JP2006066186A - Membrane electrode assembly for tube type fuel cell - Google Patents

Membrane electrode assembly for tube type fuel cell Download PDF

Info

Publication number
JP2006066186A
JP2006066186A JP2004246523A JP2004246523A JP2006066186A JP 2006066186 A JP2006066186 A JP 2006066186A JP 2004246523 A JP2004246523 A JP 2004246523A JP 2004246523 A JP2004246523 A JP 2004246523A JP 2006066186 A JP2006066186 A JP 2006066186A
Authority
JP
Japan
Prior art keywords
membrane
electrode layer
hydrogen
catalyst electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246523A
Other languages
Japanese (ja)
Inventor
Harumichi Nakanishi
治通 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004246523A priority Critical patent/JP2006066186A/en
Publication of JP2006066186A publication Critical patent/JP2006066186A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly for a tube type fuel cell reducing cross leak and enhancing fuel utilization efficiency and power generation efficiency. <P>SOLUTION: The membrane electrode assembly for the tube type fuel cell is equipped with at least a tube-shaped solid electrolyte membrane, an outside catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, an inside catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane, an outside current collector arranged on the outer peripheral surface of the outside catalyst electrode layer, and an inside current collector arranged on the inner peripheral surface of the inside catalyst electrode layer. A tube-shaped gas permeation control membrane permeating hydrogen and not permeating air is installed on the outside of the outside current collector in the case where the inside catalyst electrode layer is a hydrogen electrode, and on the inside of the inside current collector in the case where the inside catalyst electrode layer is the hydrogen electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チューブ状に形成することにより、コストを低減し、かつ小型化が可能なチューブ型燃料電池に用いられるチューブ型燃料電池用膜電極複合体に関する。   The present invention relates to a membrane electrode assembly for a tube-type fuel cell that is used in a tube-type fuel cell that can be reduced in size and cost by being formed into a tube shape.

従来の平板構造の固体高分子電解質型燃料電池(以下、単に燃料電池と称する場合がある。)の最小発電単位である単位セルは、一般に固体電解質膜の両側に触媒電極層が接合されている膜電極複合体を有し、この膜電極複合体の両側にはガス拡散層が配されている。さらに、その外側にはガス流路を備えたセパレータが配されており、ガス拡散層を介して膜電極複合体の触媒電極層へと供給される燃料ガスおよび酸化剤ガスを通流させるとともに、発電により得られた電流を外部に伝える働きをしている。   A unit cell which is the minimum power generation unit of a conventional solid polymer electrolyte fuel cell having a flat plate structure (hereinafter sometimes simply referred to as a fuel cell) generally has a catalyst electrode layer bonded to both sides of the solid electrolyte membrane. A membrane electrode assembly is provided, and gas diffusion layers are disposed on both sides of the membrane electrode assembly. Furthermore, a separator having a gas flow path is arranged outside thereof, and the fuel gas and the oxidant gas supplied to the catalyst electrode layer of the membrane electrode composite are passed through the gas diffusion layer, It works to transmit the current obtained by power generation to the outside.

上記燃料電池の小型化のため、および、単位体積当たりの発電反応面積を大きくするためには、燃料電池の上記構成部材の厚さを薄くする必要がある。しかしながら、このような従来の平板構造の燃料電池においては、各構成部材の厚さをある一定以下の値にすることは、機能面や強度面から好ましくなく、設計限界に近づきつつある。例えば、現在汎用されているナフィオン(商品名:Nafion、デュポン株式会社製)の膜は厚さが一定以下になるとガス透過性が大きくなりすぎ、セル内でガスのクロスリークが生じて発電電圧が低下する等の問題がある。このようなことから、従来の平板構造の燃料電池の単位体積当たりの出力密度を一定以上に向上させることは構造上困難である。   In order to reduce the size of the fuel cell and increase the power generation reaction area per unit volume, it is necessary to reduce the thickness of the constituent members of the fuel cell. However, in such a conventional flat plate structure fuel cell, setting the thickness of each constituent member to a certain value or less is not preferable in terms of function and strength, and is approaching the design limit. For example, the membrane of Nafion (trade name: Nafion, manufactured by DuPont Co., Ltd.), which is widely used at present, becomes too gas permeable when its thickness is below a certain level, causing gas cross-leakage in the cell and generating voltage. There are problems such as lowering. For this reason, it is structurally difficult to improve the power density per unit volume of the conventional fuel cell with a flat plate structure to a certain level or more.

