JP2007333753A - Electrooptic ssb optical modulator and optical frequency shifter - Google Patents

Electrooptic ssb optical modulator and optical frequency shifter Download PDF

Info

Publication number
JP2007333753A
JP2007333753A JP2004250085A JP2004250085A JP2007333753A JP 2007333753 A JP2007333753 A JP 2007333753A JP 2004250085 A JP2004250085 A JP 2004250085A JP 2004250085 A JP2004250085 A JP 2004250085A JP 2007333753 A JP2007333753 A JP 2007333753A
Authority
JP
Japan
Prior art keywords
modulation
optical
electro
electrode
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250085A
Other languages
Japanese (ja)
Inventor
Hiroshi Murata
博司 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Osaka University NUC
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Kansai Technology Licensing Organization Co Ltd filed Critical Osaka University NUC
Priority to JP2004250085A priority Critical patent/JP2007333753A/en
Priority to PCT/JP2005/015670 priority patent/WO2006025333A1/en
Publication of JP2007333753A publication Critical patent/JP2007333753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/07Materials and properties poled

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrooptic SSB modulator which is driven with low power, and which highly efficiently operates in a high frequency area of 10 GHz or higher even when it has a compact construction, and an optical frequency shifter. <P>SOLUTION: Optical waveguides 2a, 2b are combined with standing wave type resonant electrodes 3a, 3b on an electrooptic crystal board 1 where polarization reversal structures 1a are implemented. The different polarization reversal structures 1a are implemented for the respective optical waveguides 2a, 2b, and the standing wave electric field over the resonant electrodes 3a, 3b is used to perform an optical modulation, thereby obtaining a sine modulation effect and a cosine modulation effect at the same time. Only supplying a single type of modulation signal from a modulation signal source 6 can perform the sine and cosine modulations. The modulation signal is resonated over the resonant electrodes 3a, 3b to obtain a high electric field, whereby an efficient modulation effect can be realized even in a high frequency area higher than 10 GHz. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光通信システム,光学計測器,光集積回路,光学機器などに使用可能な電気光学SSB光変調器及び光周波数シフタに関し、特に、周波数が10GHz以上の準ミリ波帯・ミリ波帯で高効率に動作可能な電気光学SSB光変調器及び光周波数シフタに関する。   The present invention relates to an electro-optic SSB optical modulator and an optical frequency shifter that can be used in an optical communication system, an optical measuring instrument, an optical integrated circuit, an optical instrument, and the like, and more particularly, a quasi-millimeter wave band / millimeter wave band having a frequency of 10 GHz or more. The present invention relates to an electro-optic SSB optical modulator and an optical frequency shifter that can operate with high efficiency.

LiNbO3 (ニオブ酸リチウム),LiTaO3 (タンタル酸リチウム)などの強誘電性材料を利用した電気光学変調器により、光波を電気信号で変調することが知られている。しかしながら、高周波領域で光波を自由自在に変調する技術、制御する技術は十分に確立されてはいない。例えば、市販の電気光学変調器は、搬送波である光波の周波数の高周波側及び低周波側の両方に、変調によるサイドバイド周波数成分が生じるDSB(Double SideBand)タイプの変調器である。このDSB変調方式では、冗長性、波長分散による信号劣化、両サイドバンド成分の干渉などの問題があるため、光通信における情報伝送には、片側にのみサイドバイド周波数成分を生じさせるSSB(Single SideBand)タイプの変調方式が好ましい。 It is known that an optical signal is modulated with an electric signal by an electro-optic modulator using a ferroelectric material such as LiNbO 3 (lithium niobate) or LiTaO 3 (lithium tantalate). However, a technique for freely modulating and controlling a light wave in a high frequency region has not been sufficiently established. For example, a commercially available electro-optic modulator is a DSB (Double SideBand) type modulator that generates a side-by-side frequency component by modulation on both the high-frequency side and the low-frequency side of the frequency of a light wave that is a carrier wave. In this DSB modulation system, there are problems such as redundancy, signal degradation due to wavelength dispersion, and interference between both sideband components. Therefore, for information transmission in optical communication, an SSB (Single SideBand) that generates a sideband frequency component only on one side. ) Type modulation scheme is preferred.

SSB変調方式は、古くから商用ラジオ放送などで用いられており、電波領域ではその技術は既に確立されてはいるが、光波領域にあってはまだ発展途上段階にある。近年、光波を利用した光通信,光計測などの分野では、光波の応用技術が高度化するに伴って、光波のSSB変調の重要性は増している。例えば、光通信においては、情報量あたりの周波数帯域を減らして周波数帯域資源を有効に活用するために、また、光ファイバなどの伝送路の分散による信号劣化を防ぐために、占有周波数帯域が小さいSSB動作の高速光変調器が重要視されている。   The SSB modulation method has been used in commercial radio broadcasting for a long time, and its technology has already been established in the radio wave region, but is still in the developing stage in the light wave region. In recent years, in the fields of optical communication using optical waves, optical measurement, and the like, the importance of SSB modulation of optical waves has increased with the advancement of optical wave application technology. For example, in optical communication, an SSB with a small occupied frequency band is used in order to reduce frequency bands per amount of information and effectively use frequency band resources, and to prevent signal degradation due to dispersion of transmission lines such as optical fibers. High-speed optical modulators that operate are regarded as important.

一方、光周波数シフタは、光通信,ヘテロダイン計測,分光,光化学などの分野において重要である。特に、数十GHzで動作する光周波数シフタを用いることができれば、波長多重通信システムにおいて必須である周波数が数十GHzずつ異なる複数の光源を容易に得ることができる。よって、数十GHz以上の高周波数帯域で動作する光周波数シフタの開発が望まれている。   On the other hand, the optical frequency shifter is important in fields such as optical communication, heterodyne measurement, spectroscopy, and photochemistry. In particular, if an optical frequency shifter operating at several tens of GHz can be used, a plurality of light sources having different frequencies that are essential in a wavelength division multiplexing communication system by several tens of GHz can be easily obtained. Therefore, development of an optical frequency shifter that operates in a high frequency band of several tens of GHz or more is desired.

現在市販されている光SSB変調器または光周波数シフタとして、音響光学効果を用いたデバイスがある。このデバイスは、結晶中を伝搬する音波による光の回折を利用しているが、その動作周波数に上限があって、数百MHz程度である。1GHz以上の高周波域では、音波の波長が光波の波長に比べて小さくなってしまって原理的に回折が起こらなくなる、また、結晶中での音波の伝搬損失が非常に大きくなるという本質的な問題がある。   As an optical SSB modulator or an optical frequency shifter currently on the market, there is a device using an acousto-optic effect. This device uses light diffraction by sound waves propagating in the crystal, but there is an upper limit to the operating frequency, which is about several hundred MHz. In the high frequency range of 1 GHz or higher, the wavelength of the sound wave becomes smaller than the wavelength of the light wave, and in principle, diffraction does not occur, and the propagation loss of the sound wave in the crystal becomes very large. There is.

電気光学効果を利用した電気光学SSB光変調器または光周波数シフタとして、以下に述べるようなデバイスが知られている。このデバイスは、複数の光変調素子とマッハツェンダ(Mach-Zehnder)型の干渉計導波路とを組み合わせて、位相がπ/2ずれた変調信号をそれぞれの光変調素子に印加するとともに、2つの光路にλ/4の光路差を与えることで、光SSB変調/光周波数シフト作用を得るものである。図6は、この従来の電気光学SSB光変調器または光周波数シフタの模式図である。   Devices as described below are known as electro-optic SSB optical modulators or optical frequency shifters utilizing the electro-optic effect. This device combines a plurality of light modulation elements and a Mach-Zehnder type interferometer waveguide, applies a modulated signal whose phase is shifted by π / 2 to each light modulation element, and has two light paths. An optical SSB modulation / optical frequency shift action is obtained by giving an optical path difference of λ / 4 to. FIG. 6 is a schematic diagram of this conventional electro-optic SSB optical modulator or optical frequency shifter.

図6において、変調信号sin(2πfm t)が印加される高周波位相変調器51が設けられている第1の光導波路61と、DC信号が印加される低周波位相変調器52及び変調信号cos(2πfm t)が印加される高周波位相変調器53が直列に設けられている第2の光導波路62とが並列に配置されている。位相を示す複素平面(Re−Im)に直交する軸は、周波数(ν)を示す。 In FIG. 6, a first optical waveguide 61 provided with a high-frequency phase modulator 51 to which a modulation signal sin (2πf m t) is applied, a low-frequency phase modulator 52 to which a DC signal is applied, and a modulation signal cos. A high frequency phase modulator 53 to which (2πf m t) is applied is arranged in parallel with a second optical waveguide 62 provided in series. The axis orthogonal to the complex plane (Re-Im) indicating the phase indicates the frequency (ν).

図6に示すように、光波入力を第1の光導波路61と第2の光導波路62とに2つに分けて、それぞれを位相がπ/2ずれた変調信号を用いて位相変調を行い、さらにこれらの2光波の位相をπ/2(λ/4)だけずらせた後に合成することにより、片方のサイドバンド成分をキャンセルして、光SSB変調作用が得られる。このとき、位相変調の深さを適切に選ぶことにより、搬送される光波の周波数成分を抑制してSSB1次サイドバンド成分のみを取り出すことができ、光周波数シフタとして機能する。   As shown in FIG. 6, the light wave input is divided into two parts, a first optical waveguide 61 and a second optical waveguide 62, and each is phase-modulated using a modulation signal whose phase is shifted by π / 2, Further, by synthesizing these two light waves after shifting the phase by π / 2 (λ / 4), one sideband component is canceled, and an optical SSB modulation action is obtained. At this time, by appropriately selecting the depth of the phase modulation, it is possible to suppress only the frequency component of the transported light wave and extract only the SSB primary sideband component, and function as an optical frequency shifter.

図6に示す回路構成は、電波領域でのSSB変調器においても使用されているものであり、これまでに提案されている電気光学SSB光変調器または光周波数シフタの多くは、この図6のような複数の電気光学位相変調器とマッハツェンダ型光導波路とを組み合わせた構成をなしている。このシステムでは、電気光学効果を利用しているので、原理的に高速動作を期待できるが、変調信号として位相がπ/2だけずれた2種類の信号を準備する必要がある、構成が複雑であるという問題がある。   The circuit configuration shown in FIG. 6 is also used in an SSB modulator in the radio wave region. Many of the electro-optic SSB optical modulators or optical frequency shifters proposed so far are shown in FIG. A plurality of such electro-optic phase modulators and Mach-Zehnder type optical waveguides are combined. Since this system uses the electro-optic effect, high-speed operation can be expected in principle. However, it is necessary to prepare two types of signals whose phases are shifted by π / 2 as modulation signals. There is a problem that there is.

また、通常のDSB変調器と狭帯域のバンドパス光フィルタとを組み合わせる方式も考えられるが、システム構成が複雑である、光領域では狭帯域フィルタ回路を構成することが難しいなどの問題があり、現実的な方式とは言えない。   In addition, although a method of combining a normal DSB modulator and a narrow-band bandpass optical filter is also conceivable, there are problems such as a complicated system configuration and difficulty in configuring a narrow-band filter circuit in the optical region, It's not a realistic method.

また、右回り・左回りの2つの円偏光を用いたSSB変調方式もあるが、導波路化が難しく大振幅の変調信号を用いねばならず、光ファイバ通信システムとの整合性、動作電力の増大などの問題があり、実際的な手法とは言えない。   There is also an SSB modulation method that uses two clockwise and counterclockwise circularly polarized lights, but it is difficult to make a waveguide and a large amplitude modulation signal must be used. There are problems such as increase, and it cannot be said that it is a practical method.

さらに、斜周期分極反転構造を用いた光周波数シフタが提案されている(特許文献1参照)。これは、電気光学効果を用いること、分極反転構造(ドメイン反転構造)を用いることなどの点で本発明と類似しているが、斜周期分極反転構造を巧みに利用して実効的な進行波位相格子を得ようとするものであり、後述する本発明とは本質的な動作原理が異なっている。このデバイスも、導波路化が難しく、光ファイバ通信システムとの整合性、動作電力の増大などの問題がある。   Furthermore, an optical frequency shifter using an oblique periodic polarization reversal structure has been proposed (see Patent Document 1). This is similar to the present invention in that it uses an electro-optic effect and uses a domain-inverted structure (domain-inverted structure). A phase grating is to be obtained, and the essential operation principle is different from that of the present invention described later. This device is also difficult to be made into a waveguide and has problems such as compatibility with an optical fiber communication system and an increase in operating power.

そこで、本発明者は、分極反転構造(ドメイン反転構造)を巧みに利用して、1GHz以上の高周波域で動作可能な周期ドメイン反転構造電気光学SSB光変調器・光周波数シフタを提案している(特許文献2参照)。このデバイスは、互いに空間的配置を1/4周期ずらした周期分極反転構造を施した電気光学結晶を用いて、この電気光学結晶とマッハツェンダ干渉計導波路及び進行波電極とを組み合わせた構造とし、1つの給電回路から変調波を供給するだけで、sin変調作用とcos変調作用とを奏することができる。
特許第2802366号公報 特開2002−62516号公報
Therefore, the present inventor has proposed a periodic domain inversion structure electro-optic SSB optical modulator / optical frequency shifter that can operate in a high frequency range of 1 GHz or more by skillfully utilizing the polarization inversion structure (domain inversion structure). (See Patent Document 2). This device uses an electro-optic crystal having a periodically poled structure in which the spatial arrangement is shifted from one another by a quarter period, and the electro-optic crystal is combined with a Mach-Zehnder interferometer waveguide and traveling wave electrode. A sin modulation action and a cos modulation action can be achieved simply by supplying a modulated wave from one power supply circuit.
Japanese Patent No. 2802366 JP 2002-62516 A

