JP2007332445A - Electroless plating method and electroless plating apparatus - Google Patents

Electroless plating method and electroless plating apparatus Download PDF

Info

Publication number
JP2007332445A
JP2007332445A JP2006167867A JP2006167867A JP2007332445A JP 2007332445 A JP2007332445 A JP 2007332445A JP 2006167867 A JP2006167867 A JP 2006167867A JP 2006167867 A JP2006167867 A JP 2006167867A JP 2007332445 A JP2007332445 A JP 2007332445A
Authority
JP
Japan
Prior art keywords
substrate
cleaning
electroless plating
wiring
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167867A
Other languages
Japanese (ja)
Inventor
Chikaaki O
新明 王
Akira Owatari
晃 尾渡
Haruko Ono
晴子 大野
Daisuke Takagi
大輔 高木
Tomoatsu Ishibashi
知淳 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006167867A priority Critical patent/JP2007332445A/en
Priority to US11/724,305 priority patent/US20070224811A1/en
Publication of JP2007332445A publication Critical patent/JP2007332445A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless plating method which can form a protective film with a uniform thickness on the surface of wires by completely removing an anticorrosive agent and/or a metal complex from the surface of a substrate, prior to catalyst-imparting treatment and/or an electroless plating step. <P>SOLUTION: The electroless plating method comprises the steps of: preparing a substrate having embedded wiring formed in the inner part; making a washing member contact with the surface or both sides of the substrate in a wet state; making the washing member supply cleaning fluid onto the surface or both sides of the substrate while relatively moving them to pre-wash the substrate; making the catalyst-imparting liquid contact with the surface of the pre-washed substrate to impart a catalyst onto the surface of the wiring; and then making an electroless plating solution contact with the surface of the substrate to form the protective film selectively on the surface of the wiring. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無電解めっき方法及び無電解めっき装置に関し、特に半導体ウェーハ等の基板の表面に設けた配線用凹部に銅等を配線材料(導電体)として埋め込んで構成した埋込み配線の露出表面に、該配線の露出表面を保護する保護膜を選択的に形成するのに使用される無電解めっき方法及び無電解めっき装置に関する。本発明の無電解めっき方法及び無電解めっき装置は、例えばMRAMの磁性膜製造工程やフラットパネル製造工程などにも適用される。   The present invention relates to an electroless plating method and an electroless plating apparatus, and more particularly to an exposed surface of an embedded wiring configured by embedding copper or the like as a wiring material (conductor) in a wiring recess provided on the surface of a substrate such as a semiconductor wafer. The present invention relates to an electroless plating method and an electroless plating apparatus used to selectively form a protective film for protecting an exposed surface of the wiring. The electroless plating method and electroless plating apparatus of the present invention are also applied to, for example, a magnetic film manufacturing process of MRAM and a flat panel manufacturing process.

半導体基板の配線形成プロセスとして、トレンチやビアホール等の配線用凹部に金属(導電体)を埋込むようにしたプロセス(いわゆる、ダマシンプロセス)が使用されつつある。これは、層間絶縁膜に予め形成したトレンチやビアホールに、アルミニウム、近年では銅や銀等の金属をめっきによって埋め込んだ後、余分な金属を化学機械的研磨(CMP)によって除去し平坦化するプロセス技術である。   As a wiring formation process of a semiconductor substrate, a process (so-called damascene process) in which a metal (conductor) is buried in a wiring recess such as a trench or a via hole is being used. This is a process in which aluminum, in recent years copper or silver, is buried in trenches or via holes previously formed in the interlayer insulating film by plating, and then the excess metal is removed by chemical mechanical polishing (CMP) and planarized. Technology.

近年、半導体デバイスの高速化・微細化の加速とともに、アルミニウムを代わって銅配線/低誘電率層間絶縁膜材(Low−K)のダマシンプロセス(配線の埋込み)は益々重要になって来ている。更に、デバイスの信頼性を高めるには、銅配線のエレクトロマイグレーション(EM)耐性を増強させることが不可欠である。対策の一つとして、銅配線上に選択的にコバルト(Co)合金膜を形成することで、EMの耐性を向上させるために顕著な効果が実証されている。また、形成されたコバルト膜が銅または酸素(O)の拡散を防ぐ役割を十分に果たせれば、従来のプロセスに使われる誘電率が高い絶縁材のキャップ層を省くことが可能となり、各配線層間の実効誘電率を一層下げることが期待できる。成膜の方法について、無電解めっき法は金属と絶縁材を混在する表面に対して、金属上のみに選択的に成膜できる固有な性質を持つため、銅配線上へコバルト合金薄膜を形成するのに最適な方法と考えられる。以上のことから、無電解めっきによるコバルト合金膜形成する(無電解キャップめっき)技術は、次世代高信頼性の銅配線構築における最も有望な新規プロセスと考えられる。 In recent years, with the acceleration of high speed and miniaturization of semiconductor devices, the damascene process (wiring embedding) of copper wiring / low dielectric constant interlayer insulating film material (Low-K) instead of aluminum has become more and more important. . Furthermore, it is indispensable to increase the electromigration (EM) resistance of the copper wiring in order to increase the reliability of the device. As one of the countermeasures, a remarkable effect has been demonstrated in order to improve the resistance of EM by selectively forming a cobalt (Co) alloy film on the copper wiring. In addition, if the formed cobalt film can sufficiently play a role of preventing diffusion of copper or oxygen (O 2 ), it is possible to omit a cap layer of an insulating material having a high dielectric constant used in a conventional process. It can be expected to further reduce the effective dielectric constant between the wiring layers. Regarding the method of film formation, the electroless plating method has a unique property that can be selectively formed only on the metal with respect to the surface where the metal and the insulating material are mixed, so a cobalt alloy thin film is formed on the copper wiring. It is considered to be the most suitable method. From the above, the technology for forming a cobalt alloy film by electroless plating (electroless cap plating) is considered to be the most promising new process in the construction of next-generation highly reliable copper wiring.

図24(a)に従来の銅ダマシン配線構造を示す。通常、銅配線513とその隣接する、例えばSiN、SiCまたはSiCNからなる絶縁キャップ層514との密着性が金属同士に比べて低いため、その界面での原子の移動は、配線513中または配線513とそれを取り囲むバリアメタル層515との界面より活発になる傾向を持っている。配線513の微細化とともに、配線513に流れる電流密度が増える時、銅配線513と絶縁キャップ層514との境界に沿って原子移動の経路に最もなり易く、その界面は、EMによる不良(ボイドの形成)の発生箇所になる確率が高い。   FIG. 24A shows a conventional copper damascene wiring structure. Usually, the adhesion between the copper wiring 513 and the adjacent insulating cap layer 514 made of, for example, SiN, SiC, or SiCN is lower than that of metals, and therefore the movement of atoms at the interface is caused in the wiring 513 or the wiring 513. And the barrier metal layer 515 surrounding it tend to be more active. When the current density flowing in the wiring 513 increases with the miniaturization of the wiring 513, it is most likely to become the path of atom movement along the boundary between the copper wiring 513 and the insulating cap layer 514, and the interface is defective due to EM (void of voids). The probability of becoming a formation) is high.

一つの対策案として、図24(b)に示すように、銅配線513と絶縁キャップ層514との間に、新たな合金薄膜516を導入することが提案されている。この合金薄膜516をキャップメタルという。このキャップメタル516は、銅配線513および絶縁キャップ層514のそれぞれと優れた密着性を有し、それの導入により銅配線513のEM耐性が大幅に改善される。また、このキャップメタル516に銅および酸素(O)の拡散に対して十分な耐性を持たせれば、図24(c)に示すように、現在使用している絶縁キャップ層514の代わりに保護膜517として使用が可能となる。一般に、絶縁キャップ層514は、誘電率が高いため、それを積層しないことで、各配線層間の電荷容量(C)を低減することができ、回路のRC遅延の抑制により信号の伝達の高速化に寄与する。更には、ノイズが低減され、発熱を低減させることも出来る。 As one countermeasure, it has been proposed to introduce a new alloy thin film 516 between the copper wiring 513 and the insulating cap layer 514 as shown in FIG. This alloy thin film 516 is called a cap metal. The cap metal 516 has excellent adhesiveness with each of the copper wiring 513 and the insulating cap layer 514, and the introduction of the cap metal 516 greatly improves the EM resistance of the copper wiring 513. Further, if the cap metal 516 has sufficient resistance to copper and oxygen (O 2 ) diffusion, as shown in FIG. 24C, the cap metal 516 is protected instead of the insulating cap layer 514 currently used. The film 517 can be used. In general, since the insulating cap layer 514 has a high dielectric constant, it is possible to reduce the charge capacity (C) between the wiring layers by not stacking the insulating cap layer 514, and to increase the signal transmission speed by suppressing the RC delay of the circuit. Contribute to. Furthermore, noise can be reduced and heat generation can be reduced.

一般に、配線513の表面に保護膜517を選択的に形成するには、先ず、図25(a)に示すように、CMPによって、絶縁膜518内の配線513の表面を露出させる。この時、配線513の表面には銅酸化膜519aが形成され、また、絶縁膜518上に残渣519bが残ることがある。そこで、図25(b)に示すように、表面を洗浄して、銅酸化膜519a及び残渣519bを除去し、次に、図25(c)に示すように、配線513の表面に、Pd等の触媒(核)521を付与する。そして、表面に、例えば無電解CoWPめっきを行って、図25(d)に示すように、配線513の表面にCoWP合金からなる保護膜517を選択的に形成する。この時、保護膜517や絶縁膜518の表面に金属残渣523が残ることがある。   In general, in order to selectively form the protective film 517 on the surface of the wiring 513, first, as shown in FIG. 25A, the surface of the wiring 513 in the insulating film 518 is exposed by CMP. At this time, a copper oxide film 519a is formed on the surface of the wiring 513, and a residue 519b may remain on the insulating film 518 in some cases. Therefore, as shown in FIG. 25B, the surface is cleaned to remove the copper oxide film 519a and the residue 519b, and then, as shown in FIG. The catalyst (nucleus) 521 is provided. Then, for example, electroless CoWP plating is performed on the surface, and a protective film 517 made of a CoWP alloy is selectively formed on the surface of the wiring 513 as shown in FIG. At this time, a metal residue 523 may remain on the surface of the protective film 517 or the insulating film 518.

そこで、図25(e)に示すように、めっき後洗浄を行って、保護膜517や絶縁膜518の表面に残った金属残渣523を除去し、しかる後、表面を純水で洗浄し乾燥させて、図25(f)に示すように、表面を安定化させた保護膜517を得るようにしている。
被めっき対象の特徴および目的によって、あるステップの間に特殊な処理工程を追加または削除されることもある。以下、幾つかの基本な処理ステップについて説明する。
Therefore, as shown in FIG. 25E, cleaning after plating is performed to remove the metal residue 523 remaining on the surface of the protective film 517 and the insulating film 518, and then the surface is cleaned with pure water and dried. Thus, as shown in FIG. 25F, a protective film 517 having a stabilized surface is obtained.
Depending on the characteristics and purpose of the object to be plated, special processing steps may be added or deleted during certain steps. Hereinafter, some basic processing steps will be described.

無電解めっきは、銅ダマシン配線に使われる電解めっきと違って、外部からの電子供給を使用せず、めっき対象物を単に金属イオンを含むめっき溶液に浸すことによりその金属イオンを還元させ、金属皮膜として析出させる方法である。金属イオンを還元させるためには、めっき溶液中に金属イオンの他に、電子を放出するための還元剤成分が必須となっている。次亜燐酸塩を還元剤としためっき溶液系におけるCoWP(コバルト、タングステン、リン)の合金の皮膜を析出する場合の基本的な化学反応式を以下に示す。   Unlike the electroplating used for copper damascene wiring, electroless plating does not use external electron supply, but reduces the metal ions by simply immersing the plating object in a plating solution containing metal ions. It is a method of depositing as a film. In order to reduce metal ions, a reducing agent component for releasing electrons is essential in addition to metal ions in the plating solution. A basic chemical reaction formula for depositing a CoWP (cobalt, tungsten, phosphorus) alloy film in a plating solution system using hypophosphite as a reducing agent is shown below.

・次亜燐酸イオンの酸化反応
PO +OH→HPO +H+e
・コバルトイオンの還元反応
Co+2HPO +OH→Co+HPO +H
・リンイオンの還元反応
PO +e→P↓+2OH
・タングステンイオンの還元反応
WO 2++6HPO +4HO→W+6HPO +3H+2H
・水素の生成反応
+e+H→H
Oxidation reaction of hypophosphite ion H 2 PO 2 + OH → H 2 PO 3 + H + e
Cobalt ion reduction reaction Co 2 + 2H 2 PO 2 + OH → Co + H 2 PO 3 + H 2
Phosphorus ion reduction reaction H 2 PO 2 + e → P ↓ + 2OH
・ Reduction reaction of tungsten ions WO 2 2+ + 6H 2 PO 2 + 4H 2 O → W + 6H 2 PO 3 + 3H 2 + 2H +
・ Hydrogen generation reaction H + + e + H → H 2

以上のように、還元剤の次亜燐酸塩の酸化反応により電子を放出し、反応表面にコバルト、リンおよびタングステンイオンがその電子を獲得して共析反応を行い、合金の膜を形成する。その共析反応と共に、通常水素の還元反応も進行する。
めっき溶液における代表的な還元剤は、前述の次亜燐酸塩のほかに、有機系のジメチルアミンボラン(DMAB)がある。DMABを還元剤として使用するめっき溶液は、次亜燐酸塩のめっき溶液と異なる挙動を示す。
As described above, electrons are released by the oxidation reaction of the hypophosphite of the reducing agent, and cobalt, phosphorus, and tungsten ions acquire the electrons on the reaction surface and perform a eutectoid reaction to form an alloy film. Along with the eutectoid reaction, a reduction reaction of hydrogen usually proceeds.
A typical reducing agent in the plating solution is organic dimethylamine borane (DMAB) in addition to the hypophosphite described above. Plating solutions that use DMAB as a reducing agent behave differently than hypophosphite plating solutions.

無電解めっきでは、析出を開始させるためには、初期の被覆表面が還元剤の酸化反応に対して十分な触媒活性を持っていなければならない。次亜燐酸塩のアノード酸化反応に対して、銅が非常に低い触媒活性を示すため、原理的にめっき反応が起こりえないことになる。そのため、銅表面にコバルト合金を析出させるために、触媒活性が高いPdを使用することは一般的である。つまり、めっき反応を開始する前に、被覆表面にPdイオンを含む前処理液での触媒処理が必要となる。触媒処理は置換反応であり、反応式は以下の通りである。
Cu→Cu2++e
Pd2++e→Pd
In electroless plating, the initial coating surface must have sufficient catalytic activity for the oxidizing reaction of the reducing agent in order to initiate deposition. Since copper exhibits a very low catalytic activity for the hypophosphite anodic oxidation reaction, in principle, a plating reaction cannot occur. Therefore, it is common to use Pd having high catalytic activity in order to deposit a cobalt alloy on the copper surface. That is, before starting the plating reaction, a catalyst treatment with a pretreatment liquid containing Pd ions on the coating surface is required. The catalyst treatment is a substitution reaction, and the reaction formula is as follows.
Cu → Cu 2+ + e
Pd 2+ + e → Pd

通常、Pdは、絶縁材であるSiOやSiOC等のLow−K材の表面では置換反応を起こさないため、無電解めっき反応は銅配線上でしか発生しない、いわゆる選択的成膜が出来るプロセスになる。 Normally, Pd does not cause a substitution reaction on the surface of a low-K material such as SiO 2 or SiOC, which is an insulating material, and therefore, an electroless plating reaction occurs only on a copper wiring, so-called selective film formation process. become.

前述のように、Pd触媒を使用する無電解めっきは、原理的に選択的な成膜になるが、実際、図25(a)に示すように、CMP工程後の(層間)絶縁膜518上にスラリ残渣519bが残ったり、配線513上に銅酸化膜519aが形成されたり、ウォータマークなどの不純物が残る場合がある。その不純物の上にPd置換反応またはめっき反応が起こると、配線の間の異常析出物は配線のリークを引き起こすだけでなく、表面ディフェクトの増加の原因にもなる。そのため、めっき処理前または処理後に適切な表面の洗浄処理を行う事は本プロセス性能の向上に不可欠な手段となる。   As described above, the electroless plating using the Pd catalyst is a selective film formation in principle, but in fact, as shown in FIG. 25A, on the (interlayer) insulating film 518 after the CMP process. In some cases, a slurry residue 519b remains, a copper oxide film 519a is formed on the wiring 513, and impurities such as a watermark remain. When a Pd substitution reaction or a plating reaction occurs on the impurities, abnormal precipitates between the wirings cause not only wiring leakage but also an increase in surface defects. Therefore, performing an appropriate surface cleaning process before or after the plating process is an indispensable means for improving the process performance.

銅配線にあっては、平坦化後、その配線の表面が外部に露出しており、この上に埋込み配線を形成する際、例えば次工程の層間絶縁膜形成プロセスにおけるSiO形成時の表面酸化やビアホールを形成するためのSiOエッチング等に際して、ビアホール底に露出した配線のエッチャントやレジスト剥離等による表面汚染が懸念されている。 In copper wiring, the surface of the wiring is exposed to the outside after planarization, and when forming a buried wiring on this, for example, surface oxidation during SiO 2 formation in the interlayer insulating film forming process in the next step In addition, there is a concern about surface contamination due to etchant of the wiring exposed at the bottom of the via hole, resist peeling, or the like during SiO 2 etching for forming the via hole.

このため、前述のように、銅や銀等の配線材料との接合が強く、しかも比抵抗(ρ)が低い、例えば無電解めっきによって得られるCo(コバルト)またはCo合金層や、Ni(ニッケル)またはNi合金層で配線の表面を選択的に覆って配線を保護することが提案されている。   For this reason, as described above, the bonding with a wiring material such as copper or silver is strong and the specific resistance (ρ) is low, for example, Co (cobalt) or Co alloy layer obtained by electroless plating, Ni (nickel) It has been proposed to protect the wiring by selectively covering the surface of the wiring with a Ni alloy layer.

図26(a)〜図26(d)は、半導体装置における銅配線形成例を工程順に示す。先ず図26(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上に、例えばSiOからなる酸化膜やLow−K材膜等の絶縁膜(層間絶縁膜)2を堆積し、この絶縁膜2の内部に、例えばリソグラフィ・エッチング技術により、配線用の微細凹部としてのビアホール3と配線溝4を形成し、その上にTaN等からなるバリア層5、更にその上に電解めっきの給電層としてのシード層6をスパッタリング等により形成する。 26A to 26D show an example of forming a copper wiring in a semiconductor device in the order of steps. First, as shown in FIG. 26A, an insulating film (interlayer insulating film) such as an oxide film made of SiO 2 or a Low-K material film is formed on the conductive layer 1a on the semiconductor substrate 1 on which the semiconductor element is formed. ) 2 is deposited, and via holes 3 and wiring grooves 4 as fine concave portions for wiring are formed in the insulating film 2 by, for example, lithography / etching technique, and a barrier layer 5 made of TaN or the like is formed thereon, and A seed layer 6 as a power feeding layer for electrolytic plating is formed thereon by sputtering or the like.

そして、図26(b)に示すように、基板Wの表面に銅めっきを施すことで、基板Wのビアホール3及び配線溝4内に銅を充填させるとともに、絶縁膜2上に銅層7を堆積させる。その後、化学機械的研磨(CMP)などにより、絶縁膜2上のバリア層5、シード層6及び銅層7を除去して、ビアホール3及び配線溝4内に充填させた銅層7の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図26(c)に示すように、絶縁膜2の内部にシード層6と銅層7からなる配線(銅配線)8を形成する。   Then, as shown in FIG. 26 (b), copper is plated on the surface of the substrate W to fill the via holes 3 and the wiring grooves 4 of the substrate W with copper, and the copper layer 7 is formed on the insulating film 2. Deposit. Thereafter, the barrier layer 5, the seed layer 6 and the copper layer 7 on the insulating film 2 are removed by chemical mechanical polishing (CMP) or the like, and the surface of the copper layer 7 filled in the via hole 3 and the wiring groove 4 The surface of the insulating film 2 is substantially flush with the surface. Thereby, as shown in FIG. 26C, a wiring (copper wiring) 8 composed of the seed layer 6 and the copper layer 7 is formed inside the insulating film 2.

次に、図26(d)に示すように、基板Wの表面に無電解めっきを施し、配線8の露出表面に、Co合金やNi合金等からなる保護膜9を選択的に形成し、これによって、配線8の表面を保護膜9で覆って保護する。   Next, as shown in FIG. 26 (d), the surface of the substrate W is subjected to electroless plating, and a protective film 9 made of Co alloy, Ni alloy or the like is selectively formed on the exposed surface of the wiring 8, Thus, the surface of the wiring 8 is covered and protected by the protective film 9.

一般的な無電解めっきによって、例えばCoWP合金膜からなる保護膜(蓋材)9を(銅)配線8の表面に選択的に形成する工程を、図27を参照して説明する。先ず、CMP等の平坦化処理を施して配線8を露出させた半導体ウェーハ等の基板W(図26(c)参照)を用意する。この基板Wを、例えば常温の希硫酸または希塩酸中に1分程度浸漬させて、絶縁膜2の表面の金属酸化膜や銅等CMP残渣等の不純物を除去し、これによって、基板Wの前洗浄を行う。そして、基板Wの表面を純水等で洗浄(リンス)した後、例えば常温のPdCl/HClまたはPdSO/HSO混合溶液中に基板Wを1分間程度浸漬させ、これにより、配線8の表面に触媒としてのPdを付着させて配線8の露出表面を活性化させる。 A process of selectively forming a protective film (lid material) 9 made of, for example, a CoWP alloy film on the surface of the (copper) wiring 8 by general electroless plating will be described with reference to FIG. First, a substrate W (see FIG. 26C) such as a semiconductor wafer in which the wiring 8 is exposed by performing a planarization process such as CMP is prepared. The substrate W is immersed in, for example, room temperature dilute sulfuric acid or dilute hydrochloric acid for about 1 minute to remove impurities such as a metal oxide film and a CMP residue such as copper on the surface of the insulating film 2, thereby pre-cleaning the substrate W I do. Then, after cleaning (rinsing) the surface of the substrate W with pure water or the like, for example, the substrate W is immersed in a PdCl 2 / HCl or PdSO 4 / H 2 SO 4 mixed solution at room temperature for about 1 minute, thereby Pd as a catalyst is attached to the surface of 8 to activate the exposed surface of the wiring 8.

次に、基板Wの表面を純水等で洗浄(リンス)した後、例えば液温が80℃のCoWPめっき液中に基板Wを120秒程度浸漬させて、活性化させた配線8の表面に選択的な無電解めっきを施し、しかる後、基板Wの表面を純水等で洗浄(リンス)する。これによって、図26(d)に示すように、配線8の露出表面に、CoWP合金膜からなる保護膜9を選択的に形成して配線8を保護する。   Next, after cleaning (rinsing) the surface of the substrate W with pure water or the like, for example, the substrate W is immersed in a CoWP plating solution having a liquid temperature of 80 ° C. for about 120 seconds to activate the surface of the activated wiring 8. Selective electroless plating is performed, and then the surface of the substrate W is washed (rinsed) with pure water or the like. As a result, as shown in FIG. 26D, the protective film 9 made of a CoWP alloy film is selectively formed on the exposed surface of the wiring 8 to protect the wiring 8.

基板の表面にCMP(化学機械的研磨)を施し該表面を平坦化して形成された配線(銅配線)にあっては、次の成膜工程で処理するまで、BTA(ベンゾトリアゾール)などの防食剤で配線表面を腐食から保護することが広く行われている。この防食剤の一部分は、配線金属に結合して金属錯体を形成し、これによって配線を腐食から防止する。この場合、次の成膜工程の直前に、防食剤及び/または金属錯体を基板の表面から完全に除去する必要がある。次の成膜工程が基板の表面に絶縁材のバリア層をCVDで形成する場合、前処理として行われるプラズマ洗浄やUV照射などの乾式処理で、基板の表面の防食剤及び/または金属錯体を除去することができる。   For wiring (copper wiring) formed by applying CMP (Chemical Mechanical Polishing) to the surface of the substrate and planarizing the surface, anticorrosion such as BTA (benzotriazole) is used until it is processed in the next film formation process. It is widely used to protect the wiring surface from corrosion with an agent. A portion of this anticorrosive agent binds to the wiring metal to form a metal complex, thereby preventing the wiring from corrosion. In this case, it is necessary to completely remove the anticorrosive and / or the metal complex from the surface of the substrate immediately before the next film forming step. When the next film-forming process forms a barrier layer of an insulating material on the surface of the substrate by CVD, the anticorrosive agent and / or the metal complex on the surface of the substrate is removed by dry processing such as plasma cleaning or UV irradiation performed as a pretreatment. Can be removed.

しかし、次の成膜工程が配線の露出表面に保護膜を選択的に形成する無電解めっきの場合、基板の表面に向けて処理液を噴射するか、または基板を処理液中に浸漬させて基板を洗浄する前洗浄(前処理)では、防食剤及び/または金属錯体の配線表面に対する付着力が一般に強いため、配線表面の防食剤及び/または金属錯体の除去が十分でない場合がある。その結果、洗浄後の配線表面の一部に防食剤及び/または金属錯体が残り、これが、次の工程の触媒付与処理及び/または無電解めっき処理の阻害となって、無電解めっきによって配線表面に成膜された保護膜の膜厚が不均一となる。   However, in the case of electroless plating in which the next film formation process selectively forms a protective film on the exposed surface of the wiring, the processing liquid is sprayed toward the surface of the substrate or the substrate is immersed in the processing liquid. In the pre-cleaning (pretreatment) for cleaning the substrate, the adhesion of the anticorrosive agent and / or the metal complex to the wiring surface is generally strong, and thus the anticorrosive agent and / or the metal complex on the wiring surface may not be sufficiently removed. As a result, an anticorrosive and / or a metal complex remains on a part of the cleaned wiring surface, which hinders the catalyst application treatment and / or the electroless plating treatment in the next step, and causes the wiring surface to be removed by electroless plating. The film thickness of the protective film formed on the film becomes non-uniform.

また、基板の表面に向けて処理液を噴射して基板の前洗浄(前処理)を行う場合、基板全面を有効に洗浄するために、多数の噴射ノズルから処理液を噴射させることが一般に行われている。そのため、1回の処理で使用する処理液(薬液)の量が多くなり、コスト的に不利となる。一方、基板を処理液中に浸漬させて基板の前洗浄(前処理)を行う場合、処理液は、一般に循環させながら再使用されるため、処理液中に混入した不純物が基板の表面に再付着して洗浄効率が落ちることがある。また、洗浄処理に要する時間も一般に長くなる。   In addition, when performing pre-cleaning (pre-processing) of the substrate by spraying the processing liquid toward the surface of the substrate, it is generally performed to spray the processing liquid from a large number of spray nozzles in order to effectively clean the entire surface of the substrate. It has been broken. For this reason, the amount of processing liquid (chemical solution) used in one processing increases, which is disadvantageous in terms of cost. On the other hand, when the substrate is immersed in the processing solution to perform pre-cleaning (pre-processing) of the substrate, the processing solution is generally reused while being circulated, so that impurities mixed in the processing solution are regenerated on the surface of the substrate. Adhesion may reduce cleaning efficiency. In addition, the time required for the cleaning process is generally longer.

本発明は上記事情に鑑みて為されたもので、触媒付与処理及び/または無電解めっきに先立って、基板の表面から防食剤及び/または金属錯体を完全に除去して、配線表面に均一な膜厚の保護膜を成膜できるようにした無電解めっき方法及び無電解めっき装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and prior to the catalyst application treatment and / or electroless plating, the anticorrosive agent and / or metal complex is completely removed from the surface of the substrate so that the surface of the wiring is uniform. An object of the present invention is to provide an electroless plating method and an electroless plating apparatus capable of forming a protective film having a thickness.

請求項1に記載の発明は、内部に埋込み配線を形成した基板を用意し、ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に前処理液を供給して前処理を行い、しかる後、基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成することを特徴とする無電解めっき方法である。   According to the first aspect of the present invention, a substrate having an embedded wiring formed therein is prepared, the cleaning member is brought into contact with the surface or both surfaces of the wet substrate, and both the surfaces are moved relative to each other while moving the two relative to each other. In the electroless plating method, the pretreatment liquid is supplied to the substrate, and then the substrate surface is brought into contact with the electroless plating liquid to selectively form a protective film on the surface of the wiring. is there.

この発明によれば、配線表面に、触媒を付与することなく直接保護膜を成膜したり、基板表面の洗浄と配線表面への触媒付与処理を一つの前処理液を使用して同時に行った後に配線表面に保護膜を成膜したりする場合に、無電解めっきによる成膜に先立って、前処理液による化学的作用と洗浄部材による機械的作用(スクラブ洗浄)を組合せた前処理で基板の表面に残った防食剤及び/または金属錯体を完全に除去することができる。しかも、基板の表面に洗浄部材を接触させ、両者を相対的に移動させることで、基板の全面に亘る前処理を行うことができる。   According to the present invention, a protective film is directly formed on the wiring surface without applying a catalyst, or the substrate surface is washed and the catalyst is applied to the wiring surface simultaneously using one pretreatment liquid. When a protective film is to be formed later on the wiring surface, the substrate is subjected to pretreatment that combines the chemical action by the pretreatment liquid and the mechanical action by the cleaning member (scrub cleaning) prior to film formation by electroless plating. The anticorrosive and / or metal complex remaining on the surface of the metal can be completely removed. In addition, pretreatment over the entire surface of the substrate can be performed by bringing the cleaning member into contact with the surface of the substrate and relatively moving both of them.

請求項2に記載の発明は、前記前処理後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に基板の表面を無電解めっき液に接触させることを特徴とする請求項1記載の無電解めっき方法である。
これにより、前処理から無電解めっきを開始するまでの間に、配線の表面に酸化膜が再形成されたり、ウォータマークが形成されたりするのを抑えて、保護膜(めっき膜)に欠陥の生じることを防止することを目的としている。
The invention according to claim 2 is characterized in that the surface of the substrate after the pretreatment is rinsed with pure water, and the surface of the substrate is brought into contact with an electroless plating solution before the surface of the substrate is completely dried. The electroless plating method according to claim 1.
As a result, it is possible to suppress the formation of an oxide film on the surface of the wiring or the formation of a watermark between the pretreatment and the start of electroless plating, and to prevent defects in the protective film (plating film). Its purpose is to prevent it from occurring.

請求項3に記載の発明は、内部に埋込み配線を形成した基板を用意し、ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に洗浄液を供給して基板の前洗浄を行い、前洗浄後の基板の表面を触媒付与液に接触させて配線の表面に触媒を付与し、しかる後、基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成することを特徴とする無電解めっき方法である。   According to a third aspect of the present invention, a substrate having an embedded wiring formed therein is prepared, the cleaning member is brought into contact with the surface or both surfaces of the wet substrate, and both the surfaces are moved while relatively moving both. The substrate is pre-cleaned by supplying a cleaning solution to the substrate, and the surface of the substrate after the pre-cleaning is brought into contact with the catalyst applying solution to apply the catalyst to the surface of the wiring. Then, the electroless plating method is characterized in that a protective film is selectively formed on the surface of the wiring.

この発明によれば、配線表面に触媒を付与した後に保護膜を成膜する場合に、配線表面に触媒を付与する処理に先立って、洗浄液による化学的作用と洗浄部材による機械的作用を組合せた前洗浄で基板の表面に残った防食剤及び/または金属錯体を完全に除去して、配線表面により均一に触媒を付与し、しかも配線表面に防食剤及び/または金属錯体がない状態で保護膜を成膜することができる。   According to this invention, when the protective film is formed after applying the catalyst to the wiring surface, the chemical action by the cleaning liquid and the mechanical action by the cleaning member are combined prior to the process of applying the catalyst to the wiring surface. The anti-corrosion agent and / or metal complex remaining on the surface of the substrate by the pre-cleaning is completely removed, the catalyst is uniformly applied to the wiring surface, and the protective film is in a state where there is no anti-corrosion agent and / or metal complex on the wiring surface. Can be formed.

請求項4に記載の発明は、前記前洗浄後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に基板の表面を触媒付与液に接触させることを特徴とする請求項3記載の無電解めっき方法である。
これにより、前洗浄処理から触媒付与処理を開始するまでの間に、配線表面に酸化膜が再形成されたり、ウォータマークが形成されたりするのを抑えて、配線表面に触媒を均一に付与し、その後の無電解めっきで成膜される保護膜(めっき膜)に欠陥の生じることを防止することができる。
The invention according to claim 4 is characterized in that the surface of the substrate after the pre-cleaning is rinsed with pure water, and the surface of the substrate is brought into contact with the catalyst applying liquid before the surface of the substrate is completely dried. Item 4. The electroless plating method according to Item 3.
This prevents the formation of an oxide film on the wiring surface or the formation of a watermark between the pre-cleaning process and the start of the catalyst application process, thereby uniformly applying the catalyst to the wiring surface. Then, it is possible to prevent a defect from occurring in the protective film (plating film) formed by subsequent electroless plating.

請求項5に記載の発明は、ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に前処理液を供給して前処理を行う前処理ユニットと、基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成する無電解めっきユニットを有することを特徴とする無電解めっき装置である。   In the invention according to claim 5, the cleaning member is brought into contact with the surface or both surfaces of the wet substrate, and the pretreatment is performed by supplying the pretreatment liquid to the surface or both surfaces of the substrate while relatively moving both of them. An electroless plating apparatus comprising: a pretreatment unit; and an electroless plating unit that selectively forms a protective film on a surface of a wiring by bringing a surface of a substrate into contact with an electroless plating solution.

請求項6に記載の発明は、ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に洗浄液を供給して基板の前洗浄を行う前洗浄ユニットと、前洗浄後の基板の表面を触媒付与液に接触させて配線の表面に触媒を付与する触媒付与ユニットと、基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成する無電解めっきユニットを有することを特徴とする無電解めっき装置である。   According to the sixth aspect of the present invention, the cleaning member is brought into contact with the surface or both surfaces of the wet substrate, and the substrate is pre-cleaned by supplying a cleaning liquid to the surface or both surfaces of the substrate while relatively moving both of them. A pre-cleaning unit, a catalyst-applying unit that contacts the surface of the substrate after pre-cleaning with the catalyst-applying solution, and a catalyst on the surface of the wiring, and a surface of the substrate that contacts the electroless plating solution to protect the surface of the wiring An electroless plating apparatus having an electroless plating unit that selectively forms a film.

請求項7に記載の発明は、基板を洗浄液中に浸漬させるか、または基板に向けて洗浄液を噴射して基板を洗浄する洗浄ユニットを更に有することを特徴とする請求項5または6記載の無電解めっき装置である。
これにより、前処理ユニットと洗浄ユニット、または前洗浄ユニットと洗浄ユニットとを組合せたマルチステップ処理を行って、基板の洗浄効果をより高めることができる。
The invention described in claim 7 further includes a cleaning unit for cleaning the substrate by immersing the substrate in the cleaning liquid or spraying the cleaning liquid toward the substrate. Electrolytic plating apparatus.
Thereby, the multi-step process which combined the pre-processing unit and the washing | cleaning unit or the pre-cleaning unit and the washing | cleaning unit can be performed, and the cleaning effect of a board | substrate can be improved more.

請求項8に記載の発明は、前記洗浄部材は、多孔質連続気孔組織のポリビニルアルコールまたはフッ素樹脂材からなることを特徴とする請求項5乃至7のいずれかに記載の無電解めっき装置である。
多孔質連続気孔組織のポリビニルアルコール(PVA)は、吸湿性と対薬品性に優れ、ロールスポンジとして広く使われており、これを基板の表面に接触して該表面を洗浄する洗浄部材として使用することで、基板の表面にダメージを与えることなく、基板の表面に残った残留物を容易に除去することができる。
The invention according to claim 8 is the electroless plating apparatus according to any one of claims 5 to 7, wherein the cleaning member is made of polyvinyl alcohol or a fluororesin material having a porous continuous pore structure. .
Polyvinyl alcohol (PVA) having a porous continuous pore structure is excellent in hygroscopicity and chemical resistance and is widely used as a roll sponge, and is used as a cleaning member for cleaning the surface by contacting the surface of the substrate. Thus, the residue remaining on the surface of the substrate can be easily removed without damaging the surface of the substrate.

請求項9に記載の発明は、前記洗浄部材は、中心に回転軸を有するロール状ブラシであることを特徴とする請求項5乃至8のいずれかに記載の無電解めっき装置である。
これにより、ロール状ブラシを基板の表面に接触させながら回転させて基板の表面を洗浄することで、基板の表面の洗浄効率を向上させることができる。
A ninth aspect of the present invention is the electroless plating apparatus according to any one of the fifth to eighth aspects, wherein the cleaning member is a roll brush having a rotation shaft at the center.
Thus, the cleaning efficiency of the surface of the substrate can be improved by cleaning the surface of the substrate by rotating the roll brush in contact with the surface of the substrate.

本発明によれば、薬液による化学的作用と洗浄部材による機械的作用(スクラブ洗浄)を組合せて前処理等を行って、配線の表面を含めた基板の表面に残った防食剤及び/または金属錯体を有効に除去し、しかる後に、触媒付与処理及び/または無電解めっきを行うことで、配線表面に均一な膜厚の保護膜を成膜することができる。しかも、薬液の使用量を、例えば1リットル以下に抑えながら、例えば5〜60秒程度の短時間で基板全面に亘る均一な前処理や前洗浄を行うことができる。   According to the present invention, the anti-corrosion agent and / or the metal remaining on the surface of the substrate including the surface of the wiring by performing the pre-treatment etc. by combining the chemical action by the chemical solution and the mechanical action by the cleaning member (scrub cleaning). A protective film having a uniform film thickness can be formed on the wiring surface by effectively removing the complex, and then performing a catalyst application treatment and / or electroless plating. In addition, uniform pretreatment and precleaning over the entire surface of the substrate can be performed in a short time of, for example, about 5 to 60 seconds while suppressing the amount of the chemical used to 1 liter or less, for example.

以下、本発明の実施の形態を図面を参照して説明する。なお、以下の例では、図26(d)に示すように、配線8の露出表面を、CoWP合金等からなる保護膜(蓋材)9で選択的に覆って、配線8を保護膜9で保護するようにした例を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following example, as shown in FIG. 26 (d), the exposed surface of the wiring 8 is selectively covered with a protective film (covering material) 9 made of a CoWP alloy or the like, and the wiring 8 is covered with the protective film 9. An example of protection is shown.

図1は、本発明の実施の形態における無電解めっき装置の平面配置図を示す。図1に示すように、この無電解めっき装置には、表面に配線8を形成した半導体ウェーハ等の基板Wを収容した基板カセットを載置収容するロード・アンロードユニット11が備えられている。そして、排気系統を備えた矩形状の装置フレーム12の内部に、基板の表面を前洗浄する前洗浄ユニット14、前洗浄後の基板の表面に触媒付与液を接触させて、配線8の表面に、例えばPd等の触媒を付与する触媒付与ユニット15が配置されている。   FIG. 1 is a plan layout view of an electroless plating apparatus according to an embodiment of the present invention. As shown in FIG. 1, the electroless plating apparatus is provided with a load / unload unit 11 for mounting and storing a substrate cassette containing a substrate W such as a semiconductor wafer having a wiring 8 formed on the surface thereof. Then, inside the rectangular apparatus frame 12 provided with the exhaust system, a pre-cleaning unit 14 for pre-cleaning the surface of the substrate, and a catalyst application liquid is brought into contact with the surface of the substrate after pre-cleaning, so that the surface of the wiring 8 For example, a catalyst applying unit 15 for applying a catalyst such as Pd is disposed.

装置フレーム12の内部には、基板の表面に無電解めっきを行う2基の無電解めっきユニット16、無電解めっきによって配線8の表面に形成された保護膜(合金膜)9の選択性を向上させるため、基板の後洗浄(後処理)を行う後洗浄ユニット18、後洗浄後の基板を乾燥させる乾燥ユニット20、及び仮置台22が配置されている。更に、装置フレーム12の内部には、ロード・アンロードユニット11に搭載された基板カセットと仮置台22との間で基板Wの受渡し行う第1基板搬送ロボット24と、仮置台22と各ユニット14,15,16,18,20との間で基板の受渡しを行う第2基板搬送ロボット26が、それぞれ走行自在に配置されている。   Inside the apparatus frame 12, the selectivity of the two electroless plating units 16 for performing electroless plating on the surface of the substrate and the protective film (alloy film) 9 formed on the surface of the wiring 8 by electroless plating is improved. Therefore, a post-cleaning unit 18 for performing post-cleaning (post-processing) of the substrate, a drying unit 20 for drying the post-cleaned substrate, and a temporary table 22 are disposed. Further, in the apparatus frame 12, a first substrate transfer robot 24 for transferring the substrate W between the substrate cassette mounted on the load / unload unit 11 and the temporary table 22, the temporary table 22 and each unit 14. , 15, 16, 18, and 20 are disposed so as to be able to travel, respectively.

次に、図1に示す無電解めっき装置に備えられている各ユニットの詳細を以下に説明する。なお、前洗浄ユニット14は、触媒付与処理に先立って、配線の表面を含めた基板Wの表面に残った防食剤及び/または金属錯体等を除去するにしたユニットで、後洗浄ユニット18は、無電解めっき後の基板表面上のパーティクルや不要物を除去するようにしたユニットである。この例では、前洗浄ユニット14と後洗浄ユニット18は、使用する処理液が異なるだけで、同じ構成であるので、ここでは、前洗浄ユニット14のみを説明して、後洗浄ユニット18の説明を省略する。   Next, details of each unit provided in the electroless plating apparatus shown in FIG. 1 will be described below. The pre-cleaning unit 14 is a unit that removes the anticorrosive agent and / or metal complex remaining on the surface of the substrate W including the surface of the wiring prior to the catalyst application treatment. This is a unit that removes particles and unwanted materials on the substrate surface after electroless plating. In this example, the pre-cleaning unit 14 and the post-cleaning unit 18 have the same configuration except for the processing liquid to be used. Therefore, only the pre-cleaning unit 14 will be described here, and the description of the post-cleaning unit 18 will be given. Omitted.

前洗浄ユニット14には、図2及び図3に示すように、基板Wの外周部を挟み込んで基板Wを保持する複数のローラ30と、ローラ30で保持した基板Wの表面に洗浄液を供給する洗浄液用ノズル32及び純水を供給する純水用ノズル34と、ローラ30で保持した基板Wの裏面に洗浄液を供給する洗浄液用ノズル36及び純水を供給する純水用ノズル38を備えられている。   As shown in FIGS. 2 and 3, the pre-cleaning unit 14 supplies a cleaning liquid to a plurality of rollers 30 that sandwich the outer periphery of the substrate W and holds the substrate W, and the surface of the substrate W held by the roller 30. There are provided a cleaning liquid nozzle 32 and a pure water nozzle 34 for supplying pure water, a cleaning liquid nozzle 36 for supplying a cleaning liquid to the back surface of the substrate W held by the roller 30, and a pure water nozzle 38 for supplying pure water. Yes.

ローラ30で保持した基板Wの表面側に位置して、中心に回転軸40を有する円筒状の洗浄部材42が、基板の裏面側に位置して、中心に回転軸44を有する円筒状の洗浄部材46が、それぞれ上下方向に移動して基板Wに接触するように配置されている。この両洗浄部材42,46は、例えば多孔質連続気孔組織のポリビニルアルコール(PVA)製のロールスポンジからなるロール状ブラシで構成されている。このように、吸湿性と対薬品性に優れた多孔質連続気孔組織のポリビニルアルコール(PVA)製のロールスポンジで洗浄部材(ロール状ブラシ)42,46を構成することにより、基板の表面に洗浄部材42,46を接触させて両者を相対移動させることで、基板の表面にダメージを与えることなく、基板の表面に残った残留物を容易に除去することができる。しかも、洗浄部材42,46を、中心に回転軸40,44を有するロール状ブラシとし、ロール状ブラシを基板の表面に接触させながら回転させて基板の表面を洗浄することで、基板の表面の洗浄効率を向上させることができる。
なお、洗浄部材をフッ樹脂材としてもよい。
A cylindrical cleaning member 42 having a rotating shaft 40 at the center and positioned on the front surface side of the substrate W held by the roller 30 is positioned at the back surface side of the substrate and having a rotating shaft 44 at the center. The members 46 are arranged so as to move in the vertical direction and come into contact with the substrate W, respectively. Both the cleaning members 42 and 46 are constituted by, for example, a roll brush made of a roll sponge made of polyvinyl alcohol (PVA) having a porous continuous pore structure. As described above, the surface of the substrate is cleaned by forming the cleaning members (roll brushes) 42 and 46 with a roll sponge made of polyvinyl alcohol (PVA) having a porous continuous pore structure excellent in hygroscopicity and chemical resistance. By bringing the members 42 and 46 into contact with each other and relatively moving them, the residue remaining on the surface of the substrate can be easily removed without damaging the surface of the substrate. In addition, the cleaning members 42 and 46 are roll-shaped brushes having the rotation shafts 40 and 44 in the center, and the surface of the substrate is cleaned by rotating the roll-shaped brush while contacting the surface of the substrate to clean the surface of the substrate. Cleaning efficiency can be improved.
The cleaning member may be a fluororesin material.

この前洗浄ユニット14によれば、基板Wをその表面(被処理面)を上向きにして複数のローラ30で保持し、ローラ30を介して、基板Wを所定の回転速度、例えば110rpmで回転させながら、基板Wの表面(上面)に純水用ノズル34から純水を滴下して、基板Wの全表面を純水で濡らす。次に、基板Wの上方に配置された洗浄部材(ロール状ブラシ)42を所定の回転速度、例えば100rpmで回転させながら下降させて基板Wの表面に接触させる。そして、洗浄部材(ロール状ブラシ)42が基板Wの表面に接触すると同時に、基板Wの上方に配置された洗浄液用ノズル32から基板Wの表面に洗浄液を供給する。これにより、配線表面に触媒を付与した後に保護膜を成膜する場合に、配線表面に触媒を付与する処理に先立って、洗浄液による化学的作用と洗浄部材42による機械的作用(スクラブ洗浄)を組合せた前洗浄で基板Wの表面に残った防食剤及び/または金属錯体等を完全に除去することができる。   According to the pre-cleaning unit 14, the substrate W is held by the plurality of rollers 30 with the surface (surface to be processed) facing upward, and the substrate W is rotated at a predetermined rotation speed, for example, 110 rpm via the rollers 30. Meanwhile, pure water is dropped from the pure water nozzle 34 onto the surface (upper surface) of the substrate W to wet the entire surface of the substrate W with pure water. Next, the cleaning member (roll brush) 42 disposed above the substrate W is lowered while being rotated at a predetermined rotation speed, for example, 100 rpm, and brought into contact with the surface of the substrate W. Then, at the same time as the cleaning member (roll brush) 42 contacts the surface of the substrate W, the cleaning liquid is supplied to the surface of the substrate W from the cleaning liquid nozzle 32 disposed above the substrate W. Thus, when a protective film is formed after the catalyst is applied to the wiring surface, the chemical action by the cleaning liquid and the mechanical action (scrub cleaning) by the cleaning member 42 are performed prior to the process of applying the catalyst to the wiring surface. The anticorrosive agent and / or metal complex remaining on the surface of the substrate W by the combined pre-cleaning can be completely removed.

この基板の表面(上面)の前洗浄と並行して、必要に応じて、基板の裏面(下面)の前洗浄を行う。つまり、基板Wの裏面(下面)に純水用ノズル38から純水を供給し、基板Wの下方に配置された洗浄部材(ロール状ブラシ)46を所定の回転速度、例えば100rpmで回転させながら上昇させて基板Wの裏面に接触させる。そして、洗浄部材(ロール状ブラシ)46が基板Wの裏面に接触すると同時に、基板Wの下方に配置された洗浄液用ノズル36から基板Wの表面に洗浄液を供給し、これによって、洗浄液による化学的作用と洗浄部材46による機械的作用を組合せた前洗浄で基板Wの裏面を洗浄する。   In parallel with the pre-cleaning of the front surface (upper surface) of the substrate, pre-cleaning of the back surface (lower surface) of the substrate is performed as necessary. That is, pure water is supplied from the pure water nozzle 38 to the back surface (lower surface) of the substrate W, and the cleaning member (roll brush) 46 disposed below the substrate W is rotated at a predetermined rotation speed, for example, 100 rpm. Raised and brought into contact with the back surface of the substrate W. Then, at the same time that the cleaning member (roll brush) 46 contacts the back surface of the substrate W, the cleaning liquid is supplied to the surface of the substrate W from the cleaning liquid nozzle 36 disposed below the substrate W, whereby the cleaning liquid is chemically treated with the cleaning liquid. The back surface of the substrate W is cleaned by pre-cleaning that combines the action and the mechanical action of the cleaning member 46.

そして、所定時間、例えば30秒間基板の表面を洗浄した後、洗浄部材42を上昇させて基板Wの表面から離し、洗浄液用ノズル32からの洗浄液の供給を停止した後、純水用ノズル34から基板Wの表面に純水を供給して基板Wの表面を純水でリンスする。
基板Wの裏面にあっても同様に、所定時間基板の裏面を洗浄した後、洗浄部材46を下降させて基板Wの裏面から離し、洗浄液用ノズル36からの洗浄液の供給を停止した後、純水用ノズル38から基板Wの裏面に純水を供給して基板Wの裏面を純水でリンスする。
Then, after cleaning the surface of the substrate for a predetermined time, for example, 30 seconds, the cleaning member 42 is raised and separated from the surface of the substrate W, the supply of the cleaning liquid from the cleaning liquid nozzle 32 is stopped, and then the pure water nozzle 34 Pure water is supplied to the surface of the substrate W to rinse the surface of the substrate W with pure water.
Similarly, after the back surface of the substrate W is cleaned for a predetermined time, the cleaning member 46 is lowered and separated from the back surface of the substrate W, and the supply of the cleaning liquid from the cleaning liquid nozzle 36 is stopped. Pure water is supplied from the water nozzle 38 to the back surface of the substrate W, and the back surface of the substrate W is rinsed with pure water.

なお、基板の裏面側に純水用ノズル38のみを配置して、基板の裏面の純水によるリンスのみを行うようにしてもよく、また洗浄液の基板の裏面側への回り込みがない場合には、基板の裏面の純水によるリンスを省略するようにしてもよい。
この例にあっては、前洗浄ユニット14に基板Wのエッジ(外周部)に当接しながら回転するスポンジ48が備えられ、このスポンジ48を基板Wのエッジに当てて、ここをスクラブ洗浄するようになっている。
Note that only the pure water nozzle 38 may be disposed on the back side of the substrate so that only the pure water is rinsed on the back side of the substrate, or when the cleaning liquid does not wrap around the back side of the substrate. The rinsing with pure water on the back surface of the substrate may be omitted.
In this example, the pre-cleaning unit 14 is provided with a sponge 48 that rotates while contacting the edge (outer peripheral portion) of the substrate W, and the sponge 48 is applied to the edge of the substrate W to scrub and clean it. It has become.

触媒付与ユニット15は、図4乃至図6に示すように、フレーム50の上部に取付けた固定枠52と、この固定枠52に対して相対的に上下動する移動枠54を備えており、図7に示すように、この移動枠54に、下方に開口した有底円筒状のハウジング部56と基板ホルダ58とを有する処理ヘッド60が懸架支持されている。つまり、移動枠54には、ヘッド回転用サーボモータ62が取付けられ、このサーボモータ62の下方に延びる出力軸(中空軸)64の下端に処理ヘッド60のハウジング部56が連結されている。   4 to 6, the catalyst applying unit 15 includes a fixed frame 52 attached to the upper portion of the frame 50 and a moving frame 54 that moves up and down relatively with respect to the fixed frame 52. As shown in FIG. 7, a processing head 60 having a bottomed cylindrical housing portion 56 opened downward and a substrate holder 58 is suspended and supported by the moving frame 54. In other words, the head rotating servo motor 62 is attached to the moving frame 54, and the housing portion 56 of the processing head 60 is connected to the lower end of the output shaft (hollow shaft) 64 that extends below the servo motor 62.

この出力軸64の内部には、図7に示すように、スプライン66を介して該出力軸64と一体に回転する鉛直軸68が挿着され、この鉛直軸68の下端に、ボールジョイント70を介して処理ヘッド60の基板ホルダ58が連結されている。基板ホルダ58は、ハウジング部56の内部に位置している。また鉛直軸68の上端は、軸受72及びブラケットを介して、移動枠54に固定した固定リング昇降用シリンダ74に連結されている。これにより、この昇降用シリンダ74の作動に伴って、鉛直軸68が出力軸64とは独立に上下動する。   As shown in FIG. 7, a vertical shaft 68 that rotates integrally with the output shaft 64 is inserted into the output shaft 64 via a spline 66, and a ball joint 70 is attached to the lower end of the vertical shaft 68. The substrate holder 58 of the processing head 60 is connected through the via. The substrate holder 58 is located inside the housing portion 56. The upper end of the vertical shaft 68 is connected to a fixed ring elevating cylinder 74 fixed to the moving frame 54 via a bearing 72 and a bracket. As a result, the vertical shaft 68 moves up and down independently of the output shaft 64 in accordance with the operation of the lifting cylinder 74.

図4乃至図6に示すように、固定枠52には、上下方向に延びて移動枠54の昇降の案内となるリニアガイド76が取付けられ、ヘッド昇降用シリンダ(図示せず)の作動に伴って、移動枠54がリニアガイド76を案内として昇降する。   As shown in FIGS. 4 to 6, the fixed frame 52 is attached with a linear guide 76 that extends in the vertical direction and serves as a guide for raising and lowering the moving frame 54, and the head raising and lowering cylinder (not shown) is operated. Thus, the moving frame 54 moves up and down using the linear guide 76 as a guide.

図7に示すように、処理ヘッド60のハウジング部56の周壁には、この内部に基板Wを挿入する基板挿入窓56aが設けられている。また、処理ヘッド60のハウジング部56の下部には、図8及び図9に示すように、例えばポリエーテルエーテルケトン製のメインフレーム80とガイドフレーム82との間に周縁部を挟持されてシールリング84が配置されている。このシールリング84は、基板Wの下面の周縁部に当接し、ここをシールするためのものである。   As shown in FIG. 7, the peripheral wall of the housing portion 56 of the processing head 60 is provided with a substrate insertion window 56a for inserting the substrate W therein. Further, as shown in FIGS. 8 and 9, a peripheral portion is sandwiched between a main frame 80 made of, for example, polyether ether ketone and a guide frame 82, at the lower portion of the housing portion 56 of the processing head 60. 84 is arranged. The seal ring 84 abuts on the peripheral edge of the lower surface of the substrate W and seals it.

基板ホルダ58の下面周縁部には、基板固定リング86が固着され、この基板ホルダ58の基板固定リング86の内部に配置したスプリング88の弾性力を介して、円柱状のプッシャ90が基板固定リング86の下面から下方に突出する。更に、基板ホルダ58の上面とハウジング部56の上壁部との間には、内部を気密的にシールする、例えばテフロン(登録商標)製で屈曲自在な円筒状の蛇腹板92が配置されている。更に、基板ホルダ58には、この基板ホルダ58で保持した基板の上面を覆う被覆板94が備えられている。   A substrate fixing ring 86 is fixed to the periphery of the lower surface of the substrate holder 58, and a cylindrical pusher 90 is attached to the substrate fixing ring through the elastic force of a spring 88 disposed inside the substrate fixing ring 86 of the substrate holder 58. Projects downward from the lower surface of 86. Further, a bendable cylindrical bellows plate 92 made of, for example, Teflon (registered trademark) is hermetically sealed between the upper surface of the substrate holder 58 and the upper wall portion of the housing portion 56. Yes. Further, the substrate holder 58 is provided with a covering plate 94 that covers the upper surface of the substrate held by the substrate holder 58.

これにより、基板ホルダ58を上昇させた状態で、基板Wを基板挿入窓56aからハウジング部56の内部に挿入する。すると、この基板Wは、ガイドフレーム82の内周面に設けたテーパ面82aに案内され、位置決めされてシールリング84の上面の所定位置に載置される。この状態で、基板ホルダ58を下降させ、この基板固定リング86のプッシャ90を基板Wの上面に接触させる。そして、基板ホルダ58を更に下降させることで、基板Wをスプリング88の弾性力で下方に押圧し、これによって、基板Wの表面(下面)の周縁部にシールリング84で圧接させて、ここをシールしつつ、基板Wをハウジング部56と基板ホルダ58との間で挟持して保持する。   Accordingly, the substrate W is inserted into the housing portion 56 from the substrate insertion window 56a with the substrate holder 58 raised. Then, the substrate W is guided by a tapered surface 82 a provided on the inner peripheral surface of the guide frame 82, positioned, and placed at a predetermined position on the upper surface of the seal ring 84. In this state, the substrate holder 58 is lowered, and the pusher 90 of the substrate fixing ring 86 is brought into contact with the upper surface of the substrate W. Then, by further lowering the substrate holder 58, the substrate W is pressed downward by the elastic force of the spring 88, and is thereby brought into pressure contact with the peripheral portion of the surface (lower surface) of the substrate W by the seal ring 84, While sealing, the substrate W is sandwiched and held between the housing portion 56 and the substrate holder 58.

このように、基板Wを基板ホルダ58で保持した状態で、ヘッド回転用サーボモータ62を駆動すると、この出力軸64と該出力軸64の内部に挿着した鉛直軸68がスプライン66を介して一体に回転し、これによって、ハウジング部56と基板ホルダ58も一体に回転する。   In this way, when the head rotating servomotor 62 is driven while the substrate W is held by the substrate holder 58, the output shaft 64 and the vertical shaft 68 inserted into the output shaft 64 are connected via the spline 66. The housing portion 56 and the substrate holder 58 are also rotated integrally.

処理ヘッド60の下方に位置して、該処理ヘッド60の外径よりもやや大きい内径を有する上方に開口した、外槽100aと内槽100bを有する処理槽100(図10参照)が備えられている。内槽100bの外周部には、蓋体102に取付けた一対の脚部104が回転自在に支承されている。更に、図4乃至図6に示すように、脚部104には、クランク106が一体に連結され、このクランク106の自由端は、蓋体移動用シリンダ108のロッド110に回転自在に連結されている。これにより、蓋体移動用シリンダ108の作動に伴って、蓋体102は、内槽100bの上端開口部を覆う処理位置と、側方の待避位置との間を移動するように構成されている。この蓋体102の表面(上面)には、例えば純水を外方(上方)に向けて噴射する多数の噴射ノズル112aを有するノズル板112が備えられている。   A processing tank 100 (see FIG. 10) having an outer tank 100a and an inner tank 100b, which is located below the processing head 60 and opens upward having an inner diameter slightly larger than the outer diameter of the processing head 60, is provided. Yes. A pair of leg portions 104 attached to the lid 102 is rotatably supported on the outer peripheral portion of the inner tank 100b. Further, as shown in FIGS. 4 to 6, a crank 106 is integrally connected to the leg 104, and a free end of the crank 106 is rotatably connected to a rod 110 of a lid moving cylinder 108. Yes. Accordingly, the lid body 102 is configured to move between a processing position covering the upper end opening of the inner tank 100b and a side retracted position in accordance with the operation of the lid body moving cylinder 108. . The surface (upper surface) of the lid 102 is provided with a nozzle plate 112 having a large number of injection nozzles 112a for injecting pure water outward (upward), for example.

更に、図10に示すように、処理槽100の内槽100bの内部には、第1処理液タンク120から第1処理液ポンプ122の駆動に伴って供給された第1処理液を上方に向けて噴射する複数の噴射ノズル124aを有するノズル板124が、該噴射ノズル124aが内槽100bの横断面の全面に亘ってより均等に分布した状態で配置されている。この内槽100bの底面には、第1処理液(排液)を外部に排出する排水管126が接続されている。この排水管126の途中には、三方弁128が介装され、この三方弁128の一つの出口ポートに接続された戻り管130を介して、必要に応じて、この第1処理液(排液)を第1処理液タンク120に戻して再利用できるようになっている。   Further, as shown in FIG. 10, the first processing liquid supplied from the first processing liquid tank 120 as the first processing liquid pump 122 is driven is directed upward in the inner tank 100 b of the processing tank 100. The nozzle plate 124 having a plurality of spray nozzles 124a for spraying is disposed in a state where the spray nozzles 124a are more evenly distributed over the entire cross section of the inner tank 100b. A drain pipe 126 for discharging the first processing liquid (drainage) to the outside is connected to the bottom surface of the inner tank 100b. A three-way valve 128 is provided in the middle of the drain pipe 126, and the first treatment liquid (drainage liquid) is provided as necessary via a return pipe 130 connected to one outlet port of the three-way valve 128. ) Can be returned to the first treatment liquid tank 120 for reuse.

蓋体102の表面(上面)に設けられたノズル板112は、第2処理液供給源132に接続されている。これによって、第2処理液が噴射ノズル112aから基板の表面に向けて噴射される。また、外槽100aの底面にも、排水管127が接続されている。   The nozzle plate 112 provided on the surface (upper surface) of the lid 102 is connected to the second processing liquid supply source 132. Thereby, the second processing liquid is sprayed from the spray nozzle 112a toward the surface of the substrate. A drain pipe 127 is also connected to the bottom surface of the outer tub 100a.

これにより、基板を保持した処理ヘッド60を下降させて、処理槽100の内槽100bの上端開口部を処理ヘッド60で塞ぐように覆い、この状態で、処理槽100の内槽100bの内部に配置したノズル板124の噴射ノズル124aから第1処理液を、基板Wに向けて噴射することで、基板Wの下面(処理面)の全面に亘って第1処理液を均一に噴射し、しかも第1処理液の外部への飛散を防止しつつ第1処理液を排水管126から外部に排出する。   As a result, the processing head 60 holding the substrate is lowered, and the upper end opening of the inner tank 100b of the processing tank 100 is covered with the processing head 60, and in this state, the inside of the inner tank 100b of the processing tank 100 is covered. By spraying the first processing liquid from the spray nozzle 124a of the arranged nozzle plate 124 toward the substrate W, the first processing liquid is sprayed uniformly over the entire lower surface (processing surface) of the substrate W, and The first processing liquid is discharged from the drain pipe 126 to the outside while preventing the first processing liquid from scattering to the outside.

更に、処理ヘッド60を上昇させ、処理槽100の内槽100bの上端開口部を蓋体102で閉塞した状態で、処理ヘッド60で保持した基板Wに向けて、蓋体102の上面に配置したノズル板112の噴射ノズル112aから第2処理液を噴射することで、基板Wの下面(処理面)の全面に亘って第2処理液を均一に噴射する。この第2処理液は、外槽100aと内槽100bの間を通って、排水管127を介して排出されるので、内槽100bの内部に流入することが防止されて、第1処理液に混ざることが防止される。   Further, the processing head 60 is raised, and the upper end opening of the inner tank 100b of the processing tank 100 is closed with the lid 102, and is disposed on the upper surface of the lid 102 toward the substrate W held by the processing head 60. By spraying the second processing liquid from the spray nozzle 112a of the nozzle plate 112, the second processing liquid is sprayed uniformly over the entire lower surface (processing surface) of the substrate W. Since the second treatment liquid passes between the outer tank 100a and the inner tank 100b and is discharged through the drain pipe 127, the second treatment liquid is prevented from flowing into the inner tank 100b and becomes the first treatment liquid. Mixing is prevented.

この触媒付与ユニット15によれば、図4に示すように、処理ヘッド60を上昇させた状態で、この内部に基板Wを挿入して保持し、しかる後、図5に示すように、処理ヘッド60を下降させて処理槽100の内槽100bの上端開口部を覆う位置に位置させる。そして、処理ヘッド60を回転させて、処理ヘッド60で保持した基板Wを回転させながら、図10に示すように、内槽100bの内部に配置したノズル板124の噴射ノズル124aから、第1処理液を基板Wに向けて噴射することで、基板Wの全面に亘って第1処理液を均一に噴射する。そして、処理ヘッド60を上昇させて所定位置で停止させ、図6に示すように、待避位置にあった蓋体102を処理槽100の内槽100bの上端開口部を覆う位置まで移動させる。そして、この状態で、処理ヘッド60で保持して回転させた基板Wに向けて、蓋体102の上面に配置したノズル板112の噴射ノズル112aから第2処理液を噴射する。これにより、基板Wの第1処理液と第2処理液による処理を、2つの液体が混ざらないようにしながら行うことができる。   According to the catalyst application unit 15, as shown in FIG. 4, the substrate W is inserted and held in the state where the processing head 60 is raised, and then, as shown in FIG. 60 is moved down to be positioned so as to cover the upper end opening of the inner tank 100b of the processing tank 100. Then, while the processing head 60 is rotated and the substrate W held by the processing head 60 is rotated, the first processing is performed from the injection nozzle 124a of the nozzle plate 124 disposed inside the inner tank 100b as shown in FIG. By spraying the liquid toward the substrate W, the first processing liquid is sprayed uniformly over the entire surface of the substrate W. Then, the processing head 60 is raised and stopped at a predetermined position, and as shown in FIG. 6, the lid 102 that has been in the retracted position is moved to a position that covers the upper end opening of the inner tank 100 b of the processing tank 100. In this state, the second processing liquid is ejected from the ejection nozzle 112 a of the nozzle plate 112 disposed on the upper surface of the lid 102 toward the substrate W held and rotated by the processing head 60. Thereby, the process by the 1st process liquid and the 2nd process liquid of the board | substrate W can be performed, keeping two liquids not mixing.

無電解めっきユニット16を図11乃至図17に示す。この無電解めっきユニット16は、めっき槽200(図15及び図17参照)と、このめっき槽200の上方に配置されて基板Wを着脱自在に保持する基板ヘッド204を有している。   The electroless plating unit 16 is shown in FIGS. The electroless plating unit 16 includes a plating tank 200 (see FIGS. 15 and 17) and a substrate head 204 that is disposed above the plating tank 200 and holds the substrate W in a detachable manner.

基板ヘッド204は、図11に詳細に示すように、ハウジング部230とヘッド部232とを有し、ヘッド部232は、吸着ヘッド234と該吸着ヘッド234の周囲を囲繞する基板受け236から主に構成されている。そして、ハウジング部230の内部には、基板回転用モータ238と基板受け駆動用シリンダ240が収納され、この基板回転用モータ238の出力軸(中空軸)242の上端はロータリジョイント244に、下端はヘッド部232の吸着ヘッド234にそれぞれ連結され、基板受け駆動用シリンダ240のロッドは、ヘッド部232の基板受け236に連結されている。ハウジング部230の内部には、基板受け236の上昇を機械的に規制するストッパ246が設けられている。   As shown in detail in FIG. 11, the substrate head 204 includes a housing portion 230 and a head portion 232, and the head portion 232 mainly includes a suction head 234 and a substrate receiver 236 that surrounds the suction head 234. It is configured. The housing portion 230 houses a substrate rotation motor 238 and a substrate receiving drive cylinder 240. The upper end of the output shaft (hollow shaft) 242 of the substrate rotation motor 238 is at the rotary joint 244, and the lower end is at the lower end. The rods of the substrate receiving drive cylinder 240 are connected to the suction head 234 of the head unit 232, respectively, and are connected to the substrate receiver 236 of the head unit 232. A stopper 246 that mechanically restricts the rise of the substrate receiver 236 is provided inside the housing portion 230.

ここで、吸着ヘッド234と基板受け236との間には、スプライン構造が採用され、基板受け駆動用シリンダ240の作動に伴って基板受け236は吸着ヘッド234と相対的に上下動するが、基板回転用モータ238の駆動によって出力軸242が回転すると、この出力軸242の回転に伴って、吸着ヘッド234と基板受け236が一体に回転するように構成されている。   Here, a spline structure is adopted between the suction head 234 and the substrate receiver 236, and the substrate receiver 236 moves up and down relative to the suction head 234 in accordance with the operation of the substrate receiver driving cylinder 240. When the output shaft 242 is rotated by driving the rotation motor 238, the suction head 234 and the substrate receiver 236 are configured to rotate integrally with the rotation of the output shaft 242.

吸着ヘッド234の下面周縁部には、図12乃至図14に詳細に示すように、下面をシール面として基板Wを吸着保持する吸着リング250が押えリング251を介して取付けられ、この吸着リング250の下面に円周方向に連続させて設けた凹状部250aと吸着ヘッド234内を延びる真空ライン252とが吸着リング250に設けた連通孔250bを介して互いに連通するようになっている。これにより、凹状部250a内を真空引きすることで、基板Wを吸着保持するのであり、このように、小さな幅(径方向)で円周状に真空引きして基板Wを保持することで、真空による基板Wへの影響(たわみ等)を最小限に抑え、しかも吸着リング250を無電解めっき液中に浸すことで、基板Wの表面(下面)のみならず、エッジについても、全て無電解めっき液に浸すことが可能となる。基板Wのリリースは、真空ライン252にNを供給して行う。 As shown in detail in FIG. 12 to FIG. 14, an adsorption ring 250 that adsorbs and holds the substrate W with the lower surface serving as a sealing surface is attached to the periphery of the lower surface of the adsorption head 234 via a pressing ring 251. A concave portion 250 a provided continuously in the circumferential direction on the lower surface of the nozzle and a vacuum line 252 extending in the suction head 234 communicate with each other through a communication hole 250 b provided in the suction ring 250. Thus, the substrate W is sucked and held by evacuating the concave portion 250a. Thus, by holding the substrate W by evacuating it with a small width (in the radial direction), By minimizing the influence (deflection, etc.) on the substrate W due to the vacuum and immersing the adsorption ring 250 in the electroless plating solution, not only the surface (lower surface) but also the edge of the substrate W are all electroless. It becomes possible to immerse in the plating solution. The substrate W is released by supplying N 2 to the vacuum line 252.

一方、基板受け236は、下方に開口した有底円筒状に形成され、その周壁には、基板Wを内部に挿入する基板挿入窓236aが設けられ、下端には、内方に突出する円板状の爪部254が設けられている。更に、この爪部254の上部には、基板Wの案内となるテーパ面256aを内周面に有する突起片256が備えられている。   On the other hand, the substrate receiver 236 is formed in a bottomed cylindrical shape that opens downward, a peripheral wall is provided with a substrate insertion window 236a for inserting the substrate W therein, and a disc protruding inward at the lower end. A claw portion 254 is provided. Further, a projection piece 256 having a taper surface 256 a serving as a guide for the substrate W on the inner peripheral surface is provided on the upper portion of the claw portion 254.

これにより、図12に示すように、基板受け236を下降させた状態で、基板Wを基板挿入窓236aから基板受け236の内部に挿入する。すると、この基板Wは、突起片256のテーパ面256aに案内され、位置決めされて爪部254の上面の所定位置に載置保持される。この状態で、基板受け236を上昇させ、図13に示すように、この基板受け236の爪部254上に載置保持した基板Wの上面を吸着ヘッド234の吸着リング250に当接させる。次に、真空ライン252を通して吸着リング250の凹状部250aを真空引きすることで、基板Wの上面の周縁部を該吸着リング250の下面にシールしながら基板Wを吸着保持する。そして、無電解めっき処理を行う際には、図14に示すように、基板受け236を数mm下降させ、基板Wを爪部254から離して、吸着リング250のみで吸着保持した状態となす。これにより、基板Wの表面(下面)の周縁部が、爪部254の存在によってめっきされなくなることを防止することができる。   As a result, as shown in FIG. 12, the substrate W is inserted into the substrate receiver 236 from the substrate insertion window 236a with the substrate receiver 236 lowered. Then, the substrate W is guided by the tapered surface 256 a of the protruding piece 256, positioned, and placed and held at a predetermined position on the upper surface of the claw portion 254. In this state, the substrate receiver 236 is raised, and the upper surface of the substrate W placed and held on the claw portion 254 of the substrate receiver 236 is brought into contact with the suction ring 250 of the suction head 234 as shown in FIG. Next, the concave portion 250 a of the suction ring 250 is evacuated through the vacuum line 252, and the substrate W is sucked and held while the peripheral portion of the upper surface of the substrate W is sealed to the lower surface of the suction ring 250. Then, when performing the electroless plating process, as shown in FIG. 14, the substrate receiver 236 is lowered several millimeters, the substrate W is separated from the claw portion 254, and the state is held by suction holding only by the suction ring 250. Thereby, it can prevent that the peripheral part of the surface (lower surface) of the board | substrate W stops being plated by presence of the nail | claw part 254. FIG.

図15は、めっき槽200の詳細を示す。このめっき槽200は、底部において、めっき液供給管308(図17参照)に接続され、周壁部にめっき液回収溝260が設けられている。めっき槽200の内部には、ここを上方に向かって流れる無電解めっき液の流れを安定させる2枚の整流板262,264が配置され、更に底部には、めっき槽200の内部に導入される無電解めっき液の液温を測定する温度測定器266が設置されている。また、めっき槽200の周壁外周面のめっき槽200で保持した無電解めっき液の液面よりやや上方に位置して、直径方向のやや斜め上方に向けてめっき槽200の内部に、pHが6〜7.5の中性液からなる停止液、例えば純水を噴射する噴射ノズル268が設置されている。これにより、無電解めっき終了後、ヘッド部232で保持した基板Wを無電解めっき液の液面よりやや上方まで引上げて一旦停止させ、この状態で、基板Wに向けて噴射ノズル268から純水(停止液)を噴射して基板Wを直ちに冷却し、これによって、基板Wに残った無電解めっき液によって無電解めっきが進行してしまうことを防止することができる。   FIG. 15 shows the details of the plating tank 200. The plating tank 200 is connected to a plating solution supply pipe 308 (see FIG. 17) at the bottom, and a plating solution recovery groove 260 is provided in the peripheral wall portion. Two rectifying plates 262 and 264 for stabilizing the flow of the electroless plating solution flowing upward are disposed inside the plating tank 200, and further introduced into the plating tank 200 at the bottom. A temperature measuring device 266 that measures the temperature of the electroless plating solution is installed. Moreover, the pH is 6 in the inside of the plating tank 200 located slightly above the liquid surface of the electroless plating solution held in the plating tank 200 on the outer peripheral surface of the peripheral wall of the plating tank 200 and slightly obliquely upward in the diameter direction. An injection nozzle 268 for injecting a stop liquid composed of a neutral liquid of -7.5, for example, pure water, is installed. As a result, after the electroless plating is completed, the substrate W held by the head unit 232 is pulled up slightly above the liquid surface of the electroless plating solution and stopped temporarily. In this state, pure water is supplied from the spray nozzle 268 toward the substrate W. (Stopping liquid) is sprayed to immediately cool the substrate W, thereby preventing the electroless plating from proceeding with the electroless plating solution remaining on the substrate W.

更に、めっき槽200の上端開口部には、アイドリング時等のめっき処理の行われていない時に、めっき槽200の上端開口部を閉じて該めっき槽200内のめっき液の無駄な蒸発と放熱を防止するめっき槽カバー270が開閉自在に設置されている。   Further, the upper end opening of the plating tank 200 is closed when the plating process is not performed at the time of idling or the like, so that the upper end opening of the plating tank 200 is closed and wasteful evaporation and heat dissipation of the plating solution in the plating tank 200 is performed. A plating tank cover 270 to be prevented is installed so as to be openable and closable.

このめっき槽200は、図17に示すように、底部において、めっき液貯槽302から延び、途中にめっき液供給ポンプ304、フィルタ305及び三方弁306を介装しためっき液供給管308に接続されている。更に、めっき槽200のめっき液回収溝260は、めっき液貯槽302から延びるめっき液回収管に接続されている。これにより、めっき処理中にあっては、めっき槽200の内部に、この底部から無電解めっき液を供給し、めっき槽200を溢れる無電解めっき液をめっき液回収溝260からめっき液貯槽302へ回収することで、無電解めっき液が循環できるようになっている。また、三方弁306の一つの出口ポートには、めっき液貯槽302に戻るめっき液戻り管312が接続されている。これにより、めっき待機時にあっても、無電解めっき液を循環させることができるようになっている。   As shown in FIG. 17, the plating tank 200 extends from the plating solution storage tank 302 at the bottom, and is connected to a plating solution supply pipe 308 provided with a plating solution supply pump 304, a filter 305, and a three-way valve 306 in the middle. Yes. Further, the plating solution recovery groove 260 of the plating tank 200 is connected to a plating solution recovery pipe extending from the plating solution storage tank 302. Thus, during the plating process, the electroless plating solution is supplied into the plating tank 200 from the bottom, and the electroless plating solution overflowing the plating tank 200 is transferred from the plating solution recovery groove 260 to the plating solution storage tank 302. By collecting, the electroless plating solution can be circulated. A plating solution return pipe 312 that returns to the plating solution storage tank 302 is connected to one outlet port of the three-way valve 306. Thus, the electroless plating solution can be circulated even when waiting for plating.

特に、この例では、めっき液供給ポンプ304を制御することで、めっき待機時及びめっき処理時に循環する無電解めっき液の流量を個別に設定できるようになっている。すなわち、めっき待機時の無電解めっき液の循環流量は、例えば2〜20L/minで、めっき処理時の無電解めっき液の循環流量は、例えば0〜10L/minに設定される。これにより、めっき待機時に無電解めっき液の大きな循環流量を確保して、セル内のめっき浴の液温を一定に維持し、めっき処理時には、無電解めっき液の循環流量を小さくして、より均一な膜厚の保護膜(めっき膜)を成膜することができる。   In particular, in this example, by controlling the plating solution supply pump 304, the flow rate of the electroless plating solution that circulates during the plating standby and the plating process can be individually set. That is, the circulation flow rate of the electroless plating solution during plating standby is, for example, 2 to 20 L / min, and the circulation flow rate of the electroless plating solution during plating is set, for example, to 0 to 10 L / min. This ensures a large circulation flow rate of the electroless plating solution during plating standby, keeps the temperature of the plating bath in the cell constant, and reduces the circulation flow rate of the electroless plating solution during the plating process. A protective film (plating film) having a uniform thickness can be formed.

めっき槽200の底部付近には、めっき槽200の内部に導入される無電解めっき液の液温を測定して、この測定結果を元に、下記のヒータ316及び流量計318を制御する温度測定器266が設けられている。   In the vicinity of the bottom of the plating tank 200, the temperature of the electroless plating solution introduced into the plating tank 200 is measured, and the temperature measurement for controlling the heater 316 and the flow meter 318 described below based on the measurement result. A vessel 266 is provided.

この例では、別置きのヒータ316を使用して昇温させ、流量計318を通過させた水を熱媒体に使用し、熱交換器320をめっき液貯槽302内の無電解めっき液中に設置して該めっき液を間接的に加熱する加熱装置322と、めっき液貯槽302内の無電解めっき液を循環させて攪拌する攪拌ポンプ324が備えられている。これは、無電解めっきにあっては、無電解めっき液を高温(約80℃程度)にして使用することがあり、これと対応するためであり、この方法によれば、インライン・ヒーティング方式に比べ、非常にデリケートな無電解めっき液に不要物等が混入するのを防止することができる。   In this example, the temperature is raised using a separate heater 316, the water passed through the flow meter 318 is used as a heat medium, and the heat exchanger 320 is installed in the electroless plating solution in the plating solution storage tank 302. Then, a heating device 322 for indirectly heating the plating solution and a stirring pump 324 for circulating and stirring the electroless plating solution in the plating solution storage tank 302 are provided. This is because, in electroless plating, the electroless plating solution may be used at a high temperature (about 80 ° C.), and this is to cope with this. According to this method, the in-line heating method is used. Compared to the above, it is possible to prevent unnecessary substances and the like from being mixed into a very delicate electroless plating solution.

この例によれば、無電解めっき液は、基板Wと接触してめっきを行うときに、基板Wの温度が70〜90℃となるように液温が設定され、液温のばらつき範囲が±2℃以内となるように制御される。   According to this example, when the electroless plating solution is plated in contact with the substrate W, the solution temperature is set so that the temperature of the substrate W is 70 to 90 ° C., and the variation range of the solution temperature is ± It is controlled to be within 2 ° C.

無電解めっきユニット16には、めっき液貯槽302内の無電解めっき液を抽出するめっき液抽出部330と、この抽出された無電解めっきユニット16が保有するめっき液の組成を、例えば吸光光度法、滴定法、電気化学的測定などで分析するめっき液組成分析部332が備えられている。このめっき液組成分析部332は、例えばコバルトイオン濃度をめっき液の吸光度分析、イオンクロマトグラフ分析、キャピラリー電気泳動分析またはキレート滴定分析により測定する。   The electroless plating unit 16 includes a plating solution extraction unit 330 that extracts the electroless plating solution in the plating solution storage tank 302, and the composition of the plating solution that the extracted electroless plating unit 16 has, for example, an absorptiometric method. , A plating solution composition analysis unit 332 for analyzing by titration, electrochemical measurement, or the like is provided. The plating solution composition analysis unit 332 measures the cobalt ion concentration by, for example, absorbance analysis, ion chromatography analysis, capillary electrophoresis analysis, or chelate titration analysis of the plating solution.

無電解めっき液の液温は、高くなるほどめっき速度が速くなり、低すぎるとめっき反応が起こらないことから、一般的には60〜95℃で、65〜85℃であることが好ましく、70〜75℃であることがより好ましい。基本的には、めっきを実際に行っているか否かに関わらず、一度温度を上げたら下げないことが望ましく、55℃以上にしておくことが望まれる。   The higher the temperature of the electroless plating solution is, the higher the plating speed becomes. If the temperature is too low, the plating reaction does not occur. Therefore, it is generally 60 to 95 ° C, preferably 65 to 85 ° C, and preferably 70 to 85 ° C. More preferably, it is 75 ° C. Basically, it is desirable not to lower the temperature once it is raised, regardless of whether or not plating is actually performed, and it is desirable to keep it at 55 ° C. or higher.

図16は、めっき槽200の側方に付設されている洗浄槽202の詳細を示す。この洗浄槽202の底部には、純水等のリンス液を上方に向けて噴射する複数の噴射ノズル280がノズル板282に取付けられて配置され、このノズル板282は、ノズル上下軸284の上端に連結されている。更に、このノズル上下軸284は、ノズル位置調整用ねじ287と該ねじ287と螺合するナット288との螺合位置を変えることで上下動し、これによって、噴射ノズル280と該噴射ノズル280の上方に配置される基板Wとの距離を最適に調整できるようになっている。   FIG. 16 shows the details of the cleaning tank 202 attached to the side of the plating tank 200. A plurality of injection nozzles 280 for injecting a rinse liquid such as pure water upward are attached to the nozzle plate 282 at the bottom of the cleaning tank 202, and the nozzle plate 282 is arranged at the upper end of the nozzle vertical axis 284. It is connected to. Further, the nozzle vertical shaft 284 moves up and down by changing the screwing position of the nozzle position adjusting screw 287 and the nut 288 screwed to the screw 287, whereby the jet nozzle 280 and the jet nozzle 280 are moved. The distance from the substrate W arranged above can be adjusted optimally.

更に、洗浄槽202の周壁外周面の噴射ノズル280より上方に位置して、直径方向のやや斜め下方に向けて洗浄槽202の内部に純水等の洗浄液を噴射して、基板ヘッド204のヘッド部232の、少なくともめっき液に接液する部分に洗浄液を吹き付けるヘッド洗浄ノズル286が設置されている。   Further, a cleaning liquid such as pure water is sprayed into the cleaning tank 202 at a position slightly above the diametrical direction, slightly above the spray nozzle 280 on the outer peripheral surface of the peripheral wall of the cleaning tank 202, and the head of the substrate head 204. A head cleaning nozzle 286 for spraying the cleaning liquid on at least a portion in contact with the plating solution of the part 232 is installed.

この洗浄槽202にあっては、基板ヘッド204のヘッド部232で保持した基板Wを洗浄槽202内の所定の位置に配置し、噴射ノズル280から純水等の洗浄液(リンス液)を噴射して基板Wを洗浄(リンス)するのであり、この時、ヘッド洗浄ノズル286から純水等の洗浄液を同時に噴射して、基板ヘッド204のヘッド部232の、少なくとも無電解めっき液に接液する部分を該洗浄液で洗浄することで、無電解めっき液に浸された部分に析出物が蓄積してしまうことを防止することができる。   In this cleaning tank 202, the substrate W held by the head portion 232 of the substrate head 204 is disposed at a predetermined position in the cleaning tank 202, and a cleaning liquid (rinsing liquid) such as pure water is sprayed from the spray nozzle 280. Then, the substrate W is cleaned (rinsed). At this time, a cleaning liquid such as pure water is simultaneously ejected from the head cleaning nozzle 286, and a portion of the head portion 232 of the substrate head 204 that is in contact with at least the electroless plating solution. By washing with the washing solution, it is possible to prevent the deposits from accumulating in the portion immersed in the electroless plating solution.

この無電解めっきユニット16にあっては、基板ヘッド204を上昇させた位置で、前述のようにして、基板ヘッド204のヘッド部232で基板Wを吸着保持し、めっき槽200の無電解めっき液を循環させておく。
そして、めっき処理を行うときには、めっき槽200のめっき槽カバー270を開き、基板ヘッド204を回転させながら下降させ、ヘッド部232で保持した基板Wをめっき槽200内の無電解めっき液に浸漬させる。
In the electroless plating unit 16, the substrate W is adsorbed and held by the head portion 232 of the substrate head 204 at the position where the substrate head 204 is lifted as described above, and the electroless plating solution in the plating tank 200. Keep circulating.
When performing the plating process, the plating tank cover 270 of the plating tank 200 is opened, the substrate head 204 is lowered while rotating, and the substrate W held by the head portion 232 is immersed in the electroless plating solution in the plating tank 200. .

そして、基板Wを所定時間めっき液中に浸漬させた後、基板ヘッド204を上昇させて、基板Wをめっき槽200内の無電解めっき液から引上げ、必要に応じて、前述のように、基板Wに向けて噴射ノズル268から純水(停止液)を噴射して基板Wを直ちに冷却し、更に基板ヘッド204を上昇させて基板Wをめっき槽200の上方位置まで引上げて、基板ヘッド204の回転を停止させる。   Then, after immersing the substrate W in the plating solution for a predetermined time, the substrate head 204 is raised, the substrate W is pulled up from the electroless plating solution in the plating tank 200, and if necessary, as described above, the substrate The substrate W is immediately cooled by spraying pure water (stopping liquid) from the spray nozzle 268 toward W, and the substrate head 204 is further lifted to pull the substrate W up to a position above the plating tank 200. Stop rotation.

次に、基板ヘッド204のヘッド部232で基板Wを吸着保持したまま、基板ヘッド204を洗浄槽202の直上方位置に移動させる。そして、基板ヘッド204を回転させながら洗浄槽202内の所定の位置まで下降させ、噴射ノズル280から純水等の洗浄液(リンス液)を噴射して基板Wを洗浄(リンス)し、同時に、ヘッド洗浄ノズル286から純水等の洗浄液を噴射して、基板ヘッド204のヘッド部232の、少なくとも無電解めっき液に接液する部分を該洗浄液で洗浄する。   Next, the substrate head 204 is moved to a position directly above the cleaning tank 202 while the substrate W is sucked and held by the head portion 232 of the substrate head 204. Then, while rotating the substrate head 204, the substrate head 204 is lowered to a predetermined position in the cleaning tank 202, and a cleaning liquid (rinsing liquid) such as pure water is sprayed from the spray nozzle 280 to clean (rinse) the substrate W. A cleaning liquid such as pure water is sprayed from the cleaning nozzle 286, and at least a portion of the head portion 232 of the substrate head 204 that comes into contact with the electroless plating solution is cleaned with the cleaning liquid.

この基板Wの洗浄が終了した後、基板ヘッド204の回転を停止させ、基板ヘッド204を上昇させて基板Wを洗浄槽202の上方位置まで引上げ、更に基板ヘッド204を第2基板搬送ロボット26との受渡し位置まで移動させ、この第2基板搬送ロボット26に基板Wを受渡して次工程に搬送する。   After the cleaning of the substrate W is completed, the rotation of the substrate head 204 is stopped, the substrate head 204 is raised, the substrate W is pulled up to a position above the cleaning tank 202, and the substrate head 204 is further moved to the second substrate transport robot 26. The substrate W is transferred to the second substrate transfer robot 26 and transferred to the next process.

図18は、乾燥ユニット20を示す。この乾燥ユニット20は、先ず化学洗浄及び純水洗浄を行い、しかる後、スピンドル回転により洗浄後の基板Wを完全乾燥させるようにしたユニットで、基板Wのエッジ部を把持するクランプ機構420を備えた基板ステージ422と、このクランプ機構420の開閉を行う基板着脱用昇降プレート424を有している。この基板ステージ422は、スピンドル回転用モータ426の駆動に伴って高速回転するスピンドル428の上端に連結されている。   FIG. 18 shows the drying unit 20. The drying unit 20 is a unit that first performs chemical cleaning and pure water cleaning, and then completely drys the cleaned substrate W by rotating the spindle, and includes a clamp mechanism 420 that grips the edge portion of the substrate W. A substrate stage 422 and a substrate attaching / detaching lifting plate 424 for opening and closing the clamp mechanism 420 are provided. The substrate stage 422 is connected to the upper end of a spindle 428 that rotates at a high speed as the spindle rotation motor 426 is driven.

更に、クランプ機構420で把持した基板Wの上面側に位置して、超音波発振器により特殊ノズルを通過する際に超音波を伝達して洗浄効果を高めた純水を供給するメガジェットノズル430と、回転可能なペンシル型洗浄スポンジ432が、旋回アーム434の自由端側に取付けられて配置されている。これにより、基板Wをクランプ機構420で把持して回転させ、旋回アーム434を旋回させながら、メガジェットノズル430から純水を洗浄スポンジ432に向けて供給しつつ、基板Wの表面に洗浄スポンジ432を擦り付けることで、基板Wの表面を洗浄する。なお、基板Wの裏面側にも、純水を供給する洗浄ノズル(図示せず)が備えられ、この洗浄ノズルから噴射される純水で基板Wの裏面も同時に洗浄される。
そして、このようにして洗浄した基板Wは、スピンドル428を高速回転させることでスピン乾燥させられる。
Further, a mega jet nozzle 430 that is located on the upper surface side of the substrate W gripped by the clamp mechanism 420 and that supplies pure water with enhanced cleaning effect by transmitting ultrasonic waves when passing through a special nozzle by an ultrasonic oscillator; A rotatable pencil-type cleaning sponge 432 is attached and arranged on the free end side of the swivel arm 434. Accordingly, the cleaning sponge 432 is supplied to the surface of the substrate W while supplying the pure water from the mega jet nozzle 430 toward the cleaning sponge 432 while rotating the swivel arm 434 while holding the substrate W by the clamp mechanism 420 and rotating it. The surface of the substrate W is cleaned by rubbing. A cleaning nozzle (not shown) for supplying pure water is also provided on the back surface side of the substrate W, and the back surface of the substrate W is simultaneously cleaned with pure water sprayed from the cleaning nozzle.
The substrate W thus cleaned is spin-dried by rotating the spindle 428 at a high speed.

また、クランプ機構420で把持した基板Wの周囲を囲繞して処理液の飛散を防止する洗浄カップ436が備えられ、この洗浄カップ436は、洗浄カップ昇降用シリンダ438の作動に伴って昇降するようになっている。
なお、この乾燥ユニット20にキャビテーションを利用したキャビジェット機能も搭載するようにしてもよい。
Further, a cleaning cup 436 is provided that surrounds the periphery of the substrate W gripped by the clamp mechanism 420 and prevents the processing liquid from being scattered. The cleaning cup 436 moves up and down in accordance with the operation of the cleaning cup lifting and lowering cylinder 438. It has become.
The drying unit 20 may also be equipped with a cavitation function using cavitation.

次に、この無電解めっき装置による一連の処理(無電解めっき処理)について、図19を参照して説明する。
先ず、表面に配線8を形成した基板Wを該基板Wの表面を上向き(フェースアップ)で収納してロード・アンロードユニット11に搭載した基板カセットから、1枚の基板Wを第1基板搬送ロボット24で取出し仮置台22に搬送して該仮置台22上に載置する。この仮置台22に載置された基板Wを、第2基板搬送ロボット26で前洗浄ユニット14に搬送する。
Next, a series of processes (electroless plating process) by this electroless plating apparatus will be described with reference to FIG.
First, the substrate W having the wiring 8 formed on the surface thereof is stored in the load / unload unit 11 with the surface of the substrate W facing upward (face up), and one substrate W is transferred to the first substrate. The robot 24 takes it out and transports it to the temporary table 22 and places it on the temporary table 22. The substrate W placed on the temporary table 22 is transferred to the pre-cleaning unit 14 by the second substrate transfer robot 26.

この前洗浄ユニット14では、基板Wをフェースアップで保持し、基板Wの表面に洗浄液による化学的作用と洗浄部材による機械的作用(スクラブ洗浄)を組合せた前洗浄を行って、基板の表面に残った防食剤及び/または金属錯体等を完全に除去する。この例では、BTA(ベンゾトリアゾール)などの防食剤及び/または金属錯体を除去するため、洗浄液として、クエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液を使用する。   The pre-cleaning unit 14 holds the substrate W face up and performs pre-cleaning on the surface of the substrate W by combining the chemical action by the cleaning liquid and the mechanical action by the cleaning member (scrubbing). The remaining anticorrosive and / or metal complex is completely removed. In this example, in order to remove an anticorrosive agent such as BTA (benzotriazole) and / or a metal complex, an organic solution having a pH of 3 or more (pH> 3) containing ethylenediaminediacetic acid (EDTA) in an aqueous solution of citric acid is used as a cleaning solution. Use an acid solution.

つまり、全表面を純水で濡らした回転中の基板Wの表面に、洗浄部材(ロール状ブラシ)42を回転させながら接触させ、この洗浄部材(ロール状ブラシ)42が基板Wの表面に接触すると同時に、基板Wの上方に配置された洗浄液用ノズル32から、基板Wの表面に、クエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液からなる洗浄液を供給する。これにより、洗浄液による化学的作用と洗浄部材42による機械的作用を組合せた前洗浄で基板Wの表面に残った防食剤及び/または金属錯体等を完全に除去する。この基板の表面(上面)の前洗浄と並行して、必要に応じて、基板の裏面(下面)の前洗浄を行う。   In other words, the cleaning member (roll brush) 42 is brought into contact with the surface of the rotating substrate W wetted with pure water while rotating, and the cleaning member (roll brush) 42 contacts the surface of the substrate W. At the same time, from the cleaning liquid nozzle 32 disposed above the substrate W, an organic acid solution having a pH of 3 or more (pH> 3) containing ethylenediaminediacetic acid (EDTA) in an aqueous citric acid solution is applied to the surface of the substrate W. Supply a cleaning solution. Thereby, the anticorrosive agent and / or metal complex remaining on the surface of the substrate W is completely removed by the pre-cleaning that combines the chemical action by the cleaning liquid and the mechanical action by the cleaning member 42. In parallel with the pre-cleaning of the front surface (upper surface) of the substrate, pre-cleaning of the back surface (lower surface) of the substrate is performed as necessary.

そして、所定時間、例えば30秒間、上記処理を行った後、基板Wの表面を純水用ノズル38から供給される純水でリンスし、基板Wの裏面も同様に、必要に応じて、純水用ノズル38から供給される純水でリンスする。   Then, after performing the above-described treatment for a predetermined time, for example, 30 seconds, the surface of the substrate W is rinsed with pure water supplied from the pure water nozzle 38, and the back surface of the substrate W is similarly purified as necessary. Rinse with pure water supplied from the water nozzle 38.

次に、前洗浄後の基板を触媒付与ユニット15に搬送し、この触媒付与ユニット15の基板ホルダ58で基板Wをフェースダウンで保持し、基板の表面に、例えばPd触媒付与液を接触させて配線8の表面に触媒を付与する。つまり、図6に示すように、内槽100bの上端開口部を覆う位置に処理ヘッド60を位置させ、内槽100b内に配置したノズル板112の噴射ノズル112aから第1処理液タンク120内の第1処理液を基板Wに向けて噴出する。この第1処理液として、例えばPd触媒付与液を使用し、これによって、配線8の表面に触媒を付与する。触媒金属としては、白金族元素、コバルト、ニッケルのいずれもが使用できるが、反応速度や制御のし易さなどの点から、触媒としてPdを用いることが好ましい。   Next, the substrate after pre-cleaning is transported to the catalyst application unit 15, the substrate W is held face down by the substrate holder 58 of the catalyst application unit 15, and, for example, a Pd catalyst application liquid is brought into contact with the surface of the substrate. A catalyst is applied to the surface of the wiring 8. That is, as shown in FIG. 6, the processing head 60 is positioned at a position covering the upper end opening of the inner tank 100 b, and the spray nozzle 112 a of the nozzle plate 112 disposed in the inner tank 100 b is placed in the first processing liquid tank 120. The first processing liquid is ejected toward the substrate W. For example, a Pd catalyst application liquid is used as the first treatment liquid, and thereby a catalyst is applied to the surface of the wiring 8. As the catalyst metal, any of platinum group elements, cobalt, and nickel can be used, but Pd is preferably used as the catalyst from the viewpoint of reaction rate and ease of control.

この時、前洗浄後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に、基板の表面を触媒付与液に接触させることが好ましい。これにより、前洗浄処理から触媒付与処理を開始するまでの間に、配線表面に酸化膜が再形成されたり、ウォータマークが形成されたりするのを抑えて、配線表面に触媒を均一に付与し、その後の無電解めっきで成膜される保護膜(めっき膜)に欠陥の生じることを防止することができる。   At this time, it is preferable that the surface of the substrate after the pre-cleaning is rinsed with pure water, and the surface of the substrate is brought into contact with the catalyst applying liquid before the surface of the substrate is completely dried. This prevents the formation of an oxide film on the wiring surface or the formation of a watermark between the pre-cleaning process and the start of the catalyst application process, thereby uniformly applying the catalyst to the wiring surface. Then, it is possible to prevent a defect from occurring in the protective film (plating film) formed by subsequent electroless plating.

触媒付与ユニット15で、配線8の表面にPd等の触媒を付与した後、基板の表面を純水で洗浄(リンス)する。つまり、基板Wを保持した基板ホルダ58を内槽100bの上方まで上昇させ、内槽100bの上部を蓋体102で覆った後、蓋体102に設けたノズル板112の噴射ノズル112aから第2処理液を基板Wに向けて噴出する。この第2処理液として、好ましくは脱気させた純水を使用し、これによって、基板Wの表面を純水で洗浄(リンス)する。   After applying a catalyst such as Pd to the surface of the wiring 8 by the catalyst applying unit 15, the surface of the substrate is washed (rinsed) with pure water. That is, the substrate holder 58 holding the substrate W is raised to above the inner tank 100b, the upper part of the inner tank 100b is covered with the lid body 102, and then the second from the injection nozzle 112a of the nozzle plate 112 provided on the lid body 102. The processing liquid is ejected toward the substrate W. As the second treatment liquid, preferably degassed pure water is used, and thereby the surface of the substrate W is cleaned (rinsed) with pure water.

次に、触媒付与処理後の基板Wを無電解めっきユニット16に搬送する。無電解めっきユニット16では、基板Wをフェースダウンで保持した基板ヘッド204を下降させて、基板Wをめっき槽200内の無電解めっき液に浸漬させ、これによって、無電解めっき(無電解CoWP蓋めっき)を施す。つまり、例えば、液温が80℃のCoWPめっき液中に、基板Wを、例えば120秒程度浸漬させて、活性化させた配線8の表面に選択的な無電解めっき(無電解CoWP蓋めっき)を施す。   Next, the substrate W after the catalyst application treatment is transported to the electroless plating unit 16. In the electroless plating unit 16, the substrate head 204 holding the substrate W face down is lowered, and the substrate W is immersed in the electroless plating solution in the plating tank 200, whereby electroless plating (electroless CoWP lid) Plating). That is, for example, selective electroless plating (electroless CoWP lid plating) is performed on the surface of the wiring 8 activated by immersing the substrate W in a CoWP plating solution having a liquid temperature of 80 ° C. for about 120 seconds, for example. Apply.

そして、基板Wをめっき液の液面から引上げた後、噴射ノズル268から基板Wに向けて純水等のめっき停止液を噴出し、これによって、基板Wの表面のめっき液を停止液に置換させて無電解めっきを停止させる。次に、基板Wを保持した基板ヘッド204を洗浄槽202内の所定の位置に位置させ、洗浄槽202内のノズル板282の噴射ノズル280から純水を基板Wに向けて噴出して、基板Wを洗浄(リンス)し、同時にヘッド洗浄ノズル286から純水をヘッド部232に噴出してヘッド部232を洗浄する。これによって、配線8の表面に、CoWP合金膜からなる保護膜9を選択的に形成して配線8を保護する。   Then, after pulling up the substrate W from the surface of the plating solution, a plating stop solution such as pure water is ejected from the injection nozzle 268 toward the substrate W, thereby replacing the plating solution on the surface of the substrate W with the stop solution. To stop the electroless plating. Next, the substrate head 204 holding the substrate W is positioned at a predetermined position in the cleaning tank 202, and pure water is ejected from the spray nozzle 280 of the nozzle plate 282 in the cleaning tank 202 toward the substrate W. W is washed (rinsed), and at the same time, pure water is jetted from the head washing nozzle 286 to the head part 232 to wash the head part 232. Thus, the protective film 9 made of a CoWP alloy film is selectively formed on the surface of the wiring 8 to protect the wiring 8.

次に、この無電解めっき処理後の基板Wを第2基板搬送ロボット26で後洗浄ユニット18に搬送し、ここで、基板Wの表面に形成された保護膜(金属膜)9の選択性を向上させて歩留りを高めるためのめっき後処理(後洗浄)を施す。つまり、基板Wの表面に、例えばロールスクラブ洗浄やペンシル洗浄による物理的な力を加えつつ、めっき後処理液(薬液)を基板Wの表面に供給し、これにより、絶縁膜(層間絶縁膜)2上に残っている金属微粒子等のめっき残留物を完全に除去して、めっきの選択性を向上させる。   Next, the substrate W after the electroless plating process is transported to the post-cleaning unit 18 by the second substrate transport robot 26, where the selectivity of the protective film (metal film) 9 formed on the surface of the substrate W is increased. Apply post-plating treatment (post-cleaning) to improve and increase yield. In other words, a post-plating processing solution (chemical solution) is supplied to the surface of the substrate W while applying a physical force by, for example, roll scrub cleaning or pencil cleaning to the surface of the substrate W, whereby an insulating film (interlayer insulating film) 2 to completely remove plating residues such as metal fine particles remaining on the metal plate, thereby improving the selectivity of plating.

そして、このめっき後処理後の基板Wを第2基板搬送ロボット26で乾燥ユニット20に搬送し、ここで必要に応じてリンス処理を行い、しかる後、基板Wを高速で回転させてスピン乾燥させる。
このスピン乾燥後の基板Wを、第2基板搬送ロボット26で仮置台22の上に置き、この仮置台22の上に置かれた基板を、第1基板搬送ロボット24でロード・アンロードユニット11に搭載された基板カセットに戻す。
Then, the substrate W after the post-plating treatment is transported to the drying unit 20 by the second substrate transport robot 26, where rinsing is performed as necessary, and then the substrate W is rotated at a high speed and spin-dried. .
The substrate W after the spin drying is placed on the temporary table 22 by the second substrate transport robot 26, and the substrate placed on the temporary table 22 is loaded / unloaded by the first substrate transport robot 24. Return to the substrate cassette mounted on.

この例によれば、配線表面に、触媒を付与した後に保護膜を成膜する場合に、配線表面に触媒を付与する処理に先立って、洗浄液による化学的作用と洗浄部材による機械的作用を組合せた前洗浄で基板の表面に残った防食剤及び/または金属錯体を完全に除去して、配線表面により均一に触媒を付与し、しかも配線表面に防食剤及び/または金属錯体がない状態で保護膜を成膜することができる。   According to this example, when a protective film is formed after applying a catalyst to the wiring surface, the chemical action by the cleaning liquid and the mechanical action by the cleaning member are combined prior to the process of applying the catalyst to the wiring surface. In addition, the anti-corrosion agent and / or metal complex remaining on the surface of the substrate is completely removed by pre-cleaning to provide a uniform catalyst on the wiring surface, and protection is provided in the absence of the anti-corrosion agent and / or metal complex on the wiring surface. A film can be formed.

図20は、本発明の他の実施の形態の無電解めっき装置の平面配置図を示す。この図20に示す例の図1に示す例と異なる点は、装置フレーム12の内部に、図1に示す前洗浄ユニット14及び触媒付与ユニット15の代わりに、洗浄ユニット14a及び前処理ユニット15aを配置した点にある。この洗浄ユニット14aは、使用する処理液が異なるだけで、図1に示す触媒付与ユニット15と同じ構成で、前処理ユニット15aは、使用する処理液が異なるだけで、図1に示す前洗浄ユニット14と同じ構成である。   FIG. 20 is a plan layout view of an electroless plating apparatus according to another embodiment of the present invention. The example shown in FIG. 20 is different from the example shown in FIG. 1 in that a cleaning unit 14a and a pretreatment unit 15a are provided in the apparatus frame 12 instead of the precleaning unit 14 and the catalyst application unit 15 shown in FIG. It is at the point where it was placed. The cleaning unit 14a has the same configuration as the catalyst application unit 15 shown in FIG. 1 except that the processing liquid used is different. The preprocessing unit 15a differs only in the processing liquid used, as shown in FIG. 14 is the same configuration.

この例では、洗浄ユニット14aで基板の表面を洗浄した後、前処理ユニット15aで基板の前処理、つまり基板の表面の洗浄と配線の表面への触媒の付与を同時に行い、しかる後、無電解めっきユニット16で配線の表面の保護膜を選択的に形成するようにしている。   In this example, after the substrate surface is cleaned by the cleaning unit 14a, the substrate is pre-processed by the pre-processing unit 15a, that is, the substrate surface is cleaned and the catalyst is applied to the wiring surface at the same time. A protective film on the surface of the wiring is selectively formed by the plating unit 16.

すなわち、図21に示すように、基板を収納してロード・アンロードユニット11に搭載した基板カセットから、1枚の基板Wを第1基板搬送ロボット24で取出し仮置台22に搬送して該仮置台22上に載置する。この仮置台22に載置された基板Wを、第2基板搬送ロボット26で洗浄ユニット14aに搬送する。   That is, as shown in FIG. 21, a substrate W is taken out from the substrate cassette that is stored in the loading / unloading unit 11 and transferred to the temporary placement table 22 by the first substrate transfer robot 24. Place on the table 22. The substrate W placed on the temporary table 22 is transported to the cleaning unit 14 a by the second substrate transport robot 26.

この洗浄ユニット14aでは、前述の触媒付与ユニット15における第1処理液(触媒付与液)の代わりに洗浄液を使用し、フェースダウンで保持した基板の表面に向けて洗浄液を噴射して、基板の表面を洗浄液で洗浄し、しかる後、洗浄後の基板Wの表面を純水でリンスする。そして、洗浄後の基板を前処理ユニット15aに搬送する。   In this cleaning unit 14a, the cleaning liquid is used in place of the first processing liquid (catalyst applying liquid) in the catalyst applying unit 15 described above, and the cleaning liquid is sprayed toward the surface of the substrate held face down, so that the surface of the substrate Then, the surface of the cleaned substrate W is rinsed with pure water. And the board | substrate after washing | cleaning is conveyed to the pre-processing unit 15a.

この前処理ユニット15aでは、前述の前洗浄ユニット14における洗浄液の代わりに、触媒を含む前処理液(触媒付与兼洗浄液)を使用し、フェースアップで保持した基板Wの表面に前処理液による化学的作用と洗浄部材による機械的作用(スクラブ洗浄)を組合せた洗浄と触媒付与処理を同時に行って、基板の表面に残った防食剤及び/または金属錯体等を完全に除去し、同時に配線の表面に触媒を付与する。   In this pretreatment unit 15a, a pretreatment liquid containing a catalyst (catalyst imparting and washing liquid) is used instead of the washing liquid in the aforementioned precleaning unit 14, and the surface of the substrate W held face-up is chemically treated with the pretreatment liquid. Cleaning and catalyst application treatment that combines mechanical action and mechanical action by the cleaning member (scrub cleaning) are simultaneously performed to completely remove the anticorrosive agent and / or metal complex remaining on the surface of the substrate, and at the same time, the surface of the wiring The catalyst is added to

つまり、全表面を純水で濡らした回転中の基板Wの表面に、洗浄部材(ロール状ブラシ)42(図3参照)を回転させながら接触させ、この洗浄部材(ロール状ブラシ)42が基板Wの表面に接触すると同時に、基板Wの上方に配置された洗浄液用ノズル32(図3参照)から、基板Wの表面に前処理液(触媒付与兼洗浄液)を供給する。
そして、所定時間、例えば30秒間、上記処理を行った後、基板Wの表面を純水でリンスし、基板Wの裏面も同様に、必要に応じて、純水でリンスする。
In other words, the cleaning member (roll brush) 42 (see FIG. 3) is brought into contact with the surface of the rotating substrate W wetted with pure water while the cleaning member (roll brush) 42 is rotated. Simultaneously with contact with the surface of W, a pretreatment liquid (catalyst application / cleaning liquid) is supplied to the surface of the substrate W from a cleaning liquid nozzle 32 (see FIG. 3) disposed above the substrate W.
And after performing the said process for predetermined time, for example, 30 seconds, the surface of the board | substrate W is rinsed with a pure water, and the back surface of the board | substrate W is similarly rinsed with a pure water as needed.

この時、洗浄後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に、基板の表面を前処理液に接触させることが好ましい。これにより、洗浄処理から前処理を開始するまでの間に、配線表面に酸化膜が再形成されたり、ウォータマークが形成されたりするのを抑えて、配線表面に触媒を均一に付与し、その後の無電解めっきで成膜される保護膜(めっき膜)に欠陥の生じることを防止することができる。   At this time, it is preferable to rinse the surface of the substrate after cleaning with pure water and bring the surface of the substrate into contact with the pretreatment liquid before the surface of the substrate is completely dried. This prevents the formation of an oxide film on the wiring surface or the formation of a watermark between the cleaning process and the start of the pretreatment, and uniformly applies the catalyst to the wiring surface. It is possible to prevent a defect from occurring in the protective film (plating film) formed by electroless plating.

次に、前処理後の基板を無電解めっきユニット16に搬送し、ここで配線8の表面に選択的な無電解めっきを施す。これ以降の処理は、前述の例と同様である。
このように、洗浄ユニット14aと前処理ユニット15aとを組合せたマルチステップ処理を行って、基板の洗浄効果をより高めることができる。
Next, the substrate after the pretreatment is transported to the electroless plating unit 16 where selective electroless plating is performed on the surface of the wiring 8. The subsequent processing is the same as in the above example.
In this way, the multi-step process combining the cleaning unit 14a and the pre-processing unit 15a can be performed to further enhance the substrate cleaning effect.

この例によれば、基板表面の洗浄と配線表面への触媒付与処理を一つの前処理液を使用して同時に行った後に配線表面に保護膜を成膜したりする場合に、無電解めっきによる成膜に先立って、前処理液による化学的作用と洗浄部材による機械的作用を組合せた前処理で基板の表面に残った防食剤及び/または金属錯体を完全に除去することができる。しかも、基板の表面に洗浄部材を接触させ、両者を相対的に移動させことで、基板の全面に亘る前処理を行うことができる。   According to this example, when a protective film is formed on the wiring surface after the substrate surface is cleaned and the catalyst is applied to the wiring surface at the same time using one pretreatment liquid, electroless plating is used. Prior to film formation, the anticorrosive and / or metal complex remaining on the surface of the substrate can be completely removed by pretreatment that combines the chemical action of the pretreatment liquid and the mechanical action of the cleaning member. In addition, pretreatment over the entire surface of the substrate can be performed by bringing the cleaning member into contact with the surface of the substrate and relatively moving both of them.

なお、配線の表面に選択的に形成する保護膜を構成する合金膜の種類によっては、基板の表面に、触媒を付与することなく、保護膜(合金膜)を直接形成できるものもある。このような合金膜を保護膜として使用する場合には、図20に示す前処理ユニット15aの前処理液として、前述の前洗浄ユニット14の場合と同様に、例えばクエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液からなる洗浄液を使用する。そして、図22に示すように、ロード・アンロードユニット11に搭載した基板カセットから取出されて仮置台22に搬送された基板Wを前処理ユニット15aに搬送し、この前処理ユニット15aで基板Wをフェースアップで保持し、基板Wの表面に前処理液(洗浄液)による化学的作用と洗浄部材による機械的作用(スクラブ洗浄)を組合せた前洗浄を行って、基板の表面に残った防食剤及び/または金属錯体等を完全に除去する。そして、基板Wの表面を純水でリンスし、基板Wの裏面も同様に、必要に応じて、純水でリンスした後、無電解めっきユニット16に搬送し、ここで配線8の表面に選択的な無電解めっきを施すようにしてもよい。これ以降の処理は、前述の例と同様である。   Depending on the type of alloy film that forms the protective film selectively formed on the surface of the wiring, there is a type in which the protective film (alloy film) can be directly formed on the surface of the substrate without applying a catalyst. When such an alloy film is used as a protective film, as the pretreatment liquid of the pretreatment unit 15a shown in FIG. 20, for example, an ethylenediaminediacetic acid solution in an aqueous solution of citric acid, as in the case of the precleaning unit 14 described above. A cleaning solution comprising an organic acid solution containing (EDTA) and having a pH of 3 or more (pH> 3) is used. Then, as shown in FIG. 22, the substrate W taken out from the substrate cassette mounted on the load / unload unit 11 and transported to the temporary placement table 22 is transported to the pretreatment unit 15a. Anti-corrosion agent remaining on the surface of the substrate by pre-cleaning the surface of the substrate W by combining the chemical action of the pretreatment liquid (cleaning liquid) and the mechanical action of the cleaning member (scrubbing). And / or metal complexes and the like are completely removed. Then, the surface of the substrate W is rinsed with pure water, and the back surface of the substrate W is similarly rinsed with pure water as necessary, and then transferred to the electroless plating unit 16 where the surface of the wiring 8 is selected. A typical electroless plating may be applied. The subsequent processing is the same as in the above example.

この場合にあっても、洗浄ユニット14aで基板を洗浄してから、前処理ユニット15aで基板の前処理(洗浄)を行うようにしてもよい。
これまで本発明の一実施例について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
Even in this case, the substrate may be pre-processed (cleaned) by the pre-processing unit 15a after the substrate is cleaned by the cleaning unit 14a.
Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

なお、上記の例では、基板Wの表面または両面に洗浄液(前処理液)を供給しつつ、ロール状の洗浄部材42,46を回転軸40,44まわりに同一方向に回転させながら、それらの表面を基板Wの表面または両面に接触させて、基板Wの前洗浄(前処理)を行うようにしているが、基板の表面または両面に洗浄液(前処理液)を供給しつつ、揺動アームの先端に取付けた回転可能な洗浄部材を水平方向に回転運動する基板に接触させて、基板の前洗浄(前処理)を行うようにしてもよい。また、揺動アームの先端に取付けた回転可能な洗浄部材を水平方向に回転運動する基板に当接させるとともに、超音波振動を帯びた液体を基板の表面に向けて噴射させて基板の前洗浄(前処理)を行うようにしてもよい。更に、基板の表面または両面をバフ等で研磨して、基板の前洗浄(前処理)を行うようにしてもよい。   In the above example, while supplying the cleaning liquid (pretreatment liquid) to the surface or both surfaces of the substrate W, while rotating the roll-shaped cleaning members 42 and 46 around the rotation shafts 40 and 44 in the same direction, The surface is brought into contact with the surface or both surfaces of the substrate W to perform pre-cleaning (pre-processing) of the substrate W. While supplying the cleaning liquid (pre-processing solution) to the surface or both surfaces of the substrate, the swing arm The substrate may be pre-cleaned (pre-processed) by bringing a rotatable cleaning member attached to the tip of the substrate into contact with the substrate rotating in the horizontal direction. In addition, a rotatable cleaning member attached to the tip of the swing arm is brought into contact with a substrate that rotates in a horizontal direction, and a liquid having ultrasonic vibrations is sprayed toward the surface of the substrate to pre-clean the substrate. (Pre-processing) may be performed. Furthermore, the front surface or both surfaces of the substrate may be polished with a buff or the like to perform pre-cleaning (pre-processing) of the substrate.

(実施例1)
図1に示す前洗浄ユニット14を使用した試料の前洗浄を行って、洗浄効果を調べた。先ず、1000nmの銅膜を表面に電解めっきで一様に形成し、該銅膜を500nm残してCMPで研磨した300mmφの銅ブランケットウェーハを試料として用意した。このCMP後の試料の銅表面にはベンゾトリアゾール(BTA)が残してある。
Example 1
The sample was pre-cleaned using the pre-cleaning unit 14 shown in FIG. 1, and the cleaning effect was examined. First, a 300 mm copper blanket wafer was prepared as a sample by uniformly forming a 1000 nm copper film on the surface by electrolytic plating, leaving the copper film 500 nm, and polishing it by CMP. Benzotriazole (BTA) remains on the copper surface of the sample after CMP.

そして、被処理面(表面)を上向きにして、試料を前洗浄ユニット14のローラ30で保持し、試料を110rpmで回転させながら、試料の全表面を純水で5秒間濡らした。そして、洗浄部材(ロール状ブラシ)42を、100rpmで回転させながら試料の表面に接触させた。洗浄部材42が試料の表面に接触すると同時に、洗浄液用ノズル32から、クエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液からなる洗浄液を試料の表面に供給し、30秒に亘る試料の洗浄(前洗浄)を行った。その後、試料をローラ30から離し、直ちに、試料の表面を15秒間純水でリンスした。   Then, the surface to be treated (surface) was faced upward, the sample was held by the roller 30 of the pre-cleaning unit 14, and the entire surface of the sample was wetted with pure water for 5 seconds while rotating the sample at 110 rpm. Then, the cleaning member (roll brush) 42 was brought into contact with the surface of the sample while rotating at 100 rpm. At the same time as the cleaning member 42 comes into contact with the surface of the sample, a cleaning liquid made of an organic acid solution having a pH of 3 or more (pH> 3) containing ethylenediaminediacetic acid (EDTA) in an aqueous citric acid solution is extracted from the cleaning liquid nozzle 32. The sample was supplied to the surface, and the sample was cleaned (pre-cleaned) for 30 seconds. Thereafter, the sample was separated from the roller 30, and immediately the surface of the sample was rinsed with pure water for 15 seconds.

(比較例1)
実施例1と同様な試料を用意し、いわゆるスプレー方式による試料の洗浄を行った。つまり、被処理面(表面)を下向きにして、試料をスプレー方式の洗浄ユニットにセットし、試料を20rpmで水平回転させながら、試料の下方に配置した複数の噴射ノズルから、クエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液からなる洗浄液を試料の全表面に向けて噴射して、30秒に亘る試料の洗浄(前洗浄)を行った。その後、試料全面を15秒間純水でリンスした。
(Comparative Example 1)
A sample similar to that in Example 1 was prepared, and the sample was washed by a so-called spray method. That is, the sample is set in a spray-type cleaning unit with the surface to be processed (surface) facing down, and the sample is horizontally rotated at 20 rpm, and the aqueous solution of citric acid is supplied from a plurality of spray nozzles arranged below the sample. A cleaning liquid composed of an organic acid solution containing ethylenediaminediacetic acid (EDTA) having a pH of 3 or more (pH> 3) was sprayed toward the entire surface of the sample, and the sample was cleaned (pre-cleaning) for 30 seconds. . Thereafter, the entire surface of the sample was rinsed with pure water for 15 seconds.

(比較例2)
実施例1と同様な試料を用意し、いわゆる浸漬方式による試料の洗浄を行った。つまり、被処理面(表面)を下向きにして、試料を浸漬方式の洗浄ユニットにセットし、試料を20rpmで水平回転させながら、クエン酸の水溶液にエチレンジアミン二酢酸(EDTA)を含むpHが3以上(pH>3)の有機酸溶液からなる洗浄液に浸漬させて、60秒の亘る試料の洗浄(前洗浄)を行った。その後、試料を洗浄液から引上げ、その表面を15秒間純水でリンスした。
(Comparative Example 2)
A sample similar to that in Example 1 was prepared, and the sample was washed by a so-called dipping method. In other words, the surface to be treated (surface) is facing downward, the sample is set in an immersion type cleaning unit, and the pH of the aqueous citric acid solution containing ethylenediaminediacetic acid (EDTA) is 3 or more while rotating the sample horizontally at 20 rpm. The sample was immersed in a cleaning solution composed of an organic acid solution (pH> 3), and the sample was cleaned (pre-cleaning) for 60 seconds. Thereafter, the sample was pulled up from the cleaning solution, and its surface was rinsed with pure water for 15 seconds.

実施例1、比較例1及び2における処理条件をまとめて表1に示す。

Figure 2007332445
この表1から、実施例1によれは、比較例1及び2に比較して、1枚の試料に対して使用される洗浄液(薬液)が少なくて済むことが判る。 Table 1 summarizes the processing conditions in Example 1 and Comparative Examples 1 and 2.
Figure 2007332445
From Table 1, it can be seen that, according to Example 1, less cleaning liquid (chemical solution) is used for one sample as compared with Comparative Examples 1 and 2.

実施例1、比較例1及び2による処理後の試料からそれぞれチップを切出し、X線光電子分光法(XPS)分析を行った。この分析によって検出されたN元素及びO元素の相対値を表2に示す。   Chips were cut out from the samples after the treatment in Example 1 and Comparative Examples 1 and 2, respectively, and subjected to X-ray photoelectron spectroscopy (XPS) analysis. Table 2 shows the relative values of the N element and O element detected by this analysis.

Figure 2007332445
N元素及びO元素は、それぞれBTAの残留量および金属酸化物に比例すると考えられる。この表2から、実施例1は、比較例1及び2に比較して、防食材であるBTAまたはCu−BTA錯体および金属酸化物の除去に有効であることが判る。
Figure 2007332445
N element and O element are considered to be proportional to the residual amount of BTA and the metal oxide, respectively. From Table 2, it can be seen that Example 1 is more effective in removing BTA or Cu-BTA complexes and metal oxides as anticorrosive materials than Comparative Examples 1 and 2.

(実施例2)
CMPで銅配線の露出表面を形成した300mmφのパタンウェーハを試料として用意した。CMP後の銅配線の表面にはベンゾトリアゾール(BTA)が残してある。
この試料の表面を前述の実施例1と同様にして洗浄(前洗浄)して純水でリンスした。次に、前洗浄後の試料を無電解めっきユニットに搬入し、Co及びWの無機塩、及びDMABを含むpHが8以上(pH>8)の無電解めっき液に試料を浸漬させて、銅配線の表面に保護膜を形成した。所定時間経過後、試料を無電解めっき液から引上げ、直ちに5秒の試料全面を純水でリンスした。その後、試料を洗浄し乾燥させた。
(Example 2)
A 300 mmφ pattern wafer in which the exposed surface of the copper wiring was formed by CMP was prepared as a sample. Benzotriazole (BTA) remains on the surface of the copper wiring after CMP.
The surface of this sample was washed (pre-washed) in the same manner as in Example 1 and rinsed with pure water. Next, the sample after the pre-cleaning is carried into an electroless plating unit, and the sample is immersed in an electroless plating solution having a pH of 8 or more (pH> 8) containing inorganic salts of Co and W and DMAB, and copper A protective film was formed on the surface of the wiring. After elapse of a predetermined time, the sample was pulled up from the electroless plating solution, and immediately the entire surface of the sample was rinsed with pure water for 5 seconds. Thereafter, the sample was washed and dried.

(比較例3)
実施例2と同様な試料を用意し、この試料の表面を前述の比較例1と同様にして洗浄(前洗浄)し純水でリンスした。そして、この洗浄後(前洗浄後)の試料の配線の表面に、実施例2と同様にして保護膜を形成し、洗浄後乾燥させた。
(Comparative Example 3)
A sample similar to that in Example 2 was prepared, and the surface of this sample was washed (pre-washed) in the same manner as in Comparative Example 1 and rinsed with pure water. Then, a protective film was formed on the surface of the wiring of the sample after this cleaning (after pre-cleaning) in the same manner as in Example 2, and was dried after cleaning.

(比較例4)
実施例2と同様な試料を用意し、この試料の表面を前述の比較例2と同様にして洗浄(前洗浄)し純水でリンスした。そして、この洗浄後(前洗浄後)の試料の配線の表面に、実施例2と同様にして保護膜を形成し、洗浄後乾燥させた。
(Comparative Example 4)
A sample similar to that in Example 2 was prepared, and the surface of this sample was washed (pre-cleaned) in the same manner as in Comparative Example 2 and rinsed with pure water. Then, a protective film was formed on the surface of the wiring of the sample after this cleaning (after pre-cleaning) in the same manner as in Example 2, and was dried after cleaning.

実施例2、比較例3及び4によって銅配線上に形成された保護膜(Co合金膜)の代表的な箇所における膜厚を光学式の薄膜測定器を測定した。この測定結果から得られた保護膜の膜厚の平均値および不均一性(3σ)を表3に示す。   The film thickness at a representative location of the protective film (Co alloy film) formed on the copper wiring according to Example 2 and Comparative Examples 3 and 4 was measured by an optical thin film measuring instrument. Table 3 shows the average value and non-uniformity (3σ) of the thickness of the protective film obtained from the measurement results.

Figure 2007332445
表3から、実施例2にあっては、比較例3及び4に比較して、配線上に形成した保護膜の面内均一性が良いことが判る。
Figure 2007332445
From Table 3, it can be seen that in Example 2, the in-plane uniformity of the protective film formed on the wiring is better than in Comparative Examples 3 and 4.

(実施例3)
実施例2と同様な試料を用意し、試料の表面を前述の実施例1と同様にして洗浄(前洗浄)して純水でリンスした。次に、試料を触媒処理ユニットに搬入し、PdSO含むpHが2以下(pH<2)の硫酸水溶液からなる触媒付与液に試料を浸漬させ、所定時間経過後に試料を触媒付与液から引上げた。そして、直ちに試料表面を10秒間純水でリンスした。その後、試料を無電解めっきユニットに搬入し、Co及びWの無機塩、及び次亜燐酸塩を含むpHが8以上(pH>8)の無電解めっき液に試料を浸漬させて、銅配線の表面に保護膜を形成した。所定時間経過後、試料を無電解めっき液から引上げ、直ちに5秒の試料全面を純水でリンスした。その後、試料を洗浄し乾燥させた。
(Example 3)
A sample similar to that in Example 2 was prepared, and the surface of the sample was washed (pre-washed) in the same manner as in Example 1 and rinsed with pure water. Next, the sample was carried into the catalyst processing unit, and the sample was immersed in a catalyst application liquid composed of an aqueous sulfuric acid solution containing PdSO 4 and having a pH of 2 or less (pH <2), and the sample was pulled up from the catalyst application liquid after a predetermined time. . Then, the sample surface was immediately rinsed with pure water for 10 seconds. Thereafter, the sample is carried into an electroless plating unit, and the sample is immersed in an electroless plating solution having a pH of 8 or more (pH> 8) containing inorganic salts of Co and W and hypophosphite. A protective film was formed on the surface. After elapse of a predetermined time, the sample was pulled up from the electroless plating solution, and immediately the entire surface of the sample was rinsed with pure water for 5 seconds. Thereafter, the sample was washed and dried.

(比較例5)
実施例2と同様な試料を用意し、試料の表面を前述の比較例1と同様にして洗浄(前洗浄)して純水でリンスした。そして、この洗浄後(前洗浄後)の試料の配線の表面に、実施例3と同様にして保護膜を形成し、洗浄後乾燥させた。
(Comparative Example 5)
A sample similar to that in Example 2 was prepared, and the surface of the sample was washed (pre-washed) in the same manner as in Comparative Example 1 and rinsed with pure water. Then, a protective film was formed on the surface of the wiring of the sample after this cleaning (after pre-cleaning) in the same manner as in Example 3, and was dried after cleaning.

(比較例6)
実施例2と同様な試料を用意し、試料の表面を前述の比較例2と同様にして洗浄(前洗浄)して純水でリンスした。そして、この洗浄後(前洗浄後)の試料の配線の表面に、実施例3と同様にして保護膜を形成し、洗浄後乾燥させた。
(Comparative Example 6)
A sample similar to that in Example 2 was prepared, and the surface of the sample was washed (pre-washed) in the same manner as in Comparative Example 2 and rinsed with pure water. Then, a protective film was formed on the surface of the wiring of the sample after this cleaning (after pre-cleaning) in the same manner as in Example 3, and was dried after cleaning.

実施例3、比較例5及び6によって銅配線上に形成された保護膜(Co合金膜)の代表的な箇所における膜厚を光学式の薄膜測定器を測定した。この測定結果から得られた保護膜の膜厚の平均値および不均一性(3σ)を表4に示す。   The film thickness at the representative location of the protective film (Co alloy film) formed on the copper wiring in Example 3 and Comparative Examples 5 and 6 was measured with an optical thin film measuring instrument. Table 4 shows the average value and non-uniformity (3σ) of the thickness of the protective film obtained from this measurement result.

Figure 2007332445
表3から、実施例3にあっては、比較例5及び6に比較して、配線上に形成した保護膜の面内均一性が良いことが判る。
Figure 2007332445
From Table 3, it can be seen that in Example 3, the in-plane uniformity of the protective film formed on the wiring is better than in Comparative Examples 5 and 6.

次に、実施例3、比較例5及び6で処理した配線のリーク電流を測定した。その分布を図23に示す。この図は、基準となる処理していない試料の配線におけるリーク電流分布も併せて表示している。ここで、リーク電流が大きくなる方向にシフトしないことがデバイスの性能として要求される。図23に示すように、実施例3では、比較例5及び6に比較して、保護膜を形成した配線におけるリーク電流は、処理していない配線におけるリーク電流に最も近い。これにより、実施例3によれば、試料の表面に残留した不純物を有効に除去でき、めっき後の配線のリークに最も低い値が得られることが判る。   Next, the leakage current of the wiring processed in Example 3 and Comparative Examples 5 and 6 was measured. The distribution is shown in FIG. This figure also shows the leakage current distribution in the wiring of the sample that is not treated as a reference. Here, the device performance is required not to shift in the direction in which the leakage current increases. As shown in FIG. 23, in Example 3, compared with Comparative Examples 5 and 6, the leakage current in the wiring on which the protective film is formed is closest to the leakage current in the wiring that has not been processed. Thereby, according to Example 3, it can be seen that impurities remaining on the surface of the sample can be effectively removed, and the lowest value of the leakage of the wiring after plating can be obtained.

本発明の実施の形態の無電解めっき装置を示す平面配置図である。1 is a plan layout view showing an electroless plating apparatus according to an embodiment of the present invention. 図1に示す無電解めっき装置の前洗浄ユニットの平面図である。It is a top view of the pre-cleaning unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の前洗浄ユニットの概略断面図である。It is a schematic sectional drawing of the pre-cleaning unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の触媒付与ユニットの基板受渡し時における外槽を省略した正面図である。It is the front view which abbreviate | omitted the outer tank at the time of board | substrate delivery of the catalyst provision unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の触媒付与ユニットの第1処理液による処理時における外槽を省略した正面図である。It is the front view which abbreviate | omitted the outer tank at the time of the process by the 1st process liquid of the catalyst provision unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の触媒付与ユニットの第2処理液による処理時における外槽を省略した正面図である。It is the front view which abbreviate | omitted the outer tank at the time of the process by the 2nd process liquid of the catalyst provision unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の触媒付与ユニットの基板受渡し時における処理ヘッドを示す断面図である。It is sectional drawing which shows the process head at the time of board | substrate delivery of the catalyst provision unit of the electroless-plating apparatus shown in FIG. 図7のA部拡大図である。It is the A section enlarged view of FIG. 図1に示す無電解めっき装置の触媒付与ユニットの基板固定時における図8相当図である。FIG. 9 is a view corresponding to FIG. 8 when the substrate of the catalyst application unit of the electroless plating apparatus shown in FIG. 1 is fixed. 図1に示す無電解めっき装置の触媒付与ユニットの系統図である。It is a systematic diagram of the catalyst provision unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の無電解めっきユニットの基板受渡し時における基板ヘッドを示す断面図である。It is sectional drawing which shows the board | substrate head at the time of board | substrate delivery of the electroless-plating unit of the electroless-plating apparatus shown in FIG. 図11のB部拡大図である。It is the B section enlarged view of FIG. 図1に示す無電解めっき装置の無電解めっきユニットの基板固定時における基板ヘッドを示す図12相当図である。FIG. 13 is a view corresponding to FIG. 12 showing the substrate head when the substrate of the electroless plating unit of the electroless plating apparatus shown in FIG. 1 is fixed. 図1に示す無電解めっき装置の無電解めっきユニットのめっき処理時における基板ヘッドを示す図12相当図である。FIG. 13 is a view corresponding to FIG. 12 showing the substrate head during the plating process of the electroless plating unit of the electroless plating apparatus shown in FIG. 1. 図1に示す無電解めっき装置の無電解めっきユニットのめっき槽カバーを閉じた時のめっき槽を示す一部切断の正面図である。It is a partially cut front view which shows a plating tank when the plating tank cover of the electroless plating unit of the electroless plating apparatus shown in FIG. 1 is closed. 図1に示す無電解めっき装置の無電解めっきユニットの洗浄槽を示す断面図である。It is sectional drawing which shows the washing tank of the electroless-plating unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置の無電解めっきユニットの系統図である。It is a systematic diagram of the electroless plating unit of the electroless plating apparatus shown in FIG. 図1に示す無電解めっき装置の乾燥ユニットを示す縦断正面図である。It is a vertical front view which shows the drying unit of the electroless-plating apparatus shown in FIG. 図1に示す無電解めっき装置における処理を示すフロー図である。It is a flowchart which shows the process in the electroless-plating apparatus shown in FIG. 本発明の他の実施の形態の無電解めっき装置を示す平面配置図である。It is a plane | planar arrangement | positioning figure which shows the electroless-plating apparatus of other embodiment of this invention. 図20に示す無電解めっき装置における処理を示すフロー図である。It is a flowchart which shows the process in the electroless-plating apparatus shown in FIG. 図20に示す無電解めっき装置における他の処理を示すフロー図である。It is a flowchart which shows the other process in the electroless-plating apparatus shown in FIG. 実施例3、比較例5及び6における配線のリーク電流分布を示すグラフである。6 is a graph showing a leakage current distribution of wirings in Example 3 and Comparative Examples 5 and 6. 従来の銅ダマシン配線構造を示す図である。It is a figure which shows the conventional copper damascene wiring structure. 無電解めっきで配線の表面に保護膜を選択的に形成する例を工程順に示す図である。It is a figure which shows the example of forming a protective film selectively on the surface of wiring by electroless plating in order of a process. 半導体装置における銅配線形成例を工程順に示す図である。It is a figure which shows the copper wiring formation example in a semiconductor device in order of a process. 従来の配線の表面に保護膜を選択的に形成する工程示すフローチャートである。It is a flowchart which shows the process of forming a protective film selectively on the surface of the conventional wiring.

符号の説明Explanation of symbols

8 配線
9 保護膜
11 ロード・アンロードユニット
12 装置フレーム
14 前洗浄ユニット
14a 洗浄ユニット
15 触媒付与ユニット
15a 前処理ユニット
16 無電解めっきユニット
18 後洗浄ユニット
20 乾燥ユニット
30 ローラ
32,36 洗浄液用ノズル
34,38 純水用ノズル
40 回転軸
40,44 回転軸
42,46 洗浄部材
48 スポンジ
58 基板ホルダ
60 処理ヘッド
84 シールリング
86 基板固定リング
92 蛇腹板
94 被覆板
100 処理槽
102 蓋体
200 めっき槽
202 洗浄槽
204 基板ヘッド
230 ハウジング部
232 ヘッド部
234 吸着ヘッド
8 Wiring 9 Protective film 11 Load / unload unit 12 Device frame 14 Pre-cleaning unit 14a Cleaning unit 15 Catalyst applying unit 15a Pre-processing unit 16 Electroless plating unit 18 Post-cleaning unit 20 Drying unit 30 Rollers 32, 36 Cleaning liquid nozzle 34 , 38 Nozzle for pure water 40 Rotating shaft 40, 44 Rotating shaft 42, 46 Cleaning member 48 Sponge 58 Substrate holder 60 Processing head 84 Seal ring 86 Substrate fixing ring 92 Bellows plate 94 Coating plate 100 Processing tank 102 Cover body 200 Plating tank 202 Cleaning tank 204 Substrate head 230 Housing portion 232 Head portion 234 Suction head

Claims (9)

内部に埋込み配線を形成した基板を用意し、
ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に前処理液を供給して前処理を行い、しかる後、
基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成することを特徴とする無電解めっき方法。
Prepare a board with embedded wiring inside,
The cleaning member is brought into contact with the surface or both sides of the wet substrate, and the pretreatment is performed by supplying a pretreatment liquid to the surface or both sides of the substrate while relatively moving both.
An electroless plating method comprising selectively forming a protective film on a surface of a wiring by bringing the surface of the substrate into contact with an electroless plating solution.
前記前処理後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に基板の表面を無電解めっき液に接触させることを特徴とする請求項1記載の無電解めっき方法。   2. The electroless plating method according to claim 1, wherein the surface of the substrate after the pretreatment is rinsed with pure water, and the surface of the substrate is brought into contact with an electroless plating solution before the surface of the substrate is completely dried. . 内部に埋込み配線を形成した基板を用意し、
ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に洗浄液を供給して基板の前洗浄を行い、
前洗浄後の基板の表面を触媒付与液に接触させて配線の表面に触媒を付与し、しかる後、
基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成することを特徴とする無電解めっき方法。
Prepare a board with embedded wiring inside,
The cleaning member is brought into contact with the surface or both surfaces of the wet substrate, and the substrate is pre-cleaned by supplying a cleaning liquid to the surface or both surfaces of the substrate while relatively moving both of them.
The surface of the substrate after pre-cleaning is brought into contact with the catalyst application liquid to apply the catalyst to the surface of the wiring, and then,
An electroless plating method comprising selectively forming a protective film on a surface of a wiring by bringing the surface of the substrate into contact with an electroless plating solution.
前記前洗浄後の基板の表面を純水でリンスし、基板の表面が完全に乾燥する前に基板の表面を触媒付与液に接触させることを特徴とする請求項3記載の無電解めっき方法。   The electroless plating method according to claim 3, wherein the surface of the substrate after the pre-cleaning is rinsed with pure water, and the surface of the substrate is brought into contact with a catalyst applying liquid before the surface of the substrate is completely dried. ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に前処理液を供給して前処理を行う前処理ユニットと、
基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成する無電解めっきユニットを有することを特徴とする無電解めっき装置。
A pretreatment unit that performs pretreatment by supplying a pretreatment liquid to the surface or both surfaces of the substrate while bringing the cleaning member into contact with the surface or both surfaces of the wet substrate and relatively moving both;
An electroless plating apparatus comprising an electroless plating unit that selectively forms a protective film on a surface of a wiring by bringing the surface of the substrate into contact with an electroless plating solution.
ウェット状態の基板の表面または両面に洗浄部材を接触させ、両者を相対的に移動させながら、基板の表面または両面に洗浄液を供給して基板の前洗浄を行う前洗浄ユニットと、
前洗浄後の基板の表面を触媒付与液に接触させて配線の表面に触媒を付与する触媒付与ユニットと、
基板の表面を無電解めっき液に接触させて配線の表面に保護膜を選択的に形成する無電解めっきユニットを有することを特徴とする無電解めっき装置。
A pre-cleaning unit that precleans the substrate by supplying a cleaning liquid to the surface or both surfaces of the substrate while bringing the cleaning member into contact with the surface or both surfaces of the wet substrate and relatively moving both;
A catalyst application unit that applies the catalyst to the surface of the wiring by bringing the surface of the substrate after pre-cleaning into contact with the catalyst application liquid;
An electroless plating apparatus comprising an electroless plating unit that selectively forms a protective film on a surface of a wiring by bringing the surface of the substrate into contact with an electroless plating solution.
基板を洗浄液中に浸漬させるか、または基板に向けて洗浄液を噴射して基板を洗浄する洗浄ユニットを更に有することを特徴とする請求項5または6記載の無電解めっき装置。   The electroless plating apparatus according to claim 5, further comprising a cleaning unit that immerses the substrate in a cleaning solution or sprays the cleaning solution toward the substrate to clean the substrate. 前記洗浄部材は、多孔質連続気孔組織のポリビニルアルコールまたはフッ素樹脂材からなることを特徴とする請求項5乃至7のいずれかに記載の無電解めっき装置。   The electroless plating apparatus according to any one of claims 5 to 7, wherein the cleaning member is made of polyvinyl alcohol having a porous continuous pore structure or a fluororesin material. 前記洗浄部材は、中心に回転軸を有するロール状ブラシであることを特徴とする請求項5乃至8のいずれかに記載の無電解めっき装置。   The electroless plating apparatus according to claim 5, wherein the cleaning member is a roll-shaped brush having a rotation shaft at the center.
JP2006167867A 2006-03-16 2006-06-16 Electroless plating method and electroless plating apparatus Pending JP2007332445A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006167867A JP2007332445A (en) 2006-06-16 2006-06-16 Electroless plating method and electroless plating apparatus
US11/724,305 US20070224811A1 (en) 2006-03-16 2007-03-15 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167867A JP2007332445A (en) 2006-06-16 2006-06-16 Electroless plating method and electroless plating apparatus

Publications (1)

Publication Number Publication Date
JP2007332445A true JP2007332445A (en) 2007-12-27

Family

ID=38932196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167867A Pending JP2007332445A (en) 2006-03-16 2006-06-16 Electroless plating method and electroless plating apparatus

Country Status (1)

Country Link
JP (1) JP2007332445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441040A (en) * 2018-12-26 2020-07-24 株式会社杰希优 Wet processing device for resin film
CN115595566A (en) * 2022-11-17 2023-01-13 西华大学(Cn) Environment-friendly, energy-saving, efficient and flexible chemical plating device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133316A (en) * 2001-08-13 2003-05-09 Ebara Corp Semiconductor device and manufacturing method therefor
JP2003213438A (en) * 2002-01-11 2003-07-30 Ebara Corp Plating apparatus and plating method
JP2004084056A (en) * 2002-07-05 2004-03-18 Ebara Corp Electroless plating apparatus and post-electroless plating cleaning method
JP2005109362A (en) * 2003-10-01 2005-04-21 Ebara Corp Processing liquid, and substrate processing method and apparatus using processing liquid
JP2005194613A (en) * 2004-01-09 2005-07-21 Ebara Corp Method for treating substrate in wet process and treatment apparatus therefor
JP2005264245A (en) * 2004-03-18 2005-09-29 Ebara Corp Wet treatment method and wet treatment apparatus for substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133316A (en) * 2001-08-13 2003-05-09 Ebara Corp Semiconductor device and manufacturing method therefor
JP2003213438A (en) * 2002-01-11 2003-07-30 Ebara Corp Plating apparatus and plating method
JP2004084056A (en) * 2002-07-05 2004-03-18 Ebara Corp Electroless plating apparatus and post-electroless plating cleaning method
JP2005109362A (en) * 2003-10-01 2005-04-21 Ebara Corp Processing liquid, and substrate processing method and apparatus using processing liquid
JP2005194613A (en) * 2004-01-09 2005-07-21 Ebara Corp Method for treating substrate in wet process and treatment apparatus therefor
JP2005264245A (en) * 2004-03-18 2005-09-29 Ebara Corp Wet treatment method and wet treatment apparatus for substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441040A (en) * 2018-12-26 2020-07-24 株式会社杰希优 Wet processing device for resin film
CN115595566A (en) * 2022-11-17 2023-01-13 西华大学(Cn) Environment-friendly, energy-saving, efficient and flexible chemical plating device and method

Similar Documents

Publication Publication Date Title
US20070224811A1 (en) Substrate processing method and substrate processing apparatus
KR100958557B1 (en) Substrate processing method and substrate processing apparatus
JP3979464B2 (en) Electroless plating pretreatment apparatus and method
WO2005071138A1 (en) Method for processing substrate, catalyst process liquid, and substrate processing apparatus
JP4875492B2 (en) Equipment for electroless deposition
JP2007051346A (en) Electroless plating apparatus and plating solution
JP4965959B2 (en) Electroless plating equipment
JP3821709B2 (en) Pretreatment method of electroless plating
JP2007149824A (en) Film forming method and film forming device
US7413983B2 (en) Plating method including pretreatment of a surface of a base metal
JP2007270224A (en) Electroless plating method and apparatus therefor
WO2006028260A1 (en) Method and apparatus for forming metal film
JP2001181851A (en) Plating method and plated structure
JP2007332445A (en) Electroless plating method and electroless plating apparatus
WO2006073140A1 (en) Substrate processing method and apparatus
JP2004300576A (en) Method and apparatus for substrate treatment
JP2006241580A (en) Method and apparatus for treating substrate
US20050022909A1 (en) Substrate processing method and substrate processing apparatus
JP2007250915A (en) Substrate treatment method and substrate treatment apparatus
JP2005002443A (en) Plating method and apparatus
JP2005194585A (en) Method for treating substrate in wet process and apparatus for treating substrate
JP2005206905A (en) Substrate treatment method and device, and treatment liquid
JP4112879B2 (en) Electrolytic treatment equipment
JP2006009131A (en) Method and apparatus for processing substrate
JP2004304021A (en) Manufacturing method and manufacturing device of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214