JP2007329060A - Fuel cell module - Google Patents

Fuel cell module Download PDF

Info

Publication number
JP2007329060A
JP2007329060A JP2006160561A JP2006160561A JP2007329060A JP 2007329060 A JP2007329060 A JP 2007329060A JP 2006160561 A JP2006160561 A JP 2006160561A JP 2006160561 A JP2006160561 A JP 2006160561A JP 2007329060 A JP2007329060 A JP 2007329060A
Authority
JP
Japan
Prior art keywords
fuel cell
ring
hollow fiber
layer
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160561A
Other languages
Japanese (ja)
Other versions
JP2007329060A5 (en
JP5100038B2 (en
Inventor
Kenji Minoshima
建司 簑島
Toru Uda
徹 宇田
Yusuke Igawa
雄介 井川
Takatoshi Sato
孝利 佐藤
Minoru Koda
穣 幸田
Masahiro Imanishi
雅弘 今西
Harumichi Nakanishi
治通 中西
Naruaki Murata
成亮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Toyota Motor Corp
Original Assignee
Nok Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2006160561A priority Critical patent/JP5100038B2/en
Publication of JP2007329060A publication Critical patent/JP2007329060A/en
Publication of JP2007329060A5 publication Critical patent/JP2007329060A5/ja
Application granted granted Critical
Publication of JP5100038B2 publication Critical patent/JP5100038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell module which protects a number of hollow fiber electrolyte cells and a cylindrical case incorporating the cells from thermal damage. <P>SOLUTION: This fuel cell module is fabricated by passing the inner and outer electrode layers of a number of hollow fiber electrolyte cells 2 through grating plate-like collectors each having a through hole, forming laminates each by stacking a conductive paste layer and a potting material layer respectively at both sides of each grating plate-like collector and fixing each laminate in a ring-shaped body. The ring-shaped bodies 24, 24' which fix the laminates are incorporated into a cylindrical body 28. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池モジュールに関する。さらに詳しくは、複数本の中空糸型電解質セルおよびそれを収容した筒状ケースなどの熱的破損を防止した燃料電池モジュールに関する。   The present invention relates to a fuel cell module. More specifically, the present invention relates to a fuel cell module that prevents thermal damage such as a plurality of hollow fiber electrolyte cells and a cylindrical case that accommodates them.

複数本の中空糸型電解質セルを用いた構造の固体高分子形の燃料電池モジュールは、電解質層、その内側電極層および外側電極層などからなる構造を有している。内側電極層の内部および外側電極層の外部には、それぞれ燃料となる流体が流れている。電解質層は、イオン導電体であるばかりではなく、各燃料流体のクロスリークが最小量となるように設計されている。また、内側および外側の各電極層は、電極として働くだけではなく、これら燃料となる流体および発電の結果生成した水等の生成物が透過・拡散できるように、多孔質層として形成されている。   A polymer electrolyte fuel cell module having a structure using a plurality of hollow fiber electrolyte cells has a structure including an electrolyte layer, an inner electrode layer, an outer electrode layer, and the like. A fluid serving as a fuel flows inside the inner electrode layer and outside the outer electrode layer. The electrolyte layer is designed not only to be an ionic conductor but also to minimize the cross leak of each fuel fluid. The inner and outer electrode layers not only function as electrodes, but are formed as porous layers so that fluids such as fuel and products such as water generated as a result of power generation can permeate and diffuse. .

そして、基本的には、中空糸型電解質セルの外部側を流れる流体と内部側を流れる流体とを分離するためのシール機構として、図3に示されるように、燃料電池モジュールの両端部にポッティング部を設けることなどが行われている。この図3に縦断面図として示された従来例の基本構成においては、筒状ケース1内に収容された中空糸型電解質セル2の両端部にポッティング層3,3′が設けられており、燃料Aはケース壁に穿設された貫通口4から導入されて貫通口5から排気され、また燃料Bは中空糸型電解質セルの入口6から導入されて出口7から排気される。   Basically, as shown in FIG. 3, potting is performed on both ends of the fuel cell module as a seal mechanism for separating the fluid flowing outside and the fluid flowing inside the hollow fiber electrolyte cell. A part is provided. In the basic configuration of the conventional example shown as a longitudinal sectional view in FIG. 3, potting layers 3, 3 ′ are provided at both ends of the hollow fiber type electrolyte cell 2 accommodated in the cylindrical case 1, The fuel A is introduced from the through-hole 4 drilled in the case wall and exhausted from the through-hole 5, and the fuel B is introduced from the inlet 6 of the hollow fiber electrolyte cell and exhausted from the outlet 7.

