JP2007333660A - Laminated gas sensor - Google Patents

Laminated gas sensor Download PDF

Info

Publication number
JP2007333660A
JP2007333660A JP2006168273A JP2006168273A JP2007333660A JP 2007333660 A JP2007333660 A JP 2007333660A JP 2006168273 A JP2006168273 A JP 2006168273A JP 2006168273 A JP2006168273 A JP 2006168273A JP 2007333660 A JP2007333660 A JP 2007333660A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
electrolyte layer
pair
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006168273A
Other languages
Japanese (ja)
Other versions
JP4706569B2 (en
Inventor
Takashi Yamamoto
孝史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006168273A priority Critical patent/JP4706569B2/en
Publication of JP2007333660A publication Critical patent/JP2007333660A/en
Application granted granted Critical
Publication of JP4706569B2 publication Critical patent/JP4706569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable laminated gas sensor that prevents cracks in the manufacturing process from compression bonding to firing. <P>SOLUTION: The laminated gas sensor 1 has a solid electrolyte layer 11, a measured gas diffusion layer 140 and a standard gas intake layer 12. Between a compressed area 11c in which the solid electrolyte layer 11 is held between a measured gas electrode 161 and a standard gas electrode 162 and inevitably compressed by the measured gas electrode 161 and the standard gas electrode 162 under the compression bonding of the solid electrolyte layer 11 with the measured gas diffusion layer 140, and an uncompressed area 11a of the solid electrolyte layer 11 that is not compressed by the measured gas electrode 161 nor the standard gas electrode 162, the solid electrolyte layer 11 has a buffer area 11b for buffering a shearing stress acting on the interface between both areas, along all or part of the outer edges of the measured gas electrode 161 or standard gas electrode 162. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自動車の排ガス中の特定ガス成分を検出する酸素センサやNOxセンサ等の積層型ガスセンサに関するものである。   The present invention relates to a laminated gas sensor such as an oxygen sensor or a NOx sensor that detects a specific gas component in, for example, automobile exhaust gas.

大気汚染防止のため、自動車エンジン等からの排ガスに対する規制が年々厳しくなっている。排ガス中の有害成分を低減する手段として、例えば、エンジンの燃焼制御により排ガス中の有害成分の発生を抑制するシステムや、排ガス中の酸素濃度や窒素酸化物(NOx)濃度等からエンジンの燃焼状態を知り、燃料噴射や空燃比等の制御にフィードバックするシステム等が用いられている。   In order to prevent air pollution, regulations on exhaust gas from automobile engines and the like are becoming stricter year by year. As a means for reducing harmful components in exhaust gas, for example, a system that suppresses the generation of harmful components in exhaust gas by controlling combustion of the engine, the combustion state of the engine from the oxygen concentration and nitrogen oxide (NOx) concentration in the exhaust gas, etc. And a system that feeds back to control of fuel injection, air-fuel ratio, and the like is used.

例えば特許文献1には、一対の測定部電極と固体電解質体からなる電気化学的セルとヒータとが一体的に設けられた積層型ガスセンサが開示されている。
特開2004−309457号公報
For example, Patent Document 1 discloses a stacked gas sensor in which a pair of measuring unit electrodes, an electrochemical cell made of a solid electrolyte body, and a heater are integrally provided.
JP 2004-309457 A

図7に示す積層型ガスセンサは、センサ部16とヒータ部15とからなる。
上記センサ部16は、例えば部分安定化ジルコニア等からなるシート状の固体電解質層11と、アルミナ等からなるシート状のガス遮蔽層17、14と、粒径の大きなアルミナ等からなるシート状のガス拡散層140と、アルミナ等からなるシート状であって、基準ガス室120となる溝部が設けられた略U字形の基準ガス室形成層12とによって構成されている。
The stacked gas sensor shown in FIG. 7 includes a sensor unit 16 and a heater unit 15.
The sensor unit 16 includes, for example, a sheet-like solid electrolyte layer 11 made of partially stabilized zirconia, the sheet-like gas shielding layers 17 and 14 made of alumina, and a sheet-like gas made of alumina having a large particle size. The diffusion layer 140 is a sheet made of alumina or the like, and includes a substantially U-shaped reference gas chamber forming layer 12 provided with a groove serving as the reference gas chamber 120.

上記固体電解質層11の対向する面には、被測定ガス電極161と基準ガス電極162との一対の測定部電極が印刷等により形成され、上記被測定ガス電極161と導通する測定リード部163と上記基準ガス電極162と導通する基準リード部164との一対のリード部163、164が形成されている。
上記ヒータ部15は発熱体153と上記発熱体153に導通するヒータリード部152a、152bとが印刷等により形成されたアルミナ等からなるシート状のヒータ基板150と、絶縁層13とによって構成されている。
A pair of measurement electrodes, that is, a measurement gas electrode 161 and a reference gas electrode 162 are formed on the opposing surfaces of the solid electrolyte layer 11 by printing or the like, and a measurement lead portion 163 that is electrically connected to the measurement gas electrode 161; A pair of lead portions 163 and 164 are formed with a reference lead portion 164 that is electrically connected to the reference gas electrode 162.
The heater unit 15 is composed of a sheet-like heater substrate 150 made of alumina or the like formed by printing or the like, and an insulating layer 13 in which a heating element 153 and heater lead parts 152a and 152b that conduct to the heating element 153 are formed. Yes.

積層型ガスセンサは、図8に示すように上記センサ部16と上記ヒータ部15とが積層され、一体的に焼成されて構成される。なお、図7、8に示すように上記ヒータリード部152a、152bと上記ヒータ基板150の表面に設けられた電極端子155a、155bとはスルーホール151a、151bに設けられたスルーホール電極154a、154bを介して導通している。   As shown in FIG. 8, the laminated gas sensor is constructed by laminating the sensor unit 16 and the heater unit 15 and firing them integrally. As shown in FIGS. 7 and 8, the heater lead portions 152a and 152b and the electrode terminals 155a and 155b provided on the surface of the heater substrate 150 are through-hole electrodes 154a and 154b provided in the through-holes 151a and 151b. Conducted through.

ところが、上記従来の積層型ガスセンサにおいては、上記積層、焼成の過程で内部クラックが発生し易いことが判明した。
図8(A)〜(C)はクラックの発生位置を示すもので、上記固体電解質層11の内部には、上記一対の測定部電極161、162の外周縁に沿って、上記一対の測定部電極161、162によって挟まれた部分に、数ミリ程度の長さのクラック若しくはクラックの元となるダメージが極まれに発生することがある。
However, it has been found that in the conventional laminated gas sensor, internal cracks are likely to occur during the lamination and firing processes.
FIGS. 8A to 8C show crack occurrence positions. Inside the solid electrolyte layer 11, the pair of measurement units are arranged along the outer peripheral edges of the pair of measurement unit electrodes 161 and 162. FIG. In a portion sandwiched between the electrodes 161 and 162, a crack having a length of about several millimeters or damage that causes the crack may occur extremely rarely.

このようなクラックの存在は、外部からの発見が困難で、センサの信頼性を著しく損なうものであり、極まれに発生するものであっても、製造工程において確実に防止する必要がある。
特に、積層型ガスセンサを自動車の排ガス中の酸素濃度センサとして使用した場合、500℃以上の高温に急速加熱されるため、万一センサ素子内にクラックが存在すると、熱ストレスによりクラックが進行し、センサ素子の破壊に至る可能性もある。
The presence of such cracks is difficult to detect from the outside, significantly impairs the reliability of the sensor, and even if it occurs rarely, it must be reliably prevented in the manufacturing process.
In particular, when a laminated gas sensor is used as an oxygen concentration sensor in an automobile exhaust gas, it is rapidly heated to a high temperature of 500 ° C. or higher, so if a crack exists in the sensor element, the crack progresses due to thermal stress, There is also a possibility of destruction of the sensor element.

そこで、本発明はかかる実情に鑑み、積層型ガスセンサの製造工程において、固体電解質層内部に発生するクラックを防止し、信頼性の高い積層型ガスセンサを提供することを目的とするものである。   In view of this situation, an object of the present invention is to provide a highly reliable multilayer gas sensor by preventing cracks generated in the solid electrolyte layer in the multilayer gas sensor manufacturing process.

