JP2006170888A - Gas sensor element - Google Patents

Gas sensor element Download PDF

Info

Publication number
JP2006170888A
JP2006170888A JP2004365865A JP2004365865A JP2006170888A JP 2006170888 A JP2006170888 A JP 2006170888A JP 2004365865 A JP2004365865 A JP 2004365865A JP 2004365865 A JP2004365865 A JP 2004365865A JP 2006170888 A JP2006170888 A JP 2006170888A
Authority
JP
Japan
Prior art keywords
sensor element
electrode
measurement chamber
solid electrolyte
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004365865A
Other languages
Japanese (ja)
Other versions
JP4223471B2 (en
Inventor
Seiji Oya
誠二 大矢
Toshihiro Inohara
俊広 猪原
Mineji Nasu
峰次 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004365865A priority Critical patent/JP4223471B2/en
Publication of JP2006170888A publication Critical patent/JP2006170888A/en
Application granted granted Critical
Publication of JP4223471B2 publication Critical patent/JP4223471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor element capable of preventing an unsintered break from being generated in an unsintered solid electrolyte sheet, capable of preventing a crack of a solid electrolyte from being generated caused by the unsintered break, and capable of enhancing reliability compared with the prior art. <P>SOLUTION: An electrode 11 constituting an oxygen partial pressure detecting cell 3 is arranged in the first measuring chamber 5, and formed into a rectangular shape. Both side ends of the electrode 11 are wrapped with an insulating ceramic 15 forming a side wall part of the first measuring chamber 5. That is, a protrusion 151 is formed in an inner end of the insulating ceramic 15 to be interposed between the electrode 11 and the solid electrolyte 19, and an end 111 of the electrode 11 is arranged on the protrusion 151, and one part of the end part 111 is arranged to be embedded into the insulating ceramic 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば自動車の排気ガス中の酸素濃度やNOx濃度、空燃比等、被測定ガス中の所定のガス濃度を検出するためのガスセンサ素子に関する。   The present invention relates to a gas sensor element for detecting a predetermined gas concentration in a gas to be measured, such as an oxygen concentration, NOx concentration, air-fuel ratio, etc., in an automobile exhaust gas, for example.

従来から、例えば自動車の排気ガス中の酸素濃度やNOx濃度、空燃比等、被測定ガス中の所定のガスの濃度を検出するための各種のガスセンサ素子が知られている。   2. Description of the Related Art Conventionally, various gas sensor elements for detecting the concentration of a predetermined gas in a gas to be measured such as oxygen concentration, NOx concentration, air-fuel ratio, etc. in an automobile exhaust gas are known.

例えば、NOx濃度を測定するためのNOxセンサ素子として次のようなガスセンサ素子が知られている。すなわち、このNOxセンサ素子は、第1拡散抵抗を介して被測定ガスが導入される第1測定室と、この第1測定室に第2拡散抵抗を介して連通する第2測定室を有している。また、第1測定室に面するように第1酸素ポンプセル及び酸素濃度検知セルが形成され、第2測定室に面するように第2酸素ポンプセルが形成されている。上記の各測定室は、間隔を設けて積層配置された2つの板状の固体電解質体と、これら固体電解質体に挟まれ測定室の側壁を形成する絶縁部材からなる側壁部とによって形成されている。そして、これらの測定室内に位置するように固体電解質体には酸素ポンプセル等を構成する電極が形成されている(例えば、特許文献1参照。)。
特開2004−151018号公報
For example, the following gas sensor elements are known as NOx sensor elements for measuring NOx concentration. That is, this NOx sensor element has a first measurement chamber into which a gas to be measured is introduced via a first diffusion resistor, and a second measurement chamber that communicates with the first measurement chamber via a second diffusion resistor. ing. Further, a first oxygen pump cell and an oxygen concentration detection cell are formed so as to face the first measurement chamber, and a second oxygen pump cell is formed so as to face the second measurement chamber. Each of the measurement chambers described above is formed by two plate-shaped solid electrolyte bodies that are stacked and spaced apart, and a side wall portion that is sandwiched between these solid electrolyte bodies and that is made of an insulating member that forms the side wall of the measurement chamber. Yes. And the electrode which comprises an oxygen pump cell etc. is formed in the solid electrolyte body so that it may be located in these measurement chambers (for example, refer patent document 1).
Japanese Patent Laid-Open No. 2004-151018

このようなガスセンサ素子においては、固体電解質体にクラックが発生してガスセンサ素子の機能が損なわれる場合がある。このようなクラックの発生について本発明者等が詳査したところ、次のような原因でクラックが発生する場合があることが判明した。   In such a gas sensor element, a crack may occur in the solid electrolyte body and the function of the gas sensor element may be impaired. As a result of detailed investigations by the inventors regarding the occurrence of such cracks, it has been found that cracks may occur due to the following reasons.

すなわち、固体電解質体となる未焼成固体電解質シートに、電極となる未焼成電極、測定室の側壁となる未焼成側壁シート等を印刷及び積層し、積層体を形成した後、脱脂工程において加熱した際等に、積層体を構成する未焼成固体電解質シートに生切れが発生する。そして、このように生切れが発生すると、生切れが発生した部位が熱衝撃下においてクラック起点となり、焼成後の固体電解質体にクラックが発生する。なお、後述する図5に示されように、このような生切れ30は、特に測定室の周縁部で絶縁部材(側壁部)との接触部分周辺において発生する。   That is, an unsintered electrode serving as an electrode, an unsintered sidewall sheet serving as a sidewall of a measurement chamber, and the like are printed and laminated on an unsintered solid electrolyte sheet serving as a solid electrolyte body to form a laminate, and then heated in a degreasing process. In some cases, the unfired solid electrolyte sheet constituting the laminate is broken. And when a piece of raw material occurs in this way, the part where the piece of raw material has occurred becomes a crack starting point under thermal shock, and a crack is generated in the solid electrolyte body after firing. Note that, as shown in FIG. 5 to be described later, such a piece 30 is generated around the contact portion with the insulating member (side wall portion), particularly in the peripheral portion of the measurement chamber.

本発明は、上記課題を解決するためになされたものである。本発明は、未焼成固体電解質シートに生切れが発生することを防止して、生切れに起因する固体電解質体のクラックの発生を防止することができ、従来に比べて信頼性の向上を図ることのできるガスセンサ素子を提供することを目的とする。   The present invention has been made to solve the above problems. The present invention prevents the occurrence of burnout in the unfired solid electrolyte sheet, can prevent the occurrence of cracks in the solid electrolyte body due to the burnout, and improves the reliability as compared with the prior art. An object of the present invention is to provide a gas sensor element that can handle the above.

(請求項1)
上記目的を達成するために本発明のガスセンサ素子は、2つの固体電解質体の間に側壁部を形成する絶縁体が介在することにより、前記2つの固体電解質体の間に被測定ガスを導入する測定室が形成され、かつ、前記2つの固体電解質体のうちの少くとも一方の固体電解質体の表面に、前記測定室に面するように電極が形成されたガスセンサ素子であって、前記電極の端部のうちの少くともと一部が、前記絶縁体と重なるように配置されていることを特徴とする。
(Claim 1)
In order to achieve the above object, the gas sensor element of the present invention introduces a gas to be measured between two solid electrolyte bodies by interposing an insulator forming a side wall between the two solid electrolyte bodies. A gas sensor element in which a measurement chamber is formed and an electrode is formed on the surface of at least one of the two solid electrolyte bodies so as to face the measurement chamber, At least a part of the end portion is disposed so as to overlap the insulator.

電極の端部が側壁部を構成する絶縁体と重なっていないと、ガスセンサ素子となる積層体を加熱した際に、未焼成電極は自由に収縮でき、一方未焼成固体電解質シートは側壁部によって収縮を抑制される。このため、未焼成固体電解質シートが未焼成電極の収縮によって引っ張られて、生切れが発生する。本発明のガスセンサ素子では、固体電解質体となる未焼成固体電解質シートを脱脂工程において加熱した際等に、この未焼成固体電解質シートと電極となる未焼成電極とが、側壁部(絶縁体)によって共に収縮を抑制され、未焼成固体電解質シートに生切れが発生することを防止することができる。   If the end of the electrode does not overlap with the insulator that constitutes the side wall, the unfired electrode can be freely shrunk when the laminated body serving as the gas sensor element is heated, while the unfired solid electrolyte sheet is shrunk by the side wall. Is suppressed. For this reason, the unsintered solid electrolyte sheet is pulled by the shrinkage of the unsintered electrode, and the raw material is cut. In the gas sensor element of the present invention, when the unsintered solid electrolyte sheet to be the solid electrolyte body is heated in the degreasing process, the unsintered solid electrolyte sheet and the unsintered electrode to be the electrode are separated by the side wall (insulator). In both cases, shrinkage is suppressed, and it is possible to prevent the unfired solid electrolyte sheet from being burned out.

(請求項2)
また、本発明のガスセンサ素子は、前記電極が四角形状に形成され、対向する2辺が、前記絶縁体と重なるように配置されていることを特徴とする。このように、四角形状の電極の対向する2辺において、加熱時の収縮を抑制することにより、より確実に未焼成固体電解質シートに生切れが発生することを防止することができる。
(Claim 2)
The gas sensor element of the present invention is characterized in that the electrode is formed in a quadrangular shape and two opposing sides overlap with the insulator. In this way, by suppressing shrinkage during heating on the two opposing sides of the rectangular electrode, it is possible to more reliably prevent the unfired solid electrolyte sheet from being burned out.

(請求項3)
また、本発明のガスセンサ素子は、前記電極のうちの前記絶縁体と重なるように配置されている部分の少くとも一部は、自身の厚さ方向両面が前記絶縁体によって挟まれるように構成されていることを特徴とする。このような構成とすることにより、絶縁体と固体電解質体との接着代を確保することができる。
(Claim 3)
In addition, the gas sensor element of the present invention is configured such that at least a part of the electrode disposed so as to overlap the insulator is sandwiched between both sides in its thickness direction by the insulator. It is characterized by. By setting it as such a structure, the adhesion margin of an insulator and a solid electrolyte body is securable.

(請求項4)
また、本発明のガスセンサ素子は、前記絶縁体の一部に、前記一方の固体電解質体と前記電極との間に介在するように前記測定室内部に向かって突出する突出部が形成されていることを特徴とする。このような構成とすることにより、測定室の容積減少を抑制しつつ絶縁体と固体電解質体との接着代を確保することができる。
(Claim 4)
In the gas sensor element of the present invention, a protruding portion that protrudes toward the inside of the measurement chamber is formed in a part of the insulator so as to be interposed between the one solid electrolyte body and the electrode. It is characterized by that. By adopting such a configuration, it is possible to secure a bonding allowance between the insulator and the solid electrolyte body while suppressing a decrease in the volume of the measurement chamber.

(請求項5,6)
また、本発明のガスセンサ素子は、第1拡散抵抗体を介して被測定ガスを導入する第1測定室と、前記第1測定室内から外部に被測定ガス中の酸素を汲み出す、又は、外部から前記第1測定室内に酸素を汲み入れる第1酸素ポンプセルと、前記第1測定室内の被測定ガス中の酸素濃度を検出する酸素分圧検知セルと、前記第1測定室に第2拡散抵抗体を介して接続された第2測定室と、前記第2測定室内の被測定ガス中の窒素酸化物が分解して発生した酸素の移動を検出してNOx濃度を検出する第2酸素ポンプセルと、を具備したことを特徴とする。また、このようなガスセンサ素子において、前記電極は、前記酸素分圧検知セルを構成するために前記第1測定室内に配置されていることを特徴とする。本発明のガスセンサ素子は、かかる構成のNOxセンサ素子に適用することができ、未焼成固体電解質シートに生切れが発生することを防止して、生切れに起因する固体電解質体のクラックの発生を防止することができる。
(Claims 5 and 6)
The gas sensor element of the present invention includes a first measurement chamber that introduces a gas to be measured through a first diffusion resistor, and pumps out oxygen in the gas to be measured from the first measurement chamber to the outside. A first oxygen pump cell for pumping oxygen into the first measurement chamber, an oxygen partial pressure detection cell for detecting the oxygen concentration in the gas under measurement in the first measurement chamber, and a second diffusion resistance in the first measurement chamber A second measurement chamber connected through the body, and a second oxygen pump cell for detecting NOx concentration by detecting movement of oxygen generated by decomposition of nitrogen oxides in the gas to be measured in the second measurement chamber; It is characterized by comprising. Further, in such a gas sensor element, the electrode is arranged in the first measurement chamber in order to constitute the oxygen partial pressure detection cell. The gas sensor element of the present invention can be applied to the NOx sensor element having such a configuration, prevents the unfired solid electrolyte sheet from being burned out, and prevents the occurrence of cracks in the solid electrolyte body due to the burnout. Can be prevented.

本発明によれば、未焼成固体電解質シートに生切れが発生することを防止して、生切れに起因する固体電解質体のクラックの発生を防止することができ、従来に比べて信頼性の向上を図ることのできるガスセンサ素子を提供することができる。   According to the present invention, it is possible to prevent the unfired solid electrolyte sheet from being burned out, and to prevent the occurrence of cracks in the solid electrolyte body due to the burned out, improving the reliability compared to the conventional case. A gas sensor element capable of achieving the above can be provided.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本発明の一実施形態に係るNOxセンサ素子の要部概略構成を示す断面図である。図1に示すように、NOxセンサ素子は、互いに積層配置された第1酸素ポンプセル1、第2酸素ポンプセル2及び酸素分圧検知セル3を具備している。また、このNOxセンサ素子に隣接して、NOxセンサ素子を所定の作動温度に加熱するためのヒータ4が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a main part of a NOx sensor element according to an embodiment of the present invention. As shown in FIG. 1, the NOx sensor element includes a first oxygen pump cell 1, a second oxygen pump cell 2, and an oxygen partial pressure detection cell 3 that are stacked on each other. Further, a heater 4 for heating the NOx sensor element to a predetermined operating temperature is provided adjacent to the NOx sensor element.

第1酸素ポンプセル1と酸素分圧検知セル3の間には、第1測定室5が形成されている。この第1測定室5には、第1拡散孔7を介して、被測定ガスが導入される。第1測定室5は、第2拡散孔8を通じて、第2測定室6と連通している。   A first measurement chamber 5 is formed between the first oxygen pump cell 1 and the oxygen partial pressure detection cell 3. A gas to be measured is introduced into the first measurement chamber 5 through the first diffusion hole 7. The first measurement chamber 5 communicates with the second measurement chamber 6 through the second diffusion hole 8.

第1酸素ポンプセル1は、ジルコニアのような酸素イオン伝導性を有する板状の固体電解質体17と、固体電解質体17上に形成された一対の電極9,10から構成されている。電極10は第1測定室5内に位置するよう配置され、電極9は第1測定室5の外部に位置するように配置されている。第1酸素ポンプセル1では、電極10上で第1測定室5内の酸素等が解離され生成された酸素イオンが固体電解質体17を通って電極9側に汲み出される。このとき固体電解質体17を通じて流れる電流が第1酸素ポンプ電流Ip1である。   The first oxygen pump cell 1 includes a plate-like solid electrolyte body 17 having oxygen ion conductivity such as zirconia, and a pair of electrodes 9 and 10 formed on the solid electrolyte body 17. The electrode 10 is disposed so as to be located in the first measurement chamber 5, and the electrode 9 is disposed so as to be located outside the first measurement chamber 5. In the first oxygen pump cell 1, oxygen ions generated by dissociating oxygen or the like in the first measurement chamber 5 on the electrode 10 are pumped to the electrode 9 side through the solid electrolyte body 17. At this time, the current flowing through the solid electrolyte body 17 is the first oxygen pump current Ip1.

第2酸素ポンプセル2は、ジルコニアのような酸素イオン伝導性を有する板状の固体電解質体18と、固体電解質体18上に形成された一対の電極13,14から構成されている。電極13は第2測定室6内に位置するように配置されている。電極14は第2測定室6外に位置するように配置されると共に酸素濃度が安定した雰囲気に晒されている。電極13上で第2測定室6内のNOx等が解離され生成された酸素イオンが固体電解質体18を通って電極14側に汲み出される。このとき固体電解質体18を通じて流れる電流が第2酸素ポンプ電流Ip2である。   The second oxygen pump cell 2 includes a plate-like solid electrolyte body 18 having oxygen ion conductivity such as zirconia, and a pair of electrodes 13 and 14 formed on the solid electrolyte body 18. The electrode 13 is disposed so as to be located in the second measurement chamber 6. The electrode 14 is disposed outside the second measurement chamber 6 and exposed to an atmosphere having a stable oxygen concentration. Oxygen ions generated by dissociating NOx and the like in the second measurement chamber 6 on the electrode 13 are pumped to the electrode 14 side through the solid electrolyte body 18. At this time, the current flowing through the solid electrolyte body 18 is the second oxygen pump current Ip2.

酸素分圧検知セル3は、ジルコニアのような酸素イオン伝導性を有する板状の固体電解質体19と、固体電解質体19上に形成された一対の電極11,12から構成されている。電極11は第1測定室5内に位置するように配置されている。酸素分圧検知セル3を通じて電極11,12間に一定に制御された電流Icpを流すことにより、酸素分圧検知セル3を通じて電極12側に汲み込まれる酸素イオン量は一定となる。これによって、電極12は酸素濃度が安定した雰囲気に晒された状態となる。したがって、電極11と電極12の間に発生する電位差に基づいて、第1測定室5内の酸素濃度、すなわち、被測定ガス中の酸素濃度を検出することができる。   The oxygen partial pressure detection cell 3 includes a plate-shaped solid electrolyte body 19 having oxygen ion conductivity such as zirconia, and a pair of electrodes 11 and 12 formed on the solid electrolyte body 19. The electrode 11 is disposed so as to be located in the first measurement chamber 5. By supplying a constant controlled current Icp between the electrodes 11 and 12 through the oxygen partial pressure detection cell 3, the amount of oxygen ions pumped to the electrode 12 side through the oxygen partial pressure detection cell 3 becomes constant. As a result, the electrode 12 is exposed to an atmosphere having a stable oxygen concentration. Accordingly, based on the potential difference generated between the electrode 11 and the electrode 12, the oxygen concentration in the first measurement chamber 5, that is, the oxygen concentration in the gas to be measured can be detected.

また、図1において、20は第1酸素ポンプセル制御手段、21は酸素分圧検知セル制御手段、22は第2酸素ポンプセル制御手段である。酸素分圧セル制御手段21は、酸素分圧検知セル3に現れる第1測定室5内の酸素濃度を検出すると共に、第1測定室5外に設けられた電極12上の酸素濃度を制御する。第1酸素ポンプセル制御手段20は、酸素分圧検知セル3の検出出力に基づいて第1酸素ポンプ電流Ip1を制御することにより、第1測定室5内の酸素濃度を可及的に一定に制御する。第2酸素ポンプセル制御手段22は、第2酸素ポンプセル2に可及的に一定な所定の電圧を印加することにより、NOx濃度に応じた第2酸素ポンプ電流Ip2が流れるように第2酸素ポンプセル2を制御する。なお、第1酸素ポンプ電流Ip1は、抵抗120から取り出すことができ、第2酸素ポンプ電流Ip2は、抵抗122から取り出すことができる。   In FIG. 1, 20 is a first oxygen pump cell control means, 21 is an oxygen partial pressure detection cell control means, and 22 is a second oxygen pump cell control means. The oxygen partial pressure cell control means 21 detects the oxygen concentration in the first measurement chamber 5 appearing in the oxygen partial pressure detection cell 3 and controls the oxygen concentration on the electrode 12 provided outside the first measurement chamber 5. . The first oxygen pump cell control means 20 controls the first oxygen pump current Ip1 based on the detection output of the oxygen partial pressure detection cell 3, thereby controlling the oxygen concentration in the first measurement chamber 5 as constant as possible. To do. The second oxygen pump cell control means 22 applies a predetermined voltage as constant as possible to the second oxygen pump cell 2 so that the second oxygen pump current Ip2 corresponding to the NOx concentration flows. To control. The first oxygen pump current Ip1 can be extracted from the resistor 120, and the second oxygen pump current Ip2 can be extracted from the resistor 122.

上記構成のNOxセンサ素子において、酸素分圧検知セル3を構成する電極11は、図2に示すように、第1測定室5内に矩形状に形成されている。そして、電極11の両側端部(図中上下方向端部)111は、第1測定室5の側壁部を形成するアルミナ等からなる絶縁性セラミック15の部分にまで延在し、絶縁性セラミック15と重なる(ラップする)ように配置されている。なお、図2において16は、第1測定室5の内部を所定間隔に保持するための柱の役割を果たす柱状の多孔質体であり、112は、電極11からNOxセンサ素子の基端側(図中右側)に導出されたリード部である。   In the NOx sensor element having the above configuration, the electrode 11 constituting the oxygen partial pressure detection cell 3 is formed in a rectangular shape in the first measurement chamber 5 as shown in FIG. Then, both end portions (vertical end portions in the figure) 111 of the electrode 11 extend to a portion of the insulating ceramic 15 made of alumina or the like that forms the side wall portion of the first measurement chamber 5. It is arranged so as to overlap (wrap). In FIG. 2, 16 is a columnar porous body serving as a column for maintaining the inside of the first measurement chamber 5 at a predetermined interval, and 112 is a base end side of the NOx sensor element from the electrode 11 ( This is the lead portion derived on the right side in the figure.

図3は、図2のA−A断面の構成を拡大して示すものである。同図に示すように、第1測定室5の側壁部を形成する絶縁性セラミック15の内側端部には、電極11と固体電解質体19との間に介在するように第1測定室5内部に向かって突出する突出部151が形成されている。そして、電極11の端部111は、突出部151の上に配置されると共に、端部111の一部が絶縁性セラミック15内に埋設されるように、つまり、その両面が絶縁性セラミック15によって挟まれるように配置されている。このような構成とすることにより、NOxセンサ素子の積層方向から見たときの電極11と絶縁性セラミック15の重なり部分の面積(ラップ量)を増大させることができ、かつ、絶縁性セラミック15と固体電解質体19との接着代及び第1測定室5の容積を確保することができる。   FIG. 3 shows an enlarged configuration of the AA cross section of FIG. As shown in the figure, at the inner end of the insulating ceramic 15 forming the side wall of the first measurement chamber 5, the inside of the first measurement chamber 5 is interposed between the electrode 11 and the solid electrolyte body 19. A projecting portion 151 projecting toward the surface is formed. The end portion 111 of the electrode 11 is disposed on the protruding portion 151, and a part of the end portion 111 is embedded in the insulating ceramic 15, that is, both surfaces thereof are formed by the insulating ceramic 15. It is arranged to be sandwiched. With such a configuration, the area (wrap amount) of the overlapping portion of the electrode 11 and the insulating ceramic 15 when viewed from the stacking direction of the NOx sensor element can be increased, and the insulating ceramic 15 The allowance for bonding with the solid electrolyte body 19 and the volume of the first measurement chamber 5 can be ensured.

すなわち、単に電極11の端部を、固体電解質体19と絶縁性セラミック15との間に延在させると、固体電解質体19と絶縁性セラミック15との接着代が減少し、これらの接着性に問題が生じる可能性がある。また、単に絶縁性セラミック15側を電極11の端部と重なるように延在させると第1測定室5の容積が減少してしまう。このような問題を解消しつつ、ラップ量を増大させるために、図3に示した構成を採用している。   That is, simply extending the end portion of the electrode 11 between the solid electrolyte body 19 and the insulating ceramic 15 reduces the bonding allowance between the solid electrolyte body 19 and the insulating ceramic 15, thereby improving the adhesion. Problems can arise. Further, if the insulating ceramic 15 side is simply extended so as to overlap the end portion of the electrode 11, the volume of the first measurement chamber 5 is reduced. The structure shown in FIG. 3 is adopted in order to increase the lap amount while solving such a problem.

上記のような構成とすることにより、未焼成の段階で脱脂工程等で加熱した際に、固体電解質体19となる未焼成固体電解質シートと電極11となる未焼成電極とが、側壁部によって共に収縮を抑制され、未焼成固体電解質シートに生切れが発生することを防止することができる。   With the above-described configuration, when heated in a degreasing process or the like in an unfired stage, the unfired solid electrolyte sheet that becomes the solid electrolyte body 19 and the unfired electrode that becomes the electrode 11 are held together by the side wall portion. Shrinkage is suppressed, and it is possible to prevent the burned solid electrolyte sheet from being burned out.

すなわち、例えば図5に示すように、電極11の端部が側壁部を構成する絶縁性セラミック15と重なっていない構成の場合、脱脂工程等においてガスセンサ素子となる積層体を加熱した際に、電極11となる未焼成電極は自由に収縮でき、一方固体電解質体19となる未焼成固体電解質シートは側壁部によって収縮を抑制される。このため、未焼成固体電解質シートが未焼成電極の収縮によって引っ張られて、生切れ30が発生する可能性が生じる。このような生切れ30が発生する可能性は、特に電極11の端部が側壁部の近傍にまで延在している場合に高くなる。このような未焼成固体電解質シートの生切れ30の発生を、図2,3に示す構成とすることにより防止することができる。   That is, for example, as shown in FIG. 5, in the case where the end of the electrode 11 is not overlapped with the insulating ceramic 15 constituting the side wall, when the laminated body that becomes the gas sensor element is heated in the degreasing step, the electrode 11 can be freely shrunk, while the unfired solid electrolyte sheet to be the solid electrolyte body 19 is suppressed from being shrunk by the side wall. For this reason, the unfired solid electrolyte sheet is pulled by the shrinkage of the unfired electrode, and there is a possibility that the raw material 30 is generated. The possibility that such a raw piece 30 is generated is particularly high when the end portion of the electrode 11 extends to the vicinity of the side wall portion. Generation | occurrence | production of the raw material 30 of such an unbaking solid electrolyte sheet can be prevented by setting it as the structure shown in FIG.

実際に、電極11を、図2,3に示す構成として製作したNOxセンサ素子(サンプル数500)について、脱脂工程において保持温度約400℃で約4時間加熱した後、未焼成固体電解質シートの生切れの発生の有無を観察したところ、生切れの発生率は0%であった。一方、電極11を、図5に示す構成として製作したNOxセンサ素子(サンプル数500)について、同様な脱脂工程による加熱を行ったところ、未焼成固体電解質シートの生切れの発生率は約70%であった。この結果から明らかなとおり、本実施形態によれば、未焼成固体電解質シートの生切れの発生を確実に防止することができる。したがって、生切れに起因する固体電解質体のクラックの発生を防止して、信頼性の向上を図ることができる。   Actually, the NOx sensor element (500 samples) manufactured with the configuration shown in FIGS. 2 and 3 was heated for about 4 hours at a holding temperature of about 400 ° C. in the degreasing process, and then the green solid electrolyte sheet was formed. When the occurrence of cutting was observed, the occurrence rate of raw cutting was 0%. On the other hand, when the NOx sensor element (sample number: 500) manufactured with the electrode 11 having the configuration shown in FIG. 5 was heated by the same degreasing process, the unburned solid electrolyte sheet was about 70% out of life. Met. As is clear from this result, according to the present embodiment, it is possible to reliably prevent the unburned solid electrolyte sheet from being burned out. Therefore, it is possible to prevent the occurrence of cracks in the solid electrolyte body due to the cutting and improve the reliability.

なお、本実施形態においては、図4に示すように、固体電解質体19に形成された電極12、及び固体電解質体18に形成された電極14についても上記の電極11と同様な構成となっている。さらに、図1に示した固体電解質体17に形成された電極10、固体電解質体18に形成された電極13についても同様な構成となっている。   In the present embodiment, as shown in FIG. 4, the electrode 12 formed on the solid electrolyte body 19 and the electrode 14 formed on the solid electrolyte body 18 have the same configuration as the electrode 11 described above. Yes. Further, the electrode 10 formed on the solid electrolyte body 17 and the electrode 13 formed on the solid electrolyte body 18 shown in FIG.

上記の実施形態では、NOxセンサ素子の矩形状の電極11の1方向の両側端部を側壁部を構成する絶縁性セラミックとラップさせた構成とした場合について説明したが、本発明はかかる実施形態に限定されるものではない。例えば、電極が4辺とも側壁部と近接して配置されたものについては、4辺とも側壁部とラップさせた構成としても良い。また、電極の1辺のみが側壁部と近接して配置されたものについては、1辺のみ側壁部とラップさせた構成としても良い。また、NOxセンサ素子に限らず、他のガスセンサ素子、例えば、空燃比センサ素子等についても同様にして適用することができる。   In the above embodiment, the case has been described in which the both ends in one direction of the rectangular electrode 11 of the NOx sensor element are wrapped with the insulating ceramic constituting the side wall, but the present invention is such an embodiment. It is not limited to. For example, with respect to an electrode in which all four sides are arranged close to the side wall portion, a configuration may be adopted in which all four sides are wrapped with the side wall portion. Further, in the case where only one side of the electrode is disposed close to the side wall portion, only one side may be wrapped with the side wall portion. Further, the present invention is not limited to the NOx sensor element, and can be similarly applied to other gas sensor elements such as an air-fuel ratio sensor element.

本発明の一実施形態に係るNOxセンサ素子の全体の断面概略構成を示す図。The figure which shows the cross-sectional schematic structure of the whole NOx sensor element which concerns on one Embodiment of this invention. 図1のNOxセンサ素子の第1測定室の内部断面構成を示す図。The figure which shows the internal cross-sectional structure of the 1st measurement chamber of the NOx sensor element of FIG. 図2のA−A断面構成を拡大して示す図。The figure which expands and shows the AA cross-section structure of FIG. 図1のNOxセンサ素子の要部断面構成を示す図。The figure which shows the principal part cross-section structure of the NOx sensor element of FIG. 従来のNOxセンサ素子の断面構成を拡大して示す図。The figure which expands and shows the cross-sectional structure of the conventional NOx sensor element.

符号の説明Explanation of symbols

1……第1酸素ポンプセル、2……第2酸素ポンプセル、3……酸素分圧検知セル、4……ヒータ、5……第1測定室、6……第2測定室、7……第1拡散孔、8……第2拡散孔、9〜14……電極、15……絶縁性セラミック、16……多孔質体、17〜19……固体電解質体、20……第1酸素ポンプセル制御手段、21……酸素分圧検知セル制御手段、22……第2酸素ポンプセル制御手段。   DESCRIPTION OF SYMBOLS 1 ... 1st oxygen pump cell, 2 ... 2nd oxygen pump cell, 3 ... Oxygen partial pressure detection cell, 4 ... Heater, 5 ... 1st measurement chamber, 6 ... 2nd measurement chamber, 7 ... 1st 1 diffusion hole, 8 ... second diffusion hole, 9-14 ... electrode, 15 ... insulating ceramic, 16 ... porous body, 17-19 ... solid electrolyte body, 20 ... first oxygen pump cell control Means 21... Oxygen partial pressure detection cell control means 22... Second oxygen pump cell control means.

Claims (6)

2つの固体電解質体の間に側壁部を形成する絶縁体が介在することにより、前記2つの固体電解質体の間に被測定ガスを導入する測定室が形成され、かつ、前記2つの固体電解質体のうちの少くとも一方の固体電解質体の表面に、前記測定室に面するように電極が形成されたガスセンサ素子であって、
前記電極の端部のうちの少くともと一部が、前記絶縁体と重なるように配置されていることを特徴とするガスセンサ素子。
A measurement chamber for introducing a gas to be measured is formed between the two solid electrolyte bodies by interposing an insulator forming a side wall between the two solid electrolyte bodies, and the two solid electrolyte bodies A gas sensor element in which an electrode is formed on the surface of at least one of the solid electrolyte bodies so as to face the measurement chamber,
A gas sensor element, wherein at least a part of an end portion of the electrode is disposed so as to overlap the insulator.
請求項1記載のガスセンサ素子であって、
前記電極が四角形状に形成され、対向する2辺が、前記絶縁体と重なるように配置されていることを特徴とするガスセンサ素子。
The gas sensor element according to claim 1,
The gas sensor element, wherein the electrodes are formed in a quadrangular shape, and two opposing sides overlap with the insulator.
請求項1又は2記載のガスセンサ素子であって、
前記電極のうちの前記絶縁体と重なるように配置されている部分の少くとも一部は、自身の厚さ方向両面が前記絶縁体によって挟まれるように構成されていることを特徴とするガスセンサ素子。
The gas sensor element according to claim 1 or 2,
A gas sensor element characterized in that at least a part of a portion of the electrode arranged so as to overlap the insulator is configured such that both surfaces in the thickness direction of the electrode are sandwiched by the insulator. .
請求項1〜3いずれか1項記載のガスセンサ素子であって、
前記絶縁体の一部に、前記一方の固体電解質体と前記電極との間に介在するように前記測定室内部に向かって突出する突出部が形成されていることを特徴とするガスセンサ素子。
The gas sensor element according to any one of claims 1 to 3,
A gas sensor element, wherein a protruding portion that protrudes toward the inside of the measurement chamber is formed in a part of the insulator so as to be interposed between the one solid electrolyte body and the electrode.
請求項1〜4いずれか1項記載のガスセンサ素子であって、
前記ガスセンサ素子は、
第1拡散抵抗体を介して被測定ガスを導入する第1測定室と、
前記第1測定室内から外部に被測定ガス中の酸素を汲み出す、又は、外部から前記第1測定室内に酸素を汲み入れる第1酸素ポンプセルと、
前記第1測定室内の被測定ガス中の酸素濃度を検出する酸素分圧検知セルと、
前記第1測定室に第2拡散抵抗体を介して接続された第2測定室と、
前記第2測定室内の被測定ガス中の窒素酸化物が分解して発生した酸素の移動を検出してNOx濃度を検出する第2酸素ポンプセルと、
を具備したことを特徴とするガスセンサ素子。
The gas sensor element according to any one of claims 1 to 4,
The gas sensor element is
A first measurement chamber for introducing a gas to be measured through a first diffusion resistor;
A first oxygen pump cell that pumps oxygen in the gas to be measured from the first measurement chamber to the outside, or pumps oxygen from the outside into the first measurement chamber;
An oxygen partial pressure detection cell for detecting the oxygen concentration in the gas under measurement in the first measurement chamber;
A second measurement chamber connected to the first measurement chamber via a second diffusion resistor;
A second oxygen pump cell for detecting NOx concentration by detecting the movement of oxygen generated by decomposition of nitrogen oxides in the gas to be measured in the second measurement chamber;
A gas sensor element comprising:
請求項5記載のガスセンサ素子であって、
前記電極は、前記酸素分圧検知セルを構成するために前記第1測定室内に配置されていることを特徴とするガスセンサ素子。
The gas sensor element according to claim 5,
The gas sensor element, wherein the electrode is disposed in the first measurement chamber to constitute the oxygen partial pressure detection cell.
JP2004365865A 2004-12-17 2004-12-17 Gas sensor element Active JP4223471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365865A JP4223471B2 (en) 2004-12-17 2004-12-17 Gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365865A JP4223471B2 (en) 2004-12-17 2004-12-17 Gas sensor element

Publications (2)

Publication Number Publication Date
JP2006170888A true JP2006170888A (en) 2006-06-29
JP4223471B2 JP4223471B2 (en) 2009-02-12

Family

ID=36671803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365865A Active JP4223471B2 (en) 2004-12-17 2004-12-17 Gas sensor element

Country Status (1)

Country Link
JP (1) JP4223471B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333660A (en) * 2006-06-19 2007-12-27 Denso Corp Laminated gas sensor
CN108431589A (en) * 2015-12-23 2018-08-21 罗伯特·博世有限公司 Sensor element for at least one characteristic for detecting the measurement gas in measurement gas space

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169989B2 (en) * 2014-02-06 2017-07-26 日本特殊陶業株式会社 Gas sensor element and gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333660A (en) * 2006-06-19 2007-12-27 Denso Corp Laminated gas sensor
JP4706569B2 (en) * 2006-06-19 2011-06-22 株式会社デンソー Multilayer gas sensor
CN108431589A (en) * 2015-12-23 2018-08-21 罗伯特·博世有限公司 Sensor element for at least one characteristic for detecting the measurement gas in measurement gas space
CN108431589B (en) * 2015-12-23 2021-07-06 罗伯特·博世有限公司 Sensor element for detecting at least one property of a measurement gas in a measurement gas space

Also Published As

Publication number Publication date
JP4223471B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4911910B2 (en) NOx measuring electrode part structure, method for forming the same, and NOx sensor element
JP3855483B2 (en) Stacked air-fuel ratio sensor element
JP5104744B2 (en) Gas sensor element and manufacturing method thereof
JP6324760B2 (en) Gas sensor
JP4966266B2 (en) Gas sensor
JP4172279B2 (en) Gas sensor
US20050252770A1 (en) Structure of gas sensor ensuring quick activation and mechanical strength
JP2010038904A (en) Gas sensor
JP2005283266A (en) Gas sensor element
JP4223471B2 (en) Gas sensor element
JPH0417382B2 (en)
US7497933B2 (en) Gas sensor
JP2008157649A (en) Lamination type gas sensor
US8176618B2 (en) Method for producing gas sensor
JP2019002739A (en) Sensor element and gas sensor provided with the sensor element
JP5139955B2 (en) Ceramic heater, gas sensor element and gas sensor
JP2009244113A (en) Gas sensor
JP4249157B2 (en) Gas sensor element manufacturing method
CN112525967B (en) Sensor element, gas sensor, and method for manufacturing sensor element
JP2002139472A (en) Lamination-type air/fuel ratio sensor element
KR20170073518A (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber and method for producing the same
JP2003279531A (en) Oxygen sensor element
US20060049049A1 (en) Sensor element
JP2023033155A (en) Sensor element and gas sensor
JP2023035075A (en) Gas sensor element, gas sensor, and manufacturing method of gas sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4223471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250