中空糸型電解質セル2の基本的な構成は、図4に横断面図として示されている。その構成は、内側から順に内側多孔質電極層11、内側触媒層12、電解質層13、外側触媒層14および外側多孔質電極層15の中空状積層体よりなる。これらの各層の長さは、図3に示されるように内側多孔質電極層11が最も長く、外側の層は順次同じ長さかあるいは短く設定される。しかしながら、両端部は必ずしも同じ形状とする必要はなく、発電された電力を取り出す側の端部は、集電および絶縁のために他端部よりも長くすることが好ましい。   The basic configuration of the hollow fiber electrolyte cell 2 is shown as a cross-sectional view in FIG. The structure consists of the hollow laminated body of the inner side porous electrode layer 11, the inner side catalyst layer 12, the electrolyte layer 13, the outer side catalyst layer 14, and the outer side porous electrode layer 15 in an order from the inside. As shown in FIG. 3, the length of each of these layers is the longest in the inner porous electrode layer 11, and the outer layers are sequentially set to the same length or shorter. However, both ends do not necessarily have the same shape, and it is preferable that the end on the side from which the generated power is taken out be longer than the other end for current collection and insulation.

中空糸型電解質セルよりなる燃料電池単体をモジュール化することで、それの本数に比例して電流を多く取り出すことができる。最大の電流値を得るためには、モジュール化する際に中空糸型電解質セルである燃料電池単体は並列に、すべて同じ向きに配置され、こうした状態に固定するために、ポッティング材層がモジュール両端に設けられる。   By modularizing a single fuel cell comprising hollow fiber electrolyte cells, a large amount of current can be extracted in proportion to the number of the fuel cells. In order to obtain the maximum current value, when fuel cells are modularized, the fuel cells alone, which are hollow fiber electrolyte cells, are all arranged in parallel and in the same direction. Is provided.

ポッティング材層は、中空糸型電解質セル内側を流れる燃料とその外側を流れる燃料とを分離する役割も担っている。このとき、集電のために、また燃料となる流体を中空糸型電解質セル内に導入するために、中空糸型電解質セルの先端はポッティング層より外側に突出させた状態とされる。図3においては、一方のポッティング部3で内側多孔質電極層のみを突出させ、もう一方のポッティング部3′では外側多孔質電極層までを突出させ、両方のポッティング部でそれぞれ集電を行う構成がとられている。   The potting material layer also plays a role of separating the fuel flowing inside the hollow fiber electrolyte cell from the fuel flowing outside. At this time, the tip of the hollow fiber electrolyte cell is projected outward from the potting layer in order to collect current and introduce a fluid as a fuel into the hollow fiber electrolyte cell. In FIG. 3, only the inner porous electrode layer protrudes from one potting portion 3 and the outer porous electrode layer protrudes from the other potting portion 3 ′, and current is collected at both potting portions. Has been taken.

燃料電池により発電した電力は、中空糸型電解質セルの内側電極および外側電極から外部に取り出される。また、多数本の中空糸型電解質セルを並列に結線することで多くの電流を取り出すことが可能となり、それらを直列に接続したモジュール構造にあっては、高い電圧をモジュールの両端から取り出すことができる。さらに、中空糸型電解質セルと外部取出し電極とを導電性ペーストや導電性接着剤などの集電層を介して行われる電気的な接続や貫通孔を有する目皿状の集電層を用いることで、抵抗値を低くして電力の取出しを行うことができる。
特表2004−534368号公報
The electric power generated by the fuel cell is taken out from the inner electrode and outer electrode of the hollow fiber electrolyte cell. Also, by connecting a large number of hollow fiber electrolyte cells in parallel, it becomes possible to extract a large amount of current, and in a module structure in which they are connected in series, a high voltage can be extracted from both ends of the module. it can. Furthermore, the hollow fiber electrolyte cell and the external extraction electrode are electrically connected through a current collecting layer such as a conductive paste or a conductive adhesive, or a grid-shaped current collecting layer having a through hole is used. Thus, the power can be taken out with a low resistance value.
JP-T-2004-534368

