JP2007330012A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2007330012A
JP2007330012A JP2006158210A JP2006158210A JP2007330012A JP 2007330012 A JP2007330012 A JP 2007330012A JP 2006158210 A JP2006158210 A JP 2006158210A JP 2006158210 A JP2006158210 A JP 2006158210A JP 2007330012 A JP2007330012 A JP 2007330012A
Authority
JP
Japan
Prior art keywords
voltage value
determination unit
waveform
compressor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158210A
Other languages
Japanese (ja)
Inventor
Takamasa Tomonobu
貴雅 友信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006158210A priority Critical patent/JP2007330012A/en
Publication of JP2007330012A publication Critical patent/JP2007330012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a compressor vibrates unstably, due to that sometimes the torque power leading to the stabilization of motor drive is not reached even if energizing angle is maximized during high-speed operation of the compressor immediately after power ON while the ambient temperature of a refrigerator is high (for example, 30°C or over) or after defrosting, and a current flowing to the motor of the compressor is disturbed. <P>SOLUTION: There are provided an energizing angle limit determination part 100, a bus voltage detector 101, a bus voltage value determination part 102, a counter 103, and an abnormal-voltage count determination part 104, so that the refrigerator can prevent the disturbance of the current flowing to the motor of the compressor by being changed into a drive system according to the rotational position of the rotor when the cooling load value of the refrigerator is large and that the torque output leading to the stabilization of the motor drive of the compressor is not reached due to the large cooling load value of the refrigerator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ブラシレスDCモータの駆動方法及びその装置に関し、更に詳細に言えば、永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータを、三相巻線に電力を供給するインバータにより駆動するための方法及びその装置に関するものであり、特に冷蔵庫の圧縮機を駆動するのに最適なブラシレスDCモータの駆動方法及びその装置に関するものである。   More particularly, the present invention relates to a brushless DC motor comprising a rotor having a permanent magnet and a stator having a three-phase winding. More particularly, the present invention relates to a method and apparatus for driving a brushless DC motor that is optimal for driving a compressor of a refrigerator.

従来、この種の冷蔵庫は開示されている(例えば、特許文献1参照)。   Conventionally, this kind of refrigerator is disclosed (for example, refer to patent documents 1).

図11は特許文献1に記載された従来の冷蔵庫の縦断面図、図12は従来の冷蔵庫の制御装置を示すブロック図を示すものである。図11および図12に示すように、冷蔵庫本体1とその内部に冷蔵室2と冷凍室3を形成している。蒸発器4は冷凍室3を冷却する蒸発器である。圧縮機5は圧縮機駆動手段6により運転回転数を可変させながら駆動し冷凍サイクル(図示せず)により蒸発器4に冷媒を循環して蒸発器の冷凍能力を確保し、運転回転数可変の送風機7は送風機駆動手段8により冷蔵室2または冷凍室3へ冷気を送り出している。ヒータ9は蒸発器4の霜取りヒータでありヒータ駆動手段10により霜取り時に通電させる。庫内灯11は冷蔵室2内部に設置されており冷蔵室2の扉開放時に庫内灯駆動手段12により通電させる。これらの動作は制御手段13の指令に基づいて行われている。   FIG. 11 is a longitudinal sectional view of a conventional refrigerator described in Patent Document 1, and FIG. 12 is a block diagram showing a conventional refrigerator control device. As shown in FIGS. 11 and 12, a refrigerator main body 1 and a refrigerator compartment 2 and a freezer compartment 3 are formed therein. The evaporator 4 is an evaporator that cools the freezer compartment 3. The compressor 5 is driven by the compressor driving means 6 while varying the operation speed, and the refrigerant is circulated to the evaporator 4 by a refrigeration cycle (not shown) to ensure the refrigerating capacity of the evaporator, and the operation speed is variable. The blower 7 sends cold air to the refrigerator compartment 2 or the freezer compartment 3 by the blower driving means 8. The heater 9 is a defrosting heater of the evaporator 4 and is energized by the heater driving means 10 when defrosting. The interior lamp 11 is installed inside the refrigerator compartment 2 and is energized by the interior lamp driving means 12 when the door of the refrigerator compartment 2 is opened. These operations are performed based on commands from the control means 13.

図13は従来の圧縮機駆動手段6の詳細ブロック図であり第一波形発生部または第二波形発生部による駆動時、および両波形発生部の切替時に関する圧縮機5内部のブラシレスDCモータの駆動装置のブロック図である。   FIG. 13 is a detailed block diagram of the conventional compressor driving means 6 for driving the brushless DC motor inside the compressor 5 when it is driven by the first waveform generating unit or the second waveform generating unit and when switching between both waveform generating units. It is a block diagram of an apparatus.

図13において、商用電源15は、日本の場合周波数50Hzまたは60Hz、電圧100Vの交流電源である。   In FIG. 13, the commercial power source 15 is an AC power source having a frequency of 50 Hz or 60 Hz and a voltage of 100 V in Japan.

整流回路14は商用電源15の交流電圧を直流電圧に変換する。整流回路14はブリッジ接続された整流用ダイオード14a〜14dと平滑用の電解コンデンサ14e、14fと電圧調整回路14gからなり、図13に示す回路は倍電圧整流回路の場合、商用電源15のAC100V入力から直流電圧280Vを得ることができる。ここでは倍電圧整流としたが、電圧調整回路14gは直流電圧可変式のチョッパ回路や倍電圧整流/全波整流の切替方式回路に相当する。   The rectifier circuit 14 converts the AC voltage of the commercial power supply 15 into a DC voltage. The rectifier circuit 14 includes bridge-connected rectifier diodes 14a to 14d, smoothing electrolytic capacitors 14e and 14f, and a voltage regulator circuit 14g. In the case of the voltage doubler rectifier circuit, the circuit shown in FIG. From this, a DC voltage of 280V can be obtained. Although voltage doubler rectification is used here, the voltage adjustment circuit 14g corresponds to a DC voltage variable chopper circuit or a voltage doubler rectification / full wave rectification switching type circuit.

インバータ回路16は、6個のスイッチ素子15a、15b、15c、15d、15e、15fを3相ブリッジ構成されている。また、各々のスイッチ素子には各スイッチ素子の逆方向に還流電流用のダイオードが入っているが本図では省略している。   The inverter circuit 16 has a three-phase bridge configuration including six switch elements 15a, 15b, 15c, 15d, 15e, and 15f. Each switch element includes a diode for return current in the reverse direction of each switch element, but this is omitted in the figure.

ブラシレスDCモータ17は、永久磁石を有する回転子17aと3相巻線を有した固定子17bとからなる。インバータ16により作られた3相交流電流が固定子17bの3相巻線に流れることにより、回転子17aを回転させることができる。回転子17aの回転運動はクランクシャフト(図示せず)により、往復運動に変更され、ピストン(図示せず)がシリンダ(図示せず)内を往復運動することにより、冷媒を圧縮する圧縮機の駆動を行う。   The brushless DC motor 17 includes a rotor 17a having a permanent magnet and a stator 17b having a three-phase winding. When the three-phase alternating current generated by the inverter 16 flows through the three-phase winding of the stator 17b, the rotor 17a can be rotated. The rotational movement of the rotor 17a is changed to a reciprocating movement by a crankshaft (not shown), and a piston (not shown) reciprocates in a cylinder (not shown) to compress the refrigerant. Drive.

負荷検出回路18は、ブラシレスDCモータ17の永久磁石を有する回転子17aが回転することにより発生する逆起電圧から、回転子17aの回転相対位置を検出できる。なお、回転相対位置の検出用途の他にも還流電流用ダイオードに電流が流れる時間の増減を検出することにより、モータ電流の乱れや負荷状態の変化を検出することも可能である。これらの検出によりモータ電流位相の進み度合いを知ることもできる。   The load detection circuit 18 can detect the rotational relative position of the rotor 17a from the counter electromotive voltage generated when the rotor 17a having the permanent magnet of the brushless DC motor 17 rotates. In addition to detecting the rotation relative position, it is also possible to detect disturbances in the motor current and changes in the load state by detecting an increase or decrease in the time during which the current flows through the return current diode. From these detections, the advance degree of the motor current phase can be known.

なお、ここでは回転子17aが回転することにより発生する逆起電圧から、回転子17aの回転相対位置を検出する構成としたが、回転子17aの位置検出やモータ電流の状態検出を行う手段であれば電流検出などの手段を用いた構成でも良い。   In this case, the rotation relative position of the rotor 17a is detected from the counter electromotive voltage generated by the rotation of the rotor 17a. However, the means for detecting the position of the rotor 17a and the state of the motor current is used. If so, a configuration using means such as current detection may be used.

第一波形発生部19は、負荷検出回路18の位置検出信号をもとにロジカルな信号変換を行い、インバータ16のスイッチ素子16a、16b、16c、16d、16e、16fを駆動する信号を作り出す。この駆動する信号は矩形波通電を基本として行っており、通電角が120度以上180度未満の矩形波を作り出している。また、ここでは矩形波以外でもそれに準じる波形として立ち上がり/立ち下がりに若干の傾斜を持たせた台形波であってもよい。さらに回転数を一定に保つためにPWM制御のデューティの制御や通電角の制御も行っている。回転位置に従って、ブラシレスDCモータ17の実回転数を検出し、目標回転数との比較を行いながら最適なデューティで運転させることができるため、最も効率的な運転が可能となる。この実回転数の検出は負荷検出回路18の出力信号の一定時間カウントまたは周期測定などによって実現可能である。高効率、低振動が求められる低回転運転領域に適した波形発生手段である。   The first waveform generation unit 19 performs logical signal conversion based on the position detection signal of the load detection circuit 18 and generates signals for driving the switch elements 16a, 16b, 16c, 16d, 16e, and 16f of the inverter 16. This driving signal is based on rectangular wave energization, and generates a rectangular wave with an energization angle of 120 degrees or more and less than 180 degrees. In addition to the rectangular wave, a trapezoidal wave having a slight inclination in rising / falling may be used as a waveform conforming thereto. Further, in order to keep the rotation speed constant, duty control of PWM control and energization angle control are also performed. According to the rotational position, the actual rotational speed of the brushless DC motor 17 can be detected and operated with an optimum duty while comparing with the target rotational speed, so that the most efficient operation is possible. The detection of the actual rotational speed can be realized by counting the output signal of the load detection circuit 18 for a certain time or measuring the period. It is a waveform generating means suitable for a low-rotation operation region where high efficiency and low vibration are required.

第二波形発生部20は、デューティを一定にしたまま出力する周波数と通電角を変化させインバータ16のスイッチ素子16a、16b、16c、16d、16e、16fを駆動する信号を作り出す。この駆動する信号は通電角が180度未満の矩形波を作り出している。また、ここでは矩形波以外でも正弦波や歪波などのそれに準じる波形であってもよい。高トルクが求められる高回転運転領域に適した波形発生手段である。   The second waveform generator 20 generates a signal for driving the switch elements 16a, 16b, 16c, 16d, 16e, and 16f of the inverter 16 by changing the output frequency and the conduction angle while keeping the duty constant. This driving signal creates a rectangular wave with a conduction angle of less than 180 degrees. In addition to the rectangular wave, a waveform conforming thereto such as a sine wave or a distorted wave may be used. This is a waveform generating means suitable for a high rotation operation region where high torque is required.

切替判定部21は、第一波形発生部19が算出した回転数、その回転数をもとに制御しているデューティや、第二波形発生部20が制御している周波数や、負荷検出回路18が検出する回転子17aの磁極位置情報、モータ電流の位相情報や、冷蔵庫等の用途におけるシステムの温度状態といった要素に基づいてブラシレスDCモータ17の運転状態を判断し、インバータ16を動作させる波形を第一波形発生部19か第二波形発生部20かを選択し切り替えるものである。たとえば、回転数が低速の場合、第一波形発生部19からの信号を選択し、回転数が高速の場合、第二波形発生部20からの信号を選択してインバータ16を動作させる。   The switching determination unit 21 includes the rotation number calculated by the first waveform generation unit 19, the duty controlled based on the rotation number, the frequency controlled by the second waveform generation unit 20, and the load detection circuit 18. Determines the operating state of the brushless DC motor 17 based on factors such as the magnetic pole position information of the rotor 17a detected by the motor, the phase information of the motor current, and the temperature state of the system in applications such as a refrigerator, and the waveform for operating the inverter 16 The first waveform generator 19 or the second waveform generator 20 is selected and switched. For example, when the rotational speed is low, the signal from the first waveform generator 19 is selected, and when the rotational speed is high, the signal from the second waveform generator 20 is selected to operate the inverter 16.

ドライブ部22は、切替判定部21からの出力信号により、インバータ16のスイッチ素子16a、16b、16c、16d、16e、16fを駆動する。この駆動によりインバータ16から最適な交流出力がブラシレスDCモータ17に印加することができるので回転子17aを回転させることができる。   The drive unit 22 drives the switch elements 16a, 16b, 16c, 16d, 16e, and 16f of the inverter 16 based on the output signal from the switching determination unit 21. By this driving, an optimal AC output can be applied from the inverter 16 to the brushless DC motor 17, so that the rotor 17a can be rotated.

マイクロコンピュータ23は前述の機能を実現する。これらの機能はマイクロコンピュータのプログラムによって実現可能である。   The microcomputer 23 implements the above functions. These functions can be realized by a microcomputer program.

次に図13における動作について、図13、図14を用いて説明する。   Next, the operation in FIG. 13 will be described with reference to FIGS.

図14は、従来の第二波形発生部による駆動時時における動作を示したフローチャートである。   FIG. 14 is a flowchart showing the operation during driving by the conventional second waveform generator.

ここで、STEP1からSTEP4は何れも第二波形発生部が行う処理である。   Here, STEP1 to STEP4 are processes performed by the second waveform generator.

まず、STEP1において、負荷検出回路18から出力される信号により、回転子4aの磁極位置に対するモータ電流の位相が進んでいるのか遅れているのか、または不安定状態なのかを判定している。その判定の結果、位相が不安定状態の場合はSTEP2に、位相が遅れている場合はSTEP3に移行する。位相が進んでいる場合にはスタートに戻る。   First, in STEP 1, it is determined based on a signal output from the load detection circuit 18 whether the phase of the motor current with respect to the magnetic pole position of the rotor 4 a is advanced, delayed, or unstable. As a result of the determination, if the phase is unstable, the process proceeds to STEP2, and if the phase is delayed, the process proceeds to STEP3. If the phase is advanced, return to start.

次に、STEP2において、通電角を拡大し、STEP4に移行する。   Next, in STEP2, the energization angle is enlarged and the process proceeds to STEP4.

また、STEP3において、通電角を縮小し、STEP4に移行する。   In STEP 3, the energization angle is reduced and the process proceeds to STEP 4.

最後に、STEP4において、モータ挙動が安定するまで任意の時間待機する。これは、通電角を調整しても、即座に“電流位相が安定した進み状態”になるわけではないので、モータ挙動が安定するまでに十分な時間待機させるために、本処理は必要である。ただし、この時間待機は、STEP2、STEP3の通電角調整処理をゆっくりと行う、すなわち、通電角を非常に細かく変化させることにより省略することも可能である。
特開2005−176437号公報
Finally, in STEP4, an arbitrary time is waited until the motor behavior is stabilized. This is because even if the energization angle is adjusted, it does not immediately become “advancing state with a stable current phase”, so this process is necessary in order to wait for a sufficient time until the motor behavior becomes stable. . However, this waiting time can be omitted by slowly performing the energization angle adjustment process of STEP2 and STEP3, that is, by changing the energization angle very finely.
JP 2005-176437 A

しかしながら、従来の構成では冷蔵庫が高負荷・低電圧環境下のようなモータ電流位相が不安定な時には、通電角を拡大することで、位相を更に進めると共にモータ駆動の安定化を確保し、大きなトルクを出力することが可能となり、位相を更に進めると共にモータ駆動の安定化を確保し、大きなトルクを出力することが可能となるが、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後または霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においては、通電角を最大まで拡大してもモータ駆動の安定化に至るトルク出力に満たない場合が生じ圧縮機のモータに流れる電流が乱れることが起因となり圧縮機が不安定に振動することで冷蔵庫の筐体が揺れたり、また同時に電源電圧が乱れることにより冷蔵庫の交流電圧系の負荷である庫内灯がちらついたりヒータ発熱が不安定になる問題が生じるという課題を有していた。   However, in the conventional configuration, when the motor current phase is unstable, such as when the refrigerator is under a high load / low voltage environment, the energization angle is expanded to further advance the phase and ensure the stabilization of the motor drive. Torque can be output, the phase can be further advanced and motor drive stability can be ensured, and a large torque can be output, but in situations where the ambient temperature of the refrigerator is high (for example, 30 ° C or higher) In extremely high cooling load situations such as during high-speed operation of the compressor immediately after power-on or after defrosting, the torque output does not reach the torque output that stabilizes the motor drive even if the energization angle is increased to the maximum. If this happens, the current flowing to the compressor motor will be disturbed, causing the compressor to vibrate in an unstable manner, causing the refrigerator housing to shake, and at the same time disturbing the power supply voltage. Interior light is the load of the refrigerator of the AC voltage system heater heating flickering had a problem that there is a problem that unstable by.

本発明は、上記従来の課題を解決するもので、冷蔵庫の圧縮機が高回転駆動でさらに通電角を最大まで拡大している状況において、モータ母線電圧を確認することで冷蔵庫の負荷状態を検出し、圧縮機の駆動方式を回転子の回転位置に応じた駆動方式へ変えることを可能とするブラシレスDCモータの駆動方法及びその装置を備えた冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and detects the load state of the refrigerator by checking the motor bus voltage in a situation where the compressor of the refrigerator is driven at a high rotation speed and further increases the conduction angle. It is another object of the present invention to provide a brushless DC motor driving method and a refrigerator equipped with the device, which can change the compressor driving method to a driving method according to the rotational position of the rotor.

本発明の他の目的は、冷蔵庫の圧縮機が高回転駆動でさらに通電角を最大まで拡大しているときモータ母線電圧を確認することで冷蔵庫の負荷状態を検出し、送風機の運転回転数を下げることを可能とする制御手段を備えた冷蔵庫を提供することを目的とする。   Another object of the present invention is to detect the load condition of the refrigerator by checking the motor bus voltage when the compressor of the refrigerator is driven at high rotation and further increases the energization angle to the maximum, and the operating speed of the blower is determined. It aims at providing the refrigerator provided with the control means which can be lowered | hung.

上記従来の課題を解決するために、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上に達した場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置を設けたものである。   In order to solve the above-mentioned conventional problems, the refrigerator of the present invention changes the predetermined frequency, operates the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency, and detects the voltage value. When the voltage value detected by the circuit reaches a predetermined upper limit value or more, the switching determination unit selects and changes the driving method to output a waveform with a conduction angle of 150 degrees or less according to the rotation position of the rotor by the overload determination means. A drive unit for a brushless DC motor is provided.

また、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の下限値以下に達した場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置を設けたものである。   In the refrigerator of the present invention, the voltage value detected by the voltage value detection circuit is regulated while changing the predetermined frequency and operating the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. A brushless DC motor drive device is provided in which the switching determination unit selects and changes the drive method to output a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor by the overload determination means when the lower limit value is reached. It is a thing.

また、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置を設けたものである。   In the refrigerator of the present invention, the voltage value detected by the voltage value detection circuit is regulated while changing the predetermined frequency and operating the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. When the number of times reaching the upper limit value or below the specified lower limit value exceeds a certain number of times, the overload judgment means switches to a drive system that outputs a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor A brushless DC motor driving device that is selected and changed by the determination unit is provided.

また、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置を設けたものである。   In the refrigerator of the present invention, the voltage value detected by the voltage value detection circuit is regulated while changing the predetermined frequency and operating the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. When the time that reaches the upper limit value or below the specified lower limit value exceeds a certain time, the overload judgment means switches to a drive system that outputs a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor. A brushless DC motor driving device that is selected and changed by the determination unit is provided.

これによって、冷蔵庫の冷却負荷量が大きく圧縮機モータ駆動の安定化に至るトルク出力に満たない場合に回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぐことができる。   As a result, when the cooling load of the refrigerator is large and the torque output leading to stabilization of the compressor motor drive is not achieved, the drive system is changed to a drive system corresponding to the rotational position of the rotor, thereby disturbing the current flowing to the compressor motor. Can be prevented.

また、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、過負荷判定手段により送風機の運転回転数を下降させる制御装置を設けたものである。   In the refrigerator of the present invention, the voltage value detected by the voltage value detection circuit is regulated while changing the predetermined frequency and operating the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. When the number of times reaching the upper limit value or below the specified lower limit value is equal to or greater than a certain number, a control device is provided for lowering the operating rotational speed of the blower by the overload determining means.

また、本発明の冷蔵庫は、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により送風機の運転回転数を下降させる制御装置を設けたものである。   In the refrigerator of the present invention, the voltage value detected by the voltage value detection circuit is regulated while changing the predetermined frequency and operating the compressor while outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. A control device is provided for lowering the operating rotational speed of the blower by the overload determining means when the time that has reached the upper limit value or below the specified lower limit value has reached a certain time or longer.

これによって、冷蔵庫の負荷が高いとき送風機の運転回転数を下げることで蒸発器による冷却負荷量を軽減させることができる。   Thereby, when the load of a refrigerator is high, the cooling load amount by an evaporator can be reduced by reducing the driving | running rotation speed of a fan.

本発明の冷蔵庫は、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状態でも圧縮機モータの電流乱れを防ぎ不安定な振動すなわち冷蔵庫筐体の揺れを抑え、また同時に電源電圧が乱れることによる庫内灯やヒータ発熱を安定させることができる。   The refrigerator of the present invention is a compressor even when the cooling load is extremely large such as immediately after turning on the power in a situation where the ambient temperature of the refrigerator is high (for example, 30 ° C. or more) and during high-speed operation of the compressor after performing the defrosting operation. The motor current can be prevented from being disturbed and unstable vibration, that is, the refrigerator casing can be prevented from being shaken, and at the same time, the interior lamp and heater heat generated by the disturbed power supply voltage can be stabilized.

請求項1に記載の発明は、運転回転数可変型の圧縮機および前記圧縮機の駆動手段と熱交換用の蒸発器を含む冷凍サイクルと、前記蒸発器で生成された冷気を庫内へ送る運転回転数可変型の送風機と、前記圧縮機および前記圧縮機の駆動手段は永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、前記三相巻線に電力を供給するインバータと、前記三相巻線に供給された電圧値を検出する電圧値検出回路と、モータの運転状態情報からモータの負荷状態を検出する負荷検出回路と、前記回転子の回転位置に応じて通電角150度以下の波形を出力する第一波形発生部と、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力する第二波形発生部と、前記第一波形発生部と前記第二波形発生部とをモータの運転状態によって切り替える切替判定部とを備え、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上に達した場合、過負荷判定手段により前記第一波形発生部を前記切替判定部が選択するブラシレスDCモータの駆動装置を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to the first aspect of the present invention, a compressor having a variable operating rotational speed, a refrigeration cycle including a drive means for the compressor and an evaporator for heat exchange, and cool air generated by the evaporator are sent into a warehouse. The operating speed variable type blower, the compressor and the drive means of the compressor are a brushless DC motor including a rotor having a permanent magnet and a stator having a three-phase winding, and power to the three-phase winding. An inverter to be supplied; a voltage value detection circuit for detecting a voltage value supplied to the three-phase winding; a load detection circuit for detecting a load state of the motor from motor operation state information; and a rotational position of the rotor. In response, a first waveform generator that outputs a waveform with a conduction angle of 150 degrees or less, a second waveform generator that changes a predetermined frequency and outputs a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency, One waveform generator and the second A switching determination unit that switches between the shape generation unit and the motor according to the operating state of the motor, the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit is a predetermined upper limit value. When the above is reached, a situation in which the ambient temperature of the refrigerator is high (for example, 30 ° C. or higher) by providing a drive unit for the brushless DC motor in which the switching determination unit selects the first waveform generation unit by the overload determination unit. Even in situations where the cooling load is extremely large, such as during high-speed operation of the compressor immediately after the power is turned on and after the defrosting operation, the motor of the compressor can be changed by changing the drive system according to the rotational position of the rotor. Can be prevented, unstable vibration of the compressor, that is, shaking of the refrigerator casing, can be suppressed, and the interior lamp and heater heat can be stabilized.

請求項2に記載の発明は、運転回転数可変型の圧縮機および前記圧縮機の駆動手段と熱交換用の蒸発器を含む冷凍サイクルと、前記蒸発器で生成された冷気を庫内へ送る運転回転数可変型の送風機と、前記圧縮機および前記圧縮機の駆動手段は永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、前記三相巻線に電力を供給するインバータと、前記三相巻線に供給された電圧値を検出する電圧値検出回路と、モータの運転状態情報からモータの負荷状態を検出する負荷検出回路と、前記回転子の回転位置に応じて通電角150度以下の波形を出力する第一波形発生部と、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力する第二波形発生部と、前記第一波形発生部と前記第二波形発生部とをモータの運転状態によって切り替える切替判定部とを備え、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の下限値以下に達した場合、過負荷判定手段により前記第一波形発生部を前記切替判定部が選択するブラシレスDCモータの駆動装置を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to a second aspect of the present invention, a compressor having a variable operating rotational speed, a refrigeration cycle including a drive means for the compressor and an evaporator for heat exchange, and cold air generated by the evaporator are sent into a warehouse. The operating speed variable type blower, the compressor and the drive means of the compressor are a brushless DC motor including a rotor having a permanent magnet and a stator having a three-phase winding, and power to the three-phase winding. An inverter to be supplied; a voltage value detection circuit for detecting a voltage value supplied to the three-phase winding; a load detection circuit for detecting a load state of the motor from motor operation state information; and a rotational position of the rotor. In response, a first waveform generator that outputs a waveform with a conduction angle of 150 degrees or less, a second waveform generator that changes a predetermined frequency and outputs a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency, One waveform generator and the second A switching determination unit that switches between the shape generation unit and the motor operating state, the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit is a specified lower limit value When the following is reached, a situation in which the ambient temperature of the refrigerator is high (for example, 30 ° C. or more) by providing a driving device for the brushless DC motor in which the switching determination unit selects the first waveform generation unit by the overload determination unit Even in situations where the cooling load is extremely large, such as during high-speed operation of the compressor immediately after the power is turned on and after the defrosting operation, the motor of the compressor can be changed by changing the drive system according to the rotational position of the rotor. Can be prevented, unstable vibration of the compressor, that is, shaking of the refrigerator casing, can be suppressed, and the interior lamp and heater heat can be stabilized.

請求項3に記載の発明は、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、過負荷判定手段により前記第一波形発生部を前記切替判定部が選択するブラシレスDCモータの駆動装置を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to a third aspect of the present invention, the switching determination unit selects the second waveform generation unit, and the voltage value detected by the voltage value detection circuit reaches a specified upper limit value or less or a specified lower limit value or less. When the number of times of the determination is equal to or greater than a certain number of times, the overload determination means is provided with a brushless DC motor drive device for selecting the first waveform generation unit by the switching determination unit, so that the ambient temperature of the refrigerator is high ( Even in situations where the cooling load is extremely large, such as immediately after turning on the power at 30 ° C. or higher and during high-speed operation of the compressor after defrosting, the drive system should be changed according to the rotational position of the rotor. Thus, it is possible to prevent disturbance of the current flowing through the motor of the compressor, to suppress unstable vibration of the compressor, that is, to shake the casing of the refrigerator, and to stabilize the heating of the interior lamp and the heater.

請求項4に記載の発明は、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により前記第一波形発生部を前記切替判定部が選択するブラシレスDCモータの駆動装置を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to a fourth aspect of the present invention, the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit reaches a specified upper limit value or less or a specified lower limit value or less. When the measured time becomes equal to or longer than a certain time, a drive device for the brushless DC motor that selects the first waveform generation unit by the switching determination unit by the overload determination unit is provided, so that the ambient temperature of the refrigerator is high ( Even in situations where the cooling load is extremely large, such as immediately after turning on the power at 30 ° C. or higher and during high-speed operation of the compressor after defrosting, the drive system should be changed according to the rotational position of the rotor. Thus, it is possible to prevent disturbance of the current flowing through the motor of the compressor, to suppress unstable vibration of the compressor, that is, to shake the casing of the refrigerator, and to stabilize the heating of the interior lamp and the heater.

請求項5に記載の発明は、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、前記送風機の運転回転数を下降させる制御装置の判定手段を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、送風機の運転回転数を下げることで蒸発器による冷却負荷量を軽減させ、圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to a fifth aspect of the present invention, the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit reaches a specified upper limit value or less or a specified lower limit value or less. When the number of times of the operation has become a certain number of times or more, by providing a determination means of the control device that lowers the operating speed of the blower, immediately after turning on the power in a situation where the ambient temperature of the refrigerator is high (for example, 30 ° C. or more) Even under extremely high cooling load conditions such as during high-speed operation of the compressor after defrosting, the cooling load by the evaporator is reduced by lowering the operating speed of the blower and flows to the compressor motor It can prevent current disturbance, suppress unstable vibration of the compressor, that is, shake of the refrigerator casing, and stabilize the heat of the interior lamp and heater.

請求項6に記載の発明は、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、前記送風機の運転回転数を下降させる制御装置の判定手段を設けたことにより、冷蔵庫の周囲温度が高い状況(例えば30℃以上)での電源投入直後および霜取り動作を行った後の圧縮機高速運転中などの極端に冷却負荷量の大きい状況においても、送風機の運転回転数を下げることで蒸発器による冷却負荷量を軽減させ、圧縮機のモータに流れる電流の乱れを防ぎ、圧縮機の不安定な振動すなわち冷蔵庫の筐体揺れを抑え、また庫内灯やヒータ発熱を安定させることができる。   According to a sixth aspect of the invention, the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit reaches a specified upper limit value or less or a specified lower limit value or less. When the measured time becomes equal to or longer than a certain time, by providing a determination means of the control device that lowers the operating speed of the blower, immediately after turning on the power in a situation where the ambient temperature of the refrigerator is high (for example, 30 ° C. or higher) Even under extremely high cooling load conditions such as during high-speed operation of the compressor after defrosting, the cooling load by the evaporator is reduced by lowering the operating speed of the blower and flows to the compressor motor It can prevent current disturbance, suppress unstable vibration of the compressor, that is, shake of the refrigerator casing, and stabilize the heat of the interior lamp and heater.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成について同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional example or the above-described embodiments, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における圧縮機駆動手段6の詳細ブロック図であり第一波形発生部19または第二波形発生部20による駆動時、および両波形発生部の切替時に関する圧縮機5内部のブラシレスDCモータの駆動装置のブロック図である。
(Embodiment 1)
FIG. 1 is a detailed block diagram of the compressor driving means 6 according to the first embodiment of the present invention, and shows compression related to driving by the first waveform generator 19 or the second waveform generator 20 and switching of both waveform generators. 3 is a block diagram of a brushless DC motor driving device inside the machine 5. FIG.

通電角限界判定部100は切替判定部21が第二波形発生部20を選択中でかつ通電角が最大でインバータ16を駆動させているときを判定する判定手段である。母線電圧検出部101は整流回路14によって商用電源15の交流電圧を直流電圧に変換された電圧値を検出する。母線電圧値判定部102は母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値以上(例えば280+aV以上、aは任意の定数)、または一定電圧値以下(例えば280−bV以下、bは任意の定数)を検出した場合はカウンタ103をカウントアップさせる判定手段である。異常電圧回数判定部104はカウンタ103がカウントした回数が規定値(例えばα回、αは任意の定数)以上に達したか判定する判定手段である。   The energization angle limit determination unit 100 is a determination unit that determines when the switching determination unit 21 is selecting the second waveform generation unit 20 and the energization angle is maximum and the inverter 16 is being driven. The bus voltage detector 101 detects a voltage value obtained by converting the AC voltage of the commercial power supply 15 into a DC voltage by the rectifier circuit 14. The bus voltage value determination unit 102 is configured such that the bus voltage detection unit 101 is equal to or higher than a certain voltage value (for example, 280 + aV or more, a is an arbitrary constant) with respect to a reference voltage value (for example, 280V), or less than a certain voltage value (for example, 280−bV). Hereinafter, b is a determination means for counting up the counter 103 when an arbitrary constant) is detected. The abnormal voltage number determination unit 104 is a determination unit that determines whether the number of times counted by the counter 103 has reached a predetermined value (for example, α times, α is an arbitrary constant) or more.

以上のように構成された冷蔵庫について、以下その動作、作用を図2の同実施の形態の動作を示すフローチャート、および図3の同実施の形態における基準電圧値に対し規定値以上または規定値以下になった場合を示す図をもとにして説明する。   About the refrigerator comprised as mentioned above, the operation | movement and the effect | action are the flowchart which shows the operation | movement of the same embodiment of FIG. 2 below, and the reference voltage value in the same embodiment of FIG. A description will be given based on the figure showing the case of the above.

図2において、まずSTEP1およびSTEP3は従来例通りである。次に、STEP2において、通電角を拡大し、STEP101に移行する。STEP101では電圧値を母線電圧値判定部102が図3(a)に示すように母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値未満(例えば280+aV未満、aは任意の定数)および一定電圧値より大きい値(例えば280−bVより大きい値、bは任意の定数)のいずれも満たしている値を検出した場合はSTEP103へ進み、図3(b)に示すように母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値以上(例えば280+aV以上、aは任意の定数)または一定電圧値以下(例えば280−bV以下、bは任意の定数)のいずれかを検出した場合はSTEP102へ進みカウンタ103をカウントアップさせSTEP103へ進む。STEP103では電圧異常回数判定部104によりカウンタ103がカウントした回数が規定値(例えばα回、αは任意の定数)未満であればSTEP4へ進み、規定値(例えばα回、αは任意の定数)以上に達したと判定された場合はSTEP104へ進む。STEP104では通電角限界判定部100により第二波形発生部20が最大通電角に達していない場合はSTEP4へ進み、最大通電角で達している場合はSTEP105へ進み切替判定部21を第二波形発生部20から第一波形発生部19へ選択を切り替えさせSTEP4へ進む。STEP4以後は従来例通りである。   In FIG. 2, STEP 1 and STEP 3 are the same as the conventional example. Next, in STEP2, the energization angle is enlarged and the process proceeds to STEP101. In STEP 101, as shown in FIG. 3A, the bus voltage value determining unit 102 determines that the voltage value is less than a certain voltage value (for example, less than 280 + aV, for example, a is arbitrary) with respect to the reference voltage value (for example, 280V). ) And a value greater than a certain voltage value (for example, a value greater than 280-bV, b is an arbitrary constant), the process proceeds to STEP 103, as shown in FIG. The bus voltage detection unit 101 is equal to or higher than a predetermined voltage value (for example, 280 + aV or higher, a is an arbitrary constant) or lower than a predetermined voltage value (for example, 280−bV or lower, b is an arbitrary constant) with respect to a reference voltage value (for example, 280V). If any of the above is detected, the process proceeds to STEP 102 and the counter 103 is incremented, and the process proceeds to STEP 103. In STEP 103, if the number of times the counter 103 is counted by the voltage abnormality frequency determination unit 104 is less than a specified value (for example, α times, α is an arbitrary constant), the process proceeds to STEP 4, and the specified value (for example, α times, α is an arbitrary constant). If it is determined that the above has been reached, the process proceeds to STEP 104. In STEP 104, if the second waveform generation unit 20 has not reached the maximum energization angle by the energization angle limit determination unit 100, the process proceeds to STEP 4, and if it has reached the maximum energization angle, the process proceeds to STEP 105 and the switching determination unit 21 generates the second waveform. The selection is switched from the unit 20 to the first waveform generation unit 19, and the process proceeds to STEP4. After STEP4, it is the same as the conventional example.

以上のように、本実施の形態1においては、従来の冷蔵庫に通電角限界判定部100、母線電圧検出部101、母線電圧値判定部102、カウンタ103、異常電圧回数判定部104を設けたことにより、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上に達した場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置となる。   As described above, in the first embodiment, the conventional refrigerator is provided with the conduction angle limit determination unit 100, the bus voltage detection unit 101, the bus voltage value determination unit 102, the counter 103, and the abnormal voltage frequency determination unit 104. By changing the predetermined frequency, synchronizing the frequency and outputting a waveform with a conduction angle of less than 180 degrees, the compressor is operating and the voltage value detected by the voltage value detection circuit reaches the specified upper limit value or more. In this case, the brushless DC motor driving device is selected and changed by the switching determination unit to the driving method in which the overload determination unit outputs a waveform having a conduction angle of 150 degrees or less according to the rotational position of the rotor.

また、本実施の形態1では、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の下限値以下に達した場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置となる。   Further, in the first embodiment, the voltage value detected by the voltage value detection circuit is changed while the compressor is operating while changing the predetermined frequency and outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. A brushless DC motor drive device in which the switching determination unit selectively changes to a drive system that outputs a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor by the overload determination means when the specified lower limit value is reached; Become.

また、本実施の形態1では、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置をとなる。   Further, in the first embodiment, the voltage value detected by the voltage value detection circuit is changed while the compressor is operating while changing the predetermined frequency and outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. When the number of times the specified upper limit value or more or the specified lower limit value is reached is more than a certain number, the overload judging means outputs a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor. The switching determination unit is a brushless DC motor driving device that is selected and changed.

また、本実施の形態1では、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置となる。   Further, in the first embodiment, the voltage value detected by the voltage value detection circuit is changed while the compressor is operating while changing the predetermined frequency and outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency. To a drive system that outputs a waveform with a conduction angle of 150 degrees or less according to the rotational position of the rotor by the overload judging means when the time that has reached the specified upper limit value or less or the specified lower limit value has reached a certain time or longer. The switching determination unit is a brushless DC motor driving device that is selected and changed.

これによって、冷蔵庫の冷却負荷量が大きく圧縮機モータ駆動の安定化に至るトルク出力に満たない場合に回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぐことができる。   As a result, when the cooling load of the refrigerator is large and the torque output leading to stabilization of the compressor motor drive is not achieved, the drive system is changed to a drive system corresponding to the rotational position of the rotor, thereby disturbing the current flowing to the compressor motor. Can be prevented.

(実施の形態2)
図4は、本発明の実施の形態2における圧縮機駆動手段6の詳細ブロック図であり第一波形発生部19または第二波形発生部20による駆動時、および両波形発生部の切替時に関する圧縮機5内部のブラシレスDCモータの駆動装置のブロック図である。なお、図4中の構成部品において図1と同じものについては、既に説明しているので割愛する。
(Embodiment 2)
FIG. 4 is a detailed block diagram of the compressor driving means 6 according to the second embodiment of the present invention. The compression is performed when the first waveform generator 19 or the second waveform generator 20 is driven and when both waveform generators are switched. 3 is a block diagram of a brushless DC motor driving device inside the machine 5. FIG. 4 that are the same as those in FIG. 1 have already been described, and will not be described.

母線電圧値判定部200は母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値以上(例えば280+aV以上、aは任意の定数)、または一定電圧値以下(例えば280−bV以下、bは任意の定数)を検出した場合はタイマ201をスタートさせる判定手段である。異常電圧時間判定部202はタイマ201がカウントした時間が規定時間(例えばβ秒、βは任意の定数)以上に達したか判定する判定手段である。   The bus voltage value determination unit 200 is configured such that the bus voltage detection unit 101 is equal to or higher than a certain voltage value (for example, 280 + aV or more, a is an arbitrary constant) with respect to a reference voltage value (for example, 280V), or less than a certain voltage value (for example, 280−bV). Hereinafter, b is a determination means for starting the timer 201 when an arbitrary constant) is detected. The abnormal voltage time determination unit 202 is a determination unit that determines whether the time counted by the timer 201 has reached a specified time (for example, β seconds, β is an arbitrary constant) or more.

以上のように構成された冷蔵庫について、以下その動作、作用を図5の同実施の形態の動作を示すフローチャート、および図6の同実施の形態における基準電圧値に対し規定値以上または規定値以下になった場合を示す図をもとにして説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are the flowchart which shows the operation | movement of the same embodiment of FIG. 5 below, and the reference voltage value in the same embodiment of FIG. A description will be given based on the figure showing the case of the above.

図5において、まずSTEP1からSTEP3は実施の形態1通りである。STEP101では電圧値を母線電圧値判定部102が図6(a)に示すように母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値未満(例えば280+aV未満、aは任意の定数)および一定電圧値より大きい値(例えば280−bVより大きい値、bは任意の定数)のいずれも満たしている値を検出した場合はSTEP202へ進み、図6(b)に示すように母線電圧検出部101が基準の電圧値(例えば280V)に対して一定電圧値以上(例えば280+aV以上、aは任意の定数)または一定電圧値以下(例えば280−bV以下、bは任意の定数)のいずれかを検出した場合はSTEP201へ進みタイマ201をスタートさせSTEP202へ進む。STEP202では電圧異常時間判定部202によりタイマ201の時間が規定値(例えばβ秒、βは任意の定数)未満であればSTEP4へ進み、規定値(例えばβ秒、βは任意の定数)以上に達したと判定された場合はSTEP104へ進む。STEP4およびSTEP104以後は実施の形態1通りである。   In FIG. 5, STEP 1 to STEP 3 are the same as in the first embodiment. In STEP 101, as shown in FIG. 6A, the bus voltage detection unit 102 determines that the voltage value is less than a certain voltage value (for example, less than 280 + aV, for example), and a is an arbitrary value. ) And a value greater than a certain voltage value (for example, a value greater than 280-bV, b is an arbitrary constant), the process proceeds to STEP 202, as shown in FIG. The bus voltage detection unit 101 is equal to or higher than a predetermined voltage value (for example, 280 + aV or higher, a is an arbitrary constant) or lower than a predetermined voltage value (for example, 280−bV or lower, b is an arbitrary constant) with respect to a reference voltage value (for example, 280V). If any of the above is detected, the process proceeds to STEP 201, the timer 201 is started, and the process proceeds to STEP 202. In STEP 202, if the time of the timer 201 is less than a predetermined value (for example, β seconds, β is an arbitrary constant) by the abnormal voltage time determination unit 202, the process proceeds to STEP 4, and exceeds the specified value (for example, β seconds, β is an arbitrary constant). If it is determined that it has reached, the process proceeds to STEP 104. Step 4 and subsequent steps are the same as in the first embodiment.

以上のように、本実施の形態2においては、従来の冷蔵庫に通電角限界判定部100、母線電圧検出部101、母線電圧値判定部200、タイマ201、異常電圧時間判定部202を設けたことにより、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により回転子の回転位置に応じて通電角150度以下の波形を出力する駆動方式へ切替判定部が選択変更するブラシレスDCモータの駆動装置となる。   As described above, in Embodiment 2, the conventional refrigerator is provided with the conduction angle limit determination unit 100, the bus voltage detection unit 101, the bus voltage value determination unit 200, the timer 201, and the abnormal voltage time determination unit 202. By changing the predetermined frequency, synchronizing the frequency and outputting a waveform with a conduction angle of less than 180 degrees, the compressor is operating, and the voltage value detected by the voltage value detection circuit is greater than or equal to the specified upper limit value or specified When the time when the value reaches the lower limit of the value becomes equal to or longer than a certain time, the switching determination unit selectively changes the drive method to output a waveform with a conduction angle of 150 degrees or less according to the rotation position of the rotor by the overload determination means. It becomes a drive device of a brushless DC motor.

これによって、冷蔵庫の冷却負荷量が大きく圧縮機モータ駆動の安定化に至るトルク出力に満たない場合に回転子の回転位置に応じた駆動方式に変更することで圧縮機のモータに流れる電流の乱れを防ぐことができる。   As a result, when the cooling load of the refrigerator is large and the torque output leading to stabilization of the compressor motor drive is not achieved, the drive system is changed to a drive system corresponding to the rotational position of the rotor, thereby disturbing the current flowing to the compressor motor. Can be prevented.

(実施の形態3)
図7は、本発明の実施の形態3における圧縮機駆動手段6の詳細ブロック図であり第一波形発生部19または第二波形発生部20による駆動時、および両波形発生部の切替時に関する圧縮機5内部のブラシレスDCモータの駆動装置のブロック図である。なお、図7中の構成部品において図1と同じものについては、既に説明しているので割愛する。
(Embodiment 3)
FIG. 7 is a detailed block diagram of the compressor driving means 6 according to the third embodiment of the present invention. The compression is performed when the first waveform generator 19 or the second waveform generator 20 is driven and when both waveform generators are switched. 3 is a block diagram of a brushless DC motor driving device inside the machine 5. FIG. 7 that are the same as those in FIG. 1 have already been described, and will not be described.

送風機回転数判定部300は異常電圧回数判定部104の判定を元に送風機7の運転回転数を下降させる判定を行う判定手段である。   The blower rotation speed determination unit 300 is a determination unit that performs a determination to lower the operation rotation speed of the blower 7 based on the determination of the abnormal voltage number determination unit 104.

以上のように構成された冷蔵庫について、以下その動作、作用を図8の同実施の形態の動作を示すフローチャートをもとにして説明する。   The operation and effect of the refrigerator configured as described above will be described below based on the flowchart showing the operation of the embodiment shown in FIG.

図8において、まずSTEP1からSTEP3、STEP101およびTSEP102までは実施の形態1通りである。STEP103では電圧異常回数判定部104によりカウンタ103がカウントした回数が規定値(例えばα回、αは任意の定数)未満であればSTEP4へ進み、規定値(例えばα回、αは任意の定数)以上に達したと判定された場合はSTEP301へ進み送風機回転数判定部300により制御手段13に送風機7の運転回転数を下降させる信号を送信しSTEP4へ進む。STEP4以後は従来例通りである。   In FIG. 8, first, STEP1 to STEP3, STEP101 and TSEP102 are the same as in the first embodiment. In STEP 103, if the number of times the counter 103 is counted by the voltage abnormality frequency determination unit 104 is less than a specified value (for example, α times, α is an arbitrary constant), the process proceeds to STEP 4, and the specified value (for example, α times, α is an arbitrary constant). When it determines with having reached above, it progresses to STEP301 and the signal which lowers the driving | running rotation speed of the air blower 7 is transmitted to the control means 13 by the air blower rotation speed determination part 300, and it progresses to STEP4. After STEP4, it is the same as the conventional example.

以上のように、本実施の形態3においては、従来の冷蔵庫に母線電圧検出部101、母線電圧値判定部102、カウンタ103、異常電圧回数判定部104、送風機回転数判定部300を設けたことにより、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、過負荷判定手段により送風機の運転回転数を下降させる制御装置を設けたものである。   As described above, in the third embodiment, the conventional refrigerator is provided with the bus voltage detection unit 101, the bus voltage value determination unit 102, the counter 103, the abnormal voltage number determination unit 104, and the fan rotation speed determination unit 300. By changing the predetermined frequency, synchronizing the frequency and outputting a waveform with a conduction angle of less than 180 degrees, the compressor is operating, and the voltage value detected by the voltage value detection circuit is greater than or equal to the specified upper limit value or specified When the number of times reaching below the lower limit of the number becomes a certain number of times or more, a control device is provided for lowering the operation speed of the blower by the overload determination means.

これによって、冷蔵庫の負荷が高いとき送風機の運転回転数を下げることで蒸発器による冷却負荷量を軽減させることができる。   Thereby, when the load of a refrigerator is high, the cooling load amount by an evaporator can be reduced by reducing the driving | running rotation speed of a fan.

(実施の形態4)
図9は、本発明の実施の形態4における圧縮機駆動手段6の詳細ブロック図であり第一波形発生部19または第二波形発生部20による駆動時、および両波形発生部の切替時に関する圧縮機5内部のブラシレスDCモータの駆動装置のブロック図である。なお、図7中の構成部品において図4と同じものについては、既に説明しているので割愛する。
(Embodiment 4)
FIG. 9 is a detailed block diagram of the compressor driving means 6 according to the fourth embodiment of the present invention. The compression is performed when the first waveform generating unit 19 or the second waveform generating unit 20 is driven and when both waveform generating units are switched. 3 is a block diagram of a brushless DC motor driving device inside the machine 5. FIG. 7 that are the same as those in FIG. 4 have already been described, and will not be described.

送風機回転数判定部300は異常電圧時間判定部202の判定を元に送風機7の運転回転数を下降させる判定を行う判定手段である。   The blower rotation speed determination unit 300 is a determination unit that determines to lower the operation rotation speed of the blower 7 based on the determination of the abnormal voltage time determination unit 202.

以上のように構成された冷蔵庫について、以下その動作、作用を図10の同実施の形態の動作を示すフローチャートをもとにして説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated based on the flowchart which shows the operation | movement of the same embodiment of FIG. 10 below.

図10において、まずSTEP1からSTEP3、STEP101およびTSEP201までは実施の形態2通りである。STEP202では電圧異常時間判定部202によりタイマ201の時間が規定値(例えばβ秒、βは任意の定数)未満であればSTEP4へ進み、規定値(例えばβ秒、βは任意の定数)以上に達したと判定された場合はSTEP401へ進み送風機回転数判定部300により制御手段13に送風機7の運転回転数を下降させる信号を送信しSTEP4へ進む。STEP4以後は従来例通りである。   In FIG. 10, first, STEP 1 to STEP 3, STEP 101, and TSEP 201 are the same as those in the second embodiment. In STEP 202, if the time of the timer 201 is less than a predetermined value (for example, β seconds, β is an arbitrary constant) by the abnormal voltage time determination unit 202, the process proceeds to STEP 4, and exceeds the specified value (for example, β seconds, β is an arbitrary constant). If it is determined that it has been reached, the process proceeds to STEP 401, where the blower rotation speed determination unit 300 transmits a signal for lowering the operation speed of the blower 7 to the control means 13, and the process proceeds to STEP 4. After STEP4, it is the same as the conventional example.

以上のように、本実施の形態3においては、従来の冷蔵庫に母線電圧検出部101、母線電圧値判定部102、カウンタ103、異常電圧回数判定部104、送風機回転数判定部300を設けたことにより、所定周波数を変化させ、その周波数に同期させて通電角180度未満の波形を出力させながら圧縮機を運転中で、かつ電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、過負荷判定手段により送風機の運転回転数を下降させる制御装置を設けたものである。   As described above, in the third embodiment, the conventional refrigerator is provided with the bus voltage detection unit 101, the bus voltage value determination unit 102, the counter 103, the abnormal voltage number determination unit 104, and the fan rotation speed determination unit 300. By changing the predetermined frequency, synchronizing the frequency and outputting a waveform with a conduction angle of less than 180 degrees, the compressor is operating, and the voltage value detected by the voltage value detection circuit is greater than or equal to the specified upper limit value or specified A control device is provided for lowering the operating rotational speed of the blower by the overload determining means when the time that has reached the lower limit value of the above becomes a certain time or longer.

これによって、冷蔵庫の負荷が高いとき送風機の運転回転数を下げることで蒸発器による冷却負荷量を軽減させることができる。   Thereby, when the load of a refrigerator is high, the cooling load amount by an evaporator can be reduced by reducing the driving | running rotation speed of a fan.

以上の様に本発明にかかるブラシレスDCモータの駆動方法及びその装置付き冷蔵庫は、騒音・振動の低減、脱調停止の防止、ピーク電流発生の抑制などの効果を発揮することが可能となるので、家庭用・産業用を問わずブラシレスDCモータを搭載したさまざまな用途にも適用できる。   As described above, the brushless DC motor driving method and the refrigerator with the apparatus according to the present invention can exhibit effects such as noise and vibration reduction, prevention of step-out stop, and suppression of peak current generation. It can also be applied to various applications equipped with brushless DC motors for both home and industrial use.

本発明の実施の形態1における冷蔵庫の圧縮機駆動手段の詳細ブロック図The detailed block diagram of the compressor drive means of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1の動作を示すフローチャートThe flowchart which shows operation | movement of Embodiment 1 of this invention. 本発明の実施の形態1における基準電圧値に対し規定値以上または規定値以下になった場合を示す図The figure which shows the case where it becomes more than a regulation value or below a regulation value with respect to the reference voltage value in Embodiment 1 of this invention. 本発明の実施の形態2における冷蔵庫の圧縮機駆動手段の詳細ブロック図Detailed block diagram of the compressor driving means of the refrigerator in the second embodiment of the present invention 本発明の実施の形態2の動作を示すフローチャートThe flowchart which shows operation | movement of Embodiment 2 of this invention. 本発明の実施の形態2における基準電圧値に対し規定値以上または規定値以下になった場合を示す図The figure which shows the case where it becomes more than a regulation value or below a regulation value with respect to the reference voltage value in Embodiment 2 of this invention. 本発明の実施の形態3における冷蔵庫の圧縮機駆動手段の詳細ブロック図Detailed block diagram of the compressor driving means of the refrigerator in Embodiment 3 of the present invention 本発明の実施の形態3の動作を示すフローチャートThe flowchart which shows operation | movement of Embodiment 3 of this invention. 本発明の実施の形態4における冷蔵庫の圧縮機駆動手段の詳細ブロック図Detailed block diagram of the compressor drive means of the refrigerator in Embodiment 4 of the present invention 本発明の実施の形態4の動作を示すフローチャートThe flowchart which shows operation | movement of Embodiment 4 of this invention. 従来の冷蔵庫の縦断面図Vertical section of a conventional refrigerator 従来の冷蔵庫の機能ブロック図Functional block diagram of a conventional refrigerator 従来の冷蔵庫の圧縮機駆動手段の詳細ブロック図Detailed block diagram of conventional refrigerator compressor drive means 従来の第二波形発生部による駆動時時における動作を示したフローチャートA flowchart showing the operation at the time of driving by the conventional second waveform generator

符号の説明Explanation of symbols

14 整流回路
15 商用電源
16 インバータ回路
17 ブラシレスDCモータ
18 負荷検出回路
19 第一波形発生部
20 第二波形発生部
21 切替判定部
22 ドライブ部
23 マイクロコンピュータ
100 通電角限界判定部
101 母線電圧検出部
102 母線電圧値判定部
103 カウンタ
104 異常電圧回数判定部
200 母線電圧値判定部
201 タイマ
202 異常電圧時間判定部
300 送風機回転数判定部
DESCRIPTION OF SYMBOLS 14 Rectification circuit 15 Commercial power supply 16 Inverter circuit 17 Brushless DC motor 18 Load detection circuit 19 1st waveform generation part 20 2nd waveform generation part 21 Switching determination part 22 Drive part 23 Microcomputer 100 Energization angle limit determination part 101 Bus voltage detection part 102 Bus Voltage Value Determination Unit 103 Counter 104 Abnormal Voltage Number Determination Unit 200 Bus Voltage Value Determination Unit 201 Timer 202 Abnormal Voltage Time Determination Unit 300 Blower Speed Determination Unit

Claims (6)

運転回転数可変型の圧縮機および前記圧縮機の駆動手段と熱交換用の蒸発器を含む冷凍サイクルと、前記蒸発器で生成された冷気を庫内へ送る運転回転数可変型の送風機と、前記圧縮機および前記圧縮機の駆動手段は永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、前記三相巻線に電力を供給するインバータと、前記三相巻線に供給された電圧値を検出する電圧値検出回路と、モータの運転状態情報からモータの負荷状態を検出する負荷検出回路と、前記回転子の回転位置に応じて通電角150度以下の波形を出力する第一波形発生部と、所定周波数を変化させながらその周波数に同期させて通電角180度未満の波形を出力する第二波形発生部と、前記第一波形発生部と前記第二波形発生部とをモータの運転状態によって切り替える切替判定部とを備え、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上に達した場合、前記第一波形発生部へ前記切替判定部が選択変更するブラシレスDCモータの駆動装置の判定手段を設けたことを特徴とする冷蔵庫。   A compressor having a variable operating speed, a refrigeration cycle including a driving means for the compressor and an evaporator for heat exchange, and a fan having a variable operating speed, which sends the cold air generated by the evaporator into the refrigerator. The compressor and the driving means of the compressor include a brushless DC motor including a rotor having a permanent magnet and a stator having a three-phase winding, an inverter for supplying electric power to the three-phase winding, and the three-phase winding A voltage value detection circuit for detecting a voltage value supplied to the wire, a load detection circuit for detecting a load state of the motor from the operation state information of the motor, and a waveform having a conduction angle of 150 degrees or less according to the rotational position of the rotor A first waveform generator for outputting a waveform, a second waveform generator for outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency while changing a predetermined frequency, the first waveform generator and the second waveform Generator and the motor A switching determination unit that switches depending on the operating state, when the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit has reached a predetermined upper limit value, A refrigerator having a brushless DC motor driving device selected and changed by the switching determination unit in the first waveform generation unit. 運転回転数可変型の圧縮機および前記圧縮機の駆動手段と熱交換用の蒸発器を含む冷凍サイクルと、前記蒸発器で生成された冷気を庫内へ送る運転回転数可変型の送風機と、前記圧縮機および前記圧縮機の駆動手段は永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、前記三相巻線に電力を供給するインバータと、前記三相巻線に供給された電圧値を検出する電圧値検出回路と、モータの運転状態情報からモータの負荷状態を検出する負荷検出回路と、前記回転子の回転位置に応じて通電角150度以下の波形を出力する第一波形発生部と、所定周波数を変化させながらその周波数に同期させて通電角180度未満の波形を出力する第二波形発生部と、前記第一波形発生部と前記第二波形発生部とをモータの運転状態によって切り替える切替判定部とを備え、前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の下限値以下に達した場合、前記第一波形発生部へ前記切替判定部が選択変更するブラシレスDCモータの駆動装置の判定手段を設けたことを特徴とする冷蔵庫。   A compressor having a variable operating speed, a refrigeration cycle including a driving means for the compressor and an evaporator for heat exchange, and a fan having a variable operating speed, which sends the cold air generated by the evaporator into the refrigerator. The compressor and the driving means of the compressor include a brushless DC motor including a rotor having a permanent magnet and a stator having a three-phase winding, an inverter for supplying electric power to the three-phase winding, and the three-phase winding A voltage value detection circuit for detecting a voltage value supplied to the wire, a load detection circuit for detecting a load state of the motor from the operation state information of the motor, and a waveform having a conduction angle of 150 degrees or less according to the rotational position of the rotor A first waveform generator for outputting a waveform, a second waveform generator for outputting a waveform with a conduction angle of less than 180 degrees in synchronization with the frequency while changing a predetermined frequency, the first waveform generator and the second waveform Generator and the motor A switching determination unit that switches depending on the operating state, when the switching determination unit is selecting the second waveform generation unit, and the voltage value detected by the voltage value detection circuit has reached a predetermined lower limit value, A refrigerator having a brushless DC motor driving device selected and changed by the switching determination unit in the first waveform generation unit. 前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、前記第一波形発生部へ前記切替判定部が選択変更するブラシレスDCモータの駆動装置の判定手段を設けたことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The number of times that the switching determination unit is selecting the second waveform generation unit and the voltage value detected by the voltage value detection circuit has reached a specified upper limit value or less or a specified lower limit value or less has reached a certain number of times. 3. The refrigerator according to claim 1, wherein a determination unit of a brushless DC motor driving device selected and changed by the switching determination unit is provided in the first waveform generation unit. 前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、前記第一波形発生部へ前記切替判定部を選択変更するブラシレスDCモータの駆動装置の判定手段を設けたことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The switching determination unit is selecting the second waveform generation unit, and the time when the voltage value detected by the voltage value detection circuit has reached a specified upper limit value or less or a specified lower limit value has become a certain time or more. 3. The refrigerator according to claim 1, further comprising a brushless DC motor driving device determining unit that selectively changes the switching determination unit to the first waveform generation unit. 前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した回数が一定回数以上になった場合、前記送風機の運転回転数を下降させる制御装置の判定手段を設けたことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The number of times that the switching determination unit is selecting the second waveform generation unit and the voltage value detected by the voltage value detection circuit has reached a specified upper limit value or less or a specified lower limit value or less has reached a certain number of times. 3. The refrigerator according to claim 1, further comprising a determination unit of a control device that lowers an operation rotational speed of the blower. 前記第二波形発生部を前記切替判定部が選択中で、かつ前記電圧値検出回路が検出した電圧値が規定の上限値以上または規定の下限値以下に達した時間が一定時間以上になった場合、前記送風機の運転回転数を下降させる制御装置の判定手段を設けたことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The switching determination unit is selecting the second waveform generation unit, and the time when the voltage value detected by the voltage value detection circuit has reached a specified upper limit value or less or a specified lower limit value has become a certain time or more. 3. The refrigerator according to claim 1, further comprising a determination unit of a control device that lowers an operation rotational speed of the blower.
JP2006158210A 2006-06-07 2006-06-07 Refrigerator Pending JP2007330012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158210A JP2007330012A (en) 2006-06-07 2006-06-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158210A JP2007330012A (en) 2006-06-07 2006-06-07 Refrigerator

Publications (1)

Publication Number Publication Date
JP2007330012A true JP2007330012A (en) 2007-12-20

Family

ID=38930095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158210A Pending JP2007330012A (en) 2006-06-07 2006-06-07 Refrigerator

Country Status (1)

Country Link
JP (1) JP2007330012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941453B2 (en) 2010-03-15 2015-01-27 Omron Corporation Contact switching device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285983A (en) * 1997-04-08 1998-10-23 Matsushita Refrig Co Ltd Operation controller for brushless motor
JPH1193847A (en) * 1997-09-17 1999-04-06 Ryobi Ltd Compressor overload preventing device
JPH11257822A (en) * 1998-03-16 1999-09-24 Matsushita Refrig Co Ltd Refrigerator
JP2006081271A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Method of driving brushless dc motor and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285983A (en) * 1997-04-08 1998-10-23 Matsushita Refrig Co Ltd Operation controller for brushless motor
JPH1193847A (en) * 1997-09-17 1999-04-06 Ryobi Ltd Compressor overload preventing device
JPH11257822A (en) * 1998-03-16 1999-09-24 Matsushita Refrig Co Ltd Refrigerator
JP2006081271A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Method of driving brushless dc motor and its device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941453B2 (en) 2010-03-15 2015-01-27 Omron Corporation Contact switching device
US8947183B2 (en) 2010-03-15 2015-02-03 Omron Corporation Contact switching device
US8963663B2 (en) 2010-03-15 2015-02-24 Omron Corporation Contact switching device
US8975989B2 (en) 2010-03-15 2015-03-10 Omron Corporation Contact switching device
US9035735B2 (en) 2010-03-15 2015-05-19 Omron Corporation Coil terminal
US9058938B2 (en) 2010-03-15 2015-06-16 Omron Corporation Contact switching device
US9240289B2 (en) 2010-03-15 2016-01-19 Omron Corporation Contact switching device
US9240288B2 (en) 2010-03-15 2016-01-19 Omron Corporation Contact switching device

Similar Documents

Publication Publication Date Title
WO2017038024A1 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
EP3136591B1 (en) Motor driving apparatus and home appliance including the same
JP6533950B2 (en) Motor drive device, compressor drive device using the same, refrigeration apparatus and refrigerator
JP3860383B2 (en) Compressor control device
JP4887033B2 (en) Inverter apparatus, control method therefor, and refrigeration cycle apparatus
JP5375260B2 (en) Motor drive device and refrigerator using the same
JP2008289310A (en) Motor drive and refrigerator using the same
JP3672637B2 (en) Compressor motor control device
JP4352883B2 (en) Driving method and driving apparatus for brushless DC motor
JP3776102B2 (en) Brushless motor control device
JP2007330011A (en) Drive method and drive unit for brushless dc motor
JP2010252406A (en) Motor drive and refrigerator using the same
JP2010252480A (en) Motor drive and refrigerator using the same
JP2007330012A (en) Refrigerator
JP2008172880A (en) Method and device for driving brushless dc motor
JP2012186876A (en) Compressor drive unit and refrigerator using the same
JP2008005639A (en) Method and device for driving brushless dc motor
JP6979568B2 (en) Motor drive device and refrigerator using it
JP2005086911A (en) Controller for compressor
JP2007040281A (en) Reciprocating compressor control device
JP6706757B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE HAVING COMPRESSOR USING THE SAME
JP2007143332A (en) Motor drive device, and freezer provided therewith
JP2006223014A (en) Motor drive device
JP6970871B2 (en) Motor drive device and refrigerator using it
JP2006304386A (en) Motor driving unit and refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106