JP2007333589A - Tire inspection method - Google Patents

Tire inspection method Download PDF

Info

Publication number
JP2007333589A
JP2007333589A JP2006166357A JP2006166357A JP2007333589A JP 2007333589 A JP2007333589 A JP 2007333589A JP 2006166357 A JP2006166357 A JP 2006166357A JP 2006166357 A JP2006166357 A JP 2006166357A JP 2007333589 A JP2007333589 A JP 2007333589A
Authority
JP
Japan
Prior art keywords
camera element
camera
distance
electromagnetic radiation
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006166357A
Other languages
Japanese (ja)
Other versions
JP5019798B2 (en
Inventor
Yushi Tawara
雄史 田原
Takahiro Goto
孝広 後藤
Shigenobu Saegusa
重信 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006166357A priority Critical patent/JP5019798B2/en
Publication of JP2007333589A publication Critical patent/JP2007333589A/en
Application granted granted Critical
Publication of JP5019798B2 publication Critical patent/JP5019798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire inspection method capable of correcting the brightness output of a background so as to make it uniform regardless of the distance between an electromagnetic radiation source and a camera. <P>SOLUTION: An X-ray camera is irradiated with X rays by an X-ray source 1 and an approximate function calculated from the relation between the distance between the X-ray source and the camera element just under it and the energy of the camera element while the radiation voltage of the X-ray source 1 is calculated from the approximate function. Thereafter, the radiation voltage of the X-ray source 1 is adjusted corresponding to the distance between the X-ray source 1 and the camera element to set the brightness output of the camera element to a predetermined value. Subsequently, the brightness output of the camera element present just under the X-ray source 1 and the brightness output of another camera element spaced apart the camera element are calculated and the brightness output of an another camera element is corrected by multiplying the cube of the straight line distance between the X-ray source 1 and the camera element by the cube the straight line distance between the X-ray source 1 and another camera element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁波放射線源及びそれに対向する複数のカメラ素子から構成されたカメラの間に配置されたタイヤの内部の画像を取得し、取得した画像に基づいてタイヤの内部のベルトコード(スチールコード)の配置を検査するタイヤ検査方法に関する。   The present invention acquires an image of the inside of a tire arranged between an electromagnetic radiation source and a camera composed of a plurality of camera elements facing the source, and a belt cord (steel cord) inside the tire based on the acquired image. ) Related to a tire inspection method for inspecting the arrangement.

従来、タイヤ検査を行うに際し、X線やγ線のような電磁波放射線を用いてタイヤをカメラで撮像して画像を取得し、取得した画像に基づいてタイヤ内部を観察している(例えば、特許文献1参照)。
特開平6−341930号公報
Conventionally, when performing a tire inspection, an image is acquired by imaging a tire with a camera using electromagnetic radiation such as X-rays or γ-rays, and the inside of the tire is observed based on the acquired image (for example, patents). Reference 1).
JP-A-6-341930

従来のタイヤ検査では、タイヤのサイズに応じて電磁波放射線源とカメラとの間の距離が変化しても出力が一定であるために、電磁波放射線源の真下のカメラ素子の輝度出力が、電磁波放射線源とカメラとの間の距離、すなわち、タイヤのサイズに応じて変化するという不都合がある。また、カメラの幅方向でカメラ出力が変化するために均一のバックグランドの輝度出力を得ることができず、画像に濃度むらができ、コントラスト/明度の高い画像の取得が困難である。   In conventional tire inspection, the output is constant even if the distance between the electromagnetic radiation source and the camera changes according to the tire size, so the luminance output of the camera element directly under the electromagnetic radiation source is the electromagnetic radiation. There is a disadvantage that the distance varies depending on the distance between the source and the camera, that is, the size of the tire. In addition, since the camera output changes in the width direction of the camera, a uniform background luminance output cannot be obtained, density unevenness in the image, and it is difficult to obtain an image with high contrast / brightness.

さらに、カメラすなわちバックグランドの輝度出力の補正は、装置立ち上げ時にゲイン調整して得られた補正値を全ての撮影に対して使用し、すなわち、実験データのみに依存しているので、撮影条件ごとにデータをとる必要がある。したがって、補正に手間がかかるとともに、温度変化などに伴う出力変化に追従することができず、信頼性のある補正後のデータ取得が困難である。   Furthermore, the correction of the luminance output of the camera, that is, the background, uses the correction value obtained by adjusting the gain at the time of starting up the apparatus for all shootings, that is, depends only on experimental data, so that the shooting conditions It is necessary to take data every time. Therefore, the correction takes time and cannot follow the output change accompanying the temperature change or the like, and it is difficult to obtain the corrected data with reliability.