そこで、中空糸等を用い、その内面および外面に電解質膜や触媒電極層等を積層したチューブ形状の膜電極複合体を用いて燃料電池を構成することにより出力密度を高める研究が行なわれている。このようなチューブ形状の膜電極複合体には、耐熱性が高いことや、形成が容易であることなどからケイ素酸化物を主成分とするガラス電解質材料からなる固体電解質膜が好適に用いられる。しかしながら、このようなガラス電解質材料における細孔径の制御は困難であり、水素や空気を透過させてしまう程度の細孔径を有する孔が形成されてしまう場合がある。このような場合は、固体電解質膜が水素や空気を透過するため、膜電極複合体内において水素および空気がクロスリークを起こし、様々な不具合の原因になっている。   Therefore, research has been conducted to increase the power density by constructing a fuel cell using a tubular membrane electrode assembly in which hollow fibers or the like are used and an electrolyte membrane, a catalyst electrode layer, etc. are laminated on the inner and outer surfaces thereof. . For such a tube-shaped membrane electrode assembly, a solid electrolyte membrane made of a glass electrolyte material containing silicon oxide as a main component is suitably used because of its high heat resistance and easy formation. However, it is difficult to control the pore diameter in such a glass electrolyte material, and pores having a pore diameter that allows hydrogen and air to permeate may be formed. In such a case, since the solid electrolyte membrane permeates hydrogen and air, hydrogen and air cause cross-leakage in the membrane electrode assembly, causing various problems.

例えば、水素極側に空気が透過すると、水素極における水素ガスの濃度が低下してしまい、発電性能の低下につながる。また、水素を通流する通流管等に空気が溜まり、水素の通流が妨げられるため、通流管内のガスを定期的に抽気する必要もある。   For example, if air permeates to the hydrogen electrode side, the concentration of hydrogen gas at the hydrogen electrode decreases, leading to a decrease in power generation performance. In addition, since air accumulates in a flow pipe or the like through which hydrogen flows and the flow of hydrogen is hindered, it is necessary to periodically extract the gas in the flow pipe.

また、燃料電池作動中、一時的に出力を低下させたい場合などは、水素の供給弁を閉じるなどの方法により水素の供給を停止する。しかしながら、供給弁の下流にある水素はガラス電解質材料からなる固体電解質膜を透過して空気極側へ到達し、空気と共に排出されてしまい、水素の利用効率の低下の原因になる。   Further, when it is desired to temporarily reduce the output during the operation of the fuel cell, the supply of hydrogen is stopped by a method such as closing the hydrogen supply valve. However, the hydrogen downstream of the supply valve permeates the solid electrolyte membrane made of the glass electrolyte material, reaches the air electrode side, and is discharged together with the air, causing a reduction in hydrogen utilization efficiency.

上記チューブ形状の膜電極複合体の例としては、例えば特許文献1に開示されている中空糸型固体高分子型燃料電池セルを挙げることができる。上記特許文献1においては、クロスリークが生じるといった課題は開示されているものの、その解決手段としては固体電解質膜にガス透過性の高い電解質材料を用いる方法や、固体電解質膜の膜厚を厚くする方法などに限られており、固体電解質膜に用いられる材料の選択性を狭める、または固体電解質膜の薄膜化を阻む原因になっていた。   Examples of the tube-shaped membrane electrode assembly include a hollow fiber type solid polymer fuel cell disclosed in Patent Document 1, for example. Although the above-mentioned patent document 1 discloses a problem that cross leak occurs, as a means for solving the problem, there is a method of using an electrolyte material having high gas permeability for the solid electrolyte membrane, or increasing the thickness of the solid electrolyte membrane. It is limited to the method and the like, which has been a cause of narrowing the selectivity of the material used for the solid electrolyte membrane or preventing the thinning of the solid electrolyte membrane.

特開2002−289220公報JP 2002-289220 A

本発明は上記問題点に鑑みてなされたものであり、クロスリークが少なく、燃料利用効率、発電性能の高いチューブ型燃料電池用膜電極複合体を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and a main object of the present invention is to provide a membrane electrode assembly for a tube type fuel cell with little cross leak and high fuel utilization efficiency and power generation performance.

上記目的を達成するために、本発明は、チューブ状の固体電解質膜と、上記固体電解質膜の外周面に形成された外側触媒電極層と、上記固体電解質膜の内周面に形成された内側触媒電極層と、上記外側触媒電極層の外周面に配置された外側集電体と、上記内側触媒電極層の内周面に配置された内側集電体とを少なくとも有するチューブ型燃料電池用膜電極複合体であって、上記外側触媒電極層が水素極の場合は上記外側集電体の外側に、上記内側触媒電極層が水素極の場合は上記内側集電体の内側に、水素は透過するが空気は透過させない、チューブ形状のガス透過調整膜が設けられていることを特徴とするチューブ型燃料電池用膜電極複合体を提供する。   To achieve the above object, the present invention provides a tubular solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, and an inner surface formed on the inner peripheral surface of the solid electrolyte membrane. A tubular fuel cell membrane having at least a catalyst electrode layer, an outer current collector disposed on the outer peripheral