特許文献2に記載されたデバイスでは、1〜10GHz程度の周波数域では、簡単な構成でありながら、低電力で光SSB変調特性を得ることができる。しかしながら、周波数が10GHzを越える準ミリ波帯・ミリ波帯になった場合、電気信号が電極の表面のみを流れることに起因する損失の増加などのために効率が低下するという改善すべき課題があり、準ミリ波帯・ミリ波帯でも効率的に光SSB変調を行い得るデバイスの開発が望まれている。   In the device described in Patent Document 2, optical SSB modulation characteristics can be obtained with low power in a frequency range of about 1 to 10 GHz with a simple configuration. However, when the frequency becomes a quasi-millimeter wave band / millimeter wave band exceeding 10 GHz, there is a problem to be improved that efficiency is lowered due to an increase in loss due to an electrical signal flowing only on the surface of the electrode. There is a need to develop a device capable of efficiently performing optical SSB modulation even in the quasi-millimeter wave band and the millimeter wave band.

本発明は斯かる事情に鑑みてなされたものであり、低電力で駆動可能であり、小型の構成であっても、10GHz以上の高周波域で高効率に動作する電気光学SSB光変調器及び光周波数シフタを提供することを目的とする。   The present invention has been made in view of such circumstances, and can be driven with low power, and can operate with high efficiency in a high-frequency region of 10 GHz or more, and an optical device that can be driven with low power and a small configuration. An object is to provide a frequency shifter.

本発明に係る電気光学SSB光変調器は、部分的に分極反転構造を施した電気光学媒質に光導波路と定在波型の電極とを組み合わせた構成を有し、前記電極での定在波電界を用いて前記光導波路を進む光波の変調を行うようにしたことを特徴とする。   The electro-optic SSB optical modulator according to the present invention has a configuration in which an optical waveguide and a standing-wave electrode are combined with an electro-optic medium partially having a domain-inverted structure, and a standing wave at the electrode. The light wave traveling through the optical waveguide is modulated using an electric field.

本発明に係る電気光学SSB光変調器は、上記構成において、前記光導波路は2つであって、各光導波路における前記分極反転構造のパターンが異なっていることを特徴とする。   The electro-optic SSB optical modulator according to the present invention is characterized in that, in the above configuration, the number of the optical waveguides is two, and the pattern of the polarization inversion structure in each optical waveguide is different.

本発明に係る電気光学SSB光変調器は、上記構成において、前記電極は、共振型電極であることを特徴とする。   The electro-optic SSB optical modulator according to the present invention is characterized in that, in the above configuration, the electrode is a resonant electrode.

本発明に係る光周波数シフタは、部分的に分極反転構造を施した電気光学媒質に光導波路と定在波型の電極とを組み合わせた構成を有し、前記電極での定在波電界を用いて前記光導波路を進む光波の周波数をシフトさせるようにしたことを特徴とする。   The optical frequency shifter according to the present invention has a configuration in which an optical waveguide and a standing wave type electrode are combined with an electro-optic medium having a partially domain-inverted structure, and a standing wave electric field at the electrode is used. Thus, the frequency of the light wave traveling through the optical waveguide is shifted.

本発明の電気光学SSB光変調器にあっては、所望の位置に分極反転構造を施した電気光学媒質を用い、これを光導波路及び定在波型の電極とを組み合わせた構成を有する。光導波路(例えばマッハツェンダ干渉計導波路)の2つの光路において、それぞれ異なる分極反転構造を施して、それらを同じ電極上の定在波電界を用いて光変調を行うことにより、sin変調作用及びcos変調作用が同時に得られる。このため、給電回路から1種類の変調信号を供給するだけでsin変調及びcos変調を行える。定在波型の電極と分極反転構造とを適切に組み合わせた構造における変調位相制御特性を利用して、図6と等価な光変調回路を、光導波路及び定在波型の電極のみで実現する。また、定在波型の電極として共振型電極を使用するため、変調信号を電極上で共振させて高電界を得ることができ、10GHz以上の高周波域においても効率が良い変調作用が得られる。   The electro-optic SSB optical modulator of the present invention has a configuration in which an electro-optic medium having a polarization inversion structure at a desired position is combined with an optical waveguide and a standing wave type electrode. In two optical paths of an optical waveguide (for example, a Mach-Zehnder interferometer waveguide), by applying different polarization inversion structures and performing optical modulation using a standing wave electric field on the same electrode, sin modulation action and cos The modulation effect can be obtained simultaneously. For this reason, sin modulation and cos modulation can be performed only by supplying one type of modulation signal from the power feeding circuit. By using the modulation phase control characteristic in a structure in which a standing wave type electrode and a polarization inversion structure are appropriately combined, an optical modulation circuit equivalent to that shown in FIG. 6 is realized using only an optical waveguide and a standing wave type electrode. . In addition, since a resonant electrode is used as the standing wave electrode, a high electric field can be obtained by resonating the modulation signal on the electrode, and an efficient modulation action can be obtained even in a high frequency range of 10 GHz or higher.

また、本発明の光周波数シフタにあっては、上述した電気光学SSB光変調器において供給する変調信号の電力を大きくして位相変調深さを深く制御することにより、搬送波光成分(周波数がシフトしていない成分)からサイドバンド成分(周波数がシフトした成分)への変換効率を高くし、搬送波光成分を低減させてサイドバンド成分が支配的になるようにする。   In the optical frequency shifter of the present invention, the power of the modulation signal supplied in the electro-optic SSB optical modulator described above is increased to control the phase modulation depth deeply, thereby shifting the carrier light component (frequency shift). The conversion efficiency from the non-component) to the sideband component (frequency shifted component) is increased, and the carrier light component is reduced so that the sideband component becomes dominant.

本発明では、分極反転構造を施した電気光学媒質に光導波路と定在波型の電極とを組み合わせた構成を有し、電極上の定在波電界を用いて光導波路を進む光波に変調を行うようにしたので、高周波領域においても効率が良い光SSB変調を行うことができるため、10GHz以上、特に30GHzを超えるミリ波帯の周波数においても高効率に動作する電気光学SSB光変調器及び光周波数シフタを実現することができる。   In the present invention, an electro-optic medium having a domain-inverted structure is combined with an optical waveguide and a standing wave type electrode, and a standing wave electric field on the electrode is used to modulate a light wave traveling through the optical waveguide. Since the optical SSB modulation with high efficiency can be performed even in the high frequency region, the electro-optic SSB optical modulator and the light that operate with high efficiency even in the millimeter wave band frequency of 10 GHz or more, particularly exceeding 30 GHz. A frequency shifter can be realized.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。図1は、本発明の電気光学SSB光変調器10の構成図である。図において、1は強誘電性の材料(例えば、z-cut LiNbO3 またはz-cut LiTaO3 )からなる平板状の電気光学結晶基板(以下、単に基板ともいう)である。基板1の表面に、光導波路としての1つのマッハツェンダ干渉計導波路2が形成されている。 Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof. FIG. 1 is a configuration diagram of an electro-optic SSB optical modulator 10 of the present invention. In FIG, 1 is a ferroelectric material (e.g., z-cut LiNbO 3 or z-cut LiTaO 3) tabular electrooptic crystal substrate made (hereinafter, simply referred to as a substrate). One Mach-Zehnder interferometer waveguide 2 as an optical waveguide is formed on the surface of the substrate 1.

マッハツェンダ干渉計導波路2を構成する2つの光導波路2a,2b(図1で太線の部分)の上部それぞれには、設計された変調周波数で定在波共振する良導体金属(例えば、アルミニウムまたは金)製の共振電極3a,3bが設けられている。共振電極3a,3bを構成する高周波線路としては、対称コプレーナ線路,マイクロストリップライン平行結合線路などを用いることができる。なお、この線路の終端は、図1に示すように開放させても、短絡させても良い。一方の共振電極3bの中途から給電用電源4が延在しており、この給電用電源4と基板1の裏面に設けられた接地電極5との間に、変調信号源6及び可変直流電圧源7の直列回路が設けられている。   Each of the upper portions of the two optical waveguides 2a and 2b (thick line portions in FIG. 1) constituting the Mach-Zehnder interferometer waveguide 2 is a good conductor metal (for example, aluminum or gold) that resonates at a designed modulation frequency. Resonant electrodes 3a and 3b are provided. As the high-frequency line constituting the resonance electrodes 3a and 3b, a symmetric coplanar line, a microstrip line parallel coupled line, or the like can be used. The end of the line may be opened or short-circuited as shown in FIG. A power supply 4 for power supply extends from the middle of one resonance electrode 3b, and a modulation signal source 6 and a variable DC voltage source are connected between the power supply 4 for power supply and a ground electrode 5 provided on the back surface of the substrate 1. Seven series circuits are provided.

共振電極3a,3bは、外部から変調信号を入力して定在波を立てて共振させることができる。そして、共振電極3a,3bに生じる変調信号の共振定在波の電界によって、基板1中に屈折率変化が生じて光変調作用が得られる。共振電極3a,3bの線路長は、定在波の波長の数倍程度の長さとする。なお、共振電極3a,3bの形状は、定在波が立つのであれば任意であって良い。   The resonance electrodes 3a and 3b can resonate by receiving a modulation signal from the outside and generating a standing wave. Then, a refractive index change is generated in the substrate 1 by the electric field of the resonance standing wave of the modulation signal generated in the resonance electrodes 3a and 3b, and an optical modulation action is obtained. The line lengths of the resonant electrodes 3a and 3b are about several times the wavelength of the standing wave. The shape of the resonant electrodes 3a and 3b may be arbitrary as long as standing waves are generated.

2本の光導波路2a,2bに対応する基板1の所望領域には、分極反転構造1a(図1でハッチングを付した部分)が施されている。図1中の矢印は、基板1における自発分極の向きを示している。この分極反転構造1aは、後述する走行時間効果を補償するために施されるものであり、その反転パターンを両光導波路2a,2bで予め調整しておくことにより、各導波路2a,2bにおける高周波位相変調の変調位相をπ/2ずらせて、光SSB変調に必要なsin変調作用及びcos変調作用を得ている。   A desired region of the substrate 1 corresponding to the two optical waveguides 2a and 2b is provided with a domain-inverted structure 1a (the hatched portion in FIG. 1). The arrows in FIG. 1 indicate the direction of spontaneous polarization in the substrate 1. The polarization reversal structure 1a is applied to compensate for the travel time effect described later. By adjusting the reversal pattern in advance in both the optical waveguides 2a and 2b, the polarization reversal structure 1a in each of the waveguides 2a and 2b. The modulation phase of the high-frequency phase modulation is shifted by π / 2 to obtain a sin modulation action and a cos modulation action necessary for optical SSB modulation.

なお、上述した構成では、2本の導波路2a,2b間にπ/2(λ/4)の光路差(光バイアス)を与えるための直流電圧を高周波変調信号に重畳して共振電極3bに印加するようにしたが、適当な長さのバイアス用電極を別に設けて直流電圧を印加するように構成しても良い。また、2本の光導波路2a,2bの間に静的な光路差(光路位相シフト)を与えるようにしても良い。さらに、基板1上に共振電極3a,3bを直接設けたが、光波伝搬損失を低減させるために、バッファ層を介装するようにしても良い。   In the configuration described above, a direct current voltage for giving an optical path difference (optical bias) of π / 2 (λ / 4) between the two waveguides 2a and 2b is superimposed on the high frequency modulation signal and applied to the resonance electrode 3b. However, a bias electrode having an appropriate length may be separately provided to apply a DC voltage. Further, a static optical path difference (optical path phase shift) may be given between the two optical waveguides 2a and 2b. Furthermore, although the resonance electrodes 3a and 3b are directly provided on the substrate 1, a buffer layer may be interposed in order to reduce the light wave propagation loss.

次に、本発明における変調位相の制御原理について図2〜図4を参照して説明する。高周波変調信号が印加される共振型変調電極13を電気光学結晶基板11の光導波路12上に設けた図2(a)に示すような電気光学変調器20を考える。電気光学変調器20は、共振型変調電極13を変調信号に対する共振回路として、変調信号を共振型変調電極13上で共振させて高電界を得る。これにより、高周波域においても効率が良い変調作用を得ることができる。   Next, the control principle of the modulation phase in the present invention will be described with reference to FIGS. Consider an electro-optic modulator 20 as shown in FIG. 2A in which a resonant modulation electrode 13 to which a high-frequency modulation signal is applied is provided on an optical waveguide 12 of an electro-optic crystal substrate 11. The electro-optic modulator 20 uses the resonance type modulation electrode 13 as a resonance circuit for the modulation signal, and resonates the modulation signal on the resonance type modulation electrode 13 to obtain a high electric field. As a result, an efficient modulation action can be obtained even in a high frequency range.

共振電極の長さを長く(変調信号の波長の整数倍)する場合には、光波の走行時間の影響(走行時間効果)を考慮する必要がある。媒質中の光波の伝搬速度は非常に速いため、通常、低周波数(1MHz以下)で光波を変調する場合には、光波が変調器を通過する際に要する時間(光波の走行時間)における変調信号の時間的な変化は無視できるほど小さい。しかしながら、変調信号が高周波域になってくると、光波の走行時間内での変調信号の変化が無視できなくなる。そこで、本発明では、電気光学結晶基板1の所望位置に分極反転構造1aを施すことにより、走行時間効果を補償している。この補償の原理について以下に詳述する。   When the length of the resonance electrode is increased (integer multiple of the wavelength of the modulation signal), it is necessary to consider the influence of the travel time of the light wave (travel time effect). Since the propagation speed of the light wave in the medium is very fast, normally, when modulating the light wave at a low frequency (1 MHz or less), the modulated signal in the time required for the light wave to pass through the modulator (light wave travel time) The change in time is negligibly small. However, when the modulation signal becomes a high frequency region, the change of the modulation signal within the traveling time of the light wave cannot be ignored. Therefore, in the present invention, the travel time effect is compensated by applying the domain-inverted structure 1 a to a desired position of the electro-optic crystal substrate 1. The principle of this compensation will be described in detail below.

図2(a)において、電気光学変調器20の共振型変調電極13の左端(A点)の真下位置の光導波路12に光波が到達した時刻をtA として、時刻tB において共振型変調電極13の左端から1/4の位置(B点)に光波が達したとする。共振型変調電極13は光波の伝搬方向に沿って定在波が立つ共振線路構造を有しているため、変調電気信号は定在波となっており、変調波が線路上を移動することはなく、共振型変調電極13上の各点における電圧が時間的に振動する(図2(b)参照)。 In FIG. 2A, the time when the light wave reaches the optical waveguide 12 immediately below the left end (point A) of the resonance type modulation electrode 13 of the electro-optic modulator 20 is t A , and the resonance type modulation electrode at time t B. It is assumed that the light wave reaches a position (point B) of ¼ from the left end of 13. Since the resonant modulation electrode 13 has a resonant line structure in which a standing wave stands along the light wave propagation direction, the modulated electrical signal is a standing wave, and the modulated wave does not move on the line. Instead, the voltage at each point on the resonant modulation electrode 13 vibrates with time (see FIG. 2B).

光波の走行時間(tB −tA )の間に共振型変調電極13上の電圧が変化するため、電極長と光波速度との関係によっては、図2(c)に示すように、光波がB点に達した時点で、光波が見る変調波電界の極性が反転する状況となる。このような状況下では、光波は時刻tB 以降、共振型変調電極13上のAB間において見た電界と逆の符号を持つ変調波電界中を伝搬することになるので、それまでに累積的に受けてきた変調作用と逆の変調を受けてトータルの変調効果が減少するようになる。そして、条件によっては、ある地点(x=0)でついには変調成分がキャンセルされてしまう状況が生じる。これが走行時間効果である。 Since the voltage on the resonant modulating electrode 13 between the light waves traveling time (t B -t A) varies, depending on the relationship between the electrode length and the light wave velocity, as shown in FIG. 2 (c), the light waves When the point B is reached, the polarity of the modulated wave electric field seen by the light wave is reversed. Under such circumstances, after time t B , the light wave propagates in the modulated wave electric field having the opposite sign to the electric field seen between AB on the resonant modulation electrode 13, so that it has accumulated so far. The total modulation effect is reduced by receiving the modulation opposite to the modulation effect received in step (b). Depending on the conditions, a situation occurs in which the modulation component is finally canceled at a certain point (x = 0). This is the travel time effect.

この走行時間効果を補償するために、本発明では分極反転構造を利用する。走行時間効果により変調作用がキャンセルされる領域において、電気光学結晶基板11の分極の向きを予め反転させておくことにより、この領域での変調の符号を逆転させて、走行時間効果による変調効果の低下を補償し、累積的な変調作用を得ることができる(図2(d))。   In order to compensate for this transit time effect, the present invention utilizes a domain-inverted structure. In a region where the modulation action is canceled due to the travel time effect, by reversing the polarization direction of the electro-optic crystal substrate 11 in advance, the modulation sign in this region is reversed, and the modulation effect due to the travel time effect is reduced. The decrease can be compensated for and a cumulative modulation effect can be obtained (FIG. 2 (d)).

分極を反転させる領域は、光波の群速度、電極長、変調定在波の波長及び周波数、時間の基準となる光波が電極端に入射した時刻により決めることができる。ある変調周波数で共振する共振電極構造電気光学変調器において、分極反転を施すべき領域は、電極上の定在波の波長と、光波が変調信号の半周期の時間内に走行する距離と、光波が電極端(図3(a)のA点)に入射したときの変調信号の位相との関係で決まる。つまり、同じ構造の変調器でも、光波入射時における変調信号の位相に応じて分極反転は変わる。   The region where the polarization is reversed can be determined by the group velocity of the light wave, the electrode length, the wavelength and frequency of the modulated standing wave, and the time when the light wave serving as a time reference is incident on the electrode end. In an electro-optic modulator having a resonant electrode structure that resonates at a certain modulation frequency, the region where polarization inversion is to be performed includes the wavelength of the standing wave on the electrode, the distance that the light wave travels within the half period of the modulation signal, the light wave Is determined by the relationship with the phase of the modulation signal when it enters the electrode end (point A in FIG. 3A). That is, even with a modulator having the same structure, the polarization inversion changes according to the phase of the modulation signal when the light wave is incident.

例として、変調信号が単一周波数の正弦波信号である場合を考える。線路長を線路上の定在波2波長分として、線路の両端を短絡させた構造とする。また、変調信号の半周期の時間(T/2、Tは変調信号の1周期)に光波が走行する距離を、線路上の定在波1波長とする。これは、タンタル酸リチウム(LiTaO3 )を用いた標準的な構造の変調器の場合に相当する。このとき、電極端A点に光波が入射した時刻tA1において、変調信号がAB間で最大となる位相であったとする。時刻tA1で電極端A点に入射して変調器中を伝搬する光波が見る変調波電界は、図3(b)のようになる。走行時間効果のために電気信号の極性が反転する領域において、自発分極の向きを反転させることを考えた場合、分極反転パターンは図3(c)のようにすれば良い。一方、電極端A点に光波が入射した時刻tA2において、変調信号がAB間の電極上でゼロとなる位相関係(tA2=tA1+T/4)の場合には、変調器中を伝搬する光波が見る変調電気信号は図3(d)のようになるため、対応する分極反転パターンは図3(e)のようにすれば良い。 As an example, consider the case where the modulation signal is a single frequency sinusoidal signal. The line length is set to two standing waves on the line, and both ends of the line are short-circuited. Further, the distance traveled by the light wave during a half-cycle time of the modulation signal (T / 2, T is one cycle of the modulation signal) is defined as one standing wave wavelength on the line. This corresponds to the case of a modulator having a standard structure using lithium tantalate (LiTaO 3 ). At this time, it is assumed that the modulation signal has the maximum phase between AB at time t A1 when the light wave is incident on the electrode end A point. The modulated wave electric field seen by the light wave that enters the electrode end A point at time t A1 and propagates through the modulator is as shown in FIG. In consideration of reversing the direction of spontaneous polarization in the region where the polarity of the electric signal is reversed due to the travel time effect, the polarization reversal pattern may be as shown in FIG. On the other hand, at the time t A2 when the light wave is incident on the electrode end A, when the phase relationship is zero (t A2 = t A1 + T / 4) on the electrode between AB, the light propagates through the modulator. Since the modulated electric signal seen by the light wave is as shown in FIG. 3D, the corresponding polarization inversion pattern may be as shown in FIG.

図3(c)の分極反転パターンを施した場合と、図3(e)の分極反転パターンを施した場合とでは、得られる変調作用の大きさはほぼ同じである。変調信号の半周期の時間(T/2)での光波の走行距離が線路上の定在波1波長にちょうど等しい場合には、両方の変調作用の大きさは完全に一致する。図3(c),図3(e)は、それぞれ中心に対して、偶対称,奇対称の分極反転パターンとなっている。   The magnitude of the modulation effect obtained is almost the same when the polarization inversion pattern of FIG. 3C is applied and when the polarization inversion pattern of FIG. 3E is applied. When the traveling distance of the light wave at the half-cycle time (T / 2) of the modulation signal is exactly equal to one standing wave wavelength on the line, the magnitudes of both modulation actions are completely the same. FIG. 3C and FIG. 3E show even and odd symmetric polarization inversion patterns with respect to the center, respectively.

このため、光波が見る変調波電界の分布が偶関数的分布となる場合(図3(b))、図3(c)の分極反転パターンを施したときには変調作用が大きくなるが、図3(e)の分極反転パターンを施したときには変調作用がキャンセルし合って変調作用はゼロとなる。一方、光波が見る変調波電界の分布が奇関数的分布となる場合(図3(d))、図3(e)の分極反転パターンを施したときには変調作用が大きくなるが、図3(c)の分極反転パターンを施したときには同様に変調作用はゼロとなる。つまり、図3(c)と図3(e)とでは、同じ変調信号で駆動した場合に得られる変調作用の大きさは同じであるが、変調作用の位相が1/4周期分ずれることになる。よって、sin波による変調作用とcos波による変調作用とが得られる。   For this reason, when the distribution of the modulated wave electric field seen by the light wave is an even function distribution (FIG. 3B), the modulation effect increases when the polarization inversion pattern of FIG. When the polarization inversion pattern e) is applied, the modulation effects cancel each other and the modulation action becomes zero. On the other hand, when the modulation wave electric field distribution seen by the light wave is an odd function distribution (FIG. 3 (d)), the modulation effect is increased when the polarization inversion pattern of FIG. 3 (e) is applied. Similarly, when the polarization inversion pattern is applied, the modulation action becomes zero. That is, in FIG. 3 (c) and FIG. 3 (e), the magnitude of the modulation effect obtained when driven by the same modulation signal is the same, but the phase of the modulation effect is shifted by 1/4 period. Become. Therefore, a modulation action by a sine wave and a modulation action by a cosine wave are obtained.

図4(a)〜(e)は光波が見る変調波電界の入射時刻に対する変化を示す図である。ぞれぞれの入射時刻の場合において、変調作用が大きくなるように分極反転パターンを施すことが可能であり、走行時間効果を補償することができる。   FIGS. 4A to 4E are diagrams showing changes with respect to the incident time of a modulated wave electric field seen by a light wave. In each incident time, a polarization inversion pattern can be applied so as to increase the modulation effect, and the travel time effect can be compensated.

以上のように、本発明の特徴は、電気光学媒質に施される分極反転構造を調節することにより、最適な変調作用が得られる光波の共振電極への入射時刻を変える、つまり、位相がずれた変調効果を得ることにある。変調位相の制御に分極反転構造を利用するため、変調波は同相(または逆相)であれば良く、複雑な給電回路を必要としない。また、デバイス構造は、1つのマッハツェンダ干渉計導波路と1つの共振型電極とからなるプッシュプル型の変調器構成であり、非常に小型で簡易なものである。さらに、共振型電極による光変調を動作原理としているため、高周波領域においても非常に効率が良い変調作用を得ることができる。   As described above, the feature of the present invention is that by adjusting the polarization inversion structure applied to the electro-optic medium, the incident time of the light wave that can obtain the optimum modulation action is changed, that is, the phase is shifted. It is to obtain the modulation effect. Since the polarization inversion structure is used for controlling the modulation phase, the modulation wave only needs to be in phase (or opposite phase), and a complicated power supply circuit is not required. Also, the device structure is a push-pull type modulator configuration consisting of one Mach-Zehnder interferometer waveguide and one resonant electrode, and is very small and simple. Furthermore, since the optical modulation by the resonance type electrode is used as the operating principle, a very efficient modulation action can be obtained even in the high frequency region.

このようにして、本発明では、図6に示すような複雑な高周波給電回路を用いることなく、ミリ帯域で動作する、小型で高効率な高速電気光学SSB光変調器を実現することができる。   In this way, according to the present invention, a small and highly efficient high-speed electro-optic SSB optical modulator that operates in the millimeter band can be realized without using a complicated high-frequency power feeding circuit as shown in FIG.

次に、本発明の電気光学SSB光変調器の具体例について、その製造工程及び評価特性も述べながら説明する。図5は、電気光学SSB光変調器の製造工程の手順を示す図である。以下の例では、動作周波数を15GHzとして、光通信システムで用いられる波長1.3〜1.5μmの光波を変調する場合について説明する。   Next, a specific example of the electro-optic SSB optical modulator of the present invention will be described while describing its manufacturing process and evaluation characteristics. FIG. 5 is a diagram showing the procedure of the manufacturing process of the electro-optic SSB optical modulator. In the following example, a case will be described in which the operating frequency is 15 GHz and a light wave having a wavelength of 1.3 to 1.5 μm used in the optical communication system is modulated.

基板1(長さ:40〜45mm,幅:8mm,厚さ:0.4mm)となる電気光学結晶には、z-cut LiTaO3 を使用した。まず、この基板1上の所望の部分にパルス電圧(振幅:8.8kV,周期:10ms)を選択的に印加することにより、分極反転構造1a(ハッチングを付した部分)を形成した(図5(a))。 Z-cut LiTaO 3 was used for the electro-optic crystal that becomes the substrate 1 (length: 40 to 45 mm, width: 8 mm, thickness: 0.4 mm). First, a pulse voltage (amplitude: 8.8 kV, period: 10 ms) is selectively applied to a desired portion on the substrate 1 to form a polarization inversion structure 1a (hatched portion) (FIG. 5). (A)).

次に、分極反転構造1aを施した基板1の表面に、安息香酸プロトン交換法(プロトン交換条件:240℃,12時間)によりマッハツェンダ干渉計導波路2を形成した(図5(b))。各光導波路2a,2bの幅は約4μm、深さは約1.5μmとした。   Next, a Mach-Zehnder interferometer waveguide 2 was formed on the surface of the substrate 1 provided with the domain-inverted structure 1a by a benzoic acid proton exchange method (proton exchange conditions: 240 ° C., 12 hours) (FIG. 5B). Each optical waveguide 2a, 2b has a width of about 4 μm and a depth of about 1.5 μm.

次に、基板1の表面全域にSiO2 バッフア層(厚さ:0.1μm)を形成し、光導波路2a,2b上にアルミニウム製の共振電極3a,3bを作製するとともに、同じくアルミニウム製の給電用電極4を作製し、基板1の裏面に接地電極5を形成した(図5(c),(d))。共振電極3a,3bの長さは、設計した動作周波数15GHzにおける定在波の波長の2倍(4倍波共振長)となるように、8.6mmとした。また、共振電極3a,3bの幅は50μm、厚さは2μmであり、共振電極3a,3b間の距離は30μmとした。これらの電極を作製した後、プロトン交換による電気光学効果の劣化を補償するために熱アニール(400℃,1時間)を行った。 Next, an SiO 2 buffer layer (thickness: 0.1 μm) is formed over the entire surface of the substrate 1, and aluminum resonant electrodes 3a and 3b are formed on the optical waveguides 2a and 2b. A working electrode 4 was prepared, and a ground electrode 5 was formed on the back surface of the substrate 1 (FIGS. 5C and 5D). The lengths of the resonance electrodes 3a and 3b were set to 8.6 mm so as to be twice the wavelength of the standing wave at the designed operating frequency of 15 GHz (fourth harmonic resonance length). The width of the resonant electrodes 3a and 3b was 50 μm, the thickness was 2 μm, and the distance between the resonant electrodes 3a and 3b was 30 μm. After these electrodes were fabricated, thermal annealing (400 ° C., 1 hour) was performed to compensate for deterioration of the electro-optic effect due to proton exchange.

このようにして製造した電気光学SSB光変調器を用いて動作実験を行った。YAGレーザから出射されるレーザ光(波長:1.3μm)を、光波として使用した。設計通り、共振電極3a,3bが動作周波数15GHzで4倍波共振特性を示すことを確認した。   An operation experiment was performed using the electro-optic SSB light modulator manufactured as described above. Laser light (wavelength: 1.3 μm) emitted from the YAG laser was used as a light wave. As designed, it was confirmed that the resonant electrodes 3a and 3b exhibit a fourth harmonic resonance characteristic at an operating frequency of 15 GHz.

また、変調実験の結果、15GHz帯で良好な光SSB変調特性を示すことを確認した。サイドバンド間の消光比は15dB以上、3dB帯域は1GHz以上であった。変調効率を測定したところ、駆動電力100mWに対して位相変調深さ(位相変調指数)0.3radが得られた。さらに、デバイスの製造条件を改良すれば、駆動電力100mWで1rad以上の位相変調深さを得ることが可能である。   In addition, as a result of the modulation experiment, it was confirmed that the optical SSB modulation characteristic was good in the 15 GHz band. The extinction ratio between the sidebands was 15 dB or more, and the 3 dB band was 1 GHz or more. When the modulation efficiency was measured, a phase modulation depth (phase modulation index) of 0.3 rad was obtained for a driving power of 100 mW. Furthermore, if the device manufacturing conditions are improved, it is possible to obtain a phase modulation depth of 1 rad or more at a driving power of 100 mW.

以上のような結果から、変調周波数を例えば40GHzとした場合でも、電極長を15mm程度とすることにより、駆動電力100mWで1rad以上の位相変調深さを得ることは可能である。特許文献2に開示された電気光学SSB光変調器では、変調周波数40GHz、電極長30mmに対して、0.1rad程度の位相変調深さしか得られなかった。   From the above results, even when the modulation frequency is 40 GHz, for example, it is possible to obtain a phase modulation depth of 1 rad or more at a driving power of 100 mW by setting the electrode length to about 15 mm. In the electro-optic SSB optical modulator disclosed in Patent Document 2, only a phase modulation depth of about 0.1 rad can be obtained for a modulation frequency of 40 GHz and an electrode length of 30 mm.

最後に、本発明の光周波数シフタについて説明する。光周波数シフタの基本構成は、上述した電気光学SSB光変調器の構成(図1参照)と同じである。図1の構成において、変調信号源6の電力を大きくして位相変調深さを深くした場合、搬送光成分から変調サイドバンド成分への変換効率が上がる。具体的に、位相変調深さを2rad程度とした場合には、搬送光の周波数が変調光サイドバンド成分の5%程度となり、搬送光成分を抑制して片側の変調1次サイドバンド成分のみを取り出すことが可能である。   Finally, the optical frequency shifter of the present invention will be described. The basic configuration of the optical frequency shifter is the same as the configuration of the electro-optic SSB optical modulator described above (see FIG. 1). In the configuration of FIG. 1, when the power of the modulation signal source 6 is increased to increase the phase modulation depth, the conversion efficiency from the carrier light component to the modulation sideband component increases. Specifically, when the phase modulation depth is about 2 rad, the frequency of the carrier light is about 5% of the modulated light sideband component, and only the modulated primary sideband component on one side is suppressed by suppressing the carrier light component. It is possible to take it out.

この結果、光の周波数をシフトすることができ、図1の構成は光周波数シフタとして機能する。変調深さを一定にして変調信号の周波数を時間的に掃引すれば、出力光の周波数を時間的に掃引する(連続的に変化させる)ことができる。   As a result, the frequency of light can be shifted, and the configuration of FIG. 1 functions as an optical frequency shifter. If the modulation depth is kept constant and the frequency of the modulation signal is swept temporally, the frequency of the output light can be swept temporally (changed continuously).

本発明の電気光学SSB光変調器または光周波数シフタの構成図である。It is a block diagram of the electro-optic SSB optical modulator or optical frequency shifter of the present invention. 共振電極上の変調波電界と変調器中を通過する光波が見る変調波電界との関係を示す図である。It is a figure which shows the relationship between the modulation wave electric field on a resonance electrode, and the modulation wave electric field which the light wave which passes through the modulator sees. 分極反転パターンの空間的配置と変調位相との関係を示す図である。It is a figure which shows the relationship between the spatial arrangement | positioning of a polarization inversion pattern, and a modulation phase. 光波が見る変調波電界の入射時刻に対する変化を示す図である。It is a figure which shows the change with respect to the incident time of the modulated wave electric field which a light wave sees. 電気光学SSB光変調器の製造工程の手順を示す図である。It is a figure which shows the procedure of the manufacturing process of an electro-optic SSB light modulator. 従来の電気光学SSB光変調器または光周波数シフタの模式図である。It is a schematic diagram of a conventional electro-optic SSB optical modulator or optical frequency shifter.

符号の説明Explanation of symbols

1 電気光学結晶基板
1a 分極反転構造
2 マッハツェンダ干渉計導波路
2a,2b 光導波路
3a,3b 共振電極
4 給電用電極
6 変調信号源
7 可変直流電圧源
10 電気光学SSB光変調器
DESCRIPTION OF SYMBOLS 1 Electro-optic crystal substrate 1a Polarization inversion structure 2 Mach-Zehnder interferometer waveguide 2a, 2b Optical waveguide 3a, 3b Resonant electrode 4 Feeding electrode 6 Modulation signal source 7 Variable DC voltage source 10 Electro-optic SSB optical modulator

Claims (4)

部分的に分極反転構造を施した電気光学媒質に光導波路と定在波型の電極とを組み合わせた構成を有し、前記電極での定在波電界を用いて前記光導波路を進む光波の変調を行うようにしたことを特徴とする電気光学SSB光変調器。   Modulation of light waves traveling in the optical waveguide using a standing wave electric field at the electrodes, with a configuration in which an optical waveguide and a standing wave electrode are combined in an electro-optic medium with a partially domain-inverted structure An electro-optic SSB light modulator characterized in that 前記光導波路は2つであって、各光導波路における前記分極反転構造のパターンが異なっていることを特徴とする請求項1記載の電気光学SSB光変調器。   2. The electro-optic SSB optical modulator according to claim 1, wherein the number of the optical waveguides is two, and the pattern of the polarization inversion structure in each optical waveguide is different. 前記電極は、共振型電極であることを特徴とする請求項1または2記載の電気光学SSB光変調器。   3. The electro-optic SSB light modulator according to claim 1, wherein the electrode is a resonant electrode. 部分的に分極反転構造を施した電気光学媒質に光導波路と定在波型の電極とを組み合わせた構成を有し、前記電極での定在波電界を用いて前記光導波路を進む光波の周波数をシフトさせるようにしたことを特徴とする光周波数シフタ。

A frequency of a light wave that travels through the optical waveguide using a standing wave electric field at the electrode having a configuration in which an optical waveguide and a standing wave type electrode are combined in an electro-optic medium that is partially polarized. An optical frequency shifter characterized by shifting the frequency.

JP2004250085A 2004-08-30 2004-08-30 Electrooptic ssb optical modulator and optical frequency shifter Pending JP2007333753A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004250085A JP2007333753A (en) 2004-08-30 2004-08-30 Electrooptic ssb optical modulator and optical frequency shifter
PCT/JP2005/015670 WO2006025333A1 (en) 2004-08-30 2005-08-29 Electrooptic ssb optical modulator and optical frequency shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250085A JP2007333753A (en) 2004-08-30 2004-08-30 Electrooptic ssb optical modulator and optical frequency shifter

Publications (1)

Publication Number Publication Date
JP2007333753A true JP2007333753A (en) 2007-12-27

Family

ID=35999987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250085A Pending JP2007333753A (en) 2004-08-30 2004-08-30 Electrooptic ssb optical modulator and optical frequency shifter

Country Status (2)

Country Link
JP (1) JP2007333753A (en)
WO (1) WO2006025333A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079003A (en) * 2008-09-26 2010-04-08 Oki Electric Ind Co Ltd Optical phase locked loop circuit
WO2011152397A1 (en) * 2010-05-31 2011-12-08 住友大阪セメント株式会社 Light control element
JP2011252942A (en) * 2010-05-31 2011-12-15 Sumitomo Osaka Cement Co Ltd Optical control element
JP2017111276A (en) * 2015-12-16 2017-06-22 大学共同利用機関法人自然科学研究機構 Optical synthesizer
US9746699B2 (en) 2015-04-20 2017-08-29 Fujitsu Limited Optical frequency shifter, single sideband modulator, and light insertion and branch apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251559B (en) * 2008-04-16 2011-06-15 清华大学 Non-electrode type photoelectricity integrated sensor for measuring highfield
JP5594192B2 (en) * 2011-03-08 2014-09-24 住友大阪セメント株式会社 Light modulator
JP6739808B2 (en) * 2016-02-25 2020-08-12 国立大学法人三重大学 Optical SSB modulator
CN106301588A (en) * 2016-09-28 2017-01-04 北京科技大学 A kind of single-side belt palarization multiplexing direct detecting method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226471A (en) * 2003-01-20 2004-08-12 Matsushita Electric Ind Co Ltd Optical modulator and system having optical modulator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079003A (en) * 2008-09-26 2010-04-08 Oki Electric Ind Co Ltd Optical phase locked loop circuit
JP4692601B2 (en) * 2008-09-26 2011-06-01 沖電気工業株式会社 Optical phase-locked loop circuit
US8165476B2 (en) 2008-09-26 2012-04-24 Oki Electric Industry Co., Ltd. Optical phase locked loop
WO2011152397A1 (en) * 2010-05-31 2011-12-08 住友大阪セメント株式会社 Light control element
JP2011252942A (en) * 2010-05-31 2011-12-15 Sumitomo Osaka Cement Co Ltd Optical control element
CN102918448A (en) * 2010-05-31 2013-02-06 住友大阪水泥股份有限公司 Light control element
US9057893B2 (en) 2010-05-31 2015-06-16 Sumitomo Osaka Cement Co., Ltd. Light control element
CN102918448B (en) * 2010-05-31 2016-07-06 住友大阪水泥股份有限公司 Light control element
US9746699B2 (en) 2015-04-20 2017-08-29 Fujitsu Limited Optical frequency shifter, single sideband modulator, and light insertion and branch apparatus
JP2017111276A (en) * 2015-12-16 2017-06-22 大学共同利用機関法人自然科学研究機構 Optical synthesizer
US9935717B2 (en) 2015-12-16 2018-04-03 National Institutes Of Natural Sciences Optical synthesizer

Also Published As

Publication number Publication date
WO2006025333A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP4771216B2 (en) Ultra-flat optical frequency comb signal generator
JP3957217B2 (en) Light modulator
US20060159384A1 (en) Optical communication device and optical device
JP2008116865A (en) Nested modulator
WO2006025333A1 (en) Electrooptic ssb optical modulator and optical frequency shifter
US6341031B1 (en) Optical pulse generation using a high order function waveguide interferometer
JP5299859B2 (en) Ultra-flat optical frequency comb signal generator
JP2009506381A (en) Optical device for generating and modulating terahertz waves and other high frequency signals
JP4668329B2 (en) Light control device
JP3639198B2 (en) Period domain inversion structure electro-optic SSB optical modulator and optical frequency shifter
KR100688072B1 (en) Integrated optical modulator and method for manufacturing the same
JP4751601B2 (en) Light modulator
JP2009047726A (en) Optical modulator and optical transmitter
US20060067601A1 (en) Method of driving mach-zehnder light modulator and light modulating device
JP2006098885A (en) Optical modulation element module
JP4991910B2 (en) Light control element
JP2006267201A (en) Fsk modulation method and fsk modulator for phase continuous light
JP2008058436A (en) Optical modulator and optical transmitter
JP4376795B2 (en) Waveguide type optical modulator
JP2022047597A (en) Optical device and light transmitter-receiver
JP2004004589A (en) Mach-zehnder waveguide type electrooptic light intensity modulator
JP2004246321A (en) Light modulation element and system having the light modulation element
JP4362622B2 (en) Optical frequency shift method and optical frequency shifter
JP5622293B2 (en) Nested modulator
JPWO2006100719A1 (en) Optical device