本発明の目的は、電磁波放射線源とカメラとの間の距離に関係なくバックグランドの輝度出力が均一になるように補正することができるタイヤ検査方法を提供することである。   An object of the present invention is to provide a tire inspection method capable of correcting a background luminance output to be uniform regardless of a distance between an electromagnetic radiation source and a camera.

本発明によるタイヤ検査方法は、
電磁波放射線源及びそれに対向する複数のカメラ素子から構成されたカメラの間に配置されたタイヤの内部の画像を取得し、取得した画像に基づいて前記タイヤの内部のベルトコードの配置を検査するタイヤ検査方法であって、
前記電磁波放射線源が、前記カメラに電磁波を照射するステップと、
前記電磁波放射線源と前記電磁波放射線源の真下にあるカメラ素子との間が第1の距離、第2の距離及び第3の距離であるときの前記カメラ素子の第1のエネルギー、第2のエネルギー及び第3のエネルギーをそれぞれ測定するステップと、
前記第1の距離及び前記第1のエネルギー、前記第2の距離及び前記第2のエネルギー、並びに前記第3の距離及び前記第3のエネルギーから近似関数を求めるステップと、
前記近似関数から前記電磁波放射線源の放射電圧を計算するステップと、
前記電磁波放射線源と前記カメラ素子との間の距離に応じて前記電磁波放射線源の放射電圧を調整して、前記カメラ素子の輝度出力を所定の値に設定するステップと、
前記電磁波放射線源の真下にあるカメラ素子の輝度出力と、前記カメラ素子から離間した他のカメラ素子の輝度出力とを求めるステップと、
前記他のカメラ素子の輝度出力を、前記電磁波放射線源と前記カメラ素子との間の直線距離の三乗に対する前記電磁波放射線源と前記他のカメラ素子との間の直線距離の三乗の比を乗算することによって補正するステップとを具えることを特徴とする。
The tire inspection method according to the present invention includes:
A tire for acquiring an image inside a tire arranged between an electromagnetic radiation source and a camera composed of a plurality of camera elements opposed thereto, and inspecting the arrangement of a belt cord inside the tire based on the obtained image An inspection method,
The electromagnetic radiation source irradiates the camera with electromagnetic waves;
The first energy and the second energy of the camera element when the distance between the electromagnetic radiation source and the camera element immediately below the electromagnetic radiation source is a first distance, a second distance, and a third distance. And measuring each of the third energy;
Obtaining an approximate function from the first distance and the first energy, the second distance and the second energy, and the third distance and the third energy;
Calculating a radiation voltage of the electromagnetic radiation source from the approximate function;
Adjusting the radiation voltage of the electromagnetic radiation source according to the distance between the electromagnetic radiation source and the camera element, and setting the luminance output of the camera element to a predetermined value;
Obtaining a luminance output of a camera element directly below the electromagnetic radiation source, and a luminance output of another camera element spaced from the camera element;
The luminance output of the other camera element is a ratio of the cube of the linear distance between the electromagnetic radiation source and the other camera element to the cube of the linear distance between the electromagnetic radiation source and the camera element. And a step of correcting by multiplication.

本発明のタイヤ検査方法によれば、電磁波放射線源が、カメラに電磁波を照射し、電磁波放射線源と電磁波放射線源の真下にあるカメラ素子との間が第1の距離、第2の距離及び第3の距離であるときの前記カメラ素子の第1のエネルギー、第2のエネルギー及び第3のエネルギーをそれぞれ測定する。その後、第1の距離及び第1のエネルギー、第2の距離及び第2のエネルギー、並びに第3の距離及び第3のエネルギーから近似関数を求め、近似関数から電磁波放射線源の放射電圧を計算する。その後、電磁波放射線源とカメラ素子との間の距離に応じて電磁波放射線源の放射電圧を調整して、カメラ素子の輝度出力を所定の値に設定する。これによって、電磁放射線源の真下にあるカメラ素子の輝度出力を、電磁波放射線源とカメラ素子との間の距離に関係なく所定の値に設定することができる。   According to the tire inspection method of the present invention, the electromagnetic radiation source irradiates the camera with electromagnetic waves, and the first distance, the second distance, and the second distance are between the electromagnetic radiation source and the camera element immediately below the electromagnetic radiation source. The first energy, the second energy, and the third energy of the camera element when the distance is 3 are measured. Thereafter, an approximate function is obtained from the first distance and the first energy, the second distance and the second energy, and the third distance and the third energy, and the radiation voltage of the electromagnetic radiation source is calculated from the approximate function. . Thereafter, the radiation voltage of the electromagnetic radiation source is adjusted according to the distance between the electromagnetic radiation source and the camera element, and the luminance output of the camera element is set to a predetermined value. Thereby, the luminance output of the camera element directly under the electromagnetic radiation source can be set to a predetermined value regardless of the distance between the electromagnetic radiation source and the camera element.