また、前述の如く、中空糸型電解質セルの外部を流れる流体と内部を流れる流体とを分離するため、図3に示すように筒状体を用いたモジュールの両端にポッティング部を設け、シールするための機構がとられている。しかしながら、このように構成される複数本の中空糸型電解質セルを単に筒状ケースに収容した燃料電池モジュールにおいては、それを構成する中空糸型電解質セル、筒状ケース、ポッティング材等の線膨張係数が異なるため、ポッティング時に発生する熱応力の影響や使用時の熱衝撃により、中空糸型電解質セルや筒状ケース等に破損がみられる場合がある。   Further, as described above, in order to separate the fluid flowing outside the hollow fiber electrolyte cell from the fluid flowing inside, a potting portion is provided at both ends of the module using a cylindrical body as shown in FIG. A mechanism has been taken. However, in a fuel cell module in which a plurality of hollow fiber electrolyte cells configured as described above are simply housed in a cylindrical case, the linear expansion of the hollow fiber electrolyte cell, the cylindrical case, the potting material, etc. constituting the fuel cell module Since the coefficients are different, the hollow fiber electrolyte cell or the cylindrical case may be damaged due to the influence of thermal stress generated during potting or thermal shock during use.

本発明の目的は、複数本の中空糸型電解質セルおよびそれを収容した筒状ケースなどの熱的破損を防止した燃料電池モジュールを提供することにある。   An object of the present invention is to provide a fuel cell module that prevents thermal damage such as a plurality of hollow fiber electrolyte cells and a cylindrical case that accommodates them.

かかる本発明の目的は、複数本の中空糸型電解質セルの内側電極層部分および外側電極層部分をそれぞれ貫通孔を有する目皿状集電体に貫通させ、各々の目皿状集電体の両面側に導電性ペースト層およびポッティング材層をそれぞれ積層させた積層体を形成させ、各々の積層体部分をリング状体で固定した燃料電池モジュールによって達成され、積層体部分を固定したリング状体は筒状体内に収容されて用いられる。   An object of the present invention is to allow the inner electrode layer portion and the outer electrode layer portion of the plurality of hollow fiber electrolyte cells to pass through the dish-shaped current collectors having through holes, respectively, A ring-shaped body that is achieved by a fuel cell module in which a laminated body in which a conductive paste layer and a potting material layer are laminated on both sides is formed, and each laminated body portion is fixed with a ring-shaped body. Is used in a cylindrical body.

本発明に係る燃料電池モジュールは、複数本の中空糸型電解質セルの内側電極層部分および外側電極層部分をそれぞれ貫通孔を有する目皿状集電体に貫通させ、各々の目皿状集電体の両面側に導電性ペースト層およびポッティング材層をそれぞれ積層させた積層体を形成させ、各々の積層体部分をリング状体で固定させ、さらに積層体部分を固定したリング状体は筒状体内に収容して用いられるので、すなわちポッティング材層を含む積層体部分をリング状体に固定した後筒状体内に収容しているので、筒状体にはポッティング時に発生する熱応力の影響が全くなく、また作動時の熱衝撃を筒状体のみではなくリング状体でも分担しているので応力を緩和することができ、結果として中空糸型電解質セルやそれを収容した筒状体の破損を有効に防止することができる。   A fuel cell module according to the present invention includes a plurality of hollow fiber electrolyte cells, each of which has an inner electrode layer portion and an outer electrode layer portion that are passed through a dish-shaped current collector having a through-hole. A laminated body in which a conductive paste layer and a potting material layer are respectively laminated is formed on both sides of the body, each laminated body portion is fixed with a ring-shaped body, and the ring-shaped body in which the laminated body portion is further fixed is a cylindrical shape Since it is housed and used in the body, that is, since the laminated body portion including the potting material layer is fixed to the ring-shaped body and then housed in the tubular body, the tubular body is affected by the thermal stress generated during potting. Since there is no thermal shock at the time of operation, not only the cylindrical body but also the ring body, stress can be relieved, resulting in damage to the hollow fiber electrolyte cell and the cylindrical body containing it Enable It is possible to prevent.

