JP2007333172A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2007333172A
JP2007333172A JP2006168605A JP2006168605A JP2007333172A JP 2007333172 A JP2007333172 A JP 2007333172A JP 2006168605 A JP2006168605 A JP 2006168605A JP 2006168605 A JP2006168605 A JP 2006168605A JP 2007333172 A JP2007333172 A JP 2007333172A
Authority
JP
Japan
Prior art keywords
inner ring
insulating film
peripheral surface
bearing
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006168605A
Other languages
Japanese (ja)
Inventor
Tetsuo Watanabe
哲雄 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006168605A priority Critical patent/JP2007333172A/en
Priority to CN2006800265383A priority patent/CN101228362B/en
Priority to PCT/JP2006/321434 priority patent/WO2007049727A1/en
Priority to EP06822403.9A priority patent/EP1950436B1/en
Priority to US11/994,284 priority patent/US8425120B2/en
Publication of JP2007333172A publication Critical patent/JP2007333172A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive structure having high impedance, which has a structure wherein a ceramic insulating film 4b is formed on a raceway ring. <P>SOLUTION: The ceramic insulating film 4b mainly composed of alumina is formed on the inner circumferential surface 14 of an inner ring 3 and both axial end faces 15, 15. An interference between the inner ring 3 and a shaft is regulated so that a damage is not generated on the insulating film 4b. Since the total surface area of the inner circumferential surface 14 of the inner ring 3 and both end faces 15, 15 is smaller than the total surface area of the outer circumferential surface 12 of an outer ring 2 and axial direction both end faces 13, 13, the impedance can be heightened inexpensively without thickening the film thickness of the insulating coating 4b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、一般産業用汎用モータや発電機用ジェネレータ(風力発電機等)、鉄道車両用主電動機、医療機器(CTスキャナ装置等)の回転支持部を構成する軸受装置の改良に関する。特に、本発明は、インバータ制御される電動機或は発電機に組み込まれる軸受装置として好適である。   The present invention relates to an improvement in a bearing device that constitutes a rotation support portion of a general industrial general-purpose motor, a generator generator (wind generator, etc.), a railway vehicle main motor, or a medical device (CT scanner device, etc.). In particular, the present invention is suitable as a bearing device incorporated in an inverter-controlled motor or generator.

電動モータや発電機等、各種電気機器等の回転軸を支承する為の転がり軸受の場合、対策を講じないと、転がり軸受自体に、帰路電流、モータ軸電流等の電流が流れてしまう。転がり軸受に電流が流れた場合、電流の通路となる部分の腐食が進む、所謂電食が発生して、転がり軸受の寿命を著しく短縮してしまう。この様な電食の発生を防止する為、ハウジング或は軸に嵌合する面である、外輪の外周面或は内輪の内周面に、絶縁性に優れた合成樹脂製の絶縁皮膜を形成する技術が、従来から知られている。この様な絶縁性に優れた合成樹脂として、例えば、ポリブチレンテレフタレート(PBT)、ポリアミド66(PA66)、ポリアミド6(PA6)等が提案されている。但し、このうちのPA66やPA6は、吸水性が高く、空気中の水分を吸収する事により寸法が変化し易い。この為、精度が要求される軸受装置の嵌合面を皮覆する材料としては好ましくない。又、上記PBTは、耐熱性や強度が不足する場合があり、やはり、上記嵌合面を皮覆する材料としては好ましくない。   In the case of a rolling bearing for supporting rotating shafts of various electric devices such as an electric motor and a generator, currents such as a return current and a motor shaft current flow in the rolling bearing itself unless measures are taken. When an electric current flows through the rolling bearing, so-called electric corrosion occurs, ie, corrosion of a portion serving as a current path progresses, and the life of the rolling bearing is significantly shortened. In order to prevent the occurrence of such electric corrosion, an insulating film made of synthetic resin with excellent insulation is formed on the outer peripheral surface of the outer ring or the inner peripheral surface of the inner ring, which is the surface fitted to the housing or shaft. The technique to do is conventionally known. As such synthetic resins having excellent insulating properties, for example, polybutylene terephthalate (PBT), polyamide 66 (PA66), polyamide 6 (PA6) and the like have been proposed. However, among these, PA66 and PA6 have high water absorption, and their dimensions are likely to change by absorbing moisture in the air. For this reason, it is not preferable as a material for covering the fitting surface of the bearing device that requires accuracy. The PBT may be insufficient in heat resistance and strength, and is not preferable as a material for covering the fitting surface.

これに対して、例えば特許文献1には、絶縁皮膜を形成する為の材料として、ガラス繊維を含有したポリフェニレンサルファイド(PPS)を使用する技術が記載されている。即ち、図3に示す様に、転がり軸受1を構成する金属製の外輪2の外周面及び両端面と、金属製の内輪3の内周面及び両端面とに、それぞれガラス繊維を含有したPPS製の絶縁皮膜4を形成する。尚、図示の転がり軸受1は深溝型の玉軸受であり、この為に、上記外輪2の内周面に形成した外輪軌道5と、上記内輪3の外周面に形成した内輪軌道6との間に、金属製の玉7、7を複数個設置している。この様に構成される転がり軸受1は、上記外輪2を金属製のハウジング8に、上記絶縁皮膜4を介して内嵌固定すると共に、上記内輪3を図示しない金属製の軸に、やはり絶縁皮膜4を介して外嵌固定する。この結果、上記転がり軸受1に電流が流れる事を防止して、電食を防止できる。   On the other hand, for example, Patent Document 1 describes a technique using polyphenylene sulfide (PPS) containing glass fiber as a material for forming an insulating film. That is, as shown in FIG. 3, the outer peripheral surface and both end surfaces of the metal outer ring 2 constituting the rolling bearing 1 and the inner peripheral surface and both end surfaces of the metal inner ring 3 are each PPS containing glass fibers. An insulating coating 4 made of metal is formed. Note that the illustrated rolling bearing 1 is a deep groove type ball bearing, and for this reason, between the outer ring raceway 5 formed on the inner peripheral surface of the outer ring 2 and the inner ring raceway 6 formed on the outer peripheral surface of the inner ring 3. In addition, a plurality of metal balls 7 are provided. The rolling bearing 1 configured as described above has the outer ring 2 fitted and fixed to the metal housing 8 via the insulating film 4, and the inner ring 3 is fixed to the metal shaft (not shown). 4 is fixed by external fitting. As a result, electric current can be prevented from flowing through the rolling bearing 1 to prevent electrolytic corrosion.

又、上述した様なガラス繊維により強化されたPPSを、上記絶縁皮膜4として使用する事により、前述した、水分吸収による寸法変化及び耐熱性、強度の不足と言う問題を解消できる。但し、上述した様な合成樹脂材料は、転がり軸受の軌道輪やハウジング、軸等の材料となる、軸受鋼等の金属に比べて線膨張係数が大きい。従って、回転支持部で発生する熱により変形が生じ易い。   Further, by using PPS reinforced with glass fiber as described above as the insulating film 4, the above-described problems of dimensional change due to moisture absorption, heat resistance, and insufficient strength can be solved. However, the synthetic resin material as described above has a larger coefficient of linear expansion than a metal such as bearing steel, which is a material for rolling bearings, housings, shafts, and the like. Therefore, deformation is likely to occur due to heat generated in the rotation support portion.

これに対して、特許文献2〜4には、線膨張係数の小さいセラミックス製の絶縁皮膜を外輪の外周面及び両端面に形成した技術が記載されている。このうちの特許文献2に記載された構造の場合、図4に示す様に、金属製の外輪2aの外周面及び両端面に、セラミックス製の絶縁皮膜4aを形成すると共に、この絶縁皮膜4aを金属層9により覆っている。尚、図示の転がり軸受1aは円筒ころ軸受であり、この為に、上記外輪2aの両端部内周面に鍔部10、10を形成すると共に、この外輪2aの中間部内周面でこれら両鍔部10、10の間に、円筒状の外輪軌道5aを形成している。又、金属製の内輪3aの中間部外周面には円筒状の内輪軌道6aを形成している。そして、これら外輪軌道5aと内輪軌道6aとの間に、金属製の円筒ころ11を複数個設置している。   On the other hand, Patent Documents 2 to 4 describe techniques in which ceramic insulating films having a small linear expansion coefficient are formed on the outer peripheral surface and both end surfaces of the outer ring. In the case of the structure described in Patent Document 2 among these, as shown in FIG. 4, a ceramic insulating film 4a is formed on the outer peripheral surface and both end surfaces of the metal outer ring 2a, and this insulating film 4a It is covered with a metal layer 9. The illustrated rolling bearing 1a is a cylindrical roller bearing. For this purpose, the flanges 10 and 10 are formed on the inner peripheral surfaces of both ends of the outer ring 2a, and both the flanges are formed on the inner peripheral surface of the outer ring 2a. A cylindrical outer ring raceway 5 a is formed between 10 and 10. A cylindrical inner ring raceway 6a is formed on the outer peripheral surface of the intermediate portion of the metal inner ring 3a. A plurality of metal cylindrical rollers 11 are installed between the outer ring raceway 5a and the inner ring raceway 6a.

上述の様に構成される転がり軸受1aの場合、絶縁皮膜4aを線膨張係数の小さいセラミックス製としている為、熱による変形を抑えられる。又、この絶縁皮膜4aを金属層9により覆っている為、上記外輪2aをハウジング等の相手部材に締り嵌めで内嵌固定する際に、上記絶縁皮膜4aが剥離する事を防止できる。但し、この様な構成を有する特許文献2に記載された構造の場合、上記金属層9を形成する分、製造コストが上昇する。又、特許文献3には、外輪の外周面及び両端面に第一の金属層を、この第一の金属層の上に絶縁皮膜を、それぞれ設け、更にこの絶縁皮膜の上に第二の金属層を設けた構造が記載されている。この様な特許文献3に記載された構造の場合も、やはりコストが高くなる事は避けられない。   In the case of the rolling bearing 1a configured as described above, since the insulating film 4a is made of ceramics having a small linear expansion coefficient, deformation due to heat can be suppressed. In addition, since the insulating film 4a is covered with the metal layer 9, it is possible to prevent the insulating film 4a from peeling off when the outer ring 2a is fitted and fixed to a mating member such as a housing. However, in the case of the structure described in Patent Document 2 having such a configuration, the manufacturing cost increases as the metal layer 9 is formed. In Patent Document 3, a first metal layer is provided on the outer peripheral surface and both end faces of the outer ring, an insulating film is provided on the first metal layer, and a second metal is provided on the insulating film. A structure with layers is described. In the case of such a structure described in Patent Document 3, it is inevitable that the cost is also increased.

ところで、上述した様な絶縁皮膜を施した転がり軸受を組み込む電動機や発電機は、一般的に、インバータ制御される。又、近年、スイッチング時の騒音を低減する為に、インバータのキャリア周波数を高くする傾向にある。これに伴い、上記転がり軸受に流れる電流は高周波となる。この為、上記絶縁皮膜は高インピーダンス(高絶縁抵抗値)である事が要求される。このインピーダンスは、次式から明らかな様に、静電容量(C)が大きくなる程小さくなる(小さくなる程大きくなる)。

Figure 2007333172
|Z|:インピーダンス(Ω)
R:抵抗値(Ω)
f:周波数(Hz)
C:静電容量(F) Incidentally, an electric motor or a generator incorporating a rolling bearing with an insulating film as described above is generally controlled by an inverter. In recent years, there is a tendency to increase the carrier frequency of the inverter in order to reduce noise during switching. Accordingly, the current flowing through the rolling bearing becomes a high frequency. Therefore, the insulating film is required to have high impedance (high insulation resistance value). As is apparent from the following equation, this impedance decreases as the capacitance (C) increases (increases as the capacitance decreases).
Figure 2007333172
| Z |: Impedance (Ω)
R: Resistance value (Ω)
f: Frequency (Hz)
C: Capacitance (F)

従って、インピーダンス|Z|を高くする為には、絶縁皮膜の静電容量Cを小さくする必要がある。この静電容量Cは、次式から明らかな様に、面積(A)に比例する。

Figure 2007333172
εo :真空中の誘電率(8.854×10-12F/m)
εr :比誘電率
A:面積(m2
S:距離(m) Therefore, in order to increase the impedance | Z |, it is necessary to reduce the capacitance C of the insulating film. This capacitance C is proportional to the area (A), as is apparent from the following equation.
Figure 2007333172
ε o : dielectric constant in vacuum (8.854 × 10 −12 F / m)
ε r : relative permittivity A: area (m 2 )
S: Distance (m)

この為、絶縁皮膜の厚さ(距離S)が同じ場合、面積Aが小さい方が静電容量が小さくなる。従って、軸受サイズの異なる転がり軸受に同じ厚さの絶縁皮膜を施した場合、表面積が大きくなる、軸受サイズの大きい転がり軸受の方が、軸受サイズの小さい転がり軸受に比べて静電容量が大きくなる。従って、軸受サイズの大きい転がり軸受に施す絶縁皮膜のインピーダンスを高くする為には、この絶縁皮膜の厚さを厚くする必要があるが、皮膜を厚くすると材料のコストが高くなる。特に、この絶縁皮膜をセラミックスの溶射層とした場合、溶射作業時間が長くなり、この点からもコストの上昇を招く。   For this reason, when the thickness (distance S) of the insulating film is the same, the smaller the area A, the smaller the capacitance. Therefore, when rolling bearings with different bearing sizes are coated with the same thickness of insulation film, the surface area increases, and the larger the bearing size, the larger the capacitance compared to the smaller bearing size. . Therefore, in order to increase the impedance of the insulating film applied to the rolling bearing having a large bearing size, it is necessary to increase the thickness of the insulating film. However, increasing the film thickness increases the cost of the material. In particular, when this insulating coating is made of a ceramic sprayed layer, the time required for thermal spraying is increased, which also leads to an increase in cost.

又、転がり軸受にセラミックス製の絶縁皮膜を形成する場合、外輪側に形成する場合が多い。この理由は、溶射によりセラミックス製の絶縁皮膜を形成する場合、溶射する面が外周面乃至両端面となる外輪の方が、溶射ノズルを部材の外側に配置でき、作業性が良い為である。又、転がり軸受を回転支持部に組み込む場合、内輪と軸とを締り嵌めにより、外輪とハウジングとを隙間嵌めにより、それぞれ嵌合する場合が多い。但し、脆いセラミックス製の絶縁皮膜を、締り嵌めにより嵌合する内輪の内周面に形成した場合には、この絶縁皮膜に割れや欠けが生じる可能性がある。この為、この様な絶縁皮膜の割れや欠けを防止する為にも、外輪側にセラミックス製の絶縁皮膜を形成する場合が多い。   When a ceramic insulating film is formed on a rolling bearing, it is often formed on the outer ring side. The reason for this is that when an insulating coating made of ceramic is formed by thermal spraying, the outer ring in which the surface to be sprayed is the outer peripheral surface or both end surfaces can arrange the thermal spray nozzle outside the member, and the workability is better. Further, when the rolling bearing is incorporated in the rotation support portion, the inner ring and the shaft are often fitted by an interference fit, and the outer ring and the housing are fitted by a clearance fit. However, when a brittle ceramic insulating film is formed on the inner peripheral surface of the inner ring to be fitted by interference fitting, there is a possibility that the insulating film is cracked or chipped. For this reason, in order to prevent such cracking and chipping of the insulating film, a ceramic insulating film is often formed on the outer ring side.

但し、一般的には外輪の外周面と両端面とを合わせた部分の表面積は、内輪の内周面と両端面とを合わせた部分の表面積よりも大きくなり、外輪側に絶縁皮膜を形成する場合には、前述した様な静電容量と面積との関係式から、静電容量を低くする為に膜厚を大きくする必要がある。これに対して、内輪の内周面にセラミックス製の絶縁皮膜を形成する構造で、内輪と軸とを隙間嵌めで嵌合し、嵌合面の形状を工夫したり、治具等を用いて嵌合面のずれを防止する事が考えられるが、内輪と軸との間にクリープが生じてしまう為、現実的ではない。又、特許文献4には、セラミックスに含有する酸化チタンの割合を規制した構造が記載されている。この特許文献4に記載された構造の場合、酸化チタンを0.25〜0.75重量%に規制しているが、酸化チタンの割合をこの様に多くした場合には、十分なインピーダンスを確保できない可能性がある。   However, in general, the surface area of the outer ring and the both end faces of the outer ring is larger than the surface area of the inner ring and both end faces of the inner ring, and an insulating film is formed on the outer ring side. In this case, it is necessary to increase the film thickness in order to reduce the electrostatic capacitance from the relational expression between the electrostatic capacitance and the area as described above. On the other hand, a structure in which an insulating film made of ceramic is formed on the inner peripheral surface of the inner ring, the inner ring and the shaft are fitted with a gap fit, and the shape of the fitting surface is devised, or a jig or the like is used. Although it is conceivable to prevent the fitting surface from shifting, it is not realistic because creep occurs between the inner ring and the shaft. Patent Document 4 describes a structure in which the proportion of titanium oxide contained in ceramics is regulated. In the case of the structure described in Patent Document 4, titanium oxide is regulated to 0.25 to 0.75% by weight. However, when the proportion of titanium oxide is increased in this way, sufficient impedance is ensured. It may not be possible.