その後、電磁波放射線源の真下にあるカメラ素子の輝度出力と、このカメラ素子から離間した他のカメラ素子の輝度出力とを求め、他のカメラ素子の輝度出力を、電磁波放射線源とカメラ素子との間の直線距離の三乗に対する電磁波放射線源と他のカメラ素子との間の直線距離の三乗の比を乗算することによって補正する。   Thereafter, the luminance output of the camera element directly under the electromagnetic radiation source and the luminance output of another camera element separated from the camera element are obtained, and the luminance output of the other camera element is calculated between the electromagnetic radiation source and the camera element. Correction is made by multiplying the ratio of the cube of the linear distance between the electromagnetic radiation source and the other camera element to the cube of the linear distance between.

電磁波放射線源と他のカメラ素子との間の距離は、他のカメラ素子のカメラ内の位置に応じて変化し、電磁波放射線は、距離の二乗で減衰するので、電磁波放射線源とカメラ素子との間の直線距離の二乗に対する電磁波放射線源と他のカメラ素子との間の直線距離の二乗の比を乗算するのが適切であると考えられる。   The distance between the electromagnetic radiation source and the other camera element changes depending on the position of the other camera element in the camera, and the electromagnetic radiation is attenuated by the square of the distance. It may be appropriate to multiply the ratio of the square of the linear distance between the electromagnetic radiation source and the other camera element to the square of the linear distance between.

しかしながら、カメラ素子及び他のカメラ素子に照射される電磁波放射線のエネルギーは、同一面積で比較しなければならないため、電磁波放射線源、他のカメラ素子及びカメラ素子との成す角度も考慮する必要がある。その結果、実際には、電磁波放射線源とカメラ素子との間の直線距離の三乗に対する電磁波放射線源と他のカメラ素子との間の直線距離の三乗の比を乗算することによって他のカメラ素子の輝度出力を補正するのが適切である。   However, since the energy of electromagnetic radiation irradiated to the camera element and other camera elements must be compared in the same area, it is necessary to consider the angle formed between the electromagnetic radiation source, the other camera elements, and the camera element. . As a result, the other cameras are actually multiplied by the ratio of the cube of the linear distance between the electromagnetic radiation source and the other camera element to the cube of the linear distance between the electromagnetic radiation source and the camera element. It is appropriate to correct the luminance output of the element.

このように電磁波放射線源の真下にあるカメラ素子の輝度出力を、電磁波放射線源とカメラ素子との間の距離に関係なく所定の値に設定するとともに、電磁波放射線源とカメラ素子との間の直線距離の三乗に対する電磁波放射線源と他のカメラ素子との間の直線距離の三乗の比を乗算して、カメラのカメラ素子全体に亘る輝度出力の補正を行うことによって、電磁波放射線源とカメラとの間の距離に関係なくバックグランドの輝度出力が均一になるように補正することができる。   In this way, the luminance output of the camera element immediately below the electromagnetic radiation source is set to a predetermined value regardless of the distance between the electromagnetic radiation source and the camera element, and the straight line between the electromagnetic radiation source and the camera element is set. By multiplying the ratio of the cube of the linear distance between the electromagnetic radiation source and other camera elements to the cube of the distance and correcting the luminance output over the entire camera element of the camera, the electromagnetic radiation source and the camera The luminance output of the background can be corrected so as to be uniform regardless of the distance between the two.

本発明によるタイヤ検査方法の実施の形態を、図面を参照して詳細に説明する。
図1は、本発明によるタイヤ検査方法を実施するタイヤ検査装置を示す図である。このタイヤ検査装置は、X線源1と、行列配置された複数のカメラ素子を有するX線カメラ2と、画像処理部3と、モニタ4とを具える。
An embodiment of a tire inspection method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing a tire inspection apparatus for carrying out a tire inspection method according to the present invention. The tire inspection apparatus includes an X-ray source 1, an X-ray camera 2 having a plurality of camera elements arranged in a matrix, an image processing unit 3, and a monitor 4.

X線源1は、3次元座標系のy軸方向(垂直方向)に移動自在であり、検査対象となるタイヤ5にX線を照射する。X線カメラ2は、タイヤ5を通過したX線が入射され、タイヤ5の検査対象部分の画像を取得する。画像処理部3は、取得した画像に対して、後に説明する処理工程を施し、処理後の画像をモニタ4に出力し、後に説明するコントロール部によって制御される。   The X-ray source 1 is movable in the y-axis direction (vertical direction) of the three-dimensional coordinate system, and irradiates the tire 5 to be inspected with X-rays. The X-ray camera 2 receives X-rays that have passed through the tire 5 and acquires an image of the inspection target portion of the tire 5. The image processing unit 3 performs processing steps described later on the acquired image, outputs the processed image to the monitor 4, and is controlled by a control unit described later.

本実施の形態の動作を説明する。動作は、大きく分けて、X線源1の真下にあるカメラ素子の輝度出力の調整及びX線カメラ3のカメラ素子全体の輝度出力の補正とに分けられる。X線源1の真下にあるカメラ素子の輝度出力の調整について説明すると、先ず、X線源1が、X線カメラ2にX線を照射し、X線源1とX線源1の真下の位置X0にあるカメラ素子との間が距離a1,a2,a3であるときのカメラ素子のエネルギーb1,b2,b3を画像処理部3によってそれぞれ測定する。次いで、画像処理部3が、距離a1及びエネルギーb1、距離a2及びエネルギーb2、並びに距離a3及びエネルギーb3から、図2に示すような近似関数を求め、求めた近似関数のうちの実際に使う範囲からX線源1の放射電圧を計算する。   The operation of this embodiment will be described. The operation is roughly divided into adjustment of the luminance output of the camera element directly below the X-ray source 1 and correction of the luminance output of the entire camera element of the X-ray camera 3. The adjustment of the luminance output of the camera element immediately below the X-ray source 1 will be described. First, the X-ray source 1 irradiates the X-ray camera 2 with X-rays, and the X-ray source 1 and the X-ray source 1 immediately below. The image processing unit 3 measures the energy b1, b2, b3 of the camera element when the distance between the camera element at the position X0 is the distance a1, a2, a3. Next, the image processing unit 3 obtains an approximate function as shown in FIG. 2 from the distance a1 and the energy b1, the distance a2 and the energy b2, and the distance a3 and the energy b3, and the actually used range of the obtained approximate functions. The radiation voltage of the X-ray source 1 is calculated from

次いで、X線源と位置X0のカメラ素子との間の距離に応じてX線源1の放射電圧を調整して、位置X0のカメラ素子の輝度出力を目標値に設定する。すなわち、図3に示すように、曲線α1のように輝度出力が目標値Aより低い場合には輝度出力を増大し、曲線α2のように輝度出力が目標値Aより高い場合には輝度出力を減少して、曲線α3に示すように輝度出力を目標値に設定する。これによって、位置X0のカメラ素子の輝度出力を、X線源1と位置X0のカメラ素子との間の距離に関係なく目標値に設定することができる。なお、図3において、横軸はカメラ素子の横方向の位置を表し、縦方向にカメラ素子の輝度出力を表す。   Next, the radiation voltage of the X-ray source 1 is adjusted according to the distance between the X-ray source and the camera element at the position X0, and the luminance output of the camera element at the position X0 is set to a target value. That is, as shown in FIG. 3, the luminance output is increased when the luminance output is lower than the target value A as shown by the curve α1, and the luminance output is increased when the luminance output is higher than the target value A as shown by the curve α2. Decrease and set the luminance output to the target value as shown by the curve α3. Thereby, the luminance output of the camera element at position X0 can be set to the target value regardless of the distance between the X-ray source 1 and the camera element at position X0. In FIG. 3, the horizontal axis represents the position of the camera element in the horizontal direction, and the vertical direction represents the luminance output of the camera element.

X線カメラ2のカメラ素子全体の輝度出力の補正を、図4を用いて説明する。先ず、X線源1の真下の位置X0にあるカメラ素子2aの輝度出力Eaと、カメラ素子2aから離間した他のカメラ素子2bの輝度出力Eb’とを求め、カメラ素子2bの輝度出力Eb’を、X線源1とカメラ素子2aとの間の直線距離aの三乗に対するX線源1とカメラ素子2bとの間の直線距離bの三乗の比を乗算することによって補正する。   The correction of the luminance output of the entire camera element of the X-ray camera 2 will be described with reference to FIG. First, the luminance output Ea of the camera element 2a at the position X0 immediately below the X-ray source 1 and the luminance output Eb ′ of the other camera element 2b spaced from the camera element 2a are obtained, and the luminance output Eb ′ of the camera element 2b is obtained. Is multiplied by the ratio of the cube of the linear distance b between the X-ray source 1 and the camera element 2b to the cube of the linear distance a between the X-ray source 1 and the camera element 2a.

X線源1とカメラ素子2bとの間の距離は、カメラ素子2bのカメラ2内の位置すなわちカメラ素子2aとの距離に応じて変化し、X線は、距離の二乗で減衰するので、直線距離aの二乗に対する直線距離bの二乗の比を乗算するのが適切であると考えられる。すなわち、カメラ素子2aの輝度出力Eaとカメラ素子2bの輝度出力Ebとの間には、Ea=Eb×b/aの関係が成立すると考えられる。 Since the distance between the X-ray source 1 and the camera element 2b changes according to the position of the camera element 2b in the camera 2, that is, the distance from the camera element 2a, and the X-ray attenuates by the square of the distance, It may be appropriate to multiply by the ratio of the square of the linear distance b to the square of the distance a. That is, it is considered that a relationship of Ea = Eb × b 2 / a 2 is established between the luminance output Ea of the camera element 2a and the luminance output Eb of the camera element 2b.

しかしながら、カメラ素子2a,2bに照射されるX線のエネルギーは、同一面積で比較しなければならず、カメラ素子2bの実際の輝度出力は、図4のEbより小さいEb’となり、したがって、X線源1、カメラ素子2b及びカメラ素子2aとの成す角度θも考慮する必要がある。すなわち、カメラ素子2aの輝度出力Eaとカメラ素子2bの輝度出力Eb’との間には、Ea=Eb’×1/sinθ×b/a=Eb’×b/aの関係が成立する。その結果、実際には、X線源1とカメラ素子2aとの間の直線距離aの三乗に対するX線源1とカメラ素子2bとの間の直線距離bの三乗の比を乗算することによってカメラ素子2bの輝度出力を補正するのが適切である。 However, the energy of the X-rays irradiated to the camera elements 2a and 2b must be compared in the same area, and the actual luminance output of the camera element 2b is Eb ′ smaller than Eb in FIG. It is also necessary to consider the angle θ formed by the radiation source 1, the camera element 2b and the camera element 2a. That is, the relationship of Ea = Eb ′ × 1 / sin θ × b 2 / a 2 = Eb ′ × b 3 / a 3 exists between the luminance output Ea of the camera element 2a and the luminance output Eb ′ of the camera element 2b. To establish. As a result, in practice, the ratio of the cube of the linear distance b between the X-ray source 1 and the camera element 2b to the cube of the linear distance a between the X-ray source 1 and the camera element 2a is multiplied. Thus, it is appropriate to correct the luminance output of the camera element 2b.

図5は、カメラ素子の輝度出力分布の補正前後の変化を示すグラフである。図5において、横軸はカメラ素子の横方向の位置を表し、縦方向にカメラ素子の輝度出力を表す。X線源1がX線をカメラ2に照射したときに得られるカメラ素子の輝度出力分布は曲線β1に示すようになり、X線源1の真下の位置X0のカメラ素子2aの輝度出力を目標値Aに設定することによって、カメラ素子の輝度出力分布は曲線β2に示すようになる。   FIG. 5 is a graph showing changes before and after correction of the luminance output distribution of the camera element. In FIG. 5, the horizontal axis represents the position of the camera element in the horizontal direction, and the vertical direction represents the luminance output of the camera element. The luminance output distribution of the camera element obtained when the X-ray source 1 irradiates the camera 2 with X-rays is as shown by a curve β1, and the luminance output of the camera element 2a at the position X0 directly below the X-ray source 1 is targeted. By setting the value A, the luminance output distribution of the camera element becomes as shown by the curve β2.