請求項1の発明では、固体電解質層の対向する面の一方に被測定ガス電極を他方に基準ガス電極を設けて一対の測定部電極となし、上記一方の面側に被測定ガス拡散層を上記他方の面側に基準ガス導入層を積層、圧着して形成した積層型ガスセンサにおいて、
上記固体電解質層には、上記被測定ガス拡散層との圧着時に上記一対の測定部電極に挟まれて不可避的に圧縮される圧縮領域と、上記一対の測定部電極のいずれによっても圧縮されない非圧縮領域との間に、両領域の界面に作用する応力を緩和する緩衝領域を設けた。
According to the first aspect of the present invention, the gas electrode to be measured is provided on one of the opposing surfaces of the solid electrolyte layer and the reference gas electrode is provided on the other to form a pair of measuring portion electrodes, and the gas diffusion layer to be measured is provided on the one surface side. In the laminated gas sensor formed by laminating and pressure bonding the reference gas introduction layer on the other surface side,
The solid electrolyte layer includes a compression region that is inevitably compressed by being sandwiched between the pair of measurement unit electrodes when pressed with the gas diffusion layer to be measured, and is not compressed by any of the pair of measurement unit electrodes. A buffer region for relaxing stress acting on the interface between the two regions was provided between the compression region.

上記固体電解質層の内部クラックは、上記固体電解質層と上記被測定ガス拡散層との圧着工程で、上記固体電解質層の両面に形成された上記一対の電極によって不可避的に圧縮される領域と電極が形成されておらず圧縮されない領域との界面に発生するものと考えられる。
本発明によれば、上記固体電解質層の圧縮領域と非圧縮領域との間に緩衝領域を設けたことにより、上記固体電解質層と上記被測定ガス拡散層との圧着時に両領域の界面に作用する剪断応力が弱められるのでクラックの発生を防止できる。また、上記緩衝領域によって上記圧縮領域と上記非圧縮領域との密度の変化を緩やかにすることができるので、焼成時において焼結速度の違いによる熱ストレスを緩和し、クラックの進行を防止できる。
The internal cracks in the solid electrolyte layer are inevitably compressed by the pair of electrodes formed on both surfaces of the solid electrolyte layer in the pressure-bonding step between the solid electrolyte layer and the gas diffusion layer to be measured. This is considered to occur at the interface with the region where the film is not formed and is not compressed.
According to the present invention, by providing a buffer region between the compression region and the non-compression region of the solid electrolyte layer, it acts on the interface between the solid electrolyte layer and the measured gas diffusion layer at the time of pressure bonding. The generation of cracks can be prevented because the shearing stress is reduced. Further, since the density change between the compressed region and the non-compressed region can be moderated by the buffer region, the thermal stress due to the difference in the sintering rate during firing can be alleviated and the progress of cracks can be prevented.

請求項2の発明では、上記一対の測定部電極のいずれか一方の外周縁の全部又は一部を、他方の外周縁よりも外側位置に形成することによって上記緩衝領域を設けた。   According to a second aspect of the present invention, the buffer region is provided by forming all or part of the outer peripheral edge of one of the pair of measuring portion electrodes at a position outside the other outer peripheral edge.

上記構成により、上記固体電解質層が上記一対の測定部電極の両方で圧縮された圧縮領域の外側に、該領域に沿って上記固体電解質層が上記一対の測定部電極のいずれか一方のみで圧縮される領域が形成される。したがって、当該一方の電極のみで圧縮された領域が緩衝領域となって、上記圧縮領域と上記非圧縮領域との間に働く剪断応力が緩和され、クラックの発生を防止できる。   With the above configuration, the solid electrolyte layer is compressed by only one of the pair of measurement unit electrodes along the region outside the compression region where the solid electrolyte layer is compressed by both of the pair of measurement unit electrodes. A region to be formed is formed. Therefore, a region compressed only by the one electrode becomes a buffer region, and the shear stress acting between the compressed region and the non-compressed region is relieved, and the generation of cracks can be prevented.

請求項3の発明では、上記固体電解質層幅方向において、上記一対の測定部電極のいずれか一方の幅を他方の幅よりも広く形成することによって上記緩衝領域を設けた。   In the invention of claim 3, in the width direction of the solid electrolyte layer, the buffer region is provided by forming one of the pair of measurement part electrodes wider than the other.

上記一対の測定部電極の幅方向に上記緩衝領域が形成され、上記一対の測定部電極の両側縁近傍で長手方向に進行するクラックを防止できる。   The buffer region is formed in the width direction of the pair of measurement unit electrodes, and cracks that progress in the longitudinal direction in the vicinity of both side edges of the pair of measurement unit electrodes can be prevented.

請求項4の発明では、上記固体電解質層長手方向において、上記一対の測定部電極のいずれか一方の長さを他方の長さよりも長く形成することによって上記緩衝領域を設けた。   In the invention of claim 4, in the longitudinal direction of the solid electrolyte layer, the buffer region is provided by forming one of the pair of measurement part electrodes longer than the other.

上記一対の測定部電極の長手方向に上記緩衝領域が形成され、上記一対の測定部電極の前端縁近傍で幅方向に進行するクラックを防止できる。   The buffer region is formed in the longitudinal direction of the pair of measurement unit electrodes, and cracks that progress in the width direction in the vicinity of the front end edges of the pair of measurement unit electrodes can be prevented.

請求項5の発明では、上記固体電解質層の表面に上記一対の測定部電極に導通するリード部をそれぞれ設け、該リード部の少なくとも一方の幅を、当該電極と同じ幅に設けた。   According to a fifth aspect of the present invention, lead portions that are electrically connected to the pair of measurement portion electrodes are provided on the surface of the solid electrolyte layer, respectively, and at least one width of the lead portions is provided to be the same width as the electrodes.

測定部電極とリード部とが同じ幅で設けられることによって、上記圧縮領域の上記固体電解質層全体に占める割合が高くなり、素子全体としての均質化が図られるので上記積層型ガスセンサの信頼性が向上する。   By providing the measurement part electrode and the lead part with the same width, the ratio of the compression region to the whole solid electrolyte layer is increased, and homogenization of the whole element is achieved, so the reliability of the stacked gas sensor is improved. improves.

請求項6の発明では、記固体電解質層の表面に上記一対の測定部電極導通するリード部をそれぞれ設け、該リード部のいずれか一方を、他方の電極およびリード部の外周縁の外側に設けた。   According to a sixth aspect of the present invention, a lead portion is provided on the surface of the solid electrolyte layer for conducting the pair of measurement portion electrodes, and one of the lead portions is provided outside the outer periphery of the other electrode and the lead portion. It was.

上記リード部が対向する測定部電極の外周縁の外側に設けられた構成としても、上記一対の測定部電極の外周縁に上記緩衝領域が形成されていれば、上記一対の測定部電極の周辺にクラックが発生することがない。   Even if the lead part is provided outside the outer peripheral edge of the measuring part electrode, the peripheral part of the pair of measuring part electrodes is provided that the buffer region is formed on the outer peripheral edge of the pair of measuring part electrodes. No cracks occur.

本発明によれば、積層、加熱圧着工程において、固体電解質層の対向する面に設けられた一対の測定部電極の外周縁に応力集中することがなくなり、固体電解質層内部のクラックの発生が防止できる。   According to the present invention, in the stacking and thermocompression bonding processes, stress concentration does not occur on the outer peripheral edges of the pair of measurement unit electrodes provided on the opposing surfaces of the solid electrolyte layer, and the generation of cracks inside the solid electrolyte layer is prevented. it can.

以下に本発明の第1の実施形態について図1、2を参照して説明する。
図1(A)は本発明の適用された積層型ガスセンサ素子1の使用態様を表し、図1(B)は図1(A)の積層型ガスセンサ素子1の詳細な構成を示す展開斜視図である。図2(A)は本発明の特徴部分である固体電解質層11に形成した一対の測定部電極161、162の平面形状および位置関係を示す平面図で、図2(B)、(C)はそれぞれ図2(A)中A−A断面模式図および図2(A)中B−B断面模式図である。
A first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1A shows a usage mode of the laminated gas sensor element 1 to which the present invention is applied, and FIG. 1B is a developed perspective view showing a detailed configuration of the laminated gas sensor element 1 of FIG. is there. FIG. 2A is a plan view showing the planar shape and positional relationship of a pair of measurement unit electrodes 161 and 162 formed on the solid electrolyte layer 11 which is a characteristic part of the present invention. FIGS. 2B and 2C are views. FIG. 2A is a schematic cross-sectional view taken along the line AA in FIG. 2A and a schematic cross-sectional view taken along the line BB in FIG.

図1(A)に示すように積層型ガスセンサ素子1はセンサ部16とヒータ部15とによって構成されている。   As shown in FIG. 1A, the stacked gas sensor element 1 includes a sensor unit 16 and a heater unit 15.

図1(B)に示すように上記センサ部16はガス遮蔽層14、17(以下遮蔽層14、17と称す)と、被測定ガス拡散層140(以下、拡散層140と称す)と、被測定ガス電極161(以下、測定電極161と称す)およびこれに導通する測定リード部163と、固体電解質層11と、基準ガス電極162(以下、基準電極162と称す)およびこれに導通する基準リード部164と、基準ガス室形成層12とを積層した積層構造をしており、上記ヒータ部15はヒータ基板150と発熱体153とこれに導通するヒータリード部152a、152bと絶縁層13とを積層した積層構造をしている。   As shown in FIG. 1B, the sensor section 16 includes gas shielding layers 14 and 17 (hereinafter referred to as shielding layers 14 and 17), a measured gas diffusion layer 140 (hereinafter referred to as diffusion layer 140), Measurement gas electrode 161 (hereinafter referred to as measurement electrode 161), measurement lead portion 163 conducting therewith, solid electrolyte layer 11, reference gas electrode 162 (hereinafter referred to as reference electrode 162), and reference lead conducting therethrough The heater part 15 includes a heater substrate 150, a heating element 153, heater lead parts 152a and 152b that are electrically connected to the heater substrate 150, and the insulating layer 13. It has a laminated structure.

上記センサ部16の上面には上記測定リード部163と上記基準リード部164とのそれぞれにスルーホール電極167、168を介して導通する端子165、166が形成され、該端子165、166には図1(A)に示す電位差計30が接続される。   On the upper surface of the sensor portion 16, terminals 165 and 166 are formed which are electrically connected to the measurement lead portion 163 and the reference lead portion 164 through through-hole electrodes 167 and 168, respectively. A potentiometer 30 shown in FIG.

上記ヒータ部15の上面には上記ヒータリード部152a、152bとスルーホール電極154a、154bを介して導通する端子155a、155bが形成され、上記端子155a、155bには図1(A)に示す電源4が電子制御装置(ECU)3を介して接続され、上記発熱体153への通電が制御され、上記センサ部16を所定温度に加熱する。   Terminals 155a and 155b are formed on the upper surface of the heater portion 15 through the heater lead portions 152a and 152b and through-hole electrodes 154a and 154b. The terminals 155a and 155b have power supplies shown in FIG. 4 is connected via an electronic control unit (ECU) 3 to control energization of the heating element 153 to heat the sensor unit 16 to a predetermined temperature.

上記固体電解質層11は、例えば平均粒径0.5ミクロンのイットリア安定化ジルコニア100部(重量部、以下同じ)を、α−アルミナ等の焼結助剤1部とポリビニルブチラール(PVB)等の結合材5部とジブチルフタレート(DBP)等の可塑剤10部とともにトルエン10部−エタノール10部混合有機溶剤等の溶媒に分散させたスラリーをドクターブレード法等により所定の板厚(例えば乾燥後0.2ミリ)のシート状に成形、乾燥した後、例えば打ち抜きプレス等により、所定の大きさ(例えば6ミリ×56ミリ)の長方形に加工するとともに上記基準リード部164と端子166とを導通するスルーホール電極168を形成するためのスルーホール111を穿設することによって得られる。   The solid electrolyte layer 11 includes, for example, 100 parts of yttria-stabilized zirconia having an average particle size of 0.5 microns (parts by weight, the same applies hereinafter), 1 part of a sintering aid such as α-alumina, and polyvinyl butyral (PVB). A slurry obtained by dispersing 5 parts of a binder and 10 parts of a plasticizer such as dibutyl phthalate (DBP) in a solvent such as a mixed organic solvent of 10 parts of toluene and 10 parts of ethanol by a doctor blade method or the like (for example, 0 after drying) .2 mm) after being formed into a sheet and dried, it is processed into a rectangle of a predetermined size (for example, 6 mm × 56 mm) by, for example, a punching press, and the reference lead portion 164 and the terminal 166 are electrically connected. It is obtained by drilling a through hole 111 for forming the through hole electrode 168.

上記測定電極161と上記測定リード部163とを白金ペーストに上記固体電解質用のスラリーを添加したものを用いて、印刷等により、上記固体電解質層11の一方の面に形成し、上記基準電極162と上記基準リード部164とを、他方の面に上記測定電極161および上記測定リード部163の外周縁と一致しないように形成する。
上記測定電極161、上記測定リード部163、上記基準電極162、上記基準リード部164の膜厚はおよそ10ミクロン程度である。
The measurement electrode 161 and the measurement lead portion 163 are formed on one surface of the solid electrolyte layer 11 by printing or the like using a platinum paste to which the slurry for solid electrolyte is added, and the reference electrode 162 is formed. And the reference lead part 164 are formed on the other surface so as not to coincide with the outer peripheral edges of the measurement electrode 161 and the measurement lead part 163.
The film thickness of the measurement electrode 161, the measurement lead portion 163, the reference electrode 162, and the reference lead portion 164 is about 10 microns.

上記測定電極161と上記基準電極162とはともに上記拡散層140の下面の範囲に形成された電極を示し、上記測定リード部163と上記基準リード部164とはともに上記遮蔽層14の下方の範囲に形成された電極を示す。   The measurement electrode 161 and the reference electrode 162 are both electrodes formed on the lower surface of the diffusion layer 140, and the measurement lead portion 163 and the reference lead portion 164 are both below the shielding layer 14. The electrode formed in is shown.

上記基準ガス室形成層12は、例えば平均粒径0.3ミクロンのα−アルミナ98部をイットリア部分安定化ジルコニア等の焼結助剤3部とPVB等の結合材10部とDBP等の可塑剤10部とともにトルエン30部−エタノール30部混合有機溶剤等の溶媒に分散させたスラリーをドクターブレード法等により所定の板厚(例えば乾燥後0.2ミリ)の絶縁用アルミナグリーンシートとし、当該絶縁用アルミナグリーンシートを複数枚(例えば3枚)積層し、打ち抜きプレス等により、上記基準ガス室120となる長方形の溝部(2ミリ×53ミリ)を有する略U字形(例えば6ミリ×56ミリ)に形成することによって得られる。   The reference gas chamber forming layer 12 is composed of, for example, 98 parts of α-alumina having an average particle size of 0.3 microns, 3 parts of a sintering aid such as yttria partially stabilized zirconia, 10 parts of a binder such as PVB, and plastic such as DBP. A slurry dispersed in a solvent such as a mixed organic solvent such as 30 parts of toluene and 30 parts of ethanol together with 10 parts of the agent is made into an insulating alumina green sheet having a predetermined plate thickness (for example, 0.2 mm after drying) by a doctor blade method or the like. A plurality of (for example, three) alumina green sheets for insulation are stacked, and a substantially U-shaped (for example, 6 mm × 56 mm) having a rectangular groove (2 mm × 53 mm) that becomes the reference gas chamber 120 by a punching press or the like. ) To obtain.

上記遮蔽層17は、上記絶縁用アルミナグリーンシートと同じ材料、同じ製法で所定の板厚(例えば乾燥後0.2ミリ)のシートを形成し、所定の大きさ(例えば6ミリ×56ミリ)の長方形に打ち抜くとともに上記測定リード部163、164と上記端子165、166とを導通するためにスルーホール電極167、168を形成するためのスルーホール141、142を穿設することによって得られる。   The shielding layer 17 forms a sheet having a predetermined thickness (for example, 0.2 mm after drying) with the same material and the same manufacturing method as the insulating alumina green sheet, and has a predetermined size (for example, 6 mm × 56 mm). And through holes 141 and 142 for forming through-hole electrodes 167 and 168 for conducting the measurement lead portions 163 and 164 and the terminals 165 and 166, respectively.