尚、本発明に関連する技術が記載された文献として、特許文献5〜7がある。このうちの特許文献5には、内輪をセラミックス製とした場合で、内輪と軸との締め代を規制する技術が記載されている。又、特許文献6、7には、高温でも軸受の寸法を安定化させる技術が、それぞれ記載されている。   In addition, there are Patent Documents 5 to 7 as documents describing techniques related to the present invention. Of these, Patent Document 5 describes a technique for regulating the tightening allowance between the inner ring and the shaft when the inner ring is made of ceramics. Patent Documents 6 and 7 describe techniques for stabilizing the dimensions of the bearing even at high temperatures.

特許第2779251号公報Japanese Patent No. 2779251 特開2002−48145号公報JP 2002-48145 A 特開2002−181054号公報JP 2002-181054 A 特開2005−133876号公報JP 2005-133876 A 特許第2617300号公報Japanese Patent No. 2617300 特許第3475497号公報Japanese Patent No. 3475497 特許第2624337号公報Japanese Patent No. 2624337

本発明は、上述の様な事情に鑑みて、軌道輪の表面で金属製の相手部材と接触する部分にセラミックス製の絶縁皮膜を形成する構造で、安価でインピーダンス(絶縁抵抗値)が高い構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has a structure in which a ceramic insulating film is formed on the surface of a raceway ring in contact with a metal mating member, which is inexpensive and has a high impedance (insulation resistance value). Invented to realize the above.

本発明の軸受装置は、転がり軸受と、この転がり軸受を外嵌する金属製の相手部材とを備える。
このうちの転がり軸受は、それぞれが金属製である、外輪と、内輪と、複数の転動体とを備える。
このうちの外輪は、内周面に外輪軌道を形成している。
又、上記内輪は、この外輪の内側に配置され、外周面に内輪軌道を形成している。
又、上記各転動体は、これら外輪軌道と内輪軌道との間に、転動自在に設けられている。
そして、上記内輪が上記相手部材に、締り嵌めで嵌合されている。
特に、本発明の軸受装置に於いては、上記内輪の上記内輪軌道を除く表面のうち、少なくとも内周面に、アルミナ(Al2O3 )を主成分とするセラミックス製の絶縁皮膜を形成している。又、上記内輪と上記相手部材との締め代を、この絶縁皮膜が損傷しない様に規制している。尚、この内輪は、内周面を覆う絶縁皮膜を含むもので、本発明で言う、内輪と相手部材(例えば軸)との締め代とは、この内輪の内周面を覆う絶縁皮膜とこの相手部材との締め代となる。
The bearing device of the present invention includes a rolling bearing and a metal mating member that externally fits the rolling bearing.
Of these, the rolling bearing includes an outer ring, an inner ring, and a plurality of rolling elements, each of which is made of metal.
Among these, the outer ring forms an outer ring raceway on the inner peripheral surface.
The inner ring is arranged inside the outer ring and forms an inner ring raceway on the outer peripheral surface.
The rolling elements are provided between the outer ring raceway and the inner ring raceway so as to freely roll.
The inner ring is fitted to the mating member with an interference fit.
In particular, in the bearing device of the present invention, a ceramic insulating film mainly composed of alumina (Al 2 O 3 ) is formed on at least an inner peripheral surface of the inner ring excluding the inner ring raceway. ing. Further, the tightening allowance between the inner ring and the mating member is regulated so that the insulating film is not damaged. The inner ring includes an insulating film that covers the inner peripheral surface, and the tightening allowance between the inner ring and the mating member (for example, the shaft) referred to in the present invention is the insulating film that covers the inner peripheral surface of the inner ring and the inner ring. This is the tightening allowance with the mating member.

又、使用時に絶縁皮膜が損傷しない様にする為に、請求項2に記載した様に、内輪と相手部材との締め代を、使用時でもこの内輪の内周面を覆う絶縁皮膜に作用するフープ応力(円周方向応力)が200N/mm2 以下となる様に規制する事が好ましい。即ち、使用時には、上記内輪と相手部材が熱膨張する場合があるが、この場合でも、上記絶縁皮膜に作用するフープ応力が200N/mm2 を越えない様に、上記締め代を定める。勿論、嵌合時(温度上昇以前の状態)にも、上記絶縁皮膜に作用するフープ応力が200N/mm2 を越えない様にする。
又、上述した発明を実施する場合に好ましくは、請求項3に記載した様に、絶縁皮膜の、絶縁抵抗値を1000MΩ以上、静電容量を27nF以下とする。
又、上記絶縁皮膜の絶縁抵抗値及び静電容量を、上述の様に規制する為に、例えば、請求項4に記載した様に、絶縁皮膜を、アルミナの含有量が99重量%以上で、酸化チタン(チタニア、TiO2)を0.01〜0.2重量%含有する絶縁層とし、膜厚を0.1〜0.7mmとする。
或は、請求項5に記載した様に、絶縁皮膜を、アルミナの含有量が97重量%以上で、ジルコニア(ZrO2)を0.1〜2.5重量%含有する絶縁層とし、膜厚を0.1〜0.7mmとする。
Further, in order to prevent the insulating film from being damaged during use, as described in claim 2, the allowance between the inner ring and the mating member acts on the insulating film covering the inner peripheral surface of the inner ring even during use. It is preferable to regulate the hoop stress (circumferential stress) to be 200 N / mm 2 or less. That is, during use, the inner ring and the mating member may thermally expand. Even in this case, the tightening allowance is determined so that the hoop stress acting on the insulating film does not exceed 200 N / mm 2 . Of course, the hoop stress acting on the insulating film should not exceed 200 N / mm 2 even during fitting (before the temperature rises).
When the above-described invention is carried out, preferably, the insulation film has an insulation resistance value of 1000 MΩ or more and a capacitance of 27 nF or less.
In order to regulate the insulation resistance value and capacitance of the insulating film as described above, for example, as described in claim 4, the insulating film has an alumina content of 99% by weight or more, The insulating layer contains 0.01 to 0.2% by weight of titanium oxide (titania, TiO 2 ), and the film thickness is 0.1 to 0.7 mm.
Alternatively, as described in claim 5, the insulating film is an insulating layer having an alumina content of 97% by weight or more and zirconia (ZrO 2 ) in an amount of 0.1 to 2.5% by weight. Is 0.1 to 0.7 mm.

又、上述した各発明を実施する場合で、絶縁皮膜がプラズマ溶射により形成されたものである場合に、好ましくは、請求項6に記載した様に、転がり軸受を構成する両軌道輪のうち、少なくとも内輪として、高温寸法安定化処理を施されたものか、或は、高温寸法安定材製のものを用いる。このうちの高温寸法安定化処理として、例えば、前述の特許文献6に記載されている様に、高温焼き戻し処理や2回焼き戻し処理を施して、残留オーステナイト量を2容量%以下とする処理が上げられる。又、上記高温寸法安定材として、例えば、高温軸受用高速度鋼であるAISI M50、M50NIL や、前述の特許文献7に記載されている様な、Si及びCuの含有量を、通常の軸受鋼(SUJ2、SUJ3等)よりも多くし、残留オーステナイト量を3容量%以下としたものが挙げられる。   Further, in the case of carrying out each of the above-described inventions, when the insulating coating is formed by plasma spraying, preferably, as described in claim 6, of the two race rings constituting the rolling bearing, At least the inner ring that has been subjected to high-temperature dimensional stabilization treatment or that made of a high-temperature dimensional stabilizer is used. Among these, as described in the above-mentioned Patent Document 6, for example, as described in Patent Document 6, a high-temperature tempering process or a two-time tempering process is performed to reduce the residual austenite amount to 2% by volume or less. Is raised. In addition, as the high temperature dimension stabilizing material, for example, AISI M50 and M50NIL which are high speed steels for high temperature bearings, and Si and Cu contents as described in the above-mentioned Patent Document 7, ordinary bearing steels are used. (SUJ2, SUJ3, etc.) and the amount of retained austenite is 3% by volume or less.

又、請求項7に記載した様に、外輪の外周面と両端面とを合わせた部分の表面積が、内輪の内周面と両端面とを合わせた部分の表面積に対して1.3倍以上である構造に、本発明を適用する事が好ましい。又、より好ましくは、請求項8に記載した様に、絶縁皮膜が内輪の表面に直接形成した1層のみから成り、転がり軸受の内径が100mm以上である構造に適用する。
更に好ましくは、請求項9に記載した様に、本発明の軸受装置を、インバータ制御される電動機或は発電機の回転支持部に組み込む。この場合に、例えば、電動機等を構成する、外周面にロータを設けた回転軸に、転がり軸受の内輪を外嵌固定する。
In addition, as described in claim 7, the surface area of the outer ring surface and both end faces of the outer ring is 1.3 times or more than the surface area of the inner ring inner face and both end faces. It is preferable to apply the present invention to such a structure. More preferably, as described in claim 8, the present invention is applied to a structure in which the insulating film is composed of only one layer formed directly on the surface of the inner ring and the inner diameter of the rolling bearing is 100 mm or more.
More preferably, as described in claim 9, the bearing device of the present invention is incorporated in a rotation support portion of an inverter-controlled electric motor or generator. In this case, for example, the inner ring of the rolling bearing is externally fixed to a rotating shaft that constitutes an electric motor or the like and that has a rotor on the outer peripheral surface.

上述の様に構成する本発明の軸受装置によれば、軌道輪にセラミックス製の絶縁皮膜を形成する構造で、安価でインピーダンス(絶縁抵抗値)が高い構造を実現できる。
即ち、内輪側に絶縁皮膜を形成している為、この皮膜を形成する面積を小さくできる。この結果、この絶縁皮膜の静電容量を小さくして、インピーダンスを大きくできる。又、静電容量を小さくする為に膜厚を大きくする必要がない為、製造コストを低くできる。尚、内輪を相手部材に締り嵌めで嵌合する構造とした場合、脆いセラミックス製の上記絶縁皮膜にクラック等の損傷が生じる可能性があるが、上記内輪と上記相手部材との締め代を、使用時に上記絶縁皮膜が損傷しない様に規制すれば、この様な問題が生じる事はない。特に、請求項2に記載した様に、内輪と相手部材との締め代を、使用時でもこの内輪の内周面を覆う上記絶縁皮膜に作用するフープ応力が200N/mm2 以下となる様に規制すれば、上記絶縁皮膜にクラック等の損傷が生じる事を、効果的に防止できる。
According to the bearing device of the present invention configured as described above, a structure in which a ceramic insulating film is formed on a raceway ring and a structure with low impedance and high impedance (insulation resistance value) can be realized.
That is, since the insulating film is formed on the inner ring side, the area for forming this film can be reduced. As a result, the capacitance of the insulating film can be reduced and the impedance can be increased. Further, since it is not necessary to increase the film thickness in order to reduce the capacitance, the manufacturing cost can be reduced. If the inner ring is fitted to the mating member by an interference fit, damage such as cracks may occur in the insulating coating made of brittle ceramic, but the tightening allowance between the inner ring and the mating member is Such a problem will not occur if the insulating film is regulated so that it is not damaged during use. In particular, as described in claim 2, the tightening allowance between the inner ring and the mating member is such that the hoop stress acting on the insulating film covering the inner peripheral surface of the inner ring is 200 N / mm 2 or less even when in use. If it restrict | limits, it can prevent effectively that damage, such as a crack, arises in the said insulating film.

又、請求項3に記載した様に、絶縁皮膜の絶縁抵抗値を1000MΩ以上、同じく静電容量を27nF以下となる様に、アルミナを主成分とするセラミックス製の絶縁皮膜の材質及び膜厚を選定する事により、軸受装置の高インピーダンス化をより確実に図れる。本発明者の実験データ等の各種データによれば、静電容量が27nFを超えると、十分なインピーダンス(絶縁抵抗値)を得られない場合がある。これに対して、静電容量を27nF以下、好ましくは25nF、更に好ましくは23nF以下とすれば、軸受装置のインピーダンスを高くできる。   In addition, as described in claim 3, the material and film thickness of the ceramic insulating film mainly composed of alumina are set so that the insulating resistance value of the insulating film is 1000 MΩ or more and the capacitance is 27 nF or less. By selecting, it is possible to increase the impedance of the bearing device more reliably. According to various data such as the experiment data of the present inventor, when the capacitance exceeds 27 nF, there are cases where sufficient impedance (insulation resistance value) cannot be obtained. On the other hand, if the capacitance is 27 nF or less, preferably 25 nF, more preferably 23 nF or less, the impedance of the bearing device can be increased.

又、上記絶縁皮膜を、例えば、請求項4に記載した様に、アルミナの含有量が99重量%以上で、酸化チタンを0.01〜0.2重量%含有する絶縁層により形成し、膜厚を0.1〜0.7mmとすれば、上述した様な高インピーダンスを有する絶縁皮膜を安価に得られる。即ち、アルミナの純度を高くする程、インピーダンスを高くできるが、このアルミナの純度を高くする事は、製造コストの上昇を招く。これに対して、不可避的に含まれるチタニアの含有量を0.01〜0.2重量の範囲に規制すれば、コスト上昇を抑えつつ、インピーダンスの高い絶縁皮膜を得られる。又、絶縁皮膜の膜厚を0.1mmよりも薄くすると絶縁抵抗が劣り、0.7mmよりも厚くしても、コストが高くなる割合には、絶縁性能の向上を望めない。従って、絶縁抵抗を確保すると共に製造コストの上昇を抑える為には、上記絶縁皮膜の膜厚を0.1〜0.7mm、好ましくは、0.2〜0.5mmとする。   Further, the insulating film is formed by an insulating layer having an alumina content of 99% by weight or more and titanium oxide of 0.01 to 0.2% by weight as described in claim 4, for example. If the thickness is 0.1 to 0.7 mm, an insulating film having a high impedance as described above can be obtained at low cost. That is, the higher the purity of alumina, the higher the impedance can be. However, increasing the purity of alumina leads to an increase in manufacturing cost. On the other hand, if the content of titania inevitably contained is regulated to a range of 0.01 to 0.2 weight, an insulating film having a high impedance can be obtained while suppressing an increase in cost. Further, if the thickness of the insulating film is less than 0.1 mm, the insulation resistance is inferior, and even if it is thicker than 0.7 mm, the improvement in the insulation performance cannot be expected at a rate where the cost increases. Therefore, in order to secure insulation resistance and suppress an increase in manufacturing cost, the film thickness of the insulating film is set to 0.1 to 0.7 mm, preferably 0.2 to 0.5 mm.

又、上記絶縁皮膜を、例えば、請求項5に記載した様に、アルミナの含有量が97重量%以上で、ジルコニアを0.1〜2.5重量%含有する絶縁層により形成すれば、アルミナの純度を高くしてインピーダンスを高くできると共に、上記絶縁皮膜の金属表面への付着強度を向上させる事ができる。即ち、高強度、高靱性を有するジルコニアの含有量を0.1重量%未満とした場合、付着強度を十分に向上させる事ができない。一方、上記ジルコニアの含有量を2.5重量%よりも多くした場合、アルミナの純度が低くなり過ぎて、上記インピーダンスの低下を招く。尚、上述の様にジルコニアを含有した場合にも、上述したチタニアを含有した場合と同様に、上記絶縁皮膜の膜厚を0.1〜0.7mm、好ましくは、0.2〜0.5mmとすれば、絶縁抵抗の確保と製造コスト抑制とのバランスがとれる。   In addition, if the insulating film is formed of an insulating layer having an alumina content of 97% by weight or more and zirconia in an amount of 0.1 to 2.5% by weight as described in claim 5, for example, In addition to increasing the purity, the impedance can be increased, and the adhesion strength of the insulating film to the metal surface can be improved. That is, when the content of zirconia having high strength and high toughness is less than 0.1% by weight, the adhesion strength cannot be sufficiently improved. On the other hand, when the content of the zirconia is more than 2.5% by weight, the purity of alumina becomes too low and the impedance is lowered. Even when zirconia is contained as described above, the thickness of the insulating film is 0.1 to 0.7 mm, preferably 0.2 to 0.5 mm, as in the case of containing titania. If so, it is possible to achieve a balance between securing insulation resistance and reducing manufacturing costs.

又、上記絶縁皮膜をプラズマ溶射により形成する場合に、請求項6に記載した様に、転がり軸受を構成する両軌道輪のうち、少なくとも内輪に、高温寸法安定化処理を施すか、或は、高温寸法安定材を用いれば、この内輪の寸法精度を確保できる。即ち、上記高温寸法安定化処理を施すか、或は、高温寸法安定材を使用する事により、高温のプラズマの溶射ガスにより局部的に高温になって場合でも、上記内輪の寸法精度が維持される。   Further, when the insulating coating is formed by plasma spraying, as described in claim 6, at least the inner ring of the two bearing rings constituting the rolling bearing is subjected to high temperature dimensional stabilization treatment, or If a high temperature dimensional stabilizer is used, the dimensional accuracy of the inner ring can be ensured. That is, by performing the above high temperature dimensional stabilization treatment or using a high temperature dimensional stabilizer, the dimensional accuracy of the inner ring is maintained even when the temperature is locally increased by a high temperature plasma spray gas. The

又、請求項7に記載した様に、外輪の外周面と両端面とを合わせた部分の表面積が、内輪の内周面と両端面とを合わせた部分の表面積に対して1.3倍以上である構造に本発明を適用すれば、本発明の効果をより顕著に得られる。即ち、外輪と内輪との表面積の差が大きければ、絶縁皮膜を内輪側に形成した場合に、同じ厚さの絶縁皮膜を外輪側に形成した場合と比べて静電容量を小さくできる割合が大きくなる。そして、より高インピーダンス化を図れると共に、コスト低減の効果が大きくなる。   In addition, as described in claim 7, the surface area of the outer ring surface and both end faces of the outer ring is 1.3 times or more than the surface area of the inner ring inner face and both end faces. If the present invention is applied to the structure, the effects of the present invention can be obtained more remarkably. That is, if the difference in surface area between the outer ring and the inner ring is large, when the insulating film is formed on the inner ring side, the rate at which the capacitance can be reduced is larger than when the insulating film of the same thickness is formed on the outer ring side. Become. In addition, the impedance can be further increased and the effect of cost reduction is increased.

又、請求項8に記載した様に、本発明を、転がり軸受(を構成する内輪)の内径が100mm以上である構造に適用すれば、上述の高インピーダンス化とコスト低減とを、より高度に両立させる事ができる。内径が100mmを超える大型の軸受の場合、直径系列で3、2、0が多く使われており、この様な直径系列の転がり軸受の場合、内輪の上記表面積に対し、外輪の上記表面積が30%以上多くなる。又、内径が100mm以上の転がり軸受の場合、内周面への溶射が行ない易く、作業性が良好となり低コスト化を図れる。又、絶縁皮膜を1層としている為、前述の特許文献2〜3に記載された構造と比べて製造コストを低くできる。又、前述した様に、絶縁皮膜としてジルコニアを含有したものを使用すれば、この絶縁皮膜と内輪との密着力を高め、金属層を設けなくても絶縁皮膜の剥離を防止できる。   Further, as described in claim 8, if the present invention is applied to a structure in which the inner diameter of the rolling bearing (inner ring) is 100 mm or more, the above-described high impedance and cost reduction can be achieved to a higher degree. Can be compatible. In the case of a large bearing having an inner diameter of more than 100 mm, 3, 2, and 0 are frequently used in the diameter series. In the case of such a diameter series rolling bearing, the surface area of the outer ring is 30 with respect to the surface area of the inner ring. % More. Further, in the case of a rolling bearing having an inner diameter of 100 mm or more, it is easy to perform thermal spraying on the inner peripheral surface, the workability is improved, and the cost can be reduced. Moreover, since the insulating film is a single layer, the manufacturing cost can be reduced as compared with the structures described in Patent Documents 2 to 3 described above. Further, as described above, if an insulating film containing zirconia is used, the adhesion between the insulating film and the inner ring is enhanced, and the insulating film can be prevented from peeling without providing a metal layer.

更に、請求項9に記載した様に、本発明の軸受装置を、インバータ制御される電動機或は発電機の回転支持部に組み込めば、本発明の効果をより有効に得られる。即ち、前述した様に、インバータ制御される電動機等は、インバータのキャリア周波数を高くする傾向にある為、転がり軸受に流れる電流は高周波となる。この為、上記絶縁皮膜は高インピーダンス(高絶縁抵抗値)である事が要求される。これに対して本発明の場合、上述した様に、高インピーダンスを実現できる為、上記インバータ制御される電動機等に適する。   Furthermore, as described in claim 9, the effect of the present invention can be obtained more effectively by incorporating the bearing device of the present invention into a rotation support portion of an electric motor or generator controlled by an inverter. That is, as described above, an inverter-controlled electric motor or the like tends to increase the carrier frequency of the inverter, so that the current flowing through the rolling bearing becomes a high frequency. Therefore, the insulating film is required to have high impedance (high insulation resistance value). On the other hand, in the case of the present invention, as described above, since a high impedance can be realized, it is suitable for the electric motor controlled by the inverter.

[実施の形態の1例]
図1は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、安価でインピーダンス(絶縁抵抗値)が高い構造を実現すべく、内輪3側にセラミックス製の絶縁皮膜を形成し、この内輪3と相手部材との締め代を規制する点にある。軸受装置の基本的構造及び作用は、前述の特許文献1〜4等、従来から知られている軸受装置と同様である。この為、従来構造と同様の部分に就いては、説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Example of Embodiment]
FIG. 1 shows an example of an embodiment of the present invention. The feature of the present invention is that a ceramic insulating film is formed on the inner ring 3 side in order to realize an inexpensive and high impedance (insulation resistance value) structure, and the tightening allowance between the inner ring 3 and the mating member is regulated. In the point. The basic structure and operation of the bearing device are the same as those of conventionally known bearing devices such as Patent Documents 1 to 4 described above. For this reason, the description of the same part as the conventional structure will be omitted or simplified, and the following description will focus on the characteristic part of this example.

本例の軸受装置も、上記特許文献1〜4に記載された構造と同様に、転がり軸受1bと、この転がり軸受1bを外嵌する、相手部材である、図示しない金属製の軸とを備える。この軸の材料として、例えば、機械構造用鋼のクロムモリブデン鋼や、ニッケルクロムモリブデン鋼、中炭素鋼等の炭素鋼が挙げられる。又、上記転がり軸受1bは、前述の図3に示した構造と同様に、それぞれが、軸受鋼(例えばSUJ2、SUJ3)等の金属製である、外輪2と、上記内輪3と、複数の玉7とを備える。又、本例の場合、このうちの内輪3に寸法安定化処理を施している。この寸法安定化処理として、例えば、焼き入れ後に高温(例えば240℃)で焼き戻しを行ない、残留オーステナイト量を2容量%以下としている。   Similarly to the structures described in Patent Documents 1 to 4, the bearing device of this example also includes a rolling bearing 1b and a metal shaft (not shown) that is a mating member that externally fits the rolling bearing 1b. . Examples of the material of the shaft include carbon steel such as chrome molybdenum steel, nickel chrome molybdenum steel, and medium carbon steel. In addition, the rolling bearing 1b is similar to the structure shown in FIG. 3 described above. Each of the rolling bearings 1b is made of metal such as bearing steel (for example, SUJ2, SUJ3), and the like. 7. In this example, the inner ring 3 is subjected to dimensional stabilization processing. As this dimension stabilization treatment, for example, tempering is performed at a high temperature (for example, 240 ° C.) after quenching, and the amount of retained austenite is set to 2% by volume or less.

又、本例の場合、上記外輪2の外周面12と軸方向両端面13、13とを合わせた部分の表面積が、上記内輪3の内周面14と軸方向両端面15、15とを合わせた部分の表面積に対して1.3倍以上である。又、本例の場合、上記転がり軸受1bの内径R3 が100mm以上である。 In the case of this example, the surface area of the outer peripheral surface 12 of the outer ring 2 and the axial end faces 13 and 13 is the same as the inner peripheral surface 14 of the inner ring 3 and the axial end faces 15 and 15. 1.3 times or more of the surface area of the portion. Further, in the present example, is the inner diameter R 3 of the rolling bearing 1b is 100mm or more.

特に、本例の場合、上記内輪3の内周面14と軸方向両端面15、15とを、アルミナを主成分とするセラミックス製の絶縁皮膜4bにより覆っている。尚、この絶縁皮膜4bは、1層とし、前述の特許文献2〜3に記載されている様な金属層は形成していない。又、上記絶縁皮膜4bは、プラズマ溶射により形成しており、アルミナの含有量が99重量%以上で、酸化チタンを0.01〜0.2重量%含有する絶縁層としている。又、上記絶縁皮膜4bは、上記内周面14及び軸方向両端面15、15の他、この内周面14の軸方向両端縁とこれら軸方向両端面15、15の内周縁とを連続させる、断面四分の一円弧状の内径側折れ曲がり連続部16、16の表面も覆っている。更に、本例の場合、上記両端面15、15の外周縁と上記内輪3の外周面の軸方向両端縁とを連続させる、断面四分の一円弧状の外径側折れ曲がり連続部17、17の表面も、上記絶縁皮膜4bにより覆っている。   In particular, in the case of this example, the inner peripheral surface 14 and the axial end surfaces 15 and 15 of the inner ring 3 are covered with a ceramic insulating film 4b mainly composed of alumina. The insulating film 4b is a single layer, and no metal layer as described in Patent Documents 2 to 3 is formed. The insulating film 4b is formed by plasma spraying, and is an insulating layer having an alumina content of 99% by weight or more and a titanium oxide content of 0.01 to 0.2% by weight. Further, the insulating film 4b allows the inner peripheral surface 14 and both axial end surfaces 15 and 15 to be continuous with both axial end edges of the inner peripheral surface 14 and inner peripheral edges of the axial end surfaces 15 and 15. The surfaces of the inner-diameter side bent continuous portions 16 and 16 having a circular arc shape of a quarter of the cross section are also covered. Further, in the case of this example, the outer peripheral side bent portions 17, 17 having a quarter-circular arc-shaped cross section, in which the outer peripheral edges of the both end surfaces 15, 15 and the both axial end edges of the outer peripheral surface of the inner ring 3 are continuous. Is also covered with the insulating film 4b.

又、本例の場合、上記内輪3の内周面14、両端面15、15を覆う上記絶縁皮膜4bの膜厚を、0.1〜0.7mmとしている。この様に、絶縁皮膜4bの膜厚を規制する為に、セラミックスの絶縁層を形成した後、表面を研磨する。又、上記絶縁皮膜4bの厚さは、少なくとも上記内周面14及び両端面15、15を覆う部分が0.1〜0.7mmであれば良い。即ち、上記絶縁皮膜4bのうちで上記内径側、外径側両折れ曲がり連続部16、17の表面を覆っている部分に関しては、コスト低減の為に、研磨する事なく、そのままの(セラミックスの溶滴を噴射したままの)状態としても良い。本例の場合、上述の様に、絶縁皮膜4bの材質及び膜厚を規制する事により、この絶縁皮膜4bの絶縁抵抗値を1000MΩ以上、静電容量を27nF以下としている。   In the case of this example, the thickness of the insulating film 4b covering the inner peripheral surface 14 and both end surfaces 15 and 15 of the inner ring 3 is set to 0.1 to 0.7 mm. Thus, in order to regulate the film thickness of the insulating film 4b, the surface is polished after the ceramic insulating layer is formed. Further, the thickness of the insulating film 4b may be at least 0.1 to 0.7 mm at a portion covering the inner peripheral surface 14 and both end surfaces 15 and 15. That is, the portion of the insulating film 4b covering the inner and outer diameter side bent continuous portions 16 and 17 is left as it is (without the ceramic solution) in order to reduce costs. It may be in a state in which droplets are ejected. In this example, as described above, the insulation resistance value of the insulating film 4b is set to 1000 MΩ or more and the capacitance is set to 27 nF or less by regulating the material and film thickness of the insulating film 4b.

又、前記転がり軸受1bは、インバータ制御される電動機或は発電機の回転支持部に組み込まれる。即ち、上記外輪2をこの回転支持部を構成する、金属製のハウジングに隙間嵌めで内嵌固定すると共に、上記内周面14及び両端面15、15に上記絶縁皮膜4bを形成した上記内輪3を、上記回転支持部を構成する軸に締り嵌めで外嵌固定する。この軸は、前述した様に、クロムモリブデン鋼や中炭素鋼等の金属製である。本例の場合、この状態で、上記内輪3と上記軸との締め代を、上記絶縁皮膜4bが損傷しない様に規制している。   The rolling bearing 1b is incorporated in a rotation support portion of an electric motor or generator controlled by an inverter. That is, the outer ring 2 is fixed to the metal housing constituting the rotation support portion with a clearance fit, and the inner ring 3 is formed with the insulating film 4b on the inner peripheral surface 14 and both end surfaces 15, 15. Are fitted and fixed to the shaft constituting the rotation support portion by an interference fit. As described above, this shaft is made of a metal such as chromium molybdenum steel or medium carbon steel. In the case of this example, in this state, the tightening allowance between the inner ring 3 and the shaft is restricted so that the insulating coating 4b is not damaged.

この為に、本例の場合、上記内輪3と軸との締め代を、使用時でもこの内輪3の内周面14を覆う絶縁皮膜4bに作用するフープ応力が、200N/mm2 以下となる様に規制している。この様に、絶縁皮膜4bに作用するフープ応力は、例えば、上記内輪3及び軸の材質、寸法、上記絶縁皮膜4bの材質、膜厚、及び、使用時の想定温度等から、算出可能である。そして、使用時のフープ応力が200N/mm2 を越えない様に、上記内輪3と軸との締め代を定める。勿論、これら内輪3と軸との嵌合時(常温時)にも、上記絶縁皮膜4bに作用するフープ応力が200N/mm2 を越えない様にする。この様に、フープ応力が200N/mm2 を越えない様にする為に、例えば、内輪3の内径が180mmの転がり軸受に就いて、軸受等級が0級の場合、軸との嵌め合いの寸法許容差を、k5〜r7(JIS B 1566)の範囲に設定する。 For this reason, in the case of this example, the hoop stress acting on the insulating film 4b covering the inner peripheral surface 14 of the inner ring 3 is 200 N / mm 2 or less even when the inner ring 3 and the shaft are tightened. It regulates like. In this way, the hoop stress acting on the insulating film 4b can be calculated from, for example, the material and dimensions of the inner ring 3 and the shaft, the material and film thickness of the insulating film 4b, and the assumed temperature during use. . Then, the tightening allowance between the inner ring 3 and the shaft is determined so that the hoop stress during use does not exceed 200 N / mm 2 . Of course, the hoop stress acting on the insulating film 4b should not exceed 200 N / mm 2 when the inner ring 3 and the shaft are fitted (at room temperature). In this way, in order to prevent the hoop stress from exceeding 200 N / mm 2 , for example, in the case of a rolling bearing having an inner ring 3 with an inner diameter of 180 mm and the bearing grade is class 0, the fitting dimension with the shaft The tolerance is set in the range of k5 to r7 (JIS B 1566).

上述の様に構成する本例の構造によれば、軌道輪にセラミックス製の絶縁皮膜を形成する構造で、安価でインピーダンス(絶縁抵抗)が高い構造を実現できる。
即ち、本例の場合、内輪3側に絶縁皮膜4bを形成している為、外輪2側に皮膜を形成する場合と比べて、この絶縁皮膜4bを形成する面積を小さくできる。この結果、この絶縁皮膜4bの静電容量を小さくして、インピーダンスを大きくできる。又、静電容量を小さくする為に膜厚を大きくする必要がない為、製造コストを低くできる。
According to the structure of the present example configured as described above, a structure in which a ceramic insulating film is formed on the bearing ring, and a structure with low impedance and high impedance (insulation resistance) can be realized.
That is, in this example, since the insulating film 4b is formed on the inner ring 3 side, the area for forming the insulating film 4b can be reduced as compared with the case where the film is formed on the outer ring 2 side. As a result, the capacitance of the insulating film 4b can be reduced and the impedance can be increased. Further, since it is not necessary to increase the film thickness in order to reduce the capacitance, the manufacturing cost can be reduced.

上記内輪3及び軸を構成する金属は、上記絶縁皮膜4bを構成するセラミックスよりも弾性係数が小さく、線膨張係数が大きい為、使用時の温度上昇に伴い、上記内輪3と軸との締め代が大きくなって、上記絶縁皮膜4bに作用するフープ応力が大きくなる。この為、嵌合時の締め代が大き過ぎる場合には、温度上昇に伴うフープ応力の増大により、この絶縁皮膜4bに損傷が生じる可能性がある。これに対して本例の様に、上記内輪3と軸との締め代を適正にすれば、これら内輪3と軸とを強固に結合できると共に、この内輪3の内周面を覆う上記絶縁皮膜4bの損傷を防止できる。特に、本例の場合、これら内輪3と軸との締め代を、使用時でもこの内輪3の内周面14を覆う絶縁皮膜4bに作用するフープ応力が200N/mm2 以下となる様に規制している為、この絶縁皮膜4bにクラック等の損傷が生じる事を、より確実に防止できる。 Since the metal constituting the inner ring 3 and the shaft has a smaller elastic coefficient and a larger linear expansion coefficient than the ceramics constituting the insulating film 4b, the tightening allowance between the inner ring 3 and the shaft is increased as the temperature rises during use. Increases and the hoop stress acting on the insulating film 4b increases. For this reason, if the tightening allowance at the time of fitting is too large, the insulation film 4b may be damaged due to an increase in hoop stress accompanying a temperature rise. On the other hand, as in this example, if the tightening allowance between the inner ring 3 and the shaft is appropriate, the inner ring 3 and the shaft can be firmly coupled and the insulating film covering the inner peripheral surface of the inner ring 3 is also provided. Damage to 4b can be prevented. In particular, in the case of this example, the interference between the inner ring 3 and the shaft is restricted so that the hoop stress acting on the insulating film 4b covering the inner peripheral surface 14 of the inner ring 3 is 200 N / mm 2 or less even during use. Therefore, it is possible to more reliably prevent the insulation film 4b from being damaged such as cracks.

又、本例の場合、上記絶縁皮膜4bを、アルミナの含有量が99重量%以上で、酸化チタンを0.01〜0.2重量%含有する絶縁層とし、膜厚を0.1〜0.7mmとして、上記絶縁皮膜4bの絶縁抵抗値を1000MΩ以上、静電容量を27nF以下としている。この為、軸受装置の高インピーダンス化を、より確実に図れる。又、本例の場合、上記内輪3の表面のうち、外径側折れ曲がり連続部17、17の表面も上記絶縁皮膜4bにより覆っている為、沿面放電を避けて、インピーダンスをより高くできる。例えば、上記内輪3の端面15を軸の外周面に設けた段差に当接させる場合、絶縁皮膜4bが形成されていないこの内輪3の外周面端部とこの段差との距離が近くなる場合がある。この場合、この内輪3の軸方向端面15を上記絶縁皮膜4bにより覆っていたとしても、この内輪3の外周面を沿って、上記段差に電流が流れる可能性がある。これに対して、この内輪3の外周面両端縁と軸方向両端面15、15の外周縁とを連続させる上記外径側折れ曲がり連続部17、17の表面を上記絶縁皮膜4bにより覆えば、上記内輪3の外周面を沿って軸側に電流が流れる事を防止できる。   In the case of this example, the insulating film 4b is an insulating layer having an alumina content of 99% by weight or more and titanium oxide of 0.01 to 0.2% by weight. 0.7 mm, the insulation resistance value of the insulating film 4b is 1000 MΩ or more and the capacitance is 27 nF or less. For this reason, higher impedance of the bearing device can be achieved more reliably. In the case of this example, among the surfaces of the inner ring 3, the surfaces of the outer diameter side bent continuous portions 17 and 17 are also covered with the insulating film 4b, so that creeping discharge can be avoided and the impedance can be further increased. For example, when the end surface 15 of the inner ring 3 is brought into contact with a step provided on the outer peripheral surface of the shaft, the distance between the end of the outer peripheral surface of the inner ring 3 on which the insulating film 4b is not formed and the step may be reduced. is there. In this case, even if the axial end surface 15 of the inner ring 3 is covered with the insulating film 4b, a current may flow through the step along the outer peripheral surface of the inner ring 3. On the other hand, if the surface of the outer-diameter-side bent continuous portions 17 and 17 that make the both ends of the outer peripheral surface of the inner ring 3 and the outer peripheral edges of the axial end surfaces 15 and 15 continuous are covered with the insulating film 4b, It is possible to prevent a current from flowing to the shaft side along the outer peripheral surface of the inner ring 3.

又、上記絶縁皮膜4bを、アルミナの含有量が99重量%以上で、酸化チタンを0.01〜0.2重量%含有する絶縁層により形成し、膜厚を0.1〜0.7mmとしている為、上述した様な高インピーダンスを有する絶縁皮膜4bを安価に得られる。本例の場合、この絶縁皮膜4bをプラズマ溶射により形成している為、高温のプラズマの溶射ガスにより局部的に高温になるが、上記絶縁皮膜4bを形成する内輪3に高温寸法安定化処理を施している為、プラズマ溶射により局部的に高温になっても、この内輪3の寸法を維持できる。   Further, the insulating film 4b is formed of an insulating layer having an alumina content of 99% by weight or more and titanium oxide of 0.01 to 0.2% by weight, and the film thickness is 0.1 to 0.7 mm. Therefore, the insulating film 4b having the high impedance as described above can be obtained at a low cost. In the case of this example, since this insulating coating 4b is formed by plasma spraying, the temperature is locally increased by the high temperature plasma spraying gas, but the inner ring 3 forming the insulating coating 4b is subjected to high temperature dimensional stabilization treatment. Therefore, the dimensions of the inner ring 3 can be maintained even when the temperature is locally increased by plasma spraying.

又、本例の場合、前記外輪2の外周面12と両端面と13、13を合わせた部分の表面積が、上記内輪3の内周面14と両端面15、15とを合わせた部分の表面積に対して1.3倍以上である。又、転がり軸受1bの内径が100mm以上である。この為、軸受装置の高インピーダンス化とコスト低減とを、より高度に両立させる事ができる。又、内径が100mm以上の転がり軸受1bの場合、上記内周面14への溶射が行ない易く、作業性が良好となり、低コスト化を図れる。   In the case of this example, the surface area of the outer ring 2 on the outer ring 2 combined with the both end faces 13 and 13 is the surface area of the inner ring 14 on the inner ring 3 combined with both end faces 15 and 15. Is 1.3 times or more. Further, the inner diameter of the rolling bearing 1b is 100 mm or more. For this reason, higher impedance and cost reduction of the bearing device can be achieved at a higher level. Further, in the case of the rolling bearing 1b having an inner diameter of 100 mm or more, the inner peripheral surface 14 is easily sprayed, the workability is improved, and the cost can be reduced.

本発明の効果を確認する為に行なった計算に就いて説明する。この計算は、転がり軸受の外輪側にセラミックス製の絶縁皮膜を形成した場合と、内輪側に絶縁皮膜を形成した場合との、それぞれの静電容量を比較する事を目的としている。対象となる転がり軸受は、発電機や電動機で一般的に使用される深溝型玉軸受で、呼び番号が6336(内径180mm、外径380mm、幅75mm)である。この玉軸受の、外輪の外周面と両端面とを合わせた部分の表面積は142780mm2 で、内輪の内周面と両端面とを合わせた部分の表面積は77200mm2 である。この為、外輪側の表面積は内輪側の表面積に対し1.3倍以上(1.85倍)となる。 The calculation performed to confirm the effect of the present invention will be described. The purpose of this calculation is to compare the respective capacitances when a ceramic insulating film is formed on the outer ring side of the rolling bearing and when an insulating film is formed on the inner ring side. The target rolling bearing is a deep groove type ball bearing generally used in generators and electric motors, and has a nominal number 6336 (inner diameter 180 mm, outer diameter 380 mm, width 75 mm). In this ball bearing, the surface area of the portion where the outer peripheral surface and both end surfaces of the outer ring are combined is 142780 mm 2 , and the surface area of the portion where the inner peripheral surface and both end surfaces of the inner ring are combined is 77200 mm 2 . For this reason, the surface area on the outer ring side is 1.3 times or more (1.85 times) the surface area on the inner ring side.

本実施例では、先ず、絶縁皮膜の単位面積当たりの静電容量を測定した。即ち、アルミナの含有量が99.7重量%で、酸化チタンを0.04重量%含有するセラミックス製の絶縁皮膜の、単位面積(10mm×10mm)での静電容量を、膜厚が0.3mmと0.5mmとでそれぞれ測定した。これにより、図2に示す様な直線(実線及び破線)を求め、各表面積の各膜厚に於ける静電容量を、それぞれ算出した。尚、絶縁皮膜の厚さが0.3mmのものを実線で、0.5mmのものを破線で、それぞれ示す。この図2から明らかな様に、表面積が小さい内輪側に絶縁皮膜を形成する方が、静電容量を小さくできる。特に、絶縁皮膜の厚さを0.3mmとした場合には、表面積が大きい外輪側に形成する場合でも、静電容量を27nF以下には抑えられるが、同じ厚さの絶縁皮膜を内輪側に形成する場合、静電容量が15nFよりも小さくなる。又、膜厚が0.5mmの絶縁皮膜を外輪側に形成する場合、静電容量をより小さくできるが、それでも、膜厚が0.3mmの絶縁皮膜を内輪側に形成する場合よりも、静電容量が大きくなる。   In this example, first, the capacitance per unit area of the insulating film was measured. That is, the capacitance per unit area (10 mm × 10 mm) of the ceramic insulating film containing 99.7% by weight of alumina and 0.04% by weight of titanium oxide, and having a film thickness of 0. Measurements were taken at 3 mm and 0.5 mm, respectively. In this way, straight lines (solid line and broken line) as shown in FIG. 2 were obtained, and the capacitance at each film thickness for each surface area was calculated. In addition, the thing of the thickness of 0.3 mm is shown with a continuous line, and the thing of 0.5 mm is shown with a broken line, respectively. As apparent from FIG. 2, the capacitance can be reduced by forming the insulating film on the inner ring side having a small surface area. In particular, when the thickness of the insulating film is 0.3 mm, the capacitance can be suppressed to 27 nF or less even when the insulating film is formed on the outer ring side having a large surface area. When formed, the capacitance is less than 15 nF. Further, when an insulating film having a film thickness of 0.5 mm is formed on the outer ring side, the capacitance can be reduced, but still, it is less static than when an insulating film having a film thickness of 0.3 mm is formed on the inner ring side. The electric capacity increases.

この様な計算の結果から、内輪側に絶縁皮膜を形成した方が静電容量を大幅に小さくでき、高インピーダンス化を図れる事が分かる。又、上述した計算から、外輪側に絶縁皮膜を形成する場合、内輪側に絶縁皮膜を形成した転がり軸受と同等の静電容量を得る為には、絶縁皮膜の膜厚を相当大きくする必要がある事が分かる。この為、外輪側の絶縁皮膜を形成する面積が大きい事と合わせて考慮すれば、内輪側に絶縁皮膜を形成する事によるコスト低減効果が、非常に大きい事が分かる。   From the results of such calculations, it can be seen that the formation of an insulating film on the inner ring side can significantly reduce the capacitance and increase the impedance. Also, from the above calculation, when an insulating film is formed on the outer ring side, it is necessary to considerably increase the film thickness of the insulating film in order to obtain the same capacitance as a rolling bearing having an insulating film formed on the inner ring side. I understand that there is. For this reason, it can be seen that the cost reduction effect by forming the insulating film on the inner ring side is very large, considering that the area for forming the insulating film on the outer ring side is large.

本発明の実施の形態の1例を示す、転がり軸受の部分断面図。The fragmentary sectional view of the rolling bearing which shows one example of embodiment of this invention. 本発明の効果を調べる為に行なった計算の結果を示す線図。The diagram which shows the result of the calculation performed in order to investigate the effect of this invention. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 同第2例を示す、転がり軸受の部分断面図。The fragmentary sectional view of the rolling bearing which shows the 2nd example.

符号の説明Explanation of symbols

1、1a、1b 転がり軸受
2、2a 外輪
3、3a 内輪
4、4a、4b 絶縁皮膜
5、5a 外輪軌道
6、6a 内輪軌道
7 玉
8 ハウジング
9 金属層
10 鍔部
11 円筒ころ
12 外周面
13 端面
14 内周面
15 端面
16 内径側折れ曲がり連続部
17 外径側折れ曲がり連続部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Rolling bearing 2, 2a Outer ring 3, 3a Inner ring 4, 4a, 4b Insulation film 5, 5a Outer ring raceway 6, 6a Inner ring raceway 7 Ball 8 Housing 9 Metal layer 10 Hook 11 Cylindrical roller 12 Outer peripheral surface 13 End surface 14 Inner peripheral surface 15 End surface 16 Inner diameter side bent continuous portion 17 Outer diameter side bent continuous portion

Claims (9)

転がり軸受と、この転がり軸受を外嵌する金属製の相手部材とを備え、このうちの転がり軸受は、内周面に外輪軌道を形成した金属製の外輪と、この外輪の内側に配置され、外周面に内輪軌道を形成した金属製の内輪と、これら外輪軌道と内輪軌道との間に転動自在に設けられた、それぞれが金属製である複数個の転動体とを備えるものであり、上記内輪が上記相手部材に締り嵌めで嵌合される軸受装置に於いて、この内輪の上記内輪軌道を除く表面のうち、少なくとも内周面に、アルミナを主成分とするセラミックス製の絶縁皮膜を形成しており、上記内輪と上記相手部材との締め代を、この絶縁皮膜が損傷しない様に規制した軸受装置。   A rolling bearing and a metal mating member that externally fits the rolling bearing, the rolling bearing of which is disposed inside the outer ring, a metal outer ring having an outer ring raceway formed on the inner peripheral surface, A metal inner ring having an inner ring raceway formed on the outer peripheral surface, and a plurality of rolling elements each made of metal and provided between the outer ring raceway and the inner ring raceway. In a bearing device in which the inner ring is fitted into the mating member by interference fit, an insulating film made of ceramics mainly composed of alumina is formed on at least the inner peripheral surface of the inner ring except for the inner ring raceway. A bearing device that is formed and restricts a tightening margin between the inner ring and the mating member so that the insulating coating is not damaged. 内輪と相手部材との締め代は、使用時でもこの内輪の内周面を覆う絶縁皮膜に作用するフープ応力が200N/mm2 以下となる様に規制されている、請求項1に記載した軸受装置。 The bearing according to claim 1, wherein the tightening allowance between the inner ring and the mating member is regulated so that the hoop stress acting on the insulating film covering the inner peripheral surface of the inner ring is 200 N / mm 2 or less even during use. apparatus. 絶縁皮膜の絶縁抵抗値が1000MΩ以上で、同じく静電容量が27nF以下である、請求項1又は請求項2に記載した軸受装置。   The bearing device according to claim 1 or 2, wherein the insulation film has an insulation resistance value of 1000 MΩ or more and a capacitance of 27 nF or less. 絶縁皮膜が、アルミナの含有量が99重量%以上で、酸化チタンを0.01〜0.2重量%含有する絶縁層であり、膜厚が0.1〜0.7mmである、請求項3に記載した軸受装置。   The insulating film is an insulating layer having an alumina content of 99% by weight or more, 0.01 to 0.2% by weight of titanium oxide, and a film thickness of 0.1 to 0.7 mm. The bearing device described in 1. 絶縁皮膜が、アルミナの含有量が97重量%以上で、ジルコニアを0.1〜2.5重量%含有する絶縁層であり、膜厚が0.1〜0.7mmである、請求項3に記載した軸受装置。   The insulating film has an alumina content of 97% by weight or more, an insulating layer containing 0.1 to 2.5% by weight of zirconia, and a film thickness of 0.1 to 0.7 mm. The bearing device described. 絶縁皮膜がプラズマ溶射により形成されたものであり、転がり軸受を構成する両軌道輪のうち、少なくとも内輪が、高温寸法安定化処理を施されるか、或は、高温寸法安定材製である、請求項1〜5のうちの何れか1項に記載した軸受装置。   The insulating film is formed by plasma spraying, and at least the inner ring of both the bearing rings constituting the rolling bearing is subjected to high temperature dimensional stabilization treatment, or is made of a high temperature dimensional stabilizer. The bearing device according to any one of claims 1 to 5. 外輪の外周面と両端面とを合わせた部分の表面積が、内輪の内周面と両端面とを合わせた部分の表面積に対して1.3倍以上である、請求項1〜6のうちの何れか1項に記載した軸受装置。   The surface area of the part which combined the outer peripheral surface and both end surfaces of the outer ring is 1.3 times or more with respect to the surface area of the part which combined the inner peripheral surface and both end faces of the inner ring. The bearing device described in any one item. 絶縁皮膜が内輪の表面に直接形成した1層のみから成り、転がり軸受の内径が100mm以上である、請求項1〜7のうちの何れか1項に記載した軸受装置。   The bearing device according to any one of claims 1 to 7, wherein the insulating film is formed of only one layer formed directly on the surface of the inner ring, and the inner diameter of the rolling bearing is 100 mm or more. インバータ制御される電動機或は発電機の回転支持部に組み込まれる、請求項1〜8のうちの何れか1項に記載した軸受装置。
The bearing device according to any one of claims 1 to 8, wherein the bearing device is incorporated in a rotation support portion of an electric motor or a generator controlled by an inverter.
JP2006168605A 2005-10-27 2006-06-19 Bearing device Pending JP2007333172A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006168605A JP2007333172A (en) 2006-06-19 2006-06-19 Bearing device
CN2006800265383A CN101228362B (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
PCT/JP2006/321434 WO2007049727A1 (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
EP06822403.9A EP1950436B1 (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
US11/994,284 US8425120B2 (en) 2005-10-27 2006-10-26 Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168605A JP2007333172A (en) 2006-06-19 2006-06-19 Bearing device

Publications (1)

Publication Number Publication Date
JP2007333172A true JP2007333172A (en) 2007-12-27

Family

ID=38932823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168605A Pending JP2007333172A (en) 2005-10-27 2006-06-19 Bearing device

Country Status (1)

Country Link
JP (1) JP2007333172A (en)

Similar Documents

Publication Publication Date Title
US8425120B2 (en) Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
US20180128317A1 (en) Coating method for bearing ring
JP2009287658A (en) Electrolytic corrosion preventive insulating rolling bearing
JP6762357B2 (en) Insulated bearing
JP2008169959A (en) Insulated rolling bearing for preventing electric corrosion
JP2007333172A (en) Bearing device
JP2007298060A (en) Rolling bearing
JP2007333031A (en) Insulated roller bearing for electric corrosive prevention
JP2009243572A (en) Split bearing
US10612625B2 (en) Planet wheel assembly for a planetary gear
JP2004308735A (en) Electric corrosion-proof bearing
JP2007170673A (en) Electrolytic corrosion preventive type rolling bearing
JP4795888B2 (en) Method for manufacturing bearing member raceway and method for manufacturing rolling bearing
JP2007292094A (en) Insulated rolling bearing for preventing electric erosion
JP2008057691A (en) Ball bearing
WO2007043249A1 (en) Rolling bearing and main shaft supporting structure for main motor of railway vehicle
JP5237038B2 (en) Anti-creep rolling bearing
KR102678181B1 (en) electrically insulated rolling bearings
WO2022270295A1 (en) Bearing device and electric motor
JP2006226391A (en) Rolling bearing
JP2011117607A (en) Electrolytic-corrosion-resistant rolling bearing
JP2009243618A (en) Rolling bearing
JP2007107725A (en) Electrolytic corrosion prevention rolling bearing
WO2007043298A1 (en) Anti-electrolytic corrosion rolling bearing
JP7065739B2 (en) Axle bearing equipment