位置X0から離間したカメラ素子の輝度出力をEa=Eb×b/aの関係に従って補正した場合、曲線β3に示すような輝度出力分布となり、全体に亘る輝度出力が目標値の5%以内に収まっていないことがわかる。それに対して、位置X0から離間したカメラ素子の輝度出力をEa=Eb×b/aの関係に従って補正した場合、曲線β4に示すような輝度出力分布となり、全体に亘る輝度出力が目標値の5%以内に収まっていることがわかる。 When the luminance output of the camera element separated from the position X0 is corrected according to the relationship of Ea = Eb × b 2 / a 2 , the luminance output distribution as shown by the curve β3 is obtained, and the luminance output over the whole is within 5% of the target value. It can be seen that it does not fit in. On the other hand, when the luminance output of the camera element separated from the position X0 is corrected according to the relationship of Ea = Eb × b 3 / a 3 , the luminance output distribution as shown by the curve β4 is obtained, and the luminance output over the whole is the target value. It can be seen that it is within 5%.

図6Aは、本発明によるタイヤ検査方法での補正前に取得されるタイヤ内部の画像を示す図であり、図6Bは、本発明によるタイヤ検査方法での補正後に取得されるタイヤ内部の画像を示す図である。補正前では、図6Aに示すように、画像全体が暗く、かつ、コントラストが低いため、タイヤ内部のベルト部分の構造がよく見えない。それに対して、補正後では、図6Bに示すように、画像全体が適度に明るく、かつ、コントラストが高いため、タイヤ内部のベルト部分の構造がよく見える。   FIG. 6A is a diagram showing an image inside the tire acquired before correction by the tire inspection method according to the present invention, and FIG. 6B shows an image inside the tire acquired after correction by the tire inspection method according to the present invention. FIG. Before correction, as shown in FIG. 6A, the entire image is dark and the contrast is low, so the structure of the belt portion inside the tire cannot be seen well. On the other hand, after correction, as shown in FIG. 6B, the entire image is moderately bright and the contrast is high, so that the structure of the belt portion inside the tire can be seen well.

このようにX線源1の真下にあるカメラ素子2aの輝度出力を、X線源1とカメラ素子2aとの間の距離に関係なく目標値に設定するとともに、X線源1とカメラ素子2aとの間の直線距離aの三乗に対するX線源1とカメラ素子2bとの間の直線距離bの三乗の比を乗算して、カメラ2のカメラ素子全体に亘る輝度出力の補正を行うことによって、X線源1とカメラ2との間の距離に関係なくバックグランドの輝度出力が均一になるように補正することができる。   In this way, the luminance output of the camera element 2a immediately below the X-ray source 1 is set to the target value regardless of the distance between the X-ray source 1 and the camera element 2a, and the X-ray source 1 and the camera element 2a are set. Is multiplied by the ratio of the cube of the linear distance b between the X-ray source 1 and the camera element 2b to the cube of the linear distance a between the camera 2 and the luminance output over the entire camera element of the camera 2 is corrected. Thus, the background luminance output can be corrected to be uniform regardless of the distance between the X-ray source 1 and the camera 2.

ここで、本発明によるタイヤ検査方法における画像の補正について説明する。補正などの制御機構を有するコントロール部6がX線カメラ2に取り付けられている場合(図7A参照)、補正処理を画像処理部3からコントロール部6に指示することによって、X線カメラ2から取得される画像が補正したものとなる。   Here, image correction in the tire inspection method according to the present invention will be described. When the control unit 6 having a control mechanism such as correction is attached to the X-ray camera 2 (see FIG. 7A), the correction processing is acquired from the X-ray camera 2 by instructing the control unit 6 from the image processing unit 3 The corrected image is corrected.

なお、X線カメラ2にコントロール部6が備わっていない場合には、X線カメラ2から送信される画像を画像処理部3で補正し(図7B参照)、又はX線カメラ2と画像処理部3との間にコントロール部6を配置し、X線カメラ2から画像処理部3に送信される画像を画像処理部3からの支持に従って補正する(図7C参照)。   When the X-ray camera 2 does not include the control unit 6, the image transmitted from the X-ray camera 2 is corrected by the image processing unit 3 (see FIG. 7B), or the X-ray camera 2 and the image processing unit. The control unit 6 is arranged between the image processing unit 3 and the image transmitted from the X-ray camera 2 to the image processing unit 3 is corrected according to support from the image processing unit 3 (see FIG. 7C).

本発明は、上記実施の形態に限定されるものではなく、幾多の変更及び変形が可能である。
例えば、上記実施の形態において、電磁波放射線源としてX線を用いたが、γ線のような他の電磁波放射線を用いることもできる。
The present invention is not limited to the above-described embodiment, and many changes and modifications can be made.
For example, in the above embodiment, X-rays are used as the electromagnetic radiation source, but other electromagnetic radiations such as γ rays can be used.

本発明によるタイヤ検査方法を実施するタイヤ検査装置を示す図である。It is a figure which shows the tire inspection apparatus which enforces the tire inspection method by this invention. 本発明によるタイヤ検査方法で求める近似関数を示す図である。It is a figure which shows the approximation function calculated | required with the tire inspection method by this invention. X線源真下に位置するカメラ素子の輝度出力の調整を説明するための図である。It is a figure for demonstrating adjustment of the luminance output of the camera element located right under X-ray source. カメラ素子の輝度出力の補正を説明するための図である。It is a figure for demonstrating correction | amendment of the luminance output of a camera element. カメラ素子の輝度出力分布の補正前後の変化を示すグラフである。It is a graph which shows the change before and behind correction | amendment of the luminance output distribution of a camera element. 図6Aは、本発明によるタイヤ検査方法での補正前に取得されるタイヤ内部の画像を示す図であり、図6Bは、本発明によるタイヤ検査方法での補正後に取得されるタイヤ内部の画像を示す図である。FIG. 6A is a diagram showing an image inside the tire acquired before correction by the tire inspection method according to the present invention, and FIG. 6B shows an image inside the tire acquired after correction by the tire inspection method according to the present invention. FIG. 本発明によるタイヤ検査方法における画像の補正を説明するための図である。It is a figure for demonstrating correction | amendment of the image in the tire inspection method by this invention.

符号の説明Explanation of symbols

1 X線源
2 X線カメラ
2a,2b カメラ素子
3 画像処理部
4 モニタ
5 タイヤ
6 コントロール部

DESCRIPTION OF SYMBOLS 1 X-ray source 2 X-ray camera 2a, 2b Camera element 3 Image processing part 4 Monitor 5 Tire 6 Control part

Claims (1)

電磁波放射線源及びそれに対向する複数のカメラ素子から構成されたカメラの間に配置されたタイヤの内部の画像を取得し、取得した画像に基づいて前記タイヤの内部のベルトコードの配置を検査するタイヤ検査方法であって、
前記電磁波放射線源が、前記カメラに電磁波を照射するステップと、
前記電磁波放射線源と前記電磁波放射線源の真下にあるカメラ素子との間が第1の距離、第2の距離及び第3の距離であるときの前記カメラ素子の第1のエネルギー、第2のエネルギー及び第3のエネルギーをそれぞれ測定するステップと、
前記第1の距離及び前記第1のエネルギー、前記第2の距離及び前記第2のエネルギー、並びに前記第3の距離及び前記第3のエネルギーから近似関数を求めるステップと、
前記近似関数から前記電磁波放射線源の放射電圧を計算するステップと、
前記電磁波放射線源と前記カメラ素子との間の距離に応じて前記電磁波放射線源の放射電圧を調整して、前記カメラ素子の輝度出力を所定の値に設定するステップと、
前記電磁波放射線源の真下にあるカメラ素子の輝度出力と、前記カメラ素子から離間した他のカメラ素子の輝度出力とを求めるステップと、
前記他のカメラ素子の輝度出力を、前記電磁波放射線源と前記カメラ素子との間の直線距離の三乗に対する前記電磁波放射線源と前記他のカメラ素子との間の直線距離の三乗の比を乗算することによって補正するステップとを具えることを特徴とするタイヤ検査方法。

A tire that acquires an image of the inside of a tire arranged between an electromagnetic radiation source and a camera composed of a plurality of camera elements facing the source, and inspects the arrangement of the belt cord inside the tire based on the acquired image An inspection method,
The electromagnetic radiation source irradiates the camera with electromagnetic waves;
The first energy and the second energy of the camera element when the distance between the electromagnetic radiation source and the camera element immediately below the electromagnetic radiation source is a first distance, a second distance, and a third distance. And measuring each of the third energy;
Obtaining an approximate function from the first distance and the first energy, the second distance and the second energy, and the third distance and the third energy;
Calculating a radiation voltage of the electromagnetic radiation source from the approximate function;
Adjusting the radiation voltage of the electromagnetic radiation source according to the distance between the electromagnetic radiation source and the camera element, and setting the luminance output of the camera element to a predetermined value;
Obtaining a luminance output of a camera element directly below the electromagnetic radiation source, and a luminance output of another camera element spaced from the camera element;
The luminance output of the other camera element is a ratio of the cube of the linear distance between the electromagnetic radiation source and the other camera element to the cube of the linear distance between the electromagnetic radiation source and the camera element. A tire inspection method comprising: a step of correcting by multiplication.