図1には、目皿状集電体21、導電性ペースト層22およびポッティング材層23よりなる積層体部分をリング状体24、24′で固定するための工程が順番に示されている。なお、リング状体24、24′は、目皿状集電体21を取り囲むことのできる形状であればよく、環状の他正方形状や三角形状であってもよい。   In FIG. 1, the steps for fixing the laminated body portion composed of the plate-shaped current collector 21, the conductive paste layer 22 and the potting material layer 23 with the ring-shaped bodies 24 and 24 'are shown in order. In addition, the ring-shaped bodies 24 and 24 ′ may have any shape that can surround the eye plate-like current collector 21, and may have an annular shape other than a square shape or a triangular shape.

複数本の同じ向きに配置された中空糸型電解質セル2は、それの内側電極層部分11および外側電極層部分15をそれぞれ貫通孔を有する目皿状集電層21、21′に貫通させている(a)。この目皿状集電体21、21′は、それぞれその周囲はリング状体24、24′に接して設置されている。また、目皿状集電体21、21′には、それぞれ発電した電気を取出すための取出用端子25、25′および固定用アーム26、26′が取付けられている。なお、この取出用端子25、25′については、後の工程の(d)において、パラフィンを除去し、導電性ペーストを流し込む工程の間に、目皿状集電体21、21′に取り付けるようにしてもよい。   A plurality of hollow fiber electrolyte cells 2 arranged in the same direction are formed by penetrating the inner electrode layer portion 11 and the outer electrode layer portion 15 thereof through the plate-like current collecting layers 21 and 21 'having through holes, respectively. (A). The circumferences of the plate-shaped current collectors 21 and 21 'are installed in contact with the ring-shaped bodies 24 and 24', respectively. Further, take-out terminals 25 and 25 'for taking out the generated electricity and fixing arms 26 and 26' are attached to the plate-shaped current collectors 21 and 21 ', respectively. The extraction terminals 25 and 25 'are attached to the plate-shaped current collectors 21 and 21' during the process of removing the paraffin and pouring the conductive paste in the subsequent step (d). It may be.

次いで、目皿状集電体21、21′に接する固定材層を形成する工程について説明する。固定材層は、少なくとも目皿状集電体21、21′と中空糸型電解質セル2を固定する機能を有していればよいが、これら両者との集電性を向上させるために導電性の機能を有していてもよく、固定機能、導電性機能の両方の機能を別の層として有していてもよい。この態様では、これら両方の機能をそれぞれ別の層として有する場合についての製造工程について説明する。   Next, a process of forming a fixing material layer in contact with the plate-shaped current collectors 21 and 21 ′ will be described. The fixing material layer only needs to have a function of fixing at least the plate-shaped current collectors 21 and 21 ′ and the hollow fiber electrolyte cell 2. And may have both functions of a fixing function and a conductive function as separate layers. In this embodiment, a manufacturing process in the case where both of these functions are provided as separate layers will be described.

目皿状集電体21、21′のそれぞれ外側にはリング状体24、24′の内周面を利用して溶融パラフィン27、27′が流し込まれ、仮固定が行われる(b)。しかる後に、集電体21、21′のそれぞれ内側にはやはりリング状体24、24′の内周面を利用してポッティング材層23、23′が形成される(c)。その後、パラフィンを溶融除去し、あるいは溶剤による溶解除去し、そこに導電性ペーストを流し込み、導電性ペースト層22、22′を形成させる(d)。ポッティング材層、導電性ペースト層は、いずれも固定材層を形成する。   Molten paraffins 27 and 27 'are poured into the outer sides of the plate-shaped current collectors 21 and 21' using the inner peripheral surfaces of the ring-shaped bodies 24 and 24 ', and temporarily fixed (b). Thereafter, potting material layers 23 and 23 'are formed on the inner sides of the current collectors 21 and 21' using the inner peripheral surfaces of the ring-shaped bodies 24 and 24 '(c). Thereafter, the paraffin is melted and removed or dissolved and removed with a solvent, and the conductive paste is poured into it to form the conductive paste layers 22 and 22 '(d). Both the potting material layer and the conductive paste layer form a fixing material layer.

目皿状集電体、導電性ペースト層およびポッティング材層よりなる積層体部分を固定するリング状体24、24′は、Oリング、シリコーン系接着剤等の柔軟な弾性体シール材によるシール(図示せず)を介して、筒状体28内に嵌装され、収容される。このように、柔軟なシール材を用いることにより、固定材による熱応力を受けた目皿状集電体21、21′およびリング状体24、24′と筒状体との間のシール性が向上する。筒状体28の両端部には、必要に応じてカバー29、29′が装着される。この筒状体は、筒状体そのものを用いてもよいが、シート状のものを巻付け、その両端部を適当な固着手段によって固着させ、筒状体に形成せしめたものであってもよい。また、筒状体28は必ずしも一体である必要はなく、それぞれのリング状体24、24′を収容するように、2つ以上の筒状体から構成してもよい。このような工程を経て製造することにより、筒状体には集電体21、21′およびリング状体24、24′が、固定材層の形成後、好ましくは仮固定のために使用されるパラフィン層の除去後に収納されるため、筒状体は熱応力の影響を軽減することができる。   The ring-shaped bodies 24 and 24 'for fixing the laminated body portion composed of the plate-shaped current collector, the conductive paste layer and the potting material layer are sealed with a flexible elastic sealing material such as an O-ring or a silicone-based adhesive ( (Not shown) and is fitted into the cylindrical body 28 and accommodated. In this way, by using a flexible sealing material, the sealing performance between the cylindrical body and the plate-shaped current collectors 21 and 21 'and the ring-shaped bodies 24 and 24' subjected to the thermal stress due to the fixing material is improved. improves. Covers 29 and 29 'are attached to both ends of the cylindrical body 28 as necessary. The cylindrical body may be the cylindrical body itself, or may be formed by winding a sheet-like body and fixing both ends thereof by an appropriate fixing means to form the cylindrical body. . Moreover, the cylindrical body 28 does not necessarily need to be integrated, and may be composed of two or more cylindrical bodies so as to accommodate the ring-shaped bodies 24 and 24 '. By manufacturing through these steps, the current collectors 21 and 21 'and the ring-shaped bodies 24 and 24' are used for the cylindrical body, preferably for temporary fixing after the fixing material layer is formed. Since it is stored after the removal of the paraffin layer, the cylindrical body can reduce the influence of thermal stress.

なお、中空糸型電解質セルを形成する各部分の内、内側多孔質電極層は例えば珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合膜を製膜し、得られた複合膜を約1300〜1800℃で焼成し、その際少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成を行って得られた、珪素化チタンTiSiを主成分として形成される導電性多孔質セラミックス(特願2004-343678号参照)等から形成され、外側多孔質電極層はカーボン等から形成される。内側および外側触媒層は、例えば白金を担持させたカーボン等から形成される。また、電解質層は、例えば固体高分子形電解質またはそれを多孔質体に充填したもの、あるいは電解質成分を無機支持体に担持させた有機-無機電解質または無機電解質等から形成され、これらの中空糸型電解質セルを複数本収容する筒状ケースとしては、例えばポリスルホン樹脂、アクリル樹脂等の樹脂製またはガラス、アルミナ等の無機材質製のものが用いられる。さらに、リング状体についても筒状ケースの場合と同様の材質のものを用いることができ、好ましくは接着性等の問題から樹脂製のものが用いられる。 Of each part forming the hollow fiber type electrolyte cell, the inner porous electrode layer is formed from, for example, a film-forming stock solution in which silicon silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance. The obtained composite film was fired at about 1300 to 1800 ° C., and at that time, at a heating temperature range of at least 400 ° C., titanium silicide TiSi obtained by firing in a vacuum or inert atmosphere environment was obtained. The outer porous electrode layer is formed of carbon or the like, and is formed of conductive porous ceramics (see Japanese Patent Application No. 2004-343678) formed as a main component. The inner and outer catalyst layers are made of, for example, carbon carrying platinum. The electrolyte layer is formed of, for example, a solid polymer electrolyte or a porous body filled with the electrolyte, or an organic-inorganic electrolyte or an inorganic electrolyte in which an electrolyte component is supported on an inorganic support. As the cylindrical case that houses a plurality of type electrolyte cells, for example, a resin made of a resin such as polysulfone resin or acrylic resin or an inorganic material such as glass or alumina is used. Further, the ring-shaped body can be made of the same material as that of the cylindrical case, and preferably a resin-made one is used due to problems such as adhesiveness.

また、集電体は、銅、銀等の金属単体または合金あるいはカーボンなどの導電性物質から形成され、必要に応じてメッキなどの表面処理を行ったものが用いられる。集電体は目皿状に形成され、その貫通孔には中空糸型電解質セルの内側電極層部分および外側電極層部分を貫通させており、この貫通孔は最小のクリアランスを有する大きさに設計されており、集電体と電極層部分との電気的な接続は、導電性ペースト、導電性接着剤等を用いて行われる。集電体上に形成させる導電性ペーストとしては、例えば市販の銀ペースト等が用いられ、あるいはこれに代えて半田等を用いてもよい。ポッティング層は、例えば絶縁性のエポキシ樹脂、ウレタン系接着剤、無機接着剤等のポッティング剤から形成される。   In addition, the current collector is made of a single metal such as copper or silver, or a conductive material such as an alloy or carbon, and is subjected to surface treatment such as plating if necessary. The current collector is formed in the shape of a plate, and the through-holes penetrate the inner and outer electrode layer portions of the hollow fiber electrolyte cell, and the through-holes are designed to have a minimum clearance. The electrical connection between the current collector and the electrode layer portion is performed using a conductive paste, a conductive adhesive, or the like. As the conductive paste formed on the current collector, for example, a commercially available silver paste or the like is used, or solder or the like may be used instead. The potting layer is formed of a potting agent such as an insulating epoxy resin, a urethane adhesive, or an inorganic adhesive.

直径30mm、長さ25mmのポリスルホン樹脂製筒状体に直径1mmの中空糸膜電解質セル20本を銅製の目皿状集電体を介してエポキシ樹脂で直接装着したモジュールでは、100℃⇔-20℃(1時間ホールド)の熱衝撃試験で中空糸膜電解質セルに破損が生じた。   For a module in which 20 hollow fiber membrane electrolyte cells with a diameter of 1 mm are directly attached to a cylindrical body made of a polysulfone resin having a diameter of 30 mm and a length of 25 mm with an epoxy resin via a copper plate-shaped current collector, the temperature is 100 ° C ⇔-20 In the thermal shock test at ℃ (hold for 1 hour), the hollow fiber membrane electrolyte cell was damaged.

これに対し、筒状体内に直径25nn、長さ23mmのポリスルホン樹脂製リング状を収容して用いた本発明のモジュールでは、上記熱衝撃試験において、中空糸膜電解質セルの破損はみられなかった。   In contrast, in the module of the present invention in which the ring shape made of polysulfone resin having a diameter of 25 nn and a length of 23 mm was accommodated in the cylindrical body, the hollow fiber membrane electrolyte cell was not damaged in the thermal shock test. .

本発明に係る燃料電池モジュールの一実施態様の製造工程を縦断面図として示したものである。The manufacturing process of one embodiment of the fuel cell module which concerns on this invention is shown as a longitudinal cross-sectional view. 本発明に係る燃料電池モジュールにおいて、さらに筒状体内に収容した実施態様の縦断面図である。In the fuel cell module according to the present invention, it is a longitudinal sectional view of an embodiment further accommodated in a cylindrical body. 従来例の燃料電池モジュールの縦断面図である。It is a longitudinal cross-sectional view of the fuel cell module of a prior art example. 中空糸型電解質セルの横断面図である。It is a cross-sectional view of a hollow fiber electrolyte cell.

符号の説明Explanation of symbols

1 筒状ケース
2 中空糸型電解質セル
3,3′ ポッティング部
4 燃料A導入口
5 燃料A排気口
6 燃料B導入口
7 燃料B排気口
11 内側多孔質電極層
12 内側触媒層
13 電解質層
14 外側触媒層
15 外側多孔質電極層
21,21′ 目皿状集電体
22,22′ 導電性ペースト層
23,23′ ポッティング材層
24,24′ リング状体
25,25′ 電気取出用端子
26,26′ 固定用端子
27,27′ 溶融パラフィン
28 筒状体
29,29′ カバー

DESCRIPTION OF SYMBOLS 1 Cylindrical case 2 Hollow fiber type electrolyte cell 3, 3 'Potting part 4 Fuel A inlet 5 Fuel A exhaust 6 Fuel B inlet 7 Fuel B exhaust
11 Inner porous electrode layer
12 Inner catalyst layer
13 Electrolyte layer
14 Outer catalyst layer
15 Outer porous electrode layer
21, 21 'Eye plate-shaped current collector
22, 22 'Conductive paste layer
23,23 'Potting material layer
24, 24 ′ ring-shaped body
25, 25 ′ Electrical outlet terminal
26, 26 'fixing terminal
27,27 ′ Molten paraffin
28 Tube
29, 29 ′ cover

Claims (6)

複数本の中空糸型電解質セルの内側電極層部分および外側電極層部分をそれぞれ貫通孔を有する目皿状集電体に貫通させ、各々の目皿状集電層の両面側に導電性ペースト層およびポッティング材層をそれぞれ積層させた積層体を形成させ、各々の積層体部分をリング状体で固定してなる燃料電池モジュール。   The inner electrode layer portion and the outer electrode layer portion of the plurality of hollow fiber electrolyte cells are respectively penetrated through a dish-shaped current collector having a through-hole, and a conductive paste layer is formed on both sides of each dish-shaped current collector layer. And a potting material layer. A fuel cell module is formed by forming a laminated body and fixing each laminated body portion with a ring-shaped body. 積層体部分を固定したリング状体を筒状体内に収容してなる燃料電池モジュール。   A fuel cell module in which a ring-shaped body having a laminated body portion fixed therein is accommodated in a cylindrical body. 中空糸型電解質セルが内側多孔質電極層、内側触媒層、電解質層、外側触媒層および外側多孔質電極層の中空状積層体よりなる請求項1または2記載の燃料電池モジュール。   The fuel cell module according to claim 1 or 2, wherein the hollow fiber electrolyte cell comprises a hollow laminate of an inner porous electrode layer, an inner catalyst layer, an electrolyte layer, an outer catalyst layer, and an outer porous electrode layer. 内側多孔質電極層が珪素化チタンTiSiを主成分として形成される導電性多孔質セラミックス層から形成された請求項3記載の燃料電池モジュール。   4. The fuel cell module according to claim 3, wherein the inner porous electrode layer is formed of a conductive porous ceramic layer formed mainly of siliconized titanium TiSi. 複数本の中空糸型電解質セルの内側電極層部分および外側電極層部分をそれぞれ貫通孔を有する目皿状集電体に貫通させ、目皿状集電体をその端部を取り囲んで設けられたリング状体に嵌装し、リング状体の内周面を利用して目皿状集電体に接するように固定材を流し込んで固定材層を形成させた後、中空糸型電解質セル、目皿状集電体およびリング状体を筒状体内に収容することを特徴とする燃料電池モジュールの製造法。   An inner electrode layer portion and an outer electrode layer portion of a plurality of hollow fiber electrolyte cells were respectively penetrated through a dish-shaped current collector having a through-hole, and the dish-shaped current collector was provided so as to surround its end. After fitting the ring-shaped body and using the inner peripheral surface of the ring-shaped body to pour the fixing material into contact with the countersink-shaped current collector to form the fixing material layer, the hollow fiber electrolyte cell, A method of manufacturing a fuel cell module, wherein a dish-shaped current collector and a ring-shaped body are accommodated in a cylindrical body. リング状体と筒状体との間に弾性体を介在させた請求項5記載の燃料電池モジュールの製造法。
6. The method of manufacturing a fuel cell module according to claim 5, wherein an elastic body is interposed between the ring-shaped body and the cylindrical body.
JP2006160561A 2006-06-09 2006-06-09 Fuel cell module Expired - Fee Related JP5100038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160561A JP5100038B2 (en) 2006-06-09 2006-06-09 Fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160561A JP5100038B2 (en) 2006-06-09 2006-06-09 Fuel cell module

Publications (3)

Publication Number Publication Date
JP2007329060A true JP2007329060A (en) 2007-12-20
JP2007329060A5 JP2007329060A5 (en) 2009-07-09
JP5100038B2 JP5100038B2 (en) 2012-12-19

Family

ID=38929373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160561A Expired - Fee Related JP5100038B2 (en) 2006-06-09 2006-06-09 Fuel cell module

Country Status (1)

Country Link
JP (1) JP5100038B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053035A (en) * 1991-06-21 1993-01-08 Toyo Ink Mfg Co Ltd Reactive species diffusion electrode structural body
JP2000182642A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell module
JP2003112016A (en) * 2001-10-04 2003-04-15 Nok Corp Hollow fiber membrane module and its manufacturing method
JP2003236347A (en) * 2002-02-19 2003-08-26 Asahi Glass Engineering Co Ltd Hollow fiber membrane assembled body and method for manufacturing the same
JP2004267852A (en) * 2003-03-06 2004-09-30 Nok Corp Porous ceramics hollow fiber membrane module
JP2005518075A (en) * 2002-02-14 2005-06-16 アルバータ リサーチ カウンシル インコーポレイテッド Tubular solid oxide fuel cell stack
JP2005353495A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Cell module and fuel cell
JP2006066186A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053035A (en) * 1991-06-21 1993-01-08 Toyo Ink Mfg Co Ltd Reactive species diffusion electrode structural body
JP2000182642A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell module
JP2003112016A (en) * 2001-10-04 2003-04-15 Nok Corp Hollow fiber membrane module and its manufacturing method
JP2005518075A (en) * 2002-02-14 2005-06-16 アルバータ リサーチ カウンシル インコーポレイテッド Tubular solid oxide fuel cell stack
JP2003236347A (en) * 2002-02-19 2003-08-26 Asahi Glass Engineering Co Ltd Hollow fiber membrane assembled body and method for manufacturing the same
JP2004267852A (en) * 2003-03-06 2004-09-30 Nok Corp Porous ceramics hollow fiber membrane module
JP2005353495A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Cell module and fuel cell
JP2006066186A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell

Also Published As

Publication number Publication date
JP5100038B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US6432577B1 (en) Apparatus and method for fabricating a microbattery
CN101517796B (en) Fuel battery cell body, fuel battery cell unit, fuel battery cell stack, and fuel battery containing them
US4174260A (en) Compound cell for high-temperature electrochemical reactions
RU2007124483A (en) STRUCTURE OF A SEALED CONNECTION NODE FOR AN ELECTROCHEMICAL DEVICE
CN108352467B (en) Sealing system for terminal feedthrough apparatus
JP4863657B2 (en) Fuel cell, fuel cell stack, and fuel cell
JP5147228B2 (en) Fuel cell module
CN103730264B (en) Electrochemical capacitor
US20090004538A1 (en) Head Plate
CN104025222A (en) Pigment sensitized solar battery and method for manufacturing same
JP5100038B2 (en) Fuel cell module
US3817790A (en) Sealed primary sodium iodine battery
JP5084246B2 (en) Fuel cell module
JP2005174846A (en) Fuel battery block and its manufacturing method
JP6795894B2 (en) How to assemble the electrochemical cell evaluation holder
JP2006216407A (en) Cell module assembly and fuel cell
EP2916378B1 (en) Solid oxide fuel cell device and method for manufacturing same
JP5084180B2 (en) Tube type solid electrolyte fuel cell
US9324506B2 (en) AMTEC cell and method for manufacturing the AMTEC cell
JP2009087708A (en) Fuel battery cell body and fuel battery including fuel battery cell body
EP2843752A1 (en) Air-metal cell and electrochemical power generation method
JP2008305723A (en) Adhesive material composition, bonding method using the adhesive material composition, solid oxide fuel cell, and solid oxide steam electrolytic device
JP6341686B2 (en) Electrochemical cell and method for producing the same
JP2010238434A (en) Fuel battery module
RU2502158C2 (en) Manufacturing method of electrochemical energy converter, and electrochemical energy converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees