JP2007332025A - Blackish free-cutting ceramic, and production method and application of the same - Google Patents

Blackish free-cutting ceramic, and production method and application of the same Download PDF

Info

Publication number
JP2007332025A
JP2007332025A JP2007209979A JP2007209979A JP2007332025A JP 2007332025 A JP2007332025 A JP 2007332025A JP 2007209979 A JP2007209979 A JP 2007209979A JP 2007209979 A JP2007209979 A JP 2007209979A JP 2007332025 A JP2007332025 A JP 2007332025A
Authority
JP
Japan
Prior art keywords
ceramic
mass
zirconia
ceramics
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007209979A
Other languages
Japanese (ja)
Other versions
JP2007332025A5 (en
JP4371158B2 (en
Inventor
Shunichi Eto
俊一 衛藤
Tadahisa Arahori
忠久 荒堀
Yasuki Yoshitomi
靖樹 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007209979A priority Critical patent/JP4371158B2/en
Publication of JP2007332025A publication Critical patent/JP2007332025A/en
Publication of JP2007332025A5 publication Critical patent/JP2007332025A5/ja
Application granted granted Critical
Publication of JP4371158B2 publication Critical patent/JP4371158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic which has a free-cutting property, in which a thin-walled deep hole or a slit can be thereby formed with good precision and which can be used for a probe guide for high density LSI inspection, and further, which is uniformly blackened so that the inspection of a processed shape or aligning using an image processing apparatus is not intercepted by reflection light and has a low coefficient of thermal expansion. <P>SOLUTION: The ceramic is obtained by adding zirconia in an amount of 0.1-20 mass%, based on aggregate, to a raw material powder containing, as the aggregate, 25-60 mass% silicon nitride and 40-75 mass% boron nitride, and a sintering aid, and firing the resulting mixture in a reducing atmosphere. The ceramic is blackened by the reduction of the zirconia during firing. This blackening method can be utilized for the blackening of other ceramics. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、黒色系の色に着色されたセラミックス、特に快削性セラミックスとその製造方法に関する。この黒色系快削性セラミックスは、高強度で微細な機械加工が可能であり、また光を吸収するため、光反射が抑えられる。従って、着色処理を行わずに、画像処理測定等の測定を正確に行うことが可能となり、このような測定により加工形状の寸法測定や位置合わせを行う絶縁性の微細加工部品、例えば、半導体検査装置などに使用されるプローブガイド、の材料として最適である。本発明のセラミックスを機械加工することにより、着色処理による寸法精度の低下を伴わずに、高い加工精度で微細加工部品を容易かつ安定して製造することができ、例えば、こうして得られる部品を用いた半導体検査装置の信頼性の向上につながる。   The present invention relates to a ceramic colored in a black color, in particular, a free-cutting ceramic and a method for producing the same. This black free-cutting ceramic is capable of high-strength and fine machining and absorbs light, so that light reflection is suppressed. Therefore, it is possible to accurately perform measurement such as image processing measurement without performing coloring processing, and by such measurement, an insulating microfabricated part that performs dimension measurement and alignment of a processed shape, for example, semiconductor inspection It is optimal as a material for probe guides used in devices. By machining the ceramic of the present invention, it is possible to easily and stably manufacture a micro-machined part with high machining accuracy without lowering the dimensional accuracy due to the coloring process. This improves the reliability of semiconductor inspection equipment.

セラミックス材料は、機械的特性や高温特性にも優れることから、半導体製造装置向けの絶縁性構造用部材に使用できる。しかし、セラミックスは焼結時の収縮が大きいため、所望の形状、寸法を高精度で得るには研削加工が必要となり、その際にセラミックスの難加工性が問題となる。   Ceramic materials are excellent in mechanical characteristics and high temperature characteristics, and therefore can be used for insulating structural members for semiconductor manufacturing equipment. However, since ceramics have a large shrinkage at the time of sintering, grinding is necessary to obtain a desired shape and dimensions with high accuracy, and in this case, difficulty in processing ceramics becomes a problem.

セラミックスの加工性を改善するため、セラミックスやガラスマトリックスにへき開性を持つ別のセラミックス、例えばマイカや窒化硼素、を分散させた、快削性セラミックスと呼ばれる材料が知られており、半導体検査装置用部材に使われているが、高精度の微細加工に必要な優れた加工性を有するものは少ない。   In order to improve the workability of ceramics, there is known a material called free-cutting ceramics in which ceramics or other ceramics having a cleavage property in a glass matrix, such as mica or boron nitride, are dispersed, and are used for semiconductor inspection equipment. Although it is used as a material, few have excellent workability required for high-precision fine processing.

高精度の微細加工と絶縁性が要求される半導体製造装置用の部品として、LSI等の半導体素子の電気的特性を検査するための検査装置に使われるプローブガイド (プローブ案内部品) がある。この検査装置は、検査する半導体素子に形成された電極パッドと同数の測定プローブを設けたプローブカードを備え、このプローブを電極パッドに同時に接触させて検査を行う。   As a part for a semiconductor manufacturing apparatus that requires high-precision fine processing and insulation, there is a probe guide (probe guide part) used in an inspection apparatus for inspecting electrical characteristics of a semiconductor element such as an LSI. This inspection apparatus includes a probe card provided with the same number of measurement probes as electrode pads formed on a semiconductor element to be inspected, and performs inspection by simultaneously bringing the probes into contact with the electrode pads.

図1(A) に示すように、プローブカード1はセラミックスなどの絶縁材料から形成され、そのほぼ中央に、検査する半導体素子より大きく、通常は朝顔型に開いた開口部Aを備える。プローブカード1の上面には、半導体素子の電極パッドと同数の金属製の測定プローブ2が、例えば接着剤により取り付けられている。プローブ2の先端は略L字型に曲がり、開口部Aを通ってカード1の下面から突き出ている。   As shown in FIG. 1 (A), the probe card 1 is formed of an insulating material such as ceramics, and has an opening A that is larger than the semiconductor element to be inspected and is normally open in a morning glory shape at its center. On the upper surface of the probe card 1, the same number of metal measuring probes 2 as the electrode pads of the semiconductor elements are attached by, for example, an adhesive. The tip of the probe 2 is bent in a substantially L shape and protrudes from the lower surface of the card 1 through the opening A.

プローブカード1を検査する半導体素子の上に載せて押しつけると、開口部Aから突き出た測定プローブ2の先端が、半導体素子の電極パッド (図示せず) と接触し、半導体素子の電気的特性が検査される。そのためには、多数の測定プローブが全て同時に電極パッドと確実に接触しなければならない。しかし、金属製の細いプローブは、押しつけ時の撓みにより先端の位置がずれやすく、電極パッドとの確実な接触が困難となる。   When the probe card 1 is placed on the semiconductor element to be inspected and pressed, the tip of the measurement probe 2 protruding from the opening A comes into contact with an electrode pad (not shown) of the semiconductor element, and the electrical characteristics of the semiconductor element are Inspected. In order to do so, a large number of measuring probes must all be in contact with the electrode pads at the same time. However, the tip of a thin metal probe is likely to be displaced due to bending at the time of pressing, and reliable contact with the electrode pad becomes difficult.

測定プローブの精密な位置あわせを容易にするため、図1(B) に示すように、絶縁材料の板材にプローブが通る貫通穴Bを電極パッドと同じパターンで設けたプローブガイド3が、プローブカード1の開口部Aを塞ぐように設置される。それにより、各プローブ2の先端は、プローブガイド3の貫通穴Bを通って突き出るため、撓みによる横方向の動きが制限され、電極パッドと確実に接触させることができる。   In order to facilitate precise positioning of the measurement probe, as shown in FIG. 1 (B), a probe guide 3 having a through hole B through which the probe passes through a plate of insulating material in the same pattern as the electrode pad is provided as a probe card. 1 so as to close the opening A. Thereby, since the tip of each probe 2 protrudes through the through hole B of the probe guide 3, the lateral movement due to the bending is limited, and the probe 2 can be reliably brought into contact with the electrode pad.

このプローブガイド3には、測定プローブ2よりやや大きな径の貫通穴Bを電極パッドと同じピッチで形成する必要がある。最近のLSIは飛躍的に高密度化が進んでおり、電極パッドのピッチが100 μm以下となることも珍しくない。例えば図1(C) に示すように、電極パッドのピッチが70μmの場合、貫通穴Bの径が60μmであると貫通穴間の壁厚み (穴間の最少距離) は10μmとなり、壁の厚みが非常に薄くなる。このように微細で薄肉の貫通穴を、例えばドリル加工により精度よく形成することがプローブガイドには必要である。   The probe guide 3 needs to be formed with through holes B having a diameter slightly larger than that of the measurement probe 2 at the same pitch as the electrode pads. Recent LSIs have dramatically increased in density, and it is not uncommon for the pitch of electrode pads to be 100 μm or less. For example, as shown in Fig. 1 (C), if the electrode pad pitch is 70μm and the diameter of the through hole B is 60μm, the wall thickness between the through holes (minimum distance between the holes) will be 10μm. Becomes very thin. It is necessary for the probe guide to form such a fine and thin through hole with high accuracy by, for example, drilling.

従来のプローブガイドは、プラスチック製であるか、または特許文献1に提案されているように、快削性の結晶化ガラスセラミックス材料から作製されてきた。しかし、プラスチック製では高温で検査する必要性がある場合には用いることができず、また貫通穴の十分な寸法精度を得ることができない。結晶化ガラスセラミックス材料を用いた場合、高温検査への対応は可能となるが、熱膨張係数が半導体素子に比べて大きく、測定温度によっては位置ずれを起こすという問題がある。また、材料の強度が低いため、ドリル加工による穿孔時に欠けや割れがおきやすく、やはり充分な寸法精度が得られない。   Conventional probe guides are made of plastic or have been made from a free-cutting crystallized glass ceramic material as proposed in US Pat. However, the plastic cannot be used when it is necessary to inspect at a high temperature, and sufficient dimensional accuracy of the through hole cannot be obtained. When a crystallized glass ceramic material is used, it is possible to cope with a high-temperature inspection, but there is a problem that a thermal expansion coefficient is larger than that of a semiconductor element and a positional deviation occurs depending on a measurement temperature. Moreover, since the strength of the material is low, chips and cracks are likely to occur during drilling, and sufficient dimensional accuracy cannot be obtained.

従来の結晶化ガラスセラミックスからなるプローブガイドには、色が白っぽいという別の問題点がある。プローブガイドの色が白いと、微細加工で形成した貫通穴の寸法検査のためや、プローブガイドをプローブカードに装着した際に位置合わせのために行う画像処理測定の際に、光を反射し易く、正確な測定が困難となる。また、外観上も汚れが目立ちやすく、汚れで商品価値が低下する。従って、プローブガイドのように、寸法検査や位置合わせ時に画像処理測定が適用される部品は、低反射性で汚れが目立たない黒っぽい外観とすることが好ましい。   The conventional probe guide made of crystallized glass ceramics has another problem that the color is whitish. When the probe guide color is white, it is easy to reflect light during dimensional inspection of through holes formed by microfabrication or when performing image processing measurements for alignment when the probe guide is attached to the probe card. Accurate measurement becomes difficult. In addition, dirt is also conspicuous in appearance, and the product value is reduced due to the dirt. Therefore, it is preferable that a part to which image processing measurement is applied at the time of dimensional inspection or alignment, such as a probe guide, has a black appearance with low reflectivity and inconspicuous dirt.

セラミックスの着色法として、特許文献2には、酸化クロム、酸化ニッケル、酸化コバルト、酸化マンガン等の遷移金属酸化物を少量混入することが記載されている。また、特許文献3は、95%以上がジルコニアからなるセラミックスを還元処理すると、脱酸素により黒色化することが記載されている。
特開昭58−165056号公報 特開昭63−139505号公報 特開昭63−236761号公報
As a method for coloring ceramics, Patent Document 2 describes that a small amount of transition metal oxide such as chromium oxide, nickel oxide, cobalt oxide, manganese oxide is mixed. Further, Patent Document 3 describes that when a ceramic containing 95% or more of zirconia is reduced, it is blackened by deoxidation.
JP 58-165056 A JP 63-139505 A JP 63-236761

本発明は、プローブガイドの素材として好適な、容易に機械加工できる被削性と、穿孔等の機械加工時の割れや欠けを起こさない高強度とを併せ持ち、かつ黒みを帯びた低反射性の外観を有する、高強度の黒色系快削性セラミックスとその製造方法を提供することを課題とする。   The present invention combines a machinability that can be easily machined, suitable as a material for a probe guide, and a high strength that does not cause cracking or chipping during machining such as drilling, and has a blackish low reflectivity. It is an object to provide a high-strength black free-cutting ceramic having an appearance and a method for producing the same.

本発明者らは先に、窒化珪素25〜60質量%と窒化硼素40〜75質量%とからなる主成分に焼結助剤を混合して焼成したセラミックスが、快削性で高強度であり、従来にない高い精度で機械加工することができることを見いだし、特許出願した(特願平11−133341号) 。   The inventors of the present invention have previously disclosed a ceramic that has been sintered by mixing a sintering aid in a main component composed of 25 to 60% by mass of silicon nitride and 40 to 75% by mass of boron nitride. The inventors have found that they can be machined with high precision that has never been obtained before and filed a patent application (Japanese Patent Application No. 11-133341).

この窒化物系の快削性セラミックスを用いると、ドリル加工によって図1(C)に示すような薄肉の貫通穴が割れや欠けを起こさずに形成できるだけでなく、図1(D) に示すような、壁厚みが5〜20μmで深さが壁厚みの15倍以上という、薄肉で深いスリットを砥石研削により精度よく (スリット間ピッチ精度±4μm以内で) 形成することができる。このような微細なスリット加工が可能となったことにより、図1(E) に示すように、貫通穴の代わりに、スリットでプローブの動きを制限した、スリット型のプローブガイドが可能となる。このセラミックスは、25〜600 ℃での熱膨張係数が3×10-6/℃以下と低くなるので、半導体素子との熱膨張係数の差が小さく、位置ずれを起こす心配がない。 Using this nitride-based free-cutting ceramic, not only can a thin through-hole shown in Fig. 1 (C) be formed without cracking or chipping by drilling, but also as shown in Fig. 1 (D). Furthermore, a thin and deep slit having a wall thickness of 5 to 20 μm and a depth of 15 times the wall thickness or more can be accurately formed by grinding with a grindstone (with a pitch accuracy between slits within ± 4 μm). By making such a fine slit processing possible, as shown in FIG. 1 (E), a slit-type probe guide in which the movement of the probe is limited by a slit instead of a through hole can be realized. This ceramic has a low thermal expansion coefficient of 3 × 10 −6 / ° C. or less at 25 to 600 ° C., so that the difference in thermal expansion coefficient from the semiconductor element is small and there is no fear of causing a positional shift.

このように、上記の快削性セラミックスは、プローブガイドといった半導体製造装置用の微細加工部品の材料として理想的な特性を有しているが、上述したガラスセラミックスについて述べたのと同じ、色が白く、光反射性が高いという問題が残った。それにより、画像処理測定を利用した微細加工の寸法検査やプローブカードとの位置合わせが難しくなる。   As described above, the above-described free-cutting ceramic has ideal characteristics as a material for a microfabricated part for a semiconductor manufacturing apparatus such as a probe guide, but the same color as described for the glass ceramic described above. The problem of being white and having high light reflectivity remained. Thereby, it becomes difficult to perform microscopic dimension inspection using image processing measurement and alignment with a probe card.

そこで、この窒化物系快削性セラミックスの黒色化について検討した。まず、単純な方法として、プローブガイドの形状に微細加工を施した後、黒色の金属やセラミックスを蒸着するか、樹脂皮膜で黒色に被覆することが考えられる。しかし、剥離しやすいという欠点がある上、被覆自体が薄くても10μm近い厚みがあり、均一な膜厚を得にくいため、精度保持に支障をきたす。樹脂皮膜の場合には、高温で使用できないという問題もある。従って、被覆による黒色化は問題が多く、セラミックス自体を黒色化することが望ましい。   Therefore, blackening of this nitride-based free-cutting ceramic was examined. First, as a simple method, it is conceivable to finely process the shape of the probe guide and then deposit black metal or ceramics or coat it with a resin film in black. However, it has the disadvantage of being easy to peel off, and even if the coating itself is thin, it has a thickness of nearly 10 μm, and it is difficult to obtain a uniform film thickness, which hinders maintaining accuracy. In the case of a resin film, there is also a problem that it cannot be used at a high temperature. Therefore, blackening by coating has many problems, and it is desirable to blacken the ceramic itself.

公知のセラミックス着色法のうち、酸化クロムや酸化コバルト等の遷移金属酸化物を少量配合する方法で上記の窒化物系快削性セラミックスを着色してみたところ、着色成分の少量添加では、焼結体の中央部を中心とした同心円状の色むらが顕著であり、商品価値が低下すると共に、画像処理測定も不正確になる。色を濃くするために着色成分を多量に添加すると、破壊強度をはじめとする機械的特性の劣化をもたらし、加工性に悪影響を及ぼす。   Of the known methods for coloring ceramics, the above-mentioned nitride-based free-cutting ceramics were colored by mixing a small amount of transition metal oxides such as chromium oxide and cobalt oxide. Concentric color unevenness centering on the center of the body is prominent, resulting in a decrease in commercial value and inaccurate image processing measurement. When a large amount of coloring components are added to darken the color, mechanical properties such as breaking strength are deteriorated, which adversely affects workability.

そこで別のセラミックスの着色法について検討した結果、原料粉末にジルコニアを添加し、還元性雰囲気中で焼成すると、ジルコニアが還元されてセラミックスが黒色に着色することが判明した。この着色法を利用すると、ジルコニアの添加量が少量でも、上記の窒化物系快削性セラミックスが比較的均一に黒色系に着色することができる。   Therefore, as a result of examining another method for coloring ceramics, it was found that when zirconia was added to the raw material powder and fired in a reducing atmosphere, the zirconia was reduced and the ceramics were colored black. When this coloring method is used, the above-mentioned nitride-based free-cutting ceramic can be colored relatively uniformly in a black color even if the amount of zirconia added is small.

ここで黒色系とは灰色、濃紺色、濃紫色も含む。また、このジルコニアの焼成中の還元を利用した着色法は、上記の窒化物系快削性セラミックスに限らず、白色系セラミックス全般の黒色化に適用できることも判明した。ジルコニアにより白色系セラミックスを均一に黒色系に着色できる理由は完全には解明されていないが、CrやCoに比べてZrの酸化物が還元され易いことが関係していると推測される。   Here, the black type includes gray, dark blue and dark purple. It has also been found that this coloring method using reduction during firing of zirconia is applicable not only to the above-mentioned nitride-based free-cutting ceramics but also to blackening of white ceramics in general. The reason why white ceramics can be uniformly colored black by zirconia has not been completely elucidated, but is presumed to be related to the fact that Zr oxides are more easily reduced than Cr and Co.

ジルコニアを用いた黒色化では、添加量が少量でも均一に着色できるため、被削性を劣化させずに均一な黒色化が可能であるとともに、ジルコニア自体が高強度セラミックス材料であるため、その添加量をある程度増やしても、上記の窒化物系セラミックスの強度に悪影響が出ないことも判明した。   In blackening using zirconia, even if the addition amount is small, it can be uniformly colored, so uniform blackening is possible without degrading the machinability, and the addition of zirconia itself is a high-strength ceramic material. It has also been found that increasing the amount to some extent does not adversely affect the strength of the nitride ceramic.

本発明は、窒化珪素25〜60質量%および窒化硼素40〜75質量%からなる主成分100 質量部に対して、ジルコニウムおよび/またはその酸化物をZrO2換算で 0.1〜20質量部の割合で含有することを特徴とする、黒色系快削性セラミックスである。ここで、黒色系とは、前述したように、黒色、灰色、濃紺色、濃紫色を含む、黒っぽい色である。 In the present invention, zirconium and / or an oxide thereof is 0.1 to 20 parts by mass in terms of ZrO 2 with respect to 100 parts by mass of the main component consisting of 25 to 60% by mass of silicon nitride and 40 to 75% by mass of boron nitride. It is a black free-cutting ceramic characterized by containing. Here, the black color is a blackish color including black, gray, dark blue, and dark purple as described above.

この黒色系快削性セラミックスは、窒化珪素、窒化硼素、ジルコニアおよび焼結助剤を含有する原料粉末を使用し、この原料粉末を還元性雰囲気中で焼成する工程を含むことを特徴とする方法、により製造することができる。   This black free-cutting ceramic includes a step of using a raw material powder containing silicon nitride, boron nitride, zirconia and a sintering aid, and firing the raw material powder in a reducing atmosphere. , Can be manufactured.

前述したように、このジルコニアの還元を利用したセラミックスの黒色化は、白色系セラミックス全般の黒色化に適用することができる。従って、より広義には、本発明により、
・主成分セラミックス100 質量部に対して、ジルコニウムおよび/またはその酸化物をZrO2換算で20質量部以下の割合で含有することを特徴とする、黒色系セラミックス、および
・ジルコニアを添加したセラミックス原料粉末を還元性雰囲気中で焼成する工程を含むことを特徴とする、黒色系セラミックスの製造方法、
もまた提供される。
As described above, the blackening of ceramics utilizing the reduction of zirconia can be applied to the blackening of white ceramics in general. Therefore, in a broader sense, according to the present invention,
-Black ceramics characterized by containing zirconium and / or oxides thereof in a proportion of 20 parts by mass or less in terms of ZrO 2 with respect to 100 parts by mass of the main component ceramics; and-Ceramic raw materials added with zirconia A method for producing black ceramics, comprising a step of firing the powder in a reducing atmosphere,
Is also provided.

また、プローブが通る複数のスリットおよび/または穴を備えたセラミックス製のプローブガイドであって、前記セラミックスが上記の黒色快削性セラミックスであり、前記スリットおよび/または穴が機械加工により形成されたものであることを特徴とするプローブガイドもまた提供される。   Also, a ceramic probe guide having a plurality of slits and / or holes through which the probe passes, wherein the ceramic is the above-mentioned black free-cutting ceramic, and the slits and / or holes are formed by machining Also provided is a probe guide characterized in that it is.

本発明の黒色系快削性セラミックスは、薄い壁厚みで幅または直径が小さく深いスリットまたは貫通穴を精度よく形成できるので、高密度にプローブを所定位置に保持するプローブガイドをセラミックスから製作することが可能となる。また、このセラミックスが内部まで均一に黒色化しているため、加工形状の画像処理測定検査を反射光で妨害されずに円滑に行うことができ、セラミックス焼結体の熱膨張係数が小さいことから温度変化による位置ずれも起きにくいので、検査装置の信頼性が非常に高まる。その結果LSIの高密度化に対応可能な半導体素子の検査装置が実現できる。さらに、汚れが目立たない色調であるので、商品価値が低下しにくい。   Since the black free-cutting ceramics of the present invention can accurately form deep slits or through-holes with a thin wall thickness and a small width or diameter, a probe guide that holds the probe in a predetermined position at a high density is manufactured from the ceramics. Is possible. In addition, since this ceramic is uniformly blackened to the inside, the image processing measurement inspection of the processed shape can be performed smoothly without being disturbed by reflected light, and since the thermal expansion coefficient of the ceramic sintered body is small, the temperature Since the positional deviation due to the change is less likely to occur, the reliability of the inspection apparatus is greatly increased. As a result, it is possible to realize a semiconductor element inspection apparatus that can cope with higher density of LSI. Furthermore, since the color tone is inconspicuous, the commercial value is unlikely to decrease.

また、本発明に係るジルコニアの焼成中の還元を利用したセラミックスの黒色化は、ジルコニアとセラミックス原料との反応を利用したものではなく、ジルコニア自体の還元で黒色化するものであるから、白色系セラミックス一般に応用でき、その適用範囲は広い。   Further, the blackening of ceramics using reduction during firing of zirconia according to the present invention does not use the reaction between zirconia and a ceramic raw material, but is blackened by reduction of zirconia itself. It can be applied to ceramics in general and its application range is wide.

本発明に係る黒色系快削性セラミックスは、窒化珪素25〜60質量%と窒化硼素40〜75質量%とからなる主成分(以下、骨材という)100 質量部に対して、黒色化剤としてジルコニウムおよび/またはその酸化物 0.1〜20質量%を含有する。黒色化剤のジルコニウムは、原料粉末にジルコニア(ZrO2)として添加される。ジルコニア自体は白色系であるが、還元性雰囲気での焼成中に還元される間に、結晶構造が酸素欠陥型に変化したり、金属ジルコニアにまで還元されることにより黒色化するため、セラミックス全体が黒色系の色調を呈する。 The black free-cutting ceramic according to the present invention is used as a blackening agent for 100 parts by mass of a main component (hereinafter referred to as aggregate) composed of 25 to 60% by mass of silicon nitride and 40 to 75% by mass of boron nitride. It contains 0.1 to 20% by mass of zirconium and / or its oxide. Zirconium as a blackening agent is added to the raw material powder as zirconia (ZrO 2 ). Zirconia itself is white, but during the reduction in firing in a reducing atmosphere, the crystal structure changes to an oxygen-deficient type or becomes black due to reduction to metal zirconia, so the entire ceramic Exhibits a blackish color tone.

この黒色系快削性セラミックスは、次に述べる方法により製造することができる。まず、窒化珪素25〜60質量%と窒化硼素40〜75質量%とからなる骨材に、焼結助剤成分とジルコニアをいずれも粉末状態で混合し、原料粉末を調製する。この混合は、たとえば湿式ボールミル等により行うことができる。   This black free-cutting ceramic can be manufactured by the following method. First, a raw material powder is prepared by mixing a sintering aid component and zirconia in a powder state with an aggregate composed of 25 to 60% by mass of silicon nitride and 40 to 75% by mass of boron nitride. This mixing can be performed by, for example, a wet ball mill.

セラミックス骨材中の窒化珪素の割合が75質量%より多くなると、セラミックスの被削性が劣化し、25質量%より下回るとセラミックスの強度が低下し、いずれの場合も、高精度の微細加工が困難となる。窒化珪素の割合は、好ましくは30〜60質量%である。   If the proportion of silicon nitride in the ceramic aggregate exceeds 75% by mass, the machinability of the ceramic deteriorates, and if it falls below 25% by mass, the strength of the ceramic decreases. It becomes difficult. The proportion of silicon nitride is preferably 30 to 60% by mass.

窒化硼素は、グラファイト構造の六方晶系のもの(h-BN)がよい。微細加工の際に必要とされる高強度を得る観点から、骨材粉末、特に窒化硼素の粉末は、平均粒径1μm未満のものが望ましい。   The boron nitride is preferably a hexagonal system (h-BN) having a graphite structure. From the standpoint of obtaining the high strength required during microfabrication, the aggregate powder, particularly boron nitride powder, preferably has an average particle size of less than 1 μm.

焼結助剤は、窒化珪素や窒化硼素の焼結に従来から使用されているものから選択することができる。好ましい焼結助剤は酸化アルミニウム (アルミナ) 、酸化マグネシウム (マグネシア) 、酸化イットリウム (イットリア) 、およびランタノイド金属の酸化物およびスピネルなどの複合酸化物から得られた1種もしくは2種以上であり、より好ましくはアルミナとイットリアの混合物、もしくはこれにさらにマグネシアを添加した混合物である。   The sintering aid can be selected from those conventionally used for sintering silicon nitride and boron nitride. Preferred sintering aids are one or more derived from complex oxides such as aluminum oxide (alumina), magnesium oxide (magnesia), yttrium oxide (yttria), and lanthanoid metal oxides and spinels, More preferred is a mixture of alumina and yttria, or a mixture obtained by further adding magnesia.

焼結助剤の配合量は、窒化珪素と窒化硼素とからなる骨材粉末の1〜15質量%、特に3〜10質量%の範囲とすることが望ましい。配合量が少なすぎると焼結が不十分となり、焼結体であるセラミックスの強度が低下し、配合量が多すぎると、強度の低い粒界ガラス層が増加し、やはりセラミックスの強度低下を招く。   The blending amount of the sintering aid is desirably in the range of 1 to 15 mass%, particularly 3 to 10 mass% of the aggregate powder composed of silicon nitride and boron nitride. If the blending amount is too small, the sintering becomes insufficient, and the strength of the ceramic ceramic, which is a sintered body, decreases. If the blending amount is too large, the low-strength grain boundary glass layer increases, which also causes a decrease in the strength of the ceramic. .

黒色化剤として添加するジルコニア(ZrO2)は、窒化珪素と窒化硼素とからなる骨材粉末100 質量部に対して 0.1〜20質量部の範囲の割合で配合する。一般にジルコニアの配合量に応じて、焼成後のセラミックスの黒色化の強さが変化する。この配合量が0.1 質量部より少ないと、ジルコニアの還元による充分な黒色化効果がほとんど得られず、20質量部より多くなると、セラミックスの被削性が低下し、微細加工が精度よく行えなくなる。ジルコニアの配合量は好ましくは 0.1〜5質量部である。この範囲では、特に微細なスリットおよび穴加工を高精度に行うことができる。 Zirconia (ZrO 2 ) added as a blackening agent is blended at a ratio in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the aggregate powder composed of silicon nitride and boron nitride. In general, the strength of blackening of the ceramic after firing changes according to the amount of zirconia. If the blending amount is less than 0.1 parts by mass, a sufficient blackening effect due to reduction of zirconia is hardly obtained. If the blending amount is more than 20 parts by mass, the machinability of the ceramic is lowered and fine processing cannot be performed with high accuracy. The amount of zirconia is preferably 0.1 to 5 parts by mass. In this range, particularly fine slits and holes can be processed with high accuracy.

黒色化剤として添加したジルコニアは焼結助剤として作用することもあるが、本発明では、ジルコニアは焼結助剤からは除外する。なお、焼結助剤とジルコニアの配合量が多すぎると、骨材の割合が相対的に少なくなり、セラミックスの強度が低下して、微細加工の精度が低下することがあるので、焼結助剤とジルコニアの合計量は、骨材100 質量部に対して20質量部以下、さらには15質量部以下とすることが好ましい。   Zirconia added as a blackening agent may act as a sintering aid, but in the present invention, zirconia is excluded from the sintering aid. In addition, if the amount of the sintering aid and zirconia is too large, the proportion of aggregate is relatively reduced, the strength of the ceramic is lowered, and the precision of microfabrication may be lowered. The total amount of the agent and zirconia is preferably 20 parts by mass or less, more preferably 15 parts by mass or less with respect to 100 parts by mass of the aggregate.

黒色化剤として用いるジルコニアは、ZrO2単味の粉末でもよいが、ZrO2に安定化剤としてY2O3、CeO2、MgO 、CaO などの少なくとも1種を添加した、安定化または部分安定化ジルコニアの粉末であってもよい。 Zirconia is used as a black agent may be a powder of ZrO 2 plain but, Y 2 O 3 in ZrO 2 as a stabilizer, CeO 2, MgO, by adding at least one such CaO, stabilized or partially stabilized Zirconia powder may be used.

ジルコニアの添加はまた、原料粉末をボールミル等で混合する際に、混合容器(ポット) および/または混合媒体 (ボール) として、ジルコニア製または上記の安定化もしくは部分安定化ジルコニア製のものを用いることにより、これらの容器や媒体の摩耗によって、原料粉末中にジルコニアを混入させることで行うこともできる。しかし、ジルコニアの配合量が例えば骨材100 質量部に対して1質量部以上になると、この摩耗混入で必要量のジルコニアを添加するには非常に長い混合時間が必要となり、現実的ではないので、この摩耗によるジルコニアの導入を利用する場合には、外部からのジルコニアの添加も併用することが好ましい。その場合、予め実験により、一定混合条件でのジルコニアの摩耗量を調べておき、不足する量のジルコニアを外部から添加すればよい。   Addition of zirconia should also be performed using zirconia or the above-mentioned stabilized or partially stabilized zirconia as the mixing container (pot) and / or mixing medium (ball) when mixing the raw material powder with a ball mill or the like. Therefore, it can also be performed by mixing zirconia into the raw material powder due to wear of these containers and media. However, if the amount of zirconia is 1 part by mass or more with respect to 100 parts by mass of aggregate, for example, it takes a very long mixing time to add the necessary amount of zirconia due to this wear mixing, which is not practical. When using the introduction of zirconia due to abrasion, it is preferable to use zirconia from the outside as well. In that case, the amount of wear of zirconia under a constant mixing condition is examined in advance by experiments, and an insufficient amount of zirconia may be added from the outside.

所定組成に調整した原料粉末を焼成して焼結させ、セラミックスとする。本発明では、ジルコニアによる黒色化のためにジルコニアの少なくとも一部を還元する必要があるので、焼成を還元性雰囲気中で実施して、焼成中にジルコニアを還元させる。高強度の緻密なセラミックスにするため、焼成は加圧下で行うことが好ましい。   The raw material powder adjusted to a predetermined composition is fired and sintered to obtain ceramics. In the present invention, since it is necessary to reduce at least a part of zirconia for blackening with zirconia, calcination is performed in a reducing atmosphere, and zirconia is reduced during calcination. Firing is preferably performed under pressure in order to obtain a high-strength, dense ceramic.

還元性雰囲気の圧力は、大気圧、加圧、減圧のいずれでもよい。還元性雰囲気は、たとえば炉内にカーボン部材を配置したり、原料粉末またはその成形体をカーボン治具中に充填または配置したり、および/またはカーボンヒーターを加熱手段に使用することによって得るのが簡便である。   The reducing atmosphere may be at atmospheric pressure, increased pressure, or reduced pressure. The reducing atmosphere is obtained, for example, by arranging a carbon member in a furnace, filling or arranging raw material powder or a molded product thereof in a carbon jig, and / or using a carbon heater as a heating means. Convenient.

還元性雰囲気は、カーボンを利用して得る代わりに、水素ガスや、アンモニアの分解で発生する水素と窒素の混合ガスといった、水素含有ガス雰囲気とすることも可能である。   The reducing atmosphere can be a hydrogen-containing gas atmosphere such as hydrogen gas or a mixed gas of hydrogen and nitrogen generated by the decomposition of ammonia, instead of using carbon.

焼成温度は1700〜1950℃の範囲内がよい。温度が低すぎると、焼結が不十分となるとともに、ZrO2の還元黒色化が起こらず、高すぎると主原料である骨材の熱分解が起こるようになる。 The firing temperature is preferably in the range of 1700-1950 ° C. If the temperature is too low, sintering will be inadequate, and reduction blackening of ZrO 2 will not occur. If it is too high, the aggregate, which is the main raw material, will thermally decompose.

焼成は高温加圧焼結法であるホットプレスを利用して行うことができる。その場合の加圧力は20〜50 Mpaの範囲が適当である。ホットプレスの持続時間は温度や寸法にもよるが、通常は1〜4時間程度である。高温加圧焼結はHIP (ホットアイソスタティクプレス) により行うこともできる。この場合の焼結条件も当業者であれば適宜設定できる。   Firing can be performed using a hot press which is a high-temperature pressure sintering method. In this case, the pressure is suitably in the range of 20-50 Mpa. The duration of hot pressing is usually about 1 to 4 hours, although it depends on the temperature and dimensions. High temperature pressure sintering can also be performed by HIP (hot isostatic press). Sintering conditions in this case can be appropriately set by those skilled in the art.

こうして製造された窒化物系セラミックスは、焼結助剤の種類や量を適切に選択すれば、25〜600 ℃での熱膨張係数が3×10-6/℃以下となるので、半導体素子との熱膨張係数の差が小さく、プローブガイドに使用した時の位置ずれが起きにくい。このセラミックスは、被削性に優れ、かつ高強度であるので、微細なスリットまたは穴加工を高精度で行えるとともに、内部まで均一な黒色味に着色しているので、加工した後も表面が黒色系を呈し、画像処理測定などの光学的形状測定の際の光反射が少ないため、測定を円滑に行うことができ、かつ汚れが目立ちにくく、美観に優れるという特徴を持つ。 The nitride ceramics produced in this way have a coefficient of thermal expansion of 3 × 10 −6 / ° C. or less at 25 to 600 ° C. if the type and amount of the sintering aid are appropriately selected. The difference in coefficient of thermal expansion is small and misalignment is less likely to occur when used as a probe guide. Since this ceramic has excellent machinability and high strength, fine slits or holes can be machined with high precision, and the interior is colored uniformly in black, so the surface remains black after machining. It has a system and has less light reflection at the time of optical shape measurement such as image processing measurement, so that the measurement can be performed smoothly, dirt is not conspicuous, and the appearance is excellent.

本発明のセラミックスは、板状の形状とすることが好ましい。この板状セラミックスから、ドリルによる穴あけ加工または研削砥石によるスリット加工により、図1(C) に示すような複数の貫通穴または図1(D) に示すような複数のスリットを形成して、プローブガイドを製作することができる。もちろん、本発明のセラミックスの用途はプローブガイドに限られるものではない。絶縁性と高強度と快削性が要求され、かつ黒色が望ましい各種の用途に有用である。   The ceramic of the present invention is preferably in a plate shape. A plurality of through holes as shown in FIG. 1 (C) or a plurality of slits as shown in FIG. 1 (D) are formed from this plate-like ceramic by drilling with a drill or slitting with a grinding wheel. Guides can be made. Of course, the application of the ceramic of the present invention is not limited to the probe guide. It is useful for various applications where insulation, high strength and free-cutting properties are required, and black is desirable.

本発明の黒色系快削性セラミックスを利用すると、次のような穴あけ加工またはスリット加工の形状と精度を持つプローブガイドを製造することができる:
穴あけ加工
穴径: 65μm以下、
穴間の壁厚み: 5〜20μm、
穴の深さ/壁厚み比: 15以上、
穴径と穴ピッチの精度:±4μm以内。
By using the black free-cutting ceramic of the present invention, a probe guide having the following shape and accuracy of drilling or slitting can be manufactured:
Drilling hole diameter: 65μm or less,
Wall thickness between holes: 5-20 μm,
Hole depth / wall thickness ratio: 15 or more,
Hole diameter and hole pitch accuracy: within ± 4μm.

スリット加工
壁厚み: 5〜20μm、
深さ/壁厚み比: 15以上、
スリット間ピッチ精度:±4μm以内。
Slit processing Wall thickness: 5-20μm,
Depth / wall thickness ratio: 15 or more
Pitch accuracy between slits: Within ± 4 μm.

本発明のセラミックスは、被削性が良好で、強度も高いため、壁厚みが薄くて深い穴やスリットを、加工中の割れや欠けを起こさずに、正確な形状に微細加工することができる。従って、高密度にプローブを保持することができ、かつプローブの位置あわせ精度が向上したプローブガイドが製作され、検査装置の信頼性が高まる。   Since the ceramic of the present invention has good machinability and high strength, it is possible to finely process deep holes and slits with a thin wall thickness into an accurate shape without causing cracks or chips during processing. . Accordingly, a probe guide that can hold the probe at a high density and has improved probe positioning accuracy is manufactured, and the reliability of the inspection apparatus is increased.

以上には、窒化珪素と窒化硼素を主成分とする快削性セラミックスの黒色化について本発明を説明したが、本発明は他の白色系セラミックスに黒色系の色調を付与するのに利用することもでできる。このような白色系セラミックスの例としては、アルミナ、マグネシア、窒化硼素、これらの1種以上を含む複合材料などが例示される。   Although the present invention has been described above for blackening of free-cutting ceramics mainly composed of silicon nitride and boron nitride, the present invention can be used to impart a black color tone to other white ceramics. You can do it. Examples of such white ceramics include alumina, magnesia, boron nitride, and composite materials containing one or more of these.

この場合も、黒色化剤として添加するジルコニアの種類や添加量は上記と同様でよく、やはり焼成後のセラミックスの黒色化の程度はジルコニアの添加量に依存する傾向がある。焼成も同様に還元性雰囲気中で行って、少なくとも一部のジルコニアを焼成中に還元することが、黒色化に必要である。焼成温度はセラミックスや焼結助剤の種類に応じて適宜設定すればよい。成形法は、用途に応じて広範囲の方法から選択することができる。セラミックスの緻密化が重要ではない用途では、スリップキャスティング法といった湿式成形法を利用することも可能である。   In this case as well, the type and amount of zirconia added as a blackening agent may be the same as described above, and the degree of blackening of the ceramic after firing tends to depend on the amount of zirconia added. It is necessary for blackening that firing is performed in a reducing atmosphere as well, and at least a part of zirconia is reduced during firing. The firing temperature may be appropriately set according to the type of ceramic or sintering aid. The molding method can be selected from a wide range of methods depending on the application. In applications where densification of ceramics is not important, a wet forming method such as a slip casting method may be used.

以下に、本発明に係る黒色系快削性セラミックスに関する実施例および比較例を示す。実施例および比較例中の%および部は、特に指定しない限り、質量%および質量部である。   Below, the Example and comparative example regarding the black type free-cutting ceramics which concern on this invention are shown. Unless otherwise specified,% and part in Examples and Comparative Examples are% by mass and part by mass.

(実施例1〜3)
平均粒径0.5 μm、純度99%の六方晶窒化硼素(h-BN)粉末と、平均粒径0.2 μmの窒化珪素粉末とを、表1のNo.1〜3に示す割合で混合して得た骨材粉末100部に対して、焼結助剤としてアルミナ2部とイットリア6部を加え、エチルアルコールを溶媒として湿式ボールミル混合を行った。
(Examples 1-3)
Obtained by mixing hexagonal boron nitride (h-BN) powder with an average particle size of 0.5 μm and purity of 99% and silicon nitride powder with an average particle size of 0.2 μm in the ratios shown in Nos. 1 to 3 in Table 1. To 100 parts of the aggregate powder, 2 parts of alumina and 6 parts of yttria were added as sintering aids, and wet ball mill mixing was performed using ethyl alcohol as a solvent.

ボールミル混合は、ポリエチレン製ポット中で、混合媒体として3モル%のイトリアを含有する部分安定化ジルコニアボールを用いて行った。ボールからのジルコニア混入量が0.5 %となるように混合時間を調整し、これと合わせた全ジルコニア混入量が2%となるように、3モル%イットリアを含有する部分安定化ジルコニア粉末を、予めボールミルに添加しておいた。   Ball mill mixing was performed in a polyethylene pot using partially stabilized zirconia balls containing 3 mol% itria as the mixing medium. The mixing time was adjusted so that the amount of zirconia mixed from the ball was 0.5%, and the partially stabilized zirconia powder containing 3 mol% yttria was preliminarily adjusted so that the total amount of zirconia mixed together was 2%. It has been added to the ball mill.

ボールミルでの混合により得られたスラリーを、減圧エバポレーターで乾燥させてエタノールを除去し、焼成用の原料粉末を得た。この原料粉末を黒鉛製ダイスに充填し、窒素雰囲気中で30 Mpaの圧力を加えながら1850℃にて2時間ホットプレス焼結を行って、65×65 mm 、厚み10 mm の板状のセラミックス焼結体を得た。この場合、ダイスの黒鉛の存在により、焼成雰囲気は還元性雰囲気となる。得られた焼結体の外観は灰色の色調を帯び、骨材の2%という少量のジルコニアの含有でも、還元性雰囲気中での焼成により、セラミックスが黒色化することが実証された。   The slurry obtained by mixing with the ball mill was dried with a vacuum evaporator to remove ethanol, and a raw material powder for firing was obtained. This raw material powder is filled in a graphite die, and hot press sintering is performed at 1850 ° C. for 2 hours while applying a pressure of 30 Mpa in a nitrogen atmosphere, and a plate-like ceramic sintered body of 65 × 65 mm and 10 mm thickness is fired. A ligature was obtained. In this case, the firing atmosphere becomes a reducing atmosphere due to the presence of graphite in the die. The appearance of the obtained sintered body has a gray color tone, and it has been proved that the ceramic is blackened by firing in a reducing atmosphere even when containing a small amount of zirconia of 2% of the aggregate.

この焼結体から試験片を切り出し、破壊強度を3点曲げ試験で測定した。また、被削性を評価するため、超硬−K10種工具を用いて、研削速度18 m/min、送り速度0.03 mm/rev 、切り込み0.1 mmの条件で旋削試験を行い、5分後の被削材の表面粗さと工具の逃げ面摩耗幅 (工具の摩耗の程度を示す) を測定した。これらの値が小さいほど、被削性が良好である。さらにこの焼結体の熱膨張係数を室温(25℃) 〜600 ℃の範囲で測定した。   A test piece was cut out from the sintered body, and the fracture strength was measured by a three-point bending test. Also, in order to evaluate machinability, a turning test was conducted using a carbide-K10 type tool at a grinding speed of 18 m / min, a feed rate of 0.03 mm / rev, and a cutting depth of 0.1 mm. The surface roughness of the cutting material and the flank wear width of the tool (indicating the degree of tool wear) were measured. The smaller these values, the better the machinability. Furthermore, the thermal expansion coefficient of this sintered body was measured in the range of room temperature (25 ° C.) to 600 ° C.

この焼結体を、厚さ300 μmの薄板状に切り出した後、直径50μmの超硬ドリル (材質SKH9) を用いて、図1(C) に示すように、壁厚み10μmで縦20列 (合計200 個) の穴あけ加工を行った。穴の直径は60μm、深さは300 μmである。   After cutting this sintered body into a thin plate with a thickness of 300 μm, using a carbide drill (material SKH9) with a diameter of 50 μm, as shown in FIG. A total of 200 holes) were drilled. The diameter of the hole is 60 μm and the depth is 300 μm.

得られた貫通穴の穴径と穴ピッチの精度を測定し、この精度が±4μm以内で、割れや欠けがない場合を○、穴あけ加工は可能であるものの、精度が不十分か、割れや欠けが発生した場合を△、ドリルが折れるなどして穴あけ加工が不可能な場合を×、と評価した。   Measure the accuracy of the hole diameter and hole pitch of the obtained through-hole, and if this accuracy is within ± 4μm and there is no crack or chipping, drilling is possible, but the accuracy is insufficient, The case where chipping occurred was evaluated as Δ, and the case where drilling was not possible due to breakage of the drill was evaluated as ×.

また、この焼結体に、研削砥石 (レジンボンドダイヤモンド砥石#200、厚み40μm、外径50 mm)を用いたスリット加工により、図1(D) に示す形状のスリット(幅=40μm、壁厚み=15μm、深さ=300 μm) を50個形成した。   In addition, a slit (width = 40 μm, wall thickness) shown in FIG. 1 (D) is formed on this sintered body by slitting using a grinding wheel (resin bond diamond wheel # 200, thickness 40 μm, outer diameter 50 mm). = 15 μm, depth = 300 μm).

スリット加工は可能であるが、精度が不十分、 (ピッチ精度が±4μmを超える) か、割れおよび/ 欠け (チッピング) が発生した場合を△、十分な精度でスリット加工が可能で、割れや欠けが発生しない場合を○と評価した。   Slit processing is possible, but the accuracy is insufficient (pitch accuracy exceeds ± 4μm) or cracks and / or chipping (chipping) occurs △, slit processing with sufficient accuracy is possible. The case where no chipping occurred was evaluated as ◯.

上述のスリットおよび穴加工を施したセラミックス焼結体について、加工部を含めた表面の色むらの有無 (着色の均一性) の検査を目視観察により行った。均一に着色されていれば○、むらなどがあれば×、とした。   About the ceramic sintered compact which gave the above-mentioned slit and hole processing, the presence or absence of the color unevenness (coloring uniformity) of the surface including a process part was inspected by visual observation. If it was uniformly colored, it was rated as ◯, and if there was unevenness, it was marked as x.

色調についても検査し、加工形状 (穴径や穴加工−位置など) の画像処理測定が円滑に行うことができれば黒色化度○、光の反射などで計測がスムーズにできなかった場合を△、とした。   If the color tone is also inspected, and the image processing measurement of the processed shape (hole diameter, hole processing-position, etc.) can be performed smoothly, the degree of blackening ○, the case where the measurement could not be performed smoothly due to light reflection, etc. It was.

以上の調査結果を表1にまとめて示す。また、骨材の窒化珪素:窒化硼素の質量比が40:60である焼結体を穴あけ加工した場合の表面を示す走査型電子顕微鏡写真の1例を図2に示す。   The above survey results are summarized in Table 1. FIG. 2 shows an example of a scanning electron micrograph showing the surface when a sintered body having a mass ratio of silicon nitride: boron nitride of 40:60 is drilled.

(実施例4〜6)
実施例1〜3と同様にしてセラミックス焼結体を作成したが、本例では、窒化珪素:窒化硼素の質量比を30:70で一定とし、ボールミルへの部分安定化ジルコニアの添加量を変化させて、ボールからの摩耗混入粉も合わせて、表1に示すジルコニア含有量の原料粉末が得られるようにした。得られた焼結体の破壊強度、被削性、熱膨張係数、スリットならびに穴あけ加工、色調、黒色化度を実施例1〜3と同様にして調査した結果を表1に併せて示す。なお、いずれの場合も、焼結体の色調は実施例1〜3と同じであったが、ジルコニアの含有量に応じて色の濃さは変化した。
(Examples 4 to 6)
Ceramic sintered bodies were prepared in the same manner as in Examples 1 to 3, but in this example, the mass ratio of silicon nitride: boron nitride was kept constant at 30:70, and the amount of partially stabilized zirconia added to the ball mill was changed. In addition, the powder mixed with wear from the balls was combined to obtain a raw material powder having a zirconia content shown in Table 1. The results of investigating the fracture strength, machinability, thermal expansion coefficient, slit and drilling, color tone, and blackening degree of the obtained sintered body in the same manner as in Examples 1 to 3 are also shown in Table 1. In any case, the color tone of the sintered body was the same as in Examples 1 to 3, but the color intensity changed according to the content of zirconia.

(比較例1、2)
窒化硼素粉末と窒化珪素粉末の質量比が本発明の範囲外であった点を除いて、実施例1〜3と同様にして焼結体を作製した。
(Comparative Examples 1 and 2)
Sintered bodies were produced in the same manner as in Examples 1 to 3, except that the mass ratio of boron nitride powder and silicon nitride powder was outside the scope of the present invention.

(比較例3、4)
窒化珪素:窒化硼素の質量比を40:60で一定とし、ジルコニアの含有量を本発明の範囲外で変化させた。比較例3では、混合時のボールからの摩耗混入粉も含めた全ジルコニア混入量が25質量%となるように原料粉末を作製した。比較例4では、ボールミル時のジルコニアの摩耗混入粉が0.05質量%となるように混合時間を調節し、ジルコニア粉末の添加は行わなかった。原料粉末の焼成は実施例1〜3と同様に実施して、焼結体を得た。
(Comparative Examples 3 and 4)
The mass ratio of silicon nitride: boron nitride was constant at 40:60, and the zirconia content was varied outside the scope of the present invention. In Comparative Example 3, the raw material powder was prepared so that the total amount of zirconia mixed including the wear mixed powder from the balls during mixing was 25% by mass. In Comparative Example 4, the mixing time was adjusted so that the zirconia wear-mixed powder during ball milling was 0.05% by mass, and zirconia powder was not added. The raw material powder was fired in the same manner as in Examples 1 to 3 to obtain a sintered body.

(比較例5)
実施例1と同様に、窒化珪素:窒化硼素の質量比が40:60の骨材粉末に焼結助剤を添加した。これに着色剤として、モリブデン酸(H2MoO4)を、骨材粉末100 部に対してMoが0.1 部となる量で添加し、ポリエチレン製のポット内で混合媒体としてナイロン製ボールを使用して、湿式ボールミルにより混合し、乾燥して原料粉末を得た。この原料粉末を実施例1〜3と同様に焼成して、焼結体を得た。
(Comparative Example 5)
In the same manner as in Example 1, a sintering aid was added to an aggregate powder having a mass ratio of silicon nitride: boron nitride of 40:60. As a coloring agent, molybdic acid (H 2 MoO 4 ) was added in an amount such that Mo becomes 0.1 part with respect to 100 parts of the aggregate powder, and a nylon ball was used as a mixing medium in a polyethylene pot. Then, they were mixed by a wet ball mill and dried to obtain a raw material powder. This raw material powder was fired in the same manner as in Examples 1 to 3 to obtain a sintered body.

以上の比較例1〜5のセラミックス焼結体についても、破壊強度、被削性、熱膨張係数、スリットならびに穴あけ加工、色調、黒色化度を実施例1〜3と同様にして調査した結果を表1に併せて示す。   For the ceramic sintered bodies of Comparative Examples 1 to 5 above, the results of investigating the breaking strength, machinability, thermal expansion coefficient, slit and drilling, color tone, and degree of blackening in the same manner as in Examples 1 to 3 were obtained. It shows together in Table 1.

(比較例6)
プローブガイドの従来材として、Al2O3-SiO2-K2O系の快削性結晶化ガラスセラミックス材料の板材を用意した。この従来材についても、実施例1〜3に述べたのと同様の穴あけ加工およびスリット加工を施したところ、材料の強度が弱く、微細加工を施すと、図3に示すように、欠け (チッピング) が発生し、精度良くきれいに穴あけすることができなかった。また、この従来材は白色を呈し、画像処理測定の際に、光の反射のため、穴位置の測定が困難であった。この従来材の着色以外の調査結果も表1に併せて示す。
(Comparative Example 6)
As a conventional probe guide material, an Al 2 O 3 —SiO 2 —K 2 O-based free-cutting crystallized glass ceramic material plate was prepared. This conventional material was also subjected to drilling and slitting similar to those described in Examples 1 to 3, but the strength of the material was weak, and when fine processing was performed, as shown in FIG. ) Occurred, and it was not possible to drill holes accurately and accurately. In addition, this conventional material is white and it is difficult to measure the hole position due to light reflection during image processing measurement. The survey results other than the coloring of the conventional material are also shown in Table 1.

Figure 2007332025
Figure 2007332025

表1から分かるように、従来のガラスセラミックス材料は、熱膨張係数が著しく大きい上、強度が弱い。そのため、穴あけ加工で簡単に欠けてしまい、きれいに穴をあけることができない。   As can be seen from Table 1, the conventional glass ceramic material has a remarkably large thermal expansion coefficient and a low strength. For this reason, it is easily chipped by drilling and cannot be drilled cleanly.

これに対し、本発明の窒化物系のセラミックスは、熱膨張係数が小さい。そして、骨材の窒化珪素:窒化硼素の質量比が25:75〜60:40の範囲内であると、高強度で被削性も良好となるため、割れや欠けを生じることなく、高精度の微細加工を行うことができる。さらに、ジルコニアを骨材100 部に対しては 0.1〜20部の範囲内の量で配合することにより、焼成中のジルコニアの還元により、被削性に悪影響を及ぼさずに、均一に黒色に着色したセラミックスが得られる。従って、本発明のセラミックスは、プローブガイドのように、壁厚みが薄く、深い穴やスリットを高密度で形成する部材の加工素材として最適である。   In contrast, the nitride ceramic of the present invention has a small coefficient of thermal expansion. And, if the mass ratio of the silicon nitride: boron nitride in the aggregate is in the range of 25: 75-60: 40, high strength and good machinability will result, so there will be no cracking or chipping and high precision Can be finely processed. Furthermore, by blending zirconia in an amount within the range of 0.1 to 20 parts with respect to 100 parts of aggregate, the reduction of zirconia during firing reduces the machinability and does not adversely affect the machinability. Ceramics are obtained. Therefore, the ceramic of the present invention is optimal as a processing material for a member having a thin wall and a high density of deep holes and slits, such as a probe guide.

しかし、骨材の窒化珪素と窒化硼素の質量比やジルコニアの配合量が多すぎると、強度と被削性の少なくとも一方が低下した。ジルコニアの配合量が少なすぎると、黒色化は均一であるものの、着色度が不十分で、画像処理測定が困難となった。着色剤がジルコニア以外であると、着色が不均一になった。   However, when the mass ratio of the silicon nitride and boron nitride in the aggregate and the blending amount of zirconia were too large, at least one of strength and machinability decreased. When the amount of zirconia was too small, the blackening was uniform, but the degree of coloring was insufficient, making image processing measurement difficult. When the colorant was other than zirconia, the coloration was uneven.

図1(A) はプローブカードの断面を示す説明図、図1(B) はプローブガイドを備えたプローブカードの断面を示す説明図、図1(C) はプローブガイドの貫通穴の上面 (左図) および断面 (右図) を示す説明図、図1(D) は本発明のセラミックスで加工可能な微細スリット形状を示す説明図、図1(E) はスリットを備えたプローブガイドの説明図である。1A is an explanatory view showing a cross section of the probe card, FIG. 1B is an explanatory view showing a cross section of the probe card having the probe guide, and FIG. 1C is an upper surface (left side) of the through hole of the probe guide. Fig. 1 (D) is an explanatory diagram showing a fine slit shape that can be processed with the ceramic of the present invention, and Fig. 1 (E) is an explanatory diagram of a probe guide having a slit. It is. 本発明のセラミックスの穴あけ加工後の表面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the surface after drilling of the ceramics of this invention. 従来のガラスセラミックスの穴あけ加工後の表面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the surface after the drilling process of the conventional glass ceramics.

Claims (4)

窒化珪素25〜60質量%および窒化硼素40〜75質量%からなる主成分100 質量部に対して、ジルコニウムおよび/またはその酸化物をZrO2換算で 0.1〜20質量部の割合で含有することを特徴とする、黒色系快削性セラミックス。 Containing zirconium and / or an oxide thereof in a proportion of 0.1 to 20 parts by mass in terms of ZrO 2 with respect to 100 parts by mass of the main component consisting of 25 to 60% by mass of silicon nitride and 40 to 75% by mass of boron nitride. Characteristic black-type free-cutting ceramics. 窒化珪素、窒化硼素、ジルコニアおよび焼結助剤を含有する原料粉末を還元性雰囲気中で焼成する工程を含むことを特徴とする、請求項1に記載の黒色系快削性セラミックスの製造方法。   2. The method for producing a black free-cutting ceramic according to claim 1, comprising a step of firing a raw material powder containing silicon nitride, boron nitride, zirconia and a sintering aid in a reducing atmosphere. 主成分セラミックス100 質量部に対して、ジルコニウムおよび/またはその酸化物をZrO2換算で20質量部以下の割合で含有することを特徴とする、黒色系セラミックス。 A black ceramic, comprising zirconium and / or an oxide thereof in a proportion of 20 parts by mass or less in terms of ZrO 2 with respect to 100 parts by mass of the main component ceramic. ジルコニアを添加したセラミックス原料粉末を還元性雰囲気中で焼成する工程を含むことを特徴とする、請求項3に記載の黒色系セラミックスの製造方法。   4. The method for producing a black ceramic according to claim 3, further comprising a step of firing the ceramic raw material powder to which zirconia is added in a reducing atmosphere.
JP2007209979A 2007-08-10 2007-08-10 Black-based free-cutting ceramics and their production and use Expired - Lifetime JP4371158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209979A JP4371158B2 (en) 2007-08-10 2007-08-10 Black-based free-cutting ceramics and their production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209979A JP4371158B2 (en) 2007-08-10 2007-08-10 Black-based free-cutting ceramics and their production and use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000173587A Division JP4066591B2 (en) 2000-06-09 2000-06-09 Probe guide

Publications (3)

Publication Number Publication Date
JP2007332025A true JP2007332025A (en) 2007-12-27
JP2007332025A5 JP2007332025A5 (en) 2008-10-30
JP4371158B2 JP4371158B2 (en) 2009-11-25

Family

ID=38931839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209979A Expired - Lifetime JP4371158B2 (en) 2007-08-10 2007-08-10 Black-based free-cutting ceramics and their production and use

Country Status (1)

Country Link
JP (1) JP4371158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176801A (en) * 2008-01-22 2009-08-06 Panasonic Corp Manufacturing process of multilayer ceramic capacitor
JP2010001929A (en) * 2008-06-18 2010-01-07 Nippon Steel Materials Co Ltd Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor
WO2019078364A1 (en) * 2017-10-20 2019-04-25 株式会社フェローテックセラミックス Ceramic, probe-guiding part, probe card and socket for inspecting package

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176801A (en) * 2008-01-22 2009-08-06 Panasonic Corp Manufacturing process of multilayer ceramic capacitor
JP2010001929A (en) * 2008-06-18 2010-01-07 Nippon Steel Materials Co Ltd Fluid static pressure guide bearing component, tool supporting component, and manufacturing method therefor
WO2019078364A1 (en) * 2017-10-20 2019-04-25 株式会社フェローテックセラミックス Ceramic, probe-guiding part, probe card and socket for inspecting package
US11940466B2 (en) 2017-10-20 2024-03-26 Ferrotec Material Technologies Corporation Ceramic, probe guiding member, probe card, and socket for package inspection

Also Published As

Publication number Publication date
JP4371158B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US7160825B2 (en) Machinable ceramic
JP4400360B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
Sciti et al. Effect of different sintering aids on thermo–mechanical properties and oxidation of SiC fibers–Reinforced ZrB2 composites
WO2019093370A1 (en) Ceramic, probe guidance component, probe card, and package inspecting socket
JP4066591B2 (en) Probe guide
CN101218188A (en) Sintered yttria, anticorrosion member and process for producing the same
JP4371158B2 (en) Black-based free-cutting ceramics and their production and use
US5322823A (en) Ceramic composites and process for its production
JP5087339B2 (en) Method for producing free-cutting ceramics
EP0310342B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
TW202231600A (en) Multilayer sintered ceramic body
Chia et al. High toughness silicon carbide
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JP3697942B2 (en) Ceramic processed parts and manufacturing method thereof
JP6698395B2 (en) Probe guide member and manufacturing method thereof
EP2000447A2 (en) Sintered body, light emitting tube and process for manufacturing the same
TW202130603A (en) Machinable ceramic composite and method for preparing the same
JP7323135B2 (en) Tool member for friction stir welding and friction stir welding method using the same
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP4707591B2 (en) Black ceramic sintered body, optical analysis cell using the same, and semiconductor / liquid crystal manufacturing apparatus member
JP7373651B2 (en) Ceramics, probe guide components, probe cards and package inspection sockets
JP2000053463A (en) Jig for can manufacturing
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080902

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term