上記ヒータ基板150は上記絶縁用アルミナグリーンシートと同じ材料、同じ製法にて、所定の板厚(例えば乾燥後0.2ミリ)のシート状に形成され、所定の大きさの長方形(例えば6ミリ×56ミリ)に打ち抜かれるとともに、上記ヒータリード部152a、152bと上記端子155a、155bとを導通するスルーホール電極154a、154bを設けるためのスルーホール151a、151bが穿設されることによって得られる。   The heater substrate 150 is formed into a sheet having a predetermined plate thickness (for example, 0.2 mm after drying) by using the same material and the same manufacturing method as the insulating alumina green sheet, and a rectangular (for example, 6 mm) having a predetermined size. And through holes 151a and 151b for providing through-hole electrodes 154a and 154b for conducting the heater leads 152a and 152b and the terminals 155a and 155b. .

上記ヒータ基板150に、例えば上記アルミナスラリーを添加した白金ペーストを用いて、上記発熱体153とヒータリード部152a、152bと端子155a、155bとを厚膜印刷により形成する。上記スルーホール151a、151bには上記ヒータリード部152a、152bを印刷すると同時に吸引等によりスルーホール電極154a、154bを形成する。   The heater 153, the heater leads 152a and 152b, and the terminals 155a and 155b are formed on the heater substrate 150 by thick film printing using, for example, platinum paste added with the alumina slurry. In the through holes 151a and 151b, the heater lead portions 152a and 152b are printed, and at the same time, through hole electrodes 154a and 154b are formed by suction or the like.

上記拡散層140は上記絶縁用アルミナグリーンシートに用いたアルミナよりも大きい所定の粒径のアルミナを用いて、PVB等の結合材とDBP等の可塑剤とともにトルエン−エタノール混合有機溶剤等の溶媒とを所定の割合で混合し、分散させたスラリーをドクターブレード法等によりシート状に成形、乾燥し、所定の板厚(例えば乾燥後0.2ミリ)の拡散層用アルミナグリーンシートをとし、これを所定の大きさ(例えば6ミリ×10ミリ)に打ち抜くことによって得られる。   The diffusion layer 140 is made of alumina having a predetermined particle size larger than that of the alumina used for the insulating alumina green sheet, and a binder such as PVB, a plasticizer such as DBP, and a solvent such as a toluene-ethanol mixed organic solvent. Is mixed at a predetermined ratio, and the dispersed slurry is formed into a sheet shape by the doctor blade method and dried to obtain an alumina green sheet for a diffusion layer having a predetermined plate thickness (for example, 0.2 mm after drying). Is punched into a predetermined size (for example, 6 mm × 10 mm).

上記遮蔽層14は、上記遮蔽層17と同じ上記絶縁用アルミナグリーンシートを所定の大きさ(例えば6ミリ×56ミリ)の長方形に打ち抜いて、その一部(例えば6ミリ×10ミリ)を上記拡散層140に置き換えることによって得られる。   The shielding layer 14 is formed by punching the same insulating alumina green sheet as the shielding layer 17 into a rectangle having a predetermined size (for example, 6 mm × 56 mm), and partially (for example, 6 mm × 10 mm). It is obtained by replacing with the diffusion layer 140.

上記絶縁層13は上記絶縁用アルミナグリーンシートを複数枚(例えば3枚)積層し、所定の大きさ(例えば6ミリ×56ミリ)の長方形に打ち抜くことによって得られる。   The insulating layer 13 is obtained by laminating a plurality of (for example, three) alumina green sheets for insulation and punching them into a rectangle having a predetermined size (for example, 6 mm × 56 mm).

上記スルーホール電極167、168を上記一対の測定部電極161、162等と同じ材料を用いて上記スルーホール111、141、142、171、172に吸引印刷等により形成する。   The through-hole electrodes 167 and 168 are formed in the through-holes 111, 141, 142, 171, and 172 by suction printing or the like using the same material as the pair of measurement unit electrodes 161 and 162.

上記一対の測定部電極161、162が形成された上記固体電解質層11はその上面に上記拡散層140を含む上記遮蔽層14と上記遮蔽層17とを積層後、加熱圧着により一体のセンサ部積層体16bを形成する。
また、上記発熱体153とヒータリード部152a、152bとが形成された上記ヒータ基板150の上面には、上記絶縁層13と上記基準ガス室形成層12とを積層後、加熱圧着により一体のヒータ部積層体15bを形成する。
The solid electrolyte layer 11 on which the pair of measurement unit electrodes 161 and 162 are formed is formed by stacking the shielding layer 14 including the diffusion layer 140 and the shielding layer 17 on the upper surface thereof, and then laminating the integrated sensor unit by thermocompression bonding. Form body 16b.
Further, the insulating layer 13 and the reference gas chamber forming layer 12 are laminated on the upper surface of the heater substrate 150 on which the heating element 153 and the heater lead portions 152a and 152b are formed, and then the integrated heater is formed by thermocompression bonding. A partial laminate 15b is formed.

このようにして形成された上記センサ部積層体16bと上記ヒータ部積層体15bとをアルミナ−ジルコニア接着ペースト18によって接着し、これを乾燥、脱脂、焼成する。   The sensor section laminate 16b and the heater section laminate 15b thus formed are bonded with an alumina-zirconia adhesive paste 18, which is dried, degreased and fired.

上記固体電解質層11は酸素イオン導電性固体電解質層となり、上記被測定ガス拡散層140は被測定ガスが拡散可能な多孔質体となり、上記遮蔽層14、17、上記基準ガス層12、上記絶縁層13、ヒータ基板150は絶縁性を有す焼結体となる。   The solid electrolyte layer 11 is an oxygen ion conductive solid electrolyte layer, and the gas diffusion layer 140 to be measured is a porous body through which the gas to be measured can diffuse, and the shielding layers 14 and 17, the reference gas layer 12, and the insulation. The layer 13 and the heater substrate 150 are sintered bodies having insulating properties.

上記遮蔽層17の上面に上記測定リード163および上記基準リード164のそれぞれに導通する端子電極165、166を、上記ヒータ基板150の下面に上記リード152a、152bのそれぞれに導通する端子電極155a、155bを厚膜印刷等により形成する。
以上によって一体となった積層型ガスセンサ素子1を得る。
Terminal electrodes 165 and 166 that are electrically connected to the measurement lead 163 and the reference lead 164, respectively, on the upper surface of the shielding layer 17, and terminal electrodes 155a and 155b that are electrically connected to the leads 152a and 152b, respectively, on the lower surface of the heater substrate 150. Is formed by thick film printing or the like.
Thus, the integrated gas sensor element 1 is obtained.

例えば自動車排気ガス等の被測定ガスの測定に際して、上記積層型ガスセンサ素子1の上記拡散層14側を被測定ガス中に置き、基準ガス室120の入り口を大気内に置くと、上記測定電極161は上記拡散層140を介して被測定ガスに晒され、上記基準電極162は上記入り口から上記基準ガス室120に導入された基準ガス(大気)に晒される。   For example, when measuring a measurement gas such as an automobile exhaust gas, the measurement electrode 161 is obtained by placing the diffusion layer 14 side of the stacked gas sensor element 1 in the measurement gas and placing the inlet of the reference gas chamber 120 in the atmosphere. Is exposed to the gas to be measured through the diffusion layer 140, and the reference electrode 162 is exposed to the reference gas (atmosphere) introduced into the reference gas chamber 120 from the entrance.

上記固体電解質層11は酸素イオン導電性が有り、上記被測定ガス中の酸素濃度と上記基準ガス中の酸素濃度との差によって上記測定電極161と上記基準電極162との間に電位差を生じ、これを電位差計30等によって測定することによって上記被測定ガス中の酸素濃度を知ることができる。   The solid electrolyte layer 11 has oxygen ion conductivity, and generates a potential difference between the measurement electrode 161 and the reference electrode 162 due to the difference between the oxygen concentration in the measurement gas and the oxygen concentration in the reference gas. By measuring this with the potentiometer 30 or the like, the oxygen concentration in the measurement gas can be known.