JP2006166357A 2006-06-15 2006-06-15 Tire inspection method Expired - Fee Related JP5019798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166357A JP5019798B2 (en) 2006-06-15 2006-06-15 Tire inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166357A JP5019798B2 (en) 2006-06-15 2006-06-15 Tire inspection method

Publications (2)

Publication Number Publication Date
JP2007333589A true JP2007333589A (en) 2007-12-27
JP5019798B2 JP5019798B2 (en) 2012-09-05

Family

ID=38933198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166357A Expired - Fee Related JP5019798B2 (en) 2006-06-15 2006-06-15 Tire inspection method

Country Status (1)

Country Link
JP (1) JP5019798B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123341A (en) * 1985-11-25 1987-06-04 Bridgestone Corp X-ray inspection of steel code of tire
JPS62167403A (en) * 1985-12-20 1987-07-23 Shimadzu Corp X-ray inspecting instrument for tire
JPH06341930A (en) * 1993-03-26 1994-12-13 Goodyear Tire & Rubber Co:The Method and equipment for inspecting pneumatic tyre casing
JPH0915172A (en) * 1995-04-24 1997-01-17 Yokohama Rubber Co Ltd:The Method and equipment for inspecting tire
JP2000249665A (en) * 1999-03-03 2000-09-14 Bridgestone Corp Method and device for inspecting inside of tire
JP2002022677A (en) * 2000-07-13 2002-01-23 Hitachi Eng Co Ltd X-ray image measuring instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123341A (en) * 1985-11-25 1987-06-04 Bridgestone Corp X-ray inspection of steel code of tire
JPS62167403A (en) * 1985-12-20 1987-07-23 Shimadzu Corp X-ray inspecting instrument for tire
JPH06341930A (en) * 1993-03-26 1994-12-13 Goodyear Tire & Rubber Co:The Method and equipment for inspecting pneumatic tyre casing
JPH0915172A (en) * 1995-04-24 1997-01-17 Yokohama Rubber Co Ltd:The Method and equipment for inspecting tire
JP2000249665A (en) * 1999-03-03 2000-09-14 Bridgestone Corp Method and device for inspecting inside of tire
JP2002022677A (en) * 2000-07-13 2002-01-23 Hitachi Eng Co Ltd X-ray image measuring instrument

Also Published As

Publication number Publication date
JP5019798B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP6525680B2 (en) Radiography system, control method and program
US7819581B2 (en) Method of and system for calibration of inspection systems producing X-ray images
US7957502B2 (en) Method for scaling scattered ray intensity distribution in multi bulbs X-ray CT and multi bulbs X-ray CT apparatus
JP2010131223A (en) Image processor and image processing method
US10672116B2 (en) Substrate inspection method and system
US20080073567A1 (en) Radiological image capturing system and radiological image capturing method
JP5238175B2 (en) X-ray diagnostic imaging equipment
JP5019798B2 (en) Tire inspection method
CN105744262A (en) Detection system capable of correcting light source, and light source correction method thereof
JP2010044004A (en) Apparatus, method and program for detecting transmitted light, and method of manufacturing sheet material
EP2527822A1 (en) Method for correcting inspecting apparatus using correcting jig, and inspecting apparatus having correcting jig mounted thereon
JP3989777B2 (en) X-ray fluoroscopy system
JP5303911B2 (en) Method for adjusting imaging control in automatic inspection apparatus using X-ray and automatic inspection apparatus using X-ray
JP2008096425A (en) Radiographic testing apparatus, radiographic testing method and radiographic testing program
JP2012063220A (en) System and method for acquiring calibration reference point
JP6676345B2 (en) Radiation imaging system and radiation imaging method
JP6179151B2 (en) X-ray inspection system and X-ray inspection method
WO2020149253A1 (en) Radiation imaging device, radiation imaging system, and method for controlling radiation imaging device
JP6373725B2 (en) Evaluation method and apparatus for joint surface treatment
JP2008272202A (en) Image processor, image processing program, and radiographic apparatus
JP5995743B2 (en) Image generating apparatus, image generating method, and program
KR20160025199A (en) X-ray scattering measurement system, Method thereof and Saving device saving that method
US20230204522A1 (en) Radiation imaging apparatus, image processing apparatus, operation method for radiation imaging apparatus, and non-transitory computer readable storage medium
JP6560990B2 (en) Radiation measurement method, radiation measurement apparatus, X-ray transmission image photographing apparatus, and X-ray CT apparatus
JP6686569B2 (en) Surface flaw imager

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5019798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees