前に、光学薄膜の形成で生じる反りとは略面対称の反りになるような変形を基板に加えるという簡易な手法で、光学薄膜の形成面に、薄膜形成条件や光学薄膜の影響等による内部応力に吊り合う反対方向の応力を生ぜしめることが可能になる。
これにより、多大な工数をかけることなく優れた光学特性を有する光学部品の製造方法を提供することが可能になる。
尚、薄膜形成条件の影響とは、基板温度の上昇による熱膨張の影響であり、光学薄膜の影響とは、光学薄膜の残留応力による影響である。
In order to achieve the above-described object, the optical component manufacturing method of the present invention uses the optical thin film formation surface as a reference surface based on the result of grasping the warp that occurs when the optical thin film is formed on the substrate. A pre-deformation step of deforming the substrate so that the formation surface is substantially plane-symmetrical with respect to the reference surface, and the optical thin film is formed on the substrate with the deformation applied And a thin film forming step.
According to the present invention, before forming the optical thin film, the warp caused by the formation of the optical thin film is a simple technique of applying deformation to the substrate so that the warp is substantially plane symmetrical. It is possible to generate stress in the opposite direction that is suspended by internal stress due to the thin film formation conditions and the influence of the optical thin film.
As a result, it is possible to provide a method of manufacturing an optical component having excellent optical characteristics without taking a great deal of man-hours.
The influence of the thin film formation condition is an influence of thermal expansion due to an increase in the substrate temperature, and the influence of the optical thin film is an influence of residual stress of the optical thin film.

本発明では、前記変形を加えるために治具を用い、前記治具は、平板状の治具板を備え、前記治具板には、外側の支持部と中心側の支持部とが設けられており、前記外側の支持部を前記基板の外周部に接触させ、前記中心側の支持部を前記基板の中心部に接触させて、前記外側の支持部と前記中心側の支持部との相対位置を調整することで、前記基板に前記変形を加えるのが好ましい。
この発明では、治具板に設けられた外側の支持部と中心側の支持部との相対位置の調整を、外側の支持部と中心側の支持部との間の距離の調整で行なう。この調整は、治具板を基準として行なうので、微小単位で、微少距離まで、再現性良く、任意に調整することが可能である。その結果、基板に加える変形も微小単位で、微少量まで、再現性良く、任意に調整することが可能になる。
光学薄膜の形成方法において、基板と光学薄膜の材料源や基板の加熱源等との距離や角度によって、基板毎の熱膨張や光学薄膜の残留応力は微妙に異なった値となる。この発明では、基板毎に調整を行なうので、かかる熱膨張や残留応力に応じた微妙な調整も可能になる。
In the present invention, a jig is used to apply the deformation, and the jig includes a flat jig plate, and the jig plate is provided with an outer support portion and a center support portion. The outer support portion is brought into contact with the outer peripheral portion of the substrate, the central support portion is brought into contact with the central portion of the substrate, and the outer support portion and the central support portion are It is preferable to apply the deformation to the substrate by adjusting the position.
In the present invention, the relative position between the outer support portion and the center support portion provided on the jig plate is adjusted by adjusting the distance between the outer support portion and the center support portion. Since this adjustment is performed using the jig plate as a reference, it can be arbitrarily adjusted with a minute unit and a minute distance with good reproducibility. As a result, the deformation applied to the substrate can be arbitrarily adjusted in minute units, with a very small amount, with good reproducibility.
In the method of forming an optical thin film, the thermal expansion of each substrate and the residual stress of the optical thin film are slightly different depending on the distance and angle between the substrate and the material source of the optical thin film, the heating source of the substrate, and the like. In the present invention, since adjustment is performed for each substrate, it is possible to make fine adjustments according to the thermal expansion and residual stress.

本発明では、前記中心側の支持部の先端部には、粘着剤層または接着剤層を有する結合層が設けられており、前記結合層を前記基板に接触させるのが好ましい。
この発明では、中心側の支持部と基板の中心部との接触のための基板への加工が不要で、中心側の支持部と基板の中心部が簡易に接触及び分離される。
In the present invention, it is preferable that a bonding layer having a pressure-sensitive adhesive layer or an adhesive layer is provided at the tip of the central support portion, and the bonding layer is in contact with the substrate.
In the present invention, it is not necessary to process the substrate for contact between the central support portion and the central portion of the substrate, and the central support portion and the central portion of the substrate can be easily contacted and separated.

本発明では、前記中心側の支持部の先端部に設けられた磁力により接合する接合部材と接合対部材とを、前記基板を間に介して対抗配置して、前記基板に接触させることが好ましい。
この発明では、中心側の支持部と基板の中心部との接触のための基板への加工が不要で、中心側の支持部と基板の中心部が簡易に接触及び分離される。
In the present invention, it is preferable that a joining member and a joining pair member that are joined by a magnetic force provided at a distal end portion of the support portion on the center side are arranged to face each other with the substrate interposed therebetween, and are brought into contact with the substrate. .
In the present invention, it is not necessary to process the substrate for contact between the central support portion and the central portion of the substrate, and the central support portion and the central portion of the substrate can be easily contacted and separated.

本発明では、前記中心側の支持部の先端部には、接触部材が設けられ、前記基板の中心部には、孔が設けられており、前記中心側の支持部を前記孔に挿入させ、前記接触部材を前記基板の表面に接触させるのが好ましい。
この発明では、比較的、基板が形状として小さい場合、厚い場合、基板の剛性が大きい場合、または光学薄膜の応力が大きい場合、事前の基板の変形に比較的大きな物理力を要するが、比較的小さな物理力で充分な場合と同様に、確実、正確に再現性良く変形を加えることが可能になる。
In the present invention, a contact member is provided at a distal end portion of the center side support portion, a hole is provided in the center portion of the substrate, and the center side support portion is inserted into the hole, The contact member is preferably brought into contact with the surface of the substrate.
In this invention, when the substrate is relatively small in shape, thick, when the rigidity of the substrate is large, or when the stress of the optical thin film is large, a relatively large physical force is required to deform the substrate in advance. As in the case where a small physical force is sufficient, the deformation can be made reliably, accurately and with good reproducibility.

以下、本発明の光学部品としての光学薄膜フィルタ1の製造方法に係る実施形態について図面に従って説明する。
(第1の実施形態)
Hereinafter, an embodiment according to a manufacturing method of an optical thin film filter 1 as an optical component of the present invention will be described with reference to the drawings.
(First embodiment)

図1は、本実施形態で得られる光学薄膜フィルタ1を示す断面図である。
図1において、光学薄膜フィルタ1は光を透過する基板2と、基板2の片面に形成した光学薄膜3とで構成されている。
基板2は光透過性に優れた材料であれば良く、アクリル系樹脂やポリカーボネート系樹脂等のプラスチックや、BK7、サファイヤガラス、ホウケイ酸ガラス、白板ガラス、青板ガラス、SF3、及びSF7であっても良く、一般に市販されている光学ガラスが使用でき、更に水晶であっても良い。
また基板2の平面形状は、矩形でも円形であっても良く、また基板2の表裏面は、平坦な平面でも曲面であっても良く、さらに基板2の表裏面は、互いが平行関係でも非平行関係であっても良い。
光学薄膜3は、1層以上の誘電体から成り、例えば屈折率を相互に異にする第1の材料と第2の材料を交互に積層させた誘電体層から成る。そして反射防止膜、UV−IRカット膜(Ultraviolet-Infrared cut)、またはIRカット(Infrared cut)膜から選ばれる1種以上である。
尚、光学薄膜3は、基板2の両面に形成しても良い。
FIG. 1 is a cross-sectional view showing an optical thin film filter 1 obtained in this embodiment.
In FIG. 1, an optical thin film filter 1 is composed of a substrate 2 that transmits light and an optical thin film 3 formed on one surface of the substrate 2.
The substrate 2 may be any material having excellent light transmission properties, such as plastic such as acrylic resin and polycarbonate resin, BK7, sapphire glass, borosilicate glass, white plate glass, blue plate glass, SF3, and SF7. In general, commercially available optical glass can be used, and quartz may also be used.
The planar shape of the substrate 2 may be rectangular or circular, and the front and back surfaces of the substrate 2 may be flat or curved, and the front and back surfaces of the substrate 2 are non-parallel even if they are parallel to each other. A parallel relationship may be used.
The optical thin film 3 is composed of one or more dielectrics, for example, a dielectric layer in which first and second materials having different refractive indexes are alternately stacked. And it is 1 or more types chosen from an anti-reflective film, UV-IR cut film (Ultraviolet-Infrared cut), or IR cut (Infrared cut) film | membrane.
The optical thin film 3 may be formed on both surfaces of the substrate 2.

次に、本実施形態の光学薄膜フィルタ1の製造方法について説明する。
図2は、本実施形態の光学薄膜フィルタ1の製造方法を示す工程図である。
図3、図4(a)及び図4(b)は、反りの把握を示す断面図である。
図5は、事前変形工程で用いる変形用治具6を示す断面図である。
図6(a)及び(b)は、事前変形工程を示す断面図である。
図7(a)及び(b)は、薄膜形成工程を示す断面図である。
図8は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。
Next, the manufacturing method of the optical thin film filter 1 of this embodiment is demonstrated.
FIG. 2 is a process diagram showing a method for manufacturing the optical thin film filter 1 of the present embodiment.
3, 4 (a) and 4 (b) are cross-sectional views showing the grasping of the warpage.
FIG. 5 is a cross-sectional view showing the deformation jig 6 used in the preliminary deformation process.
6A and 6B are cross-sectional views showing a pre-deformation step.
7A and 7B are cross-sectional views showing a thin film forming process.
FIG. 8 is a partial cross-sectional view of the vicinity of the distal end portion 17 of the support portion 8 on the center side in the pre-deformation process of the present embodiment.

図2に示すように、本実施形態の光学薄膜フィルタ1の製造方法は、反りの把握とその結果に基づく事前変形工程及び薄膜形成工程とを有する。
光学薄膜3形成後の反りは、基板2の材質及び形状、光学薄膜3の材質及び膜厚ならびに薄膜形成条件等によって変化する。したがって、これらの条件が変わらない場合には、反りの把握は、必ずしも行なう必要はない。
As shown in FIG. 2, the manufacturing method of the optical thin film filter 1 of this embodiment has the pre-deformation process and thin film formation process based on the grasp of the curvature, and the result.
The warp after the formation of the optical thin film 3 varies depending on the material and shape of the substrate 2, the material and thickness of the optical thin film 3, the thin film formation conditions, and the like. Therefore, when these conditions do not change, it is not always necessary to grasp the warp.

図3は、反りの把握で用いる平置き治具4と基板2を示している。
反りの把握では、図3に示す平置き治具4に配置された基板2の片面である形成面5に光学薄膜3を形成する。
ここで、基板2は、ひとつの光学フィルタ1の基板でも、後から分割して複数の光学フィルタ1を得るための基板であっても良い。
形成方法は、蒸着法、イオンアシスト蒸着法、イオンプレーテイング法やスパッタ法を用いることができ、材料源はSiO2、TiO2等の酸化物、MgF2、CaF2等の弗化物、ZnSのような硫化物及びKI,NaBr等のハロゲン化物を用いることができる。尚、材料源の位置は、図3の基板2の下側になる。
光学薄膜3の形成後の状態を図4に示す。図4(a)及び(b)において、基板2は、薄膜形成条件や光学薄膜3の影響等による内部応力が圧縮か引張りかによって、反り幅Aまたは反り幅Bの反りが生じる。
FIG. 3 shows the flat placing jig 4 and the substrate 2 used for grasping the warpage.
In grasping the warp, the optical thin film 3 is formed on the formation surface 5 which is one side of the substrate 2 arranged in the flat placing jig 4 shown in FIG.
Here, the substrate 2 may be a substrate for one optical filter 1 or a substrate for dividing the substrate 2 later to obtain a plurality of optical filters 1.
As a forming method, a vapor deposition method, an ion assist vapor deposition method, an ion plating method or a sputtering method can be used. A material source is an oxide such as SiO 2 or TiO 2 , a fluoride such as MgF 2 or CaF 2, or a ZnS material. Such sulfides and halides such as KI and NaBr can be used. Note that the position of the material source is on the lower side of the substrate 2 in FIG.
The state after formation of the optical thin film 3 is shown in FIG. 4A and 4B, the substrate 2 warps with a warp width A or a warp width B depending on whether the internal stress due to the thin film formation conditions or the influence of the optical thin film 3 is compression or tension.

事前変形工程では、治具として図5に示した変形用治具6を用いる。図5において、変形用治具6は、平板状の治具板7を備え、平板状の治具板7には、治具の中心側の支持部8と治具の外側の支持部10とが設けられている。外側の支持部10は、受け板11と押え板12とを備える。
また、一体とした治具板7と外側の支持部10とに対して、中心側の支持部8の位置を決めて固定する距離調整固定部9を備える。
In the preliminary deformation step, the deformation jig 6 shown in FIG. 5 is used as the jig. In FIG. 5, the deformation jig 6 includes a flat jig plate 7, and the flat jig plate 7 includes a support portion 8 on the center side of the jig and a support portion 10 on the outside of the jig. Is provided. The outer support portion 10 includes a receiving plate 11 and a pressing plate 12.
In addition, a distance adjustment fixing portion 9 is provided for determining and fixing the position of the support portion 8 on the center side with respect to the integrated jig plate 7 and the outer support portion 10.

以下に、光学薄膜3の形成後の反り幅AとBの場合について、分けて事前変形工程を説明する。
反り幅Aである図4(a)の場合は、図6(a)に示すように、基板2の外周部16に変形用治具6の受け板11を接触させ、且つ基板2の中心部15に中心側の支持部8を接触させる。そして、中心側の支持部8を矢印方向に反り幅Aに相当する距離数だけ移動することで、外側の支持部10の第1の基準点14と中心側の支持部8の第2の基準点13との間の距離を調整し、基板2を変形して、その後、距離調整固定部9で中心側の支持部8を固定する。
反り幅Bである図4(b)の場合は、図6(b)に示すように、基板2の外周部16に変形用治具6の押え板12を接触させ、且つ基板2の中心部15に中心側の支持部8を接触させる。そして、中心側の支持部8を矢印方向に反り幅Bに相当する距離数だけ移動することで、外側の支持部10の第1の基準点14と中心側の支持部8の第2の基準点13との間の距離を調整し、基板2を変形して、その後、距離調整固定部9で中心側の支持部8を固定する。
以上のように、事前変形工程では、光学薄膜3の形成面5を基準面とし、基板2の光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板に変形を加える。
Hereinafter, the pre-deformation step will be described separately for the warp widths A and B after the formation of the optical thin film 3.
In the case of FIG. 4A having a warp width A, the receiving plate 11 of the deformation jig 6 is brought into contact with the outer peripheral portion 16 of the substrate 2 as shown in FIG. The support portion 8 on the center side is brought into contact with 15. Then, the first reference point 14 of the outer support 10 and the second reference of the center support 8 are moved by moving the center support 8 in the direction of the arrow by a distance corresponding to the warp width A. The distance to the point 13 is adjusted, the substrate 2 is deformed, and then the center side support portion 8 is fixed by the distance adjustment fixing portion 9.
In the case of FIG. 4B having a warp width B, as shown in FIG. 6B, the pressing plate 12 of the deformation jig 6 is brought into contact with the outer peripheral portion 16 of the substrate 2 and the center portion of the substrate 2 is placed. The support portion 8 on the center side is brought into contact with 15. Then, the first reference point 14 of the outer support 10 and the second reference of the center support 8 are moved by moving the center support 8 in the direction of the arrow by a distance corresponding to the warp width B. The distance to the point 13 is adjusted, the substrate 2 is deformed, and then the center side support portion 8 is fixed by the distance adjustment fixing portion 9.
As described above, in the preliminary deformation step, the formation surface 5 of the optical thin film 3 is used as a reference surface, and the formation surface 5 of the optical thin film 3 of the substrate 2 is substantially plane-symmetric with respect to the reference surface. In order to achieve this, the substrate is deformed.

薄膜形成工程では、図6(a)及び(b)それぞれに対応して、図7(a)及び(b)に示すように、基板2の形成面5に、光学薄膜3を形成する。薄膜形成方法、薄膜形成条件等は、反りの把握で記述した内容と同様である。   In the thin film forming step, the optical thin film 3 is formed on the formation surface 5 of the substrate 2 as shown in FIGS. 7A and 7B, corresponding to FIGS. 6A and 6B, respectively. The thin film formation method, thin film formation conditions, and the like are the same as those described in grasping the warpage.

ここで中心側の支持部8と基板2の中心部15との接触、固定及び分離について、図8に従って詳しく説明する。中心側の支持部8の先端部17には、粘着剤または接着剤を有する結合層18が設けられている。
基板2に加えるべき変形の量は、一般的に僅かな量であることから、固定力は少なくて良い。
以上から、粘着剤または接着剤の材質に特に制約が必要ではなく、アクリル系またはビニル系等の粘着剤またはアクリル系、エポキシ系またはポリイミド系等の接着剤が使用でき、使用量は僅かで良い。
Here, contact, fixing, and separation between the support portion 8 on the center side and the center portion 15 of the substrate 2 will be described in detail with reference to FIG. A bonding layer 18 having a pressure-sensitive adhesive or an adhesive is provided at the distal end portion 17 of the support portion 8 on the center side.
Since the amount of deformation to be applied to the substrate 2 is generally a small amount, the fixing force may be small.
From the above, there is no particular restriction on the material of the pressure-sensitive adhesive or adhesive, and acrylic or vinyl-based pressure-sensitive adhesives or acrylic-based, epoxy-based or polyimide-based adhesives can be used, and the amount used may be small. .

結合層18がアクリル系またはビニル系等の粘着剤を有する場合、中心側の支持部8と基板2との接触による固定において、また結合層18へのUV(Ultraviolet)照射による粘着剤収縮後の中心側の支持部8と基板2との分離において、接触、固定及び分離が共に小さな力で達成することができる。
結合層18がアクリル系、エポキシ系またはポリイミド系等の接着剤を有する場合、中心側の支持部8と基板2との接触の後において、結合層18へのUV(Ultraviolet)照射または加熱を行い接着剤を硬化し、中心側の支持部8と基板2とを固定する。
分離については、変形用治具6と基板2とを一体とした状態で熱ショックを与え、中心側の支持部8と基板2とを分離する。
この接触、固定及び分離も、共に極めて小さな力で達成することができる。
In the case where the bonding layer 18 has an acrylic or vinyl-based pressure-sensitive adhesive, the fixing by contact between the support 8 on the center side and the substrate 2 and after the pressure-sensitive adhesive shrinks by UV (Ultraviolet) irradiation to the bonding layer 18. In the separation of the support portion 8 on the center side and the substrate 2, contact, fixation and separation can be achieved with a small force.
When the bonding layer 18 has an adhesive such as acrylic, epoxy, or polyimide, UV (ultraviolet) irradiation or heating is performed on the bonding layer 18 after the contact between the support portion 8 on the center side and the substrate 2. The adhesive is cured, and the support portion 8 on the center side and the substrate 2 are fixed.
As for the separation, a heat shock is applied in a state where the deformation jig 6 and the substrate 2 are integrated, and the support portion 8 on the center side and the substrate 2 are separated.
This contact, fixation and separation can both be achieved with very little force.

複数の光学フィルタ1を得る場合、薄膜形成工程の後、基板2を適宜分割する。   When a plurality of optical filters 1 are obtained, the substrate 2 is appropriately divided after the thin film forming step.

尚、熱ショックとは、例えば80℃以上に一定時間保持後、即座に常温以下に放置することを指す。
また、図8に図示しないが、中心側の支持部8と基板2との分離の時点では、基板2に光学薄膜3が形成されている。
また、図6(b)に示すような方向に基板2に事前の変形を加える場合、結合層18は無くても良い。
以上のようにして、反りの少ない光学薄膜フィルタ1が得られる。
Incidentally, the heat shock refers to, for example, immediately leaving it at a room temperature or lower after holding it at 80 ° C. or higher for a certain time.
Although not shown in FIG. 8, the optical thin film 3 is formed on the substrate 2 at the time of separation between the support portion 8 on the center side and the substrate 2.
Further, when the substrate 2 is deformed in advance in the direction as shown in FIG. 6B, the bonding layer 18 may be omitted.
As described above, the optical thin film filter 1 with less warpage can be obtained.

以下、第1の実施形態の効果を記載する。
(1)光学薄膜3を形成する前に、光学薄膜3の形成で生じる反りとは略面対称の反りになるような変形を基板2に加えるという簡易な手法で、光学薄膜3の形成面5に、薄膜形成条件や光学薄膜3の影響等による内部応力に吊り合う反対方向の応力を生ぜしめることができる。
これにより、多大な工数をかけることなく優れた光学特性を有する光学部品の製造方法を提供することができる。
(2)治具板7に設けられた外側の支持部10と中心側の支持部8との相対位置の調整を、外側の支持部10と中心側の支持部8との間の距離の調整で行なう。この調整は、治具板7を基準として行なうので、微小単位で、微少距離まで、再現性良く、任意に調整することができる。その結果、基板2に加える変形も微小単位で、微少量まで、再現性良く、任意に調整することができる。
光学薄膜3の形成方法において、基板2と光学薄膜3の材料源や基板2の加熱源等との距離や角度によって、基板2毎の熱膨張や光学薄膜3の残留応力は微妙に異なった値となる。この発明では、基板2毎に調整を行なうので、かかる熱膨張や残留応力に応じた微妙な調整もできる。
(3)中心側の支持部8と基板2の中心部15との接触のための基板2への加工が不要で、中心側の支持部8と基板2の中心部15が簡易に接触及び分離できる。
(第2の実施形態)
Hereinafter, effects of the first embodiment will be described.
(1) Before the optical thin film 3 is formed, the surface 5 on which the optical thin film 3 is formed can be obtained by a simple technique in which the substrate 2 is deformed so that the warp caused by the formation of the optical thin film 3 is substantially plane symmetrical. In addition, it is possible to generate a stress in the opposite direction that is suspended by the internal stress due to the thin film formation conditions, the influence of the optical thin film 3, or the like.
Thereby, the manufacturing method of the optical component which has the outstanding optical characteristic can be provided, without spending a lot of man-hours.
(2) The relative position between the outer support 10 and the center support 8 provided on the jig plate 7 is adjusted, and the distance between the outer support 10 and the center support 8 is adjusted. To do. Since this adjustment is performed using the jig plate 7 as a reference, it can be arbitrarily adjusted in minute units up to a minute distance with good reproducibility. As a result, the deformation applied to the substrate 2 can be arbitrarily adjusted to a very small amount with a high reproducibility.
In the method of forming the optical thin film 3, the thermal expansion of each substrate 2 and the residual stress of the optical thin film 3 differ slightly depending on the distance and angle between the substrate 2 and the material source of the optical thin film 3, the heating source of the substrate 2, and the like. It becomes. In the present invention, since the adjustment is performed for each substrate 2, a delicate adjustment according to the thermal expansion and residual stress can be performed.
(3) Processing to the substrate 2 for contact between the center side support portion 8 and the center portion 15 of the substrate 2 is not required, and the center side support portion 8 and the center portion 15 of the substrate 2 are easily contacted and separated. it can.
(Second Embodiment)

第2の実施形態は、第1の実施形態の中心側の支持部8と基板2の中心部15との接触の仕方のみが異なる。
これより、異なる点のみ説明し、第1の実施形態と同じ内容については、説明を省く。
The second embodiment differs only in the way of contact between the central support portion 8 and the central portion 15 of the substrate 2 of the first embodiment.
Thus, only different points will be described, and description of the same contents as in the first embodiment will be omitted.

図9は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。   FIG. 9 is a partial cross-sectional view of the vicinity of the distal end portion 17 of the support portion 8 on the center side in the pre-deformation process of the present embodiment.

図9において、先端部17に設けられた磁力により接合する接合部材19と接合対部材20とを、基板2を間に介して対抗配置し、基板2に接触させることによって、中心側の支持部8と基板2の中心部15とを接触する。
ここでは、接合部材19または接合対部材20の両方を磁石とするか、または一方を磁石として他方を磁性体とする。
磁石はフェライト磁石またはネオジム磁石等の永久磁石を使用することができ、また磁性体は純鉄、パーマロイ、またはセンダスト合金等を使用することができ、必要に応じニッケルの耐食メッキが施される。
一般に広く用いられる永久磁石及び磁性体による磁力を活用した固定であり、接触、固定及び分離は、共に小さな力で達成することができる。
尚、図6(b)に示すような方向に基板2に事前の変形を加える場合、接合対部材20は無くても良い。
In FIG. 9, a support member on the center side is formed by placing a joining member 19 and a joining pair member 20 that are joined to each other by a magnetic force provided at the tip portion 17 so as to face each other with the substrate 2 interposed therebetween. 8 and the central portion 15 of the substrate 2 are brought into contact with each other.
Here, both the joining member 19 or the joining pair member 20 are magnets, or one is a magnet and the other is a magnetic body.
A permanent magnet such as a ferrite magnet or a neodymium magnet can be used as the magnet, and pure iron, permalloy, sendust alloy, or the like can be used as the magnetic material, and nickel corrosion-resistant plating is performed as necessary.
In general, fixing is performed by utilizing a magnetic force of a permanent magnet and a magnetic material that are widely used, and both contact, fixation, and separation can be achieved with a small force.
When the substrate 2 is deformed in advance in the direction as shown in FIG. 6B, the bonding member 20 may not be provided.

以下、第2の実施形態の効果を記載する。
(4)中心側の支持部8と基板2の中心部15との接触のための基板2への加工が不要で、中心側の支持部8と基板2の中心部15が簡易に接触及び分離できる。
(第3の実施形態)
Hereinafter, effects of the second embodiment will be described.
(4) It is not necessary to process the substrate 2 for contact between the central support portion 8 and the central portion 15 of the substrate 2, and the central support portion 8 and the central portion 15 of the substrate 2 can be easily contacted and separated. it can.
(Third embodiment)

第3の実施形態は、第1の実施形態及び第2の実施形態の中心側の支持部8と基板2の中心部15との接触の仕方が異なる。具体的には、基板2に孔24を設け、孔24を活用して固定する。
これより、異なる点のみ説明し、第1及び第2の実施形態と同じ内容については、説明を省く。
The third embodiment is different from the first embodiment and the second embodiment in the manner of contact between the support portion 8 on the center side and the center portion 15 of the substrate 2. Specifically, a hole 24 is provided in the substrate 2 and is fixed using the hole 24.
Thus, only different points will be described, and description of the same contents as those in the first and second embodiments will be omitted.

図10(a)は、基板2に孔24を設けるための加工を示す平面図であり、(b)は(a)のC−C線断面図である。
図11(a)及び(b)は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。
FIG. 10A is a plan view showing processing for providing the holes 24 in the substrate 2, and FIG. 10B is a sectional view taken along the line CC of FIG.
FIGS. 11A and 11B are partial cross-sectional views in the vicinity of the distal end portion 17 of the support portion 8 on the center side in the pre-deformation step of the present embodiment.

基板2に孔24を設けるには、化学的な方法や機械的な方法で行なうことができる。
図10(a)及び(b)において、基板2の表面にスパッタ法で耐食膜22を形成し、更に孔あけ目的箇所21以外にレジスト膜23を形成する。耐食膜22はCr膜とAu膜を有する。
次に孔あけ目的箇所21のAuをI2、KIを主成分とするエッチング液で、Crを硝酸第二セリウムアンモニウムを主成分とするエッチング液で溶解、除去する。
次に基板2をエッチングする薬液(基板がガラスの場合には、水酸化カリウム水溶液、水晶の場合には、弗化水素水溶液と弗化アンモニウム水溶液の混合液)で化学的に、基板2の孔あけ目的箇所21を溶解、除去し、その後レジスト剥離液で、レジスト膜23を除去する。
その他の方法として、超音波穴あけ加工法で機械的に孔あけを行なうこともできる。
The hole 24 can be provided in the substrate 2 by a chemical method or a mechanical method.
10A and 10B, a corrosion-resistant film 22 is formed on the surface of the substrate 2 by a sputtering method, and a resist film 23 is formed in addition to the drilling target portion 21. The corrosion resistant film 22 has a Cr film and an Au film.
Next, Au in the target hole 21 is dissolved and removed with an etching solution containing I 2 and KI as main components and Cr with an etching solution containing ceric ammonium nitrate as a main component.
Next, the holes in the substrate 2 are chemically treated with a chemical solution for etching the substrate 2 (a potassium hydroxide aqueous solution when the substrate is glass, or a mixed solution of a hydrogen fluoride aqueous solution and an ammonium fluoride aqueous solution when quartz is used). The target location 21 is dissolved and removed, and then the resist film 23 is removed with a resist stripping solution.
As another method, it is also possible to perform mechanical drilling by an ultrasonic drilling method.

以下に、図4における光学薄膜3の形成後の反り幅AとBの場合について、分けて接触方法を説明する。
反り幅Aの場合、図11(a)(図6(a)と同じ方向に基板2を変形する場合とする)において、先端部17に接触部材25を設けた中心側の支持部8を基板2の孔24に紙面上の下側から挿入させ、接触部材25を基板2の表面(紙面上の下側の表面)に接触させる。
反り幅Bの場合、図11(b)(図6(b)と同じ方向に基板2を変形する場合とする)において、先端部17に接触部材25を設けた中心側の支持部8を基板2の孔24に紙面上の上側から挿入させ、接触部材25を基板2の表面(紙面上の上側の表面)に接触させる。
Hereinafter, the contact methods will be described separately for the cases of warp widths A and B after the formation of the optical thin film 3 in FIG.
In the case of the warp width A, in FIG. 11A (assuming that the substrate 2 is deformed in the same direction as FIG. 6A), the central support portion 8 provided with the contact member 25 at the tip portion 17 is the substrate. Then, the contact member 25 is brought into contact with the surface of the substrate 2 (the lower surface on the paper surface).
In the case of the warp width B, in FIG. 11 (b) (assuming that the substrate 2 is deformed in the same direction as FIG. 6 (b)), the support portion 8 on the center side provided with the contact member 25 at the tip portion 17 is the substrate. The contact member 25 is brought into contact with the surface of the substrate 2 (the upper surface on the paper surface).

以下、第3の実施形態の効果を記載する。
(5)比較的、基板2が形状として小さい場合、厚い場合、基板2の剛性が大きい場合、または光学薄膜3の応力が大きい場合、事前の基板2の変形に比較的大きな物理力を要するが、比較的小さな物理力で充分な場合と同様に、確実、正確に再現性良く変形を加えることができる。
Hereinafter, effects of the third embodiment will be described.
(5) When the substrate 2 is relatively small in shape, thick, when the rigidity of the substrate 2 is large, or when the stress of the optical thin film 3 is large, a relatively large physical force is required to deform the substrate 2 in advance. As in the case where a relatively small physical force is sufficient, the deformation can be reliably and accurately performed with good reproducibility.

以下、実施例に基づき本発明をより詳しく説明する。
(実施例1)
Hereinafter, the present invention will be described in more detail based on examples.
Example 1

本実施例は、可視波長域の光を透過し、所定波長以下の紫外波長域と所定波長以上の赤外波長域での光の吸収が少ない良好な反射特性を有し、基板2が水晶であることにより光学ローパスフィルタ機能を有する光学薄膜フィルタ1(UV−IRカットフィルタ)に適用した例である。
基板2、光学薄膜3、反りの把握ならびに中心側の支持部8と基板2の中心部15との接触、固定及び分離に関係する事項は、下述の通りとして、その他は第1の実施形態と同じとした。
This example has good reflection characteristics that transmit light in the visible wavelength range, and absorb less light in the ultraviolet wavelength range below the predetermined wavelength and in the infrared wavelength range above the predetermined wavelength, and the substrate 2 is made of quartz. This is an example applied to the optical thin film filter 1 (UV-IR cut filter) having an optical low-pass filter function.
Matters related to the grasping of the substrate 2, the optical thin film 3, the warp, and the contact, fixing and separation between the support portion 8 on the center side and the center portion 15 of the substrate 2 are as described below, and others are the first embodiment. And the same.

基板2は、直径45mm(屈折率n=1.52)、厚さは0.43mmの水晶板を用いた。
光学薄膜3の形成方法は通常の蒸着法を用いた。
光学薄膜3として、基板2の片面に高屈折材料(H)であるTiO2(屈折率n=2.40)と、低屈折率材料(L)であるSiO2(屈折率n=1.46)とを交互に積層して形成した。
As the substrate 2, a quartz plate having a diameter of 45 mm (refractive index n = 1.52) and a thickness of 0.43 mm was used.
As a method of forming the optical thin film 3, a normal vapor deposition method was used.
As the optical thin film 3, TiO 2 (refractive index n = 2.40), which is a high refractive material (H), and SiO 2 (refractive index n = 1.46), which is a low refractive index material (L), are formed on one surface of the substrate 2. ) Are alternately laminated.

光学薄膜3の膜構成の詳細を説明する。
以下に説明する膜厚構成の表記は、高屈折率材料層(H)の膜厚を光学膜厚nd=1/4λの値を1Hとして表記し、低屈折率材料層(L)を同様に1Lと表記する。また、(xH、yL)SのSの表記は、スタック数と呼ばれる繰り返しの回数で、括弧内の構成を周期的に繰り返すことを表している。
光学薄膜3の膜厚構成は、設計波長λは550nm、基板2の上面第1層の高屈折率材料のTiO2膜3H1が0.60H、第2層の低屈折率材料のSiO2膜3L1が0.20L、以下、順次1.05H、0.37L、(0.68H、0.53L)4、0.69H、0.42L、0.59H、1.92L、(1.38H、1.38L)6、1.48H、1.52L、1.65H、1.71L、1.54H、1.59L、1.42H、1.58L、1.51H、1.72L、1.84H、1.80L、1.67H、1.77L、(1.87H、1.87L)7、1.89H、1.90L、1.90H、最上層の低屈折率材料のSiO2膜3L30が0.96Lの、計60層を形成した。
Details of the film configuration of the optical thin film 3 will be described.
In the description of the film thickness configuration described below, the film thickness of the high refractive index material layer (H) is expressed as 1H for the value of the optical film thickness nd = 1 / 4λ, and the low refractive index material layer (L) is similarly described. Indicated as 1L. In addition, the notation of S in (xH, yL) S represents that the configuration in parentheses is periodically repeated by the number of repetitions called the number of stacks.
The optical thin film 3 has a thickness of 550 nm, a design wavelength λ of 550 nm, a high refractive index material TiO 2 film 3H1 of the upper surface first layer of the substrate 2 of 0.60H, and a second layer of low refractive index material SiO 2 film 3L1. Is 0.20L, and subsequently 1.05H, 0.37L, (0.68H, 0.53L) 4 , 0.69H, 0.42L, 0.59H, 1.92L, (1.38H, 1. 38L) 6 , 1.48H, 1.52L, 1.65H, 1.71L, 1.54H, 1.59L, 1.42H, 1.58L, 1.51H, 1.72L, 1.84H, 1. 80L, 1.67H, 1.77L, (1.87H, 1.87L) 7 , 1.89H, 1.90L, 1.90H, the top layer of the low refractive index material SiO 2 film 3L30 is 0.96L A total of 60 layers were formed.

次に、反りの把握について説明する。
光学薄膜3が形成された基板2は、低屈折率材料層のSiO2の強い圧縮応力と高屈折率材料層のTiO2の弱い引張応力により、光学薄膜3の形成面5が凸になるように、反り幅Aの反りが生じたことを把握した。
したがって、事前変形工程では、反りの把握の結果に基づき、光学薄膜3の形成面5を基準面とし、光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板2に変形を加えた。
Next, the grasp of warpage will be described.
In the substrate 2 on which the optical thin film 3 is formed, the formation surface 5 of the optical thin film 3 becomes convex due to the strong compressive stress of SiO 2 of the low refractive index material layer and the weak tensile stress of TiO 2 of the high refractive index material layer. In addition, it was grasped that a warp with a warp width A occurred.
Therefore, in the pre-deformation step, based on the result of grasping the warp, the formation surface 5 of the optical thin film 3 is used as a reference surface, and the formation surface 5 of the optical thin film 3 is substantially plane-symmetric with respect to the reference surface. The substrate 2 was deformed so as to be warped.

次に、中心側の支持部8と基板2の中心部15との接触、固定及び分離について説明する。
中心側の支持部8の先端部17の結合層18には、UV硬化型ダイシングテープ(型番:Adwill D−638、メーカー:リンテック株式会社)の基材部をエポキシ系接着剤で貼り合わせて両面を粘着剤層としたテープを用いた。
上述の粘着剤層はUV硬化型アクリル系粘着剤から成り、接触、固定は粘着剤層の押付けで充分であり、特別な処理は不要であった。
分離は、結合層18にUV照射(主波長365nm、照度220mw/cm2、光量160mJ/cm2)することで粘着力を弱めた後に行なった。
分離後の基板2に粘着剤層が実用上問題になる水準で残留することはなかった。
Next, contact, fixation, and separation between the support portion 8 on the center side and the center portion 15 of the substrate 2 will be described.
To the bonding layer 18 at the tip 17 of the support portion 8 on the center side, a base portion of a UV curable dicing tape (model number: Adwill D-638, manufacturer: Lintec Co., Ltd.) is bonded with an epoxy adhesive on both sides. The tape which used this as the adhesive layer was used.
The above-mentioned pressure-sensitive adhesive layer is made of a UV curable acrylic pressure-sensitive adhesive, and the pressing and pressing of the pressure-sensitive adhesive layer is sufficient for contact and fixing, and no special treatment is required.
Separation was performed after the adhesive strength was weakened by irradiating the bonding layer 18 with UV (main wavelength 365 nm, illuminance 220 mw / cm 2 , light quantity 160 mJ / cm 2 ).
The pressure-sensitive adhesive layer did not remain on the separated substrate 2 at a level causing a practical problem.

本実施例における基板(各治具でのNo1とNo2の2枚ずつ)の反り幅の測定結果を表1に示す。尚、反り幅は、光学薄膜3の形成面5を上にして、基板2の光学薄膜3の形成面5の外周部15をゼロ基準に、基板2の外周部15以外の形成面5が、反りによって上側となる場合をプラス数値で、下側となる場合をマイナス数値で表わし、単位はμmである。そして反り幅の測定は、高精度フラットネステスタFT−900((株)ニデック製)を使用した。   Table 1 shows the measurement results of the warpage width of the substrates (two pieces of No1 and No2 in each jig) in this example. The warping width is such that the formation surface 5 other than the outer peripheral portion 15 of the substrate 2 has the formation surface 5 of the optical thin film 3 up and the outer peripheral portion 15 of the formation surface 5 of the optical thin film 3 of the substrate 2 is zero reference. A case where it is on the upper side due to warpage is represented by a positive value, and a case where it is on the lower side is represented by a negative value, and its unit is μm. And the measurement of the curvature width used the high precision flatness tester FT-900 (made by Nidec Co., Ltd.).

Figure 2007334087
Figure 2007334087

以上のように、反りの少ない1枚の水晶板から成る光学ローパスフィルタ機能を有する光学薄膜フィルタ1(UV−IRカットフィルタ)の作製が可能になった。   As described above, the optical thin film filter 1 (UV-IR cut filter) having an optical low-pass filter function composed of a single crystal plate with less warpage can be produced.

次に、光学特性を評価するために、この光学薄膜フィルタ1(UV−IRカットフィルタ)を含む複数枚の水晶板を用いた積層の光学ローパスフィルタを作製した。   Next, in order to evaluate optical characteristics, a laminated optical low-pass filter using a plurality of quartz plates including the optical thin film filter 1 (UV-IR cut filter) was produced.

図12は、積層の光学ローパスフィルタ30を示す断面図である。
図13は、積層の光学ローパスフィルタ30の光学軸、光線の進行方向を示す模式図である。
FIG. 12 is a cross-sectional view showing a laminated optical low-pass filter 30.
FIG. 13 is a schematic diagram showing the optical axis of the laminated optical low-pass filter 30 and the traveling direction of the light beam.

積層の光学ローパスフィルタ30の構造は、図12に示すように、複屈折板としての2つの水晶板40,50と、1/4波長板60を含んで構成されており、2つの水晶板40,50の間に、これも水晶からなる1/4波長板60を挿入した3層構造となっている。
水晶板40は、上述の基板が水晶からなる光学薄膜フィルタ1であり、水晶板40の片面に光学薄膜が形成されている。3層構造を構成する水晶板40と、1/4波長板60と、水晶板50とは、それぞれが貼り合わされて一体構造になっている。
As shown in FIG. 12, the laminated optical low-pass filter 30 includes two crystal plates 40 and 50 as birefringent plates and a quarter-wave plate 60. , 50 also has a three-layer structure in which a quarter-wave plate 60 made of quartz is inserted.
The quartz plate 40 is the optical thin film filter 1 in which the above-described substrate is made of quartz, and an optical thin film is formed on one surface of the quartz plate 40. The quartz plate 40, the quarter-wave plate 60, and the quartz plate 50 constituting the three-layer structure are bonded together to form an integral structure.

水晶板40には、薄膜形成時に図5の変形用治具6を用いたものと、比較として図3の平置き治具4を用いたものである表1に示した光学薄膜フィルタを用い、3層構造を構成する積層の光学ローパスフィルタ30を作製した。前者を評価用光学ローパスフィルタと、後者を比較用光学ローパスフィルタと呼ぶ。
光学薄膜フィルタは、表1の各治具でのNo1とNo2の2枚ずつを使用し、適用した積層の光学ローパスフィルタも対応してNo1とNo2とする。
各々の積層の光学ローパスフィルタ30の透過波面収差値の測定結果を表2に示す。
尚、測定は、レーザー干渉計を使用した。
For the quartz plate 40, an optical thin film filter shown in Table 1 that uses the deformation jig 6 of FIG. 5 at the time of thin film formation and the flat placement jig 4 of FIG. A laminated optical low-pass filter 30 constituting a three-layer structure was produced. The former is called an evaluation optical low-pass filter, and the latter is called a comparative optical low-pass filter.
Two optical thin film filters, No. 1 and No. 2 in each jig shown in Table 1, are used, and the applied optical low-pass filter is also No. 1 and No. 2 correspondingly.
Table 2 shows the measurement result of the transmitted wavefront aberration value of each laminated optical low-pass filter 30.
The measurement was performed using a laser interferometer.

Figure 2007334087
Figure 2007334087

ここで図13に基づいて積層の光学ローパスフィルタ30の光学軸と光線の進行方向について説明する。
光入射側に配置される水晶板40は、光入射面と直交し、且つ紙面と平行な面(x−z平面)において、z軸と約45度の方位角をなす方向(矢印A1で示す方向)に光学軸(光学的主軸)を有している。この水晶板40に入射した光線L1は、水晶板40の有する複屈折性によって、2つの光線L11、L12に分離されて出射する。これらの光線L11、L12は、それぞれ偏向状態が直線偏向に変化して射出する。
1/4波長板60は、光入射面(x−y平面)において、x軸と約45度の方位角をなす方向(矢印A2で示す方向)に光学軸を有している。これにより、1/4波長板60に入射した光線L11、L12は、それぞれ直線偏向から円偏向に偏向状態が変えられ、2つの光線L13、L14となって出射する。
光出射側に配置される水晶板50は、光入射面と直交し、且つ紙面と直交する面(y−z平面)において、y軸と約45度の方位角をなす方向(矢印A3で示す方向)に光学軸を有している。この水晶板50に入射した光線L13は、水晶板50の有する複屈折性によって、2つの光線L15、L16に分離されて出射する。水晶板50に入射した光線L14は、前記水晶板40と同様に、2つの光線L17、L18に分離されて出射する。これらの光線L15、L16、L17、L18は、それぞれ偏向状態が直線偏向に変化して出射する。
Here, the optical axis of the laminated optical low-pass filter 30 and the traveling direction of the light beam will be described with reference to FIG.
The crystal plate 40 arranged on the light incident side is a direction (indicated by an arrow A1) that forms an azimuth angle of about 45 degrees with the z axis on a plane (xz plane) that is orthogonal to the light incident surface and parallel to the paper surface. Direction) with an optical axis (optical principal axis). The light beam L1 incident on the crystal plate 40 is separated into two light beams L11 and L12 and emitted by the birefringence of the crystal plate 40. These light beams L11 and L12 are emitted with their deflection states changed to linear deflection.
The quarter-wave plate 60 has an optical axis in a direction (direction indicated by an arrow A2) that forms an azimuth angle of about 45 degrees with the x-axis on the light incident surface (xy plane). As a result, the light beams L11 and L12 incident on the quarter-wave plate 60 are changed from a linear deflection to a circular deflection, and are emitted as two light beams L13 and L14.
The crystal plate 50 arranged on the light emitting side has a direction (indicated by an arrow A3) that forms an azimuth angle of about 45 degrees with the y axis on a plane (yz plane) that is orthogonal to the light incident surface and orthogonal to the paper surface. Direction). The light beam L13 incident on the crystal plate 50 is separated into two light beams L15 and L16 and emitted by the birefringence of the crystal plate 50. The light beam L14 incident on the quartz plate 50 is separated into two light beams L17 and L18 and emitted as in the quartz plate 40. These light beams L15, L16, L17, and L18 are emitted with their deflection states changed to linear deflection.

次に、上述の3層構造を構成する積層の光学ローパスフィルタ30を撮像素子と駆動部とで一体とした撮像モジュールとし、更に撮像モジュールをデジタルスチルカメラに組み込み、風景や人物の撮影を行い、目視で映像の確認を行なった。評価用光学ローパスフィルタを用いたものと比較用光学ローパスフィルタを用いたものでは、前者に映像の鮮明さが、後者に映像のボケが確認された。
(実施例2)
Next, the laminated optical low-pass filter 30 constituting the above-described three-layer structure is an imaging module in which the imaging element and the drive unit are integrated, and the imaging module is further incorporated in a digital still camera to take a picture of a landscape or a person, The image was confirmed visually. In the case of using the evaluation optical low-pass filter and the case of using the comparative optical low-pass filter, it was confirmed that the former was clear and the latter was blurred.
(Example 2)

本実施例は、可視波長域の光を透過し、所定波長以上の赤外波長域での光の吸収が少い良好な反射特性を有する光学薄膜フィルタ1(IRカットフィルタ)に適用した例である。
基板2及び反りの把握に関係する事項は、下述の通りとして、その他は第1の実施形態と同じとした。
This embodiment is an example applied to an optical thin film filter 1 (IR cut filter) that transmits light in the visible wavelength region and has good reflection characteristics with little light absorption in the infrared wavelength region of a predetermined wavelength or more. is there.
Matters relating to the grasp of the substrate 2 and warping are as described below, and the others are the same as those in the first embodiment.

基板2は直径45mm(屈折率n=1.52)、厚さは0.3mmのガラス板を用いた。
光学薄膜3の形成方法は通常の蒸着法を用いた。
光学薄膜3として、基板2の片面に、高屈折率材料(H)であるTiO2と低屈折率材料層(L)であるMgF2を交互に積層して形成した。
As the substrate 2, a glass plate having a diameter of 45 mm (refractive index n = 1.52) and a thickness of 0.3 mm was used.
As a method of forming the optical thin film 3, a normal vapor deposition method was used.
The optical thin film 3 was formed by alternately laminating TiO 2 as a high refractive index material (H) and MgF 2 as a low refractive index material layer (L) on one surface of the substrate 2.

光学薄膜3の膜構成の詳細を説明する。
光学薄膜3の膜厚構成は、設計波長λは755nm、基板2側から1.14H、1.09L、1.03H、1.01L、(0.99H、0.99L)6、1.02H、1.08L、1.31H、0.18L、1.37H、1.24L、1.27H、1.28L、(1.28H、1.28L)6、1.26H、1.28L、1.25H、0.63Lの40層が形成されている。
Details of the film configuration of the optical thin film 3 will be described.
The film thickness of the optical thin film 3 is such that the design wavelength λ is 755 nm, 1.14H, 1.09L, 1.03H, 1.01L, (0.99H, 0.99L) 6 , 1.02H from the substrate 2 side. 1.08L, 1.31H, 0.18L, 1.37H, 1.24L, 1.27H, 1.28L, (1.28H, 1.28L) 6 , 1.26H, 1.28L, 1.25H , 40 layers of 0.63L are formed.

次に、反りの把握について説明する。
光学薄膜3が形成された基板2は、低屈折率材料層のMgF2の強い引張り応力と高屈折率材料層のTiO2の弱い引張応力により、光学薄膜3の形成面5が凹になるように反り幅Bの反りが生じた。
したがって、事前変形工程では、反りの把握の結果に基づき、光学薄膜3の形成面5を基準面とし、光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板2に変形を加えた。
尚、結合層18は用いなかった。
Next, the grasp of warpage will be described.
In the substrate 2 on which the optical thin film 3 is formed, the formation surface 5 of the optical thin film 3 becomes concave due to the strong tensile stress of MgF 2 of the low refractive index material layer and the weak tensile stress of TiO 2 of the high refractive index material layer. Warpage of the warp width B occurred.
Therefore, in the pre-deformation step, based on the result of grasping the warp, the formation surface 5 of the optical thin film 3 is used as a reference surface, and the formation surface 5 of the optical thin film 3 is substantially plane-symmetric with respect to the reference surface. The substrate 2 was deformed so as to be warped.
Note that the bonding layer 18 was not used.

本実施例における基板2(各治具でのNo1とNo2の2枚ずつ)の反り幅の測定結果を表3に示す。   Table 3 shows the measurement results of the warpage width of the substrate 2 (two pieces of No1 and No2 in each jig) in this example.

Figure 2007334087
Figure 2007334087

以上のように、基板2がガラス基板である、例えばCCD(電荷結合素子)などの映像素子の防塵ガラスとして、CCDの入射面に貼り合わせて一体に構成した、IRカットフィルタ機能を含む光学薄膜フィルタ1の作製が可能になった。   As described above, an optical thin film including an IR cut filter function integrally formed by being bonded to the entrance surface of a CCD as a dust-proof glass of a video device such as a CCD (charge coupled device), for example, where the substrate 2 is a glass substrate. The filter 1 can be manufactured.

尚、本発明は上述の実施形態及び実施例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、図5、図6(a)、図6(b)、図7(a)及び図7(b)に示す中心側の支持部8の第2の基準点及び外側の支持部10の第1の基準点は、中心側の支持部8及び受け板11の頂点であるが、頂点以外の点であっても良い。
In addition, this invention is not limited to the above-mentioned embodiment and Example, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.
For example, the second reference point of the support portion 8 on the center side and the first support portion 10 of the outer support portion 10 shown in FIGS. The reference point 1 is the apex of the support portion 8 and the receiving plate 11 on the center side, but may be a point other than the apex.

本発明の実施形態に係る光学薄膜フィルタを示す断面図。Sectional drawing which shows the optical thin film filter which concerns on embodiment of this invention. 本発明の実施形態に係る光学薄膜フィルタの製造方法を示す工程図。Process drawing which shows the manufacturing method of the optical thin film filter which concerns on embodiment of this invention. 反りの把握を示す断面図。Sectional drawing which shows grasp of curvature. (a)及び(b)は、反りの把握を示す断面図。(A) And (b) is sectional drawing which shows grasping of curvature. 事前変形工程で用いる変形用治具を示す断面図。Sectional drawing which shows the jig | tool for a deformation | transformation used at a prior deformation process. (a)及び(b)は、事前変形工程を示す断面図。(A) And (b) is sectional drawing which shows a prior deformation | transformation process. (a)及び(b)は、薄膜形成工程を示す断面図。(A) And (b) is sectional drawing which shows a thin film formation process. 本発明の第1の実施形態の事前変形工程における中心側の支持部の先端部近傍の部分断面図。The fragmentary sectional view of the front-end | tip part vicinity of the center side support part in the prior deformation | transformation process of the 1st Embodiment of this invention. 本発明の第2の実施形態の事前変形工程の中心側の支持部の先端部の部分断面図。The fragmentary sectional view of the front-end | tip part of the support part of the center side of the prior deformation | transformation process of the 2nd Embodiment of this invention. (a)は、孔を設けるための加工を示す平面図であり、(b)は(a)のC−C線断面図。(A) is a top view which shows the process for providing a hole, (b) is CC sectional view taken on the line of (a). (a)及び(b)は、本発明の第3の実施形態の事前変形工程における中心側の支持部の先端部近傍の部分断面図。(A) And (b) is a fragmentary sectional view of the front-end | tip part vicinity of the center side support part in the prior deformation | transformation process of the 3rd Embodiment of this invention. 積層の光学ローパスフィルタを示す断面図。Sectional drawing which shows a laminated optical low-pass filter. 積層の光学ローパスフィルタの光学軸、光線の進行方向を示す模式図。The schematic diagram which shows the optical axis of a laminated optical low-pass filter, and the advancing direction of a light ray.

符号の説明Explanation of symbols

1…光学部品としての光学薄膜フィルタ、2…基板、3…光学薄膜、5…形成面(基準面)、6…治具としての変形用治具、7…治具板、8…中心側の支持部、10…外側の支持部、15…基板の中心部、16…基板の外周部、17…中心側の支持部の先端部、18…結合層、19…接合部材、20…接合対部材、24…孔、25…接触部材。
DESCRIPTION OF SYMBOLS 1 ... Optical thin film filter as an optical component, 2 ... Substrate, 3 ... Optical thin film, 5 ... Formation surface (reference surface), 6 ... Deformation jig as a jig, 7 ... Jig plate, 8 ... Center side Support part, 10 ... outer support part, 15 ... center part of substrate, 16 ... outer peripheral part of substrate, 17 ... tip part of support part on the center side, 18 ... bonding layer, 19 ... joining member, 20 ... joining pair member 24 ... holes, 25 ... contact members.

Claims (5)

基板に光学薄膜を形成したときに生じる反りの把握の結果に基づいて、
前記光学薄膜の形成面を基準面とし、前記形成面が前記基準面に対して前記反りとは略面対称の反りになるように、前記基板に変形を加える事前変形工程と、
前記変形を加えた状態で、前記基板に前記光学薄膜を形成する薄膜形成工程とを有する
ことを特徴とする光学部品の製造方法。
Based on the results of grasping the warpage that occurs when an optical thin film is formed on a substrate,
A pre-deformation step in which the substrate is deformed so that the optical thin film formation surface is a reference surface, and the formation surface is substantially warped with respect to the reference surface.
And a thin film forming step of forming the optical thin film on the substrate in a state where the deformation is applied.
請求項1に記載の光学部品の製造方法において、
前記変形を加えるために治具を用い、
前記治具は、平板状の治具板を備え、
前記治具板には、外側の支持部と中心側の支持部とが設けられており、
前記外側の支持部を前記基板の外周部に接触させ、前記中心側の支持部を前記基板の中心部に接触させて、
前記外側の支持部と前記中心側の支持部との相対位置を調整することで、前記基板に前記変形を加える
ことを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component according to claim 1,
Using a jig to add the deformation,
The jig includes a flat jig plate,
The jig plate is provided with an outer support portion and a center support portion,
The outer support portion is brought into contact with the outer peripheral portion of the substrate, the center-side support portion is brought into contact with the center portion of the substrate,
The method of manufacturing an optical component, wherein the deformation is applied to the substrate by adjusting a relative position between the outer support portion and the center support portion.
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部には、粘着剤または接着剤を有する結合層が設けられており、
前記結合層を前記基板に接触させる
ことを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component according to claim 2,
A bonding layer having a pressure-sensitive adhesive or an adhesive is provided at the tip of the central support portion,
The manufacturing method of an optical component, wherein the bonding layer is brought into contact with the substrate.
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部に設けられた磁力により接合する接合部材と、
接合対部材とを、
前記基板を間に介して対抗配置して、前記基板に接触させる
ことを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component according to claim 2,
A joining member that joins by a magnetic force provided at the tip of the support portion on the center side;
A joining member,
A method of manufacturing an optical component, wherein the substrate is placed in opposition with the substrate interposed therebetween and brought into contact with the substrate.
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部には、接触部材が設けられ、
前記基板の中心部には、孔が設けられており、
前記中心側の支持部を前記孔に挿入させ、
前記接触部材を前記基板の表面に接触させる
ことを特徴とする光学部品の製造方法。
In the manufacturing method of the optical component according to claim 2,
A contact member is provided at the tip of the support portion on the center side,
A hole is provided in the center of the substrate,
Inserting the central support portion into the hole;
The method of manufacturing an optical component, wherein the contact member is brought into contact with the surface of the substrate.
JP2006167024A 2006-06-16 2006-06-16 Method of manufacturing optical component Withdrawn JP2007334087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167024A JP2007334087A (en) 2006-06-16 2006-06-16 Method of manufacturing optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167024A JP2007334087A (en) 2006-06-16 2006-06-16 Method of manufacturing optical component

Publications (1)

Publication Number Publication Date
JP2007334087A true JP2007334087A (en) 2007-12-27

Family

ID=38933612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167024A Withdrawn JP2007334087A (en) 2006-06-16 2006-06-16 Method of manufacturing optical component

Country Status (1)

Country Link
JP (1) JP2007334087A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023853A2 (en) * 2008-09-01 2010-03-04 日本電気硝子株式会社 Manufacturing method for glass substrate with thin film
JP2011230944A (en) * 2010-04-26 2011-11-17 Nippon Electric Glass Co Ltd Optical film and method for manufacturing the same
KR101252457B1 (en) * 2011-04-18 2013-04-16 엘아이지에이디피 주식회사 Thin Film Deposition Apparatus
JP2014132103A (en) * 2013-01-07 2014-07-17 Mitsubishi Heavy Ind Ltd Substrate holding tray for vapor deposition, and vacuum vapor deposition apparatus including substrate holding tray for vapor deposition
JP2015067862A (en) * 2013-09-30 2015-04-13 日本電気硝子株式会社 Production method of member with film
JP2015520519A (en) * 2012-06-05 2015-07-16 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Fixture for forming laminated substrates
CN107395940A (en) * 2017-08-30 2017-11-24 广东欧珀移动通信有限公司 Filtering assembly, imaging device, the imaging method of electronic equipment and electronic equipment
CN110592529A (en) * 2019-10-30 2019-12-20 昆山国显光电有限公司 Mask frame
CN116497310A (en) * 2023-04-04 2023-07-28 北京创思镀膜有限公司 Optical film element and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614179B1 (en) * 2008-09-01 2016-04-20 니폰 덴키 가라스 가부시키가이샤 Manufacturing method for glass substrate with thin film
WO2010023853A2 (en) * 2008-09-01 2010-03-04 日本電気硝子株式会社 Manufacturing method for glass substrate with thin film
WO2010023853A3 (en) * 2008-09-01 2010-04-08 日本電気硝子株式会社 Manufacturing method for glass substrate with thin film
CN102137820A (en) * 2008-09-01 2011-07-27 日本电气硝子株式会社 Manufacturing method for glass substrate with thin film
JP2010058989A (en) * 2008-09-01 2010-03-18 Nippon Electric Glass Co Ltd Method for manufacturing glass substrate with thin film
JP2011230944A (en) * 2010-04-26 2011-11-17 Nippon Electric Glass Co Ltd Optical film and method for manufacturing the same
KR101252457B1 (en) * 2011-04-18 2013-04-16 엘아이지에이디피 주식회사 Thin Film Deposition Apparatus
JP2015520519A (en) * 2012-06-05 2015-07-16 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Fixture for forming laminated substrates
JP2014132103A (en) * 2013-01-07 2014-07-17 Mitsubishi Heavy Ind Ltd Substrate holding tray for vapor deposition, and vacuum vapor deposition apparatus including substrate holding tray for vapor deposition
JP2015067862A (en) * 2013-09-30 2015-04-13 日本電気硝子株式会社 Production method of member with film
CN107395940A (en) * 2017-08-30 2017-11-24 广东欧珀移动通信有限公司 Filtering assembly, imaging device, the imaging method of electronic equipment and electronic equipment
CN110592529A (en) * 2019-10-30 2019-12-20 昆山国显光电有限公司 Mask frame
CN116497310A (en) * 2023-04-04 2023-07-28 北京创思镀膜有限公司 Optical film element and preparation method thereof
CN116497310B (en) * 2023-04-04 2023-12-05 北京创思镀膜有限公司 Optical film element and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007334087A (en) Method of manufacturing optical component
JP6637049B2 (en) Method of making substrate transmission type optical device
US10895679B2 (en) Light-guide optical element and method of its manufacture
JP2022119925A (en) Display system and light guide
JP2020515903A (en) Optical system
US20050018302A1 (en) Optical multilayer-film filter, method for fabricating optical multilayer-film filter, optical low-pass filter, and electronic apparatus
US7643227B2 (en) Lens system and optical apparatus
JP2006003872A (en) Optical element, combiner optical system, and image display unit
JP2003098435A (en) Zoom optical system
CN218003854U (en) Optical module and head-mounted display equipment
TW202009543A (en) Optical image capturing module
WO2016039296A1 (en) Polarizing plate and method for producing liquid crystal panel
TW200528763A (en) Optical filter
KR20130139937A (en) Stereoscopic image display device
CN112526656A (en) Four-direction depolarization beam splitter prism and preparation method thereof
JP4559998B2 (en) Polarizer
US20110261457A1 (en) Optical device configured by bonding first and second transparent members having birefringent property
JP2007272018A (en) Polarizing plate
JP5921251B2 (en) LCD lens
JP5282265B2 (en) Optical element manufacturing method
JPWO2021095090A5 (en)
TW202013042A (en) Optical imaging module including a circuit assembly and a lens assembly
TW202013012A (en) Optical imaging module including a circuit component and a lens component
TW202013041A (en) Optical imaging module that comprises a circuit assembly including a circuit board, a sensor support, and an image sensing element, and a lens base and a lens set
TW202013011A (en) Optical imaging module capable of improving the imaging quality while achieving a miniaturized structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901