本発明の特徴である、一対の測定部電極の形状および配置について説明する。
図2(A)に示すように、本実施形態においては、上記測定電極161の幅と上記測定リード部163の幅とが同じ幅で形成され、上記基準電極162の幅と上記基準リード部164の幅とが同じ幅で形成されており、かつ上記測定電極161の外周縁と上記基準電極162の外周縁とが一致しないように形成されている。
The shape and arrangement of the pair of measurement part electrodes, which is a feature of the present invention, will be described.
As shown in FIG. 2A, in this embodiment, the width of the measurement electrode 161 and the width of the measurement lead portion 163 are formed to be the same width, and the width of the reference electrode 162 and the reference lead portion 164 are formed. And the outer peripheral edge of the measurement electrode 161 and the outer peripheral edge of the reference electrode 162 are not aligned with each other.

このとき、図2(B)に示すように、上記測定電極161と上記基準電極162とのいずれにも圧縮されない非圧縮領域11aと上記測定電極161と上記基準電極162との両方によって不可避的に圧縮される圧縮領域11cとの間に上記基準電極162のみによって圧縮される緩衝領域11bが上記固体電解質11の長手方向に形成されている。   At this time, as shown in FIG. 2B, both the measurement electrode 161 and the reference electrode 162 are unavoidable by the non-compressed region 11a that is not compressed by either the measurement electrode 161 or the reference electrode 162. A buffer region 11b compressed only by the reference electrode 162 is formed in the longitudinal direction of the solid electrolyte 11 between the compressed region 11c to be compressed.

また、図2(C)に示すように、上記測定電極161と上記基準電極162とのいずれにも圧縮されない非圧縮領域11aと上記測定電極161と上記基準電極162との両方に圧縮される圧縮領域11cとの間に上記基準電極161のみによって圧縮される緩衝領域11bと上記基準電極162のみによって圧縮される緩衝領域11bとが上記固体電解質11の幅方向に形成されている。   Further, as shown in FIG. 2C, the compression is performed by both the uncompressed region 11a that is not compressed by the measurement electrode 161 and the reference electrode 162, and the measurement electrode 161 and the reference electrode 162. Between the region 11 c, a buffer region 11 b that is compressed only by the reference electrode 161 and a buffer region 11 b that is compressed only by the reference electrode 162 are formed in the width direction of the solid electrolyte 11.

ここで、図3を参照して推定される従来の積層型ガスセンサのクラックの発生メカニズムおよび本発明の効果について説明する。
従来の構造の積層型ガスセンサにおいては、図3(A)左図(加熱圧着前)に示すように、上記測定部電極161と上記基準電極162との外周縁が対向する形で上記固体電解質層11に形成されている。
Here, the crack generation mechanism of the conventional multilayer gas sensor estimated with reference to FIG. 3 and the effect of the present invention will be described.
In the multilayer gas sensor having a conventional structure, as shown in the left diagram of FIG. 3A (before thermocompression bonding), the solid electrolyte layer is formed such that the outer peripheral edges of the measurement part electrode 161 and the reference electrode 162 are opposed to each other. 11 is formed.

上記遮蔽層17と一部に上記拡散層140を含む上記遮蔽層14と上記被測定電極161と上記基準電極162とを設けた固体電解質層11とを積層し、これらを金属プレート20、21で挟み、上記固体電解質層11と上記遮蔽層14(上記拡散層140を含む)とが完全に密着するまで加熱しながら加圧すると、上記測定電極161と上記基準電極162とが上記固体電解質層11にくい込みながら上記固体電解質層11を圧縮する。   The shielding layer 17, the shielding layer 14 partially including the diffusion layer 140, and the solid electrolyte layer 11 provided with the electrode to be measured 161 and the reference electrode 162 are laminated. When sandwiched and pressed while heating until the solid electrolyte layer 11 and the shielding layer 14 (including the diffusion layer 140) are in close contact, the measurement electrode 161 and the reference electrode 162 are connected to the solid electrolyte layer 11. The solid electrolyte layer 11 is compressed while being difficult to insert.

図3(A)右図(加熱圧縮後)に模式的に示すように、上記測定電極161と上記基準電極162とで挟まれた圧縮領域11cは、それ以外の非圧縮領域11aに比べて上記測定電極161の膜厚と上記基準電極162の膜厚との分(例えば10〜20ミクロン)だけ余分に加圧されることで、上記非圧縮領域11aと上記圧縮領域11cとの界面には強い剪断応力が働き、少なからずダメージを受けることになる。
また、加熱によって上記固体電解質層11に含まれる上記結合材(PVB等)の可塑性が増し、上記固体電解質層11を構成する原料粒子が移動可能となる。
このため圧縮により上記原料粒子の再配列が起こり、上記圧縮領域11cは上記非圧縮領域11aに比べて高い成形密度になり、上記圧縮領域11cと上記非圧縮領域11aとの界面に大きな密度差が生じる。
As schematically shown in the right diagram of FIG. 3 (A) (after heat compression), the compressed region 11c sandwiched between the measurement electrode 161 and the reference electrode 162 is more than the other non-compressed region 11a. By applying extra pressure by the thickness of the measurement electrode 161 and the thickness of the reference electrode 162 (for example, 10 to 20 microns), the interface between the non-compressed region 11a and the compressed region 11c is strong. Shear stress works, and it takes a lot of damage.
Moreover, the plasticity of the binder (PVB or the like) contained in the solid electrolyte layer 11 is increased by heating, and the raw material particles constituting the solid electrolyte layer 11 can move.
For this reason, rearrangement of the raw material particles occurs due to compression, the compression region 11c has a higher molding density than the non-compression region 11a, and there is a large density difference at the interface between the compression region 11c and the non-compression region 11a. Arise.

一般にセラミックスの焼成において、成形密度が高いほど焼結温度が低くなり、焼成速度が速くなることが知られている。したがって、上記のように成形密度に差がある状態の上記固体電解質層11を焼成した場合、上記圧縮領域11cの焼結速度は上記非圧縮領域11aの焼結速度に比べて早くなるので、両領域の間に焼結速度の違いによる熱ストレスが加わり、上記ダメージがクラックへと進行することが考えられる。   In general, in firing ceramics, it is known that the higher the molding density, the lower the sintering temperature and the faster the firing rate. Therefore, when the solid electrolyte layer 11 having a difference in molding density as described above is fired, the sintering speed of the compression region 11c is faster than the sintering speed of the non-compression region 11a. It is conceivable that thermal stress due to the difference in sintering speed is applied between the regions, and the damage proceeds to cracks.

これに対し、本実施形態では図2に示すように、上記固体電解質層11の非圧縮領域11aと圧縮領域11cとの界面に作用する剪断応力を緩衝する緩衝領域11bを上記測定電極161若しくは上記基準電極162の外周縁のほぼ全部又は一部に沿って上記固体電解質層11に設けている。   On the other hand, in this embodiment, as shown in FIG. 2, the buffer region 11b for buffering the shear stress acting on the interface between the non-compressed region 11a and the compressed region 11c of the solid electrolyte layer 11 is provided with the measurement electrode 161 or the above-described electrode. The solid electrolyte layer 11 is provided along almost all or part of the outer peripheral edge of the reference electrode 162.

図3(B)左図(加熱圧着前)に示すように上記測定電極161の外周縁と上記基準電極162の外周縁とが一致しないように形成された上記固体電解質層11と上記遮蔽層17と上記拡散層140とを積層し、これを金属プレート20、21で挟んで加熱しながら加圧する。
この場合、図3(B)右図(加熱圧着後)に示すように、従来と同様、上記測定電極161と上記基準電極162とは上記固体電解質層11にめり込みながら上記固体電解質層11を圧縮する。
As shown in the left diagram of FIG. 3B (before thermocompression bonding), the solid electrolyte layer 11 and the shielding layer 17 formed so that the outer peripheral edge of the measurement electrode 161 and the outer peripheral edge of the reference electrode 162 do not coincide with each other. And the diffusion layer 140 are stacked and sandwiched between the metal plates 20 and 21 and heated and pressurized.
In this case, as shown in the right figure of FIG. 3B (after thermocompression bonding), the measurement electrode 161 and the reference electrode 162 are compressed into the solid electrolyte layer 11 while being embedded in the solid electrolyte layer 11 as in the conventional case. To do.

しかしながら、上記固体電解質層11が上記測定電極161と上記基準電極162との両方から圧縮される圧縮領域11cと上記測定電極161と上記基準電極162とのいずれからも圧縮されない非圧縮領域11aとの間に上記測定電極161と上記基準電極162とのいずれか一方のみによって圧縮される緩衝領域11bが形成されているので、上記非圧縮領域11aと上記圧縮領域11bとの界面に働く剪断応力が緩和される。
したがって上記界面に発生していたダメージをクラックに至らない範囲に抑えることができる。よって、本発明によれば、従来の工程を大きく変えることなく簡単にクラックの発生を防止できる。
However, the solid electrolyte layer 11 includes a compressed region 11c where the measurement electrode 161 and the reference electrode 162 are compressed, and an uncompressed region 11a where the measurement electrode 161 and the reference electrode 162 are not compressed. Since the buffer region 11b compressed by only one of the measurement electrode 161 and the reference electrode 162 is formed between them, the shear stress acting on the interface between the non-compressed region 11a and the compressed region 11b is relieved. Is done.
Therefore, the damage occurring at the interface can be suppressed to a range that does not lead to cracks. Therefore, according to the present invention, the occurrence of cracks can be easily prevented without greatly changing the conventional process.

図4に本発明の第2の実施形態における上記固体電解質層11と上記測定電極161と上記基準電極162と上記非圧縮領域11aと上記緩衝領域11bと上記圧縮領域11cとの断面模式図を示す。
図4(A)は上記固体電解質層11に形成した上記測定電極161と上記基準電極162の形状および位置関係を示し、図4(B)は図4(A)中A−A断面における上記固体電解質層11の断面拡大構造を模式的に表し、図4(C)は図4(A)中B−B断面における上記固体電解質層11の断面拡大構造を模式的に表したものである。
FIG. 4 is a schematic cross-sectional view of the solid electrolyte layer 11, the measurement electrode 161, the reference electrode 162, the uncompressed region 11a, the buffer region 11b, and the compressed region 11c in the second embodiment of the present invention. .
4A shows the shape and positional relationship of the measurement electrode 161 and the reference electrode 162 formed on the solid electrolyte layer 11, and FIG. 4B shows the solid in the AA cross section in FIG. 4A. 4C schematically shows an enlarged cross-sectional structure of the electrolyte layer 11, and FIG. 4C schematically shows an enlarged cross-sectional structure of the solid electrolyte layer 11 in the BB cross section in FIG. 4A.

本実施形態において、上記測定電極161の幅は上記基準電極162の幅よりも広く、上記測定電極161の長さは上記基準電極162の長さと同じである。図4(B)に示すように、上記測定電極161と上記基準電極162との長さを同じにした場合、上記緩衝領域11bが形成されず、クラックが発生し得る。
また、図4(C)に示すように、上記固体電解質層11の幅方向には、上記非圧縮領域11aと上記圧縮領域11cとの間に上記緩衝領域11bが形成され、クラックの発生が防止できる。
In this embodiment, the width of the measurement electrode 161 is wider than the width of the reference electrode 162, and the length of the measurement electrode 161 is the same as the length of the reference electrode 162. As shown in FIG. 4B, when the lengths of the measurement electrode 161 and the reference electrode 162 are the same, the buffer region 11b is not formed, and cracks may occur.
As shown in FIG. 4C, the buffer region 11b is formed between the non-compressed region 11a and the compressed region 11c in the width direction of the solid electrolyte layer 11 to prevent the occurrence of cracks. it can.

図5に本発明の第3の実施形態における上記固体電解質層11と上記測定電極161と上記基準電極162と上記非圧縮領域11aと上記緩衝領域11bと上記圧縮領域11cとの断面模式図を示す。
図5(A)は上記固体電解質層11に形成した上記測定電極161と上記基準電極162の形状および位置関係を示し、図5(B)は図5(A)中A−A断面における上記固体電解質層11の断面拡大構造を模式的に表し、図5(C)は図5(A)中B−B断面における上記固体電解質層11の断面拡大構造を模式的に表したものである。
FIG. 5 is a schematic cross-sectional view of the solid electrolyte layer 11, the measurement electrode 161, the reference electrode 162, the non-compressed region 11a, the buffer region 11b, and the compressed region 11c in the third embodiment of the present invention. .
5A shows the shape and positional relationship of the measurement electrode 161 and the reference electrode 162 formed on the solid electrolyte layer 11, and FIG. 5B shows the solid in the AA cross section in FIG. The cross-sectional enlarged structure of the electrolyte layer 11 is schematically shown, and FIG. 5C schematically shows the cross-sectional enlarged structure of the solid electrolyte layer 11 in the BB cross section in FIG.

本実施形態において、上記測定電極161の幅は上記基準電極162の幅よりも広く、上記測定電極161の長さは上記基準電極162の長さよりも長い。
図5(B)、(C)に示すように、本実施形態においても、上記固体電解質層11には上記非圧縮領域11aと上記圧縮領域11cとの間に上記緩衝領域11bが形成され、クラックの発生が防止できる。
また、本実施形態において、上記測定電極の幅を上記基準電極の幅よりも狭く、上記測定電極161の長さは上記基準電極162の長さよりも短くしても同様の効果が得られる。
In this embodiment, the width of the measurement electrode 161 is wider than the width of the reference electrode 162, and the length of the measurement electrode 161 is longer than the length of the reference electrode 162.
As shown in FIGS. 5B and 5C, also in this embodiment, the buffer region 11b is formed between the uncompressed region 11a and the compressed region 11c in the solid electrolyte layer 11, and cracks are generated. Can be prevented.
In this embodiment, the same effect can be obtained even if the width of the measurement electrode is narrower than the width of the reference electrode and the length of the measurement electrode 161 is shorter than the length of the reference electrode 162.

図6に本発明の第4の実施形態における上記固体電解質層11と上記測定電極161と上記基準電極162と上記非圧縮領域11aと上記緩衝領域11bと上記圧縮領域11cとの断面模式図を示す。
図6(A)は上記固体電解質層11に形成した上記測定電極161と上記基準電極162の形状および位置関係を示し、図6(B)は図6(A)中A−A断面における上記固体電解質層11の断面拡大構造を模式的に表し、図6(C)は図6(A)中B−B断面における上記固体電解質層11の断面拡大構造を模式的に表し、図6(D)は図6(A)中C−C断面における上記固体電解質層11の断面拡大構造を模式的に表したものである。
FIG. 6 is a schematic cross-sectional view of the solid electrolyte layer 11, the measurement electrode 161, the reference electrode 162, the non-compressed region 11a, the buffer region 11b, and the compressed region 11c in the fourth embodiment of the present invention. .
6A shows the shape and positional relationship of the measurement electrode 161 and the reference electrode 162 formed on the solid electrolyte layer 11, and FIG. 6B shows the solid in the AA cross section in FIG. 6A. 6C schematically shows the cross-sectional enlarged structure of the electrolyte layer 11, and FIG. 6C schematically shows the cross-sectional enlarged structure of the solid electrolyte layer 11 in the BB cross section in FIG. 6A. FIG. 6A schematically shows an enlarged cross-sectional structure of the solid electrolyte layer 11 in the CC cross section in FIG.

本実施形態において、上記基準電極162と上記端子166とを導通する上記基準リード部164を、対向する上記測定電極161と上記端子165とを導通する上記測定リード部163の外周縁よりも外側に形成する。図6(B)、図6(C)に示すように上記圧縮領域11cと上記非圧縮領域11aとの間に上記緩衝領域11bが形成されているので、上記基準リード部164が上記測定電極161および上記基準リード部164の外周縁の外側に形成されていても、上記緩衝領域11bに剪断応力が集中しないので、上記測定電極161の外周縁および上記基準電極162の外周縁近傍にクラックが発生することがない。   In the present embodiment, the reference lead portion 164 that conducts the reference electrode 162 and the terminal 166 is placed outside the outer periphery of the measurement lead portion 163 that conducts the opposing measurement electrode 161 and the terminal 165. Form. As shown in FIGS. 6B and 6C, since the buffer region 11b is formed between the compressed region 11c and the non-compressed region 11a, the reference lead portion 164 serves as the measurement electrode 161. Even if formed outside the outer peripheral edge of the reference lead portion 164, the shear stress is not concentrated on the buffer region 11b, so that cracks are generated in the outer peripheral edge of the measuring electrode 161 and in the vicinity of the outer peripheral edge of the reference electrode 162. There is nothing to do.

表1に本発明の上記第1〜第4の実施形態におけるクラック防止効果を図7、8の従来構成と比較して示す。
上述した製造工程により、各実施形態に示した構成の積層型ガスセンサ素子1を製作し、クラック発生の有無を調べた。
その結果を表1に示す。クラックが3箇所に発生した場合を×とし、クラックが1箇所に発生した場合を○とし、クラックの発生しなかった場合を◎として表す。
Table 1 shows the effect of preventing cracks in the first to fourth embodiments of the present invention in comparison with the conventional configuration shown in FIGS.
The laminated gas sensor element 1 having the configuration shown in each embodiment was manufactured by the manufacturing process described above, and the presence or absence of occurrence of cracks was examined.
The results are shown in Table 1. The case where the crack occurred in three places is indicated as x, the case where the crack occurs in one place is indicated as ◯, and the case where the crack does not occur is indicated as ◎.


表1から明らかなように、本発明の構成とすることで、クラックの発生防止に大きな効果が得られることが分かる。

As is clear from Table 1, it can be seen that the configuration of the present invention provides a great effect in preventing the occurrence of cracks.

なお、当然のことながら、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることは言うまでもない。例えば、本発明の第3の実施形態において、上記測定電極161の幅が上記基準電極162の幅よりも広く、上記測定電極161の長さが上記基準電極162の長さよりも長い場合について説明したが、上記測定電極161の幅が上記電極の幅よりも狭く、上記測定電極161の長さが上記基準電極162の長さよりも短い場合にも、同様の効果が得られる。   Needless to say, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the third embodiment of the present invention, the case where the width of the measurement electrode 161 is wider than the width of the reference electrode 162 and the length of the measurement electrode 161 is longer than the length of the reference electrode 162 has been described. However, the same effect can be obtained when the width of the measurement electrode 161 is narrower than the width of the electrode and the length of the measurement electrode 161 is shorter than the length of the reference electrode 162.

また、本発明の実施形態においては、積層型ガスセンサとして1セルのみからなる酸素濃度センサを例に挙げて説明をしたが、本発明は複数のセルによって構成される酸素センサやNOxセンサ等においても、一対の電極で挟まれた領域とその他の領域との界面でクラックの発生を防止するのに好適である。   In the embodiment of the present invention, the oxygen concentration sensor consisting of only one cell has been described as an example of the laminated gas sensor. However, the present invention also applies to an oxygen sensor, a NOx sensor, or the like configured by a plurality of cells. It is suitable for preventing the occurrence of cracks at the interface between the region sandwiched between the pair of electrodes and the other region.

(A)は本発明の適用された積層型ガスセンサ素子の使用態様を表し、(B)は図1(A)の積層型ガスセンサ素子1の詳細な構成を示す展開斜視図である。(A) represents the usage aspect of the laminated | stacked gas sensor element to which this invention was applied, (B) is a expansion | deployment perspective view which shows the detailed structure of the laminated | stacked gas sensor element 1 of FIG. 1 (A). (A)は本発明の特徴部分である固体電解質層に形成した一対の測定部電極の平面形状および位置関係を示す平面図で、図2(B)、(C)はそれぞれ図2(A)中A−Aにおけるセンサ部積層体の断面模式図および(A)中B−Bにおけるセンサ部積層体の断面模式図である。(A) is a top view which shows the planar shape and positional relationship of a pair of measurement part electrode formed in the solid electrolyte layer which is the characteristic part of this invention, FIG.2 (B) and (C) are FIG.2 (A), respectively. It is the cross-sectional schematic diagram of the sensor part laminated body in middle AA, and the cross-sectional schematic diagram of the sensor part laminated body in BB in (A). (A)は従来の加熱、圧着前後での固体電解質層の拡大構造の変化を示す断面模式図で、(B)は本発明の実施形態における加熱、圧着前後での固体電解質層の拡大構造の変化を示す断面模式図である。(A) is a cross-sectional schematic diagram showing changes in the expanded structure of the solid electrolyte layer before and after conventional heating and pressure bonding, and (B) is an enlarged structure of the solid electrolyte layer before and after heating and pressure bonding in the embodiment of the present invention. It is a cross-sectional schematic diagram which shows a change. (A)は本発明の第2実施形態における固体電解質層に形成した一対の測定部電極の平面形状および位置関係を示し、(B)は図4(A)中A−A断面模式図で、(C)は図4(A)中B−B断面模式図である。(A) shows the planar shape and positional relationship of a pair of measurement part electrodes formed in the solid electrolyte layer in 2nd Embodiment of this invention, (B) is an AA cross-sectional schematic diagram in FIG. 4 (A), (C) is a BB cross-sectional schematic diagram in FIG. 4 (A). (A)は本発明の第3実施形態における固体電解質層に形成した一対の測定部電極の平面形状および位置関係を示し、(B)は図5(A)中A−A断面模式図で、(C)は図5(A)中B−B断面模式図である。(A) shows the planar shape and positional relationship of a pair of measurement part electrodes formed on the solid electrolyte layer in the third embodiment of the present invention, (B) is a schematic cross-sectional view taken along the line AA in FIG. (C) is a BB cross-sectional schematic diagram in FIG. 5 (A). (A)は本発明の第4実施形態における固体電解質層に形成した一対の測定部電極の平面形状および位置関係を示し、(B)は図6(A)中A−A断面模式図で、(C)は図6(A)中B−B断面模式図で、(D)は図6(A)中C−C断面模式図である。(A) shows the planar shape and the positional relationship of a pair of measurement part electrodes formed in the solid electrolyte layer in 4th Embodiment of this invention, (B) is an AA cross-sectional schematic diagram in FIG. 6 (A), (C) is a schematic cross-sectional view taken along the line BB in FIG. 6 (A), and (D) is a schematic cross-sectional view taken along the line CC in FIG. 6 (A). 従来の積層型ガスセンサの展開図を示す。The development view of the conventional laminated gas sensor is shown. (A)は従来の積層型ガスセンサのクラックの発生位置を示す平面図で、(B)は図8(A)中A−A断面模式図で、(C)は図8(A)中B−B断面模式図である。(A) is a top view which shows the generation | occurrence | production position of the crack of the conventional laminated gas sensor, (B) is an AA cross-sectional schematic diagram in FIG. 8 (A), (C) is B- in FIG. 8 (A). It is a B cross-sectional schematic diagram.

符号の説明Explanation of symbols

1 積層型ガスセンサ
15 ヒータ部
15b ヒータ部積層体
150 ヒータ基板
151a、151b スルーホール
152a、152b ヒータリード部
153 発熱体
154a、154b スルーホール電極
155a、155b ヒータ外部端子
13 絶縁層
16 センサ部
16b センサ部積層体
161、162 一対の測定部電極
161 被測定ガス電極(測定電極)
162 基準ガス電極(基準電極)
163 測定リード部
164 基準リード部
165、166 外部端子
167、168 スルーホール電極
17 ガス遮蔽層(遮蔽層)
171、172 スルーホール
14 ガス遮蔽層(遮蔽層)
140 被測定ガス拡散層(拡散層)
141、142 スルーホール
11 固体電解質層
111 スルーホール
18 アルミナ−ジルコニア接着剤層
12 基準ガス室形成層
120 基準ガス室
DESCRIPTION OF SYMBOLS 1 Stack type gas sensor 15 Heater part 15b Heater part laminated body 150 Heater board | substrate 151a, 151b Through-hole 152a, 152b Heater lead part 153 Heat generating body 154a, 154b Through-hole electrode 155a, 155b Heater external terminal 13 Insulating layer 16 Sensor part 16b Sensor part Laminated bodies 161 and 162 A pair of measuring part electrodes 161 A gas electrode to be measured (measuring electrode)
162 Reference gas electrode (reference electrode)
163 Measurement lead part 164 Reference lead part 165, 166 External terminal 167, 168 Through-hole electrode 17 Gas shielding layer (shielding layer)
171 and 172 Through hole 14 Gas shielding layer (shielding layer)
140 Gas diffusion layer to be measured (diffusion layer)
141, 142 Through hole 11 Solid electrolyte layer 111 Through hole 18 Alumina-zirconia adhesive layer 12 Reference gas chamber forming layer 120 Reference gas chamber

Claims (6)

固体電解質層の対向する面の一方に被測定ガス電極を他方に基準ガス電極を設けて一対の測定部電極となし、上記一方の面側に被測定ガス拡散層を上記他方の面側に基準ガス導入層を積層、圧着して形成した積層型ガスセンサにおいて、
上記固体電解質層は、上記被測定ガス拡散層との圧着時に上記一対の測定部電極に挟まれて不可避的に圧縮される圧縮領域と、上記一対の測定部電極のいずれによっても圧縮されない非圧縮領域との間に、両領域の界面に作用する応力を緩和する緩衝領域を有することを特徴とする積層型ガスセンサ。
A gas electrode to be measured is provided on one of the opposing surfaces of the solid electrolyte layer, and a reference gas electrode is provided on the other to form a pair of measuring part electrodes, and a gas diffusion layer to be measured is provided on the one surface side as a reference In the laminated gas sensor formed by laminating and pressure bonding the gas introduction layer,
The solid electrolyte layer is compressed between the pair of measurement unit electrodes and inevitably compressed when being compressed with the gas diffusion layer to be measured, and is not compressed by any of the pair of measurement unit electrodes. A laminated gas sensor characterized by having a buffer region that relieves stress acting on the interface between the two regions.
上記一対の測定部電極のいずれか一方の外周縁の全部又は一部を、他方の外周縁よりも外側位置に形成することによって上記緩衝領域を設けた請求項1に記載の積層型ガスセンサ。   2. The stacked gas sensor according to claim 1, wherein the buffer region is provided by forming all or part of the outer peripheral edge of one of the pair of measurement unit electrodes at a position outside the other outer peripheral edge. 上記固体電解質層幅方向において、上記一対の測定部電極のいずれか一方の幅を他方の幅よりも広く形成することによって上記緩衝領域を設けた請求項1又は2に記載の積層型ガスセンサ。   3. The stacked gas sensor according to claim 1, wherein the buffer region is provided by forming one of the pair of measurement unit electrodes wider than the other in the width direction of the solid electrolyte layer. 上記固体電解質層長手方向において、上記一対の測定部電極のいずれか一方の長さを他方の長さよりも長く形成することによって上記緩衝領域を設けた請求項1ないし3のいずれか1項に記載の積層型ガスセンサ。   4. The buffer region according to claim 1, wherein in the longitudinal direction of the solid electrolyte layer, the buffer region is provided by forming one of the pair of measurement unit electrodes longer than the other. 5. Multi-layer gas sensor. 上記固体電解質層の表面に上記一対の測定部電極に導通するリード部をそれぞれ設け、該リード部の少なくとも一方の幅を、当該電極と同じ幅に設けた請求項1ないし4のいずれか1項に記載の積層型ガスセンサ。   The lead part which conduct | electrically_connects to a pair of said measurement-part electrode is provided in the surface of the said solid electrolyte layer, respectively, The width | variety of at least one of this lead part was provided in the same width as the said electrode. The laminated gas sensor according to 1. 上記固体電解質層の表面に上記一対の測定部電極導通するリード部をそれぞれ設け、該リード部のいずれか一方を、他方の電極およびリード部の外周縁の外側に設けた請求項1ないし5のいずれか1項に記載の積層型ガスセンサ。   6. A lead part for conducting the pair of measurement part electrodes is provided on the surface of the solid electrolyte layer, respectively, and one of the lead parts is provided outside the outer periphery of the other electrode and the lead part. The laminated gas sensor according to any one of the above.
JP2006168273A 2006-06-19 2006-06-19 Multilayer gas sensor Active JP4706569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168273A JP4706569B2 (en) 2006-06-19 2006-06-19 Multilayer gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168273A JP4706569B2 (en) 2006-06-19 2006-06-19 Multilayer gas sensor

Publications (2)

Publication Number Publication Date
JP2007333660A true JP2007333660A (en) 2007-12-27
JP4706569B2 JP4706569B2 (en) 2011-06-22

Family

ID=38933262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168273A Active JP4706569B2 (en) 2006-06-19 2006-06-19 Multilayer gas sensor

Country Status (1)

Country Link
JP (1) JP4706569B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002739A (en) * 2017-06-13 2019-01-10 日本特殊陶業株式会社 Sensor element and gas sensor provided with the sensor element
CN110346431A (en) * 2019-07-25 2019-10-18 莱鼎电子材料科技有限公司 A kind of broad domain oxygen sensor electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114571A (en) * 1994-10-14 1996-05-07 Nippondenso Co Ltd Manufacture of oxygen sensor
JP2002228626A (en) * 2000-11-30 2002-08-14 Denso Corp Gas sensor element
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method
JP2003075395A (en) * 2001-09-05 2003-03-12 Ibiden Co Ltd Oxygen sensor
JP2003521709A (en) * 2000-02-04 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical measurement probe and method for manufacturing the electrochemical measurement probe
JP2003294698A (en) * 2002-03-29 2003-10-15 Ngk Spark Plug Co Ltd Stacked gas sensor element, its manufacturing method, and gas sensor
JP2006170888A (en) * 2004-12-17 2006-06-29 Ngk Spark Plug Co Ltd Gas sensor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114571A (en) * 1994-10-14 1996-05-07 Nippondenso Co Ltd Manufacture of oxygen sensor
JP2003521709A (en) * 2000-02-04 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical measurement probe and method for manufacturing the electrochemical measurement probe
JP2002228626A (en) * 2000-11-30 2002-08-14 Denso Corp Gas sensor element
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method
JP2003075395A (en) * 2001-09-05 2003-03-12 Ibiden Co Ltd Oxygen sensor
JP2003294698A (en) * 2002-03-29 2003-10-15 Ngk Spark Plug Co Ltd Stacked gas sensor element, its manufacturing method, and gas sensor
JP2006170888A (en) * 2004-12-17 2006-06-29 Ngk Spark Plug Co Ltd Gas sensor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002739A (en) * 2017-06-13 2019-01-10 日本特殊陶業株式会社 Sensor element and gas sensor provided with the sensor element
CN110346431A (en) * 2019-07-25 2019-10-18 莱鼎电子材料科技有限公司 A kind of broad domain oxygen sensor electrode

Also Published As

Publication number Publication date
JP4706569B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4637671B2 (en) Ceramic laminate and gas sensor including the same
JP3692623B2 (en) Ceramic laminate and manufacturing method thereof
CN108693235B (en) Sensor element
JP2006222008A (en) Ceramic heater and heater-built-in electronic component
JP2010261727A (en) Gas sensor element and method of manufacturing the same, as well as gas sensor
JP2002184648A (en) Laminated ceramic electronic component and its manufacturing method
JP4706569B2 (en) Multilayer gas sensor
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JP4342273B2 (en) Laminated sintered body, ceramic heater, gas sensor element, method for producing laminated sintered body, and method for producing gas sensor element.
JP2003294697A (en) Stacked gas sensor element, its manufacturing method, and gas sensor
JP2008157649A (en) Lamination type gas sensor
CN114761792B (en) Sensor element of gas sensor and method for forming protective layer facing sensor element
US10739300B2 (en) Sensor element
WO2020203027A1 (en) Sensor element for gas sensor
JP4061125B2 (en) Method for manufacturing oxygen sensor element
US10620152B2 (en) Sensor element
JP2008053046A (en) Solid oxide fuel cell and its manufacturing method
JP7140059B2 (en) LAMINATED GAS SENSOR ELEMENT AND MANUFACTURING METHOD THEREOF
JP2004117098A (en) Oxygen sensor element
JP5035078B2 (en) Gas sensor element
JP3752452B2 (en) Flat plate oxygen sensor and manufacturing method thereof
JP4426065B2 (en) Gas sensor element and gas sensor including the same
JP4262764B2 (en) Multilayer gas sensor element
JP2002340845A (en) Gas sensor element and manufacturing method thereof
JP2003107034A (en) Laminated gas sensor element and gas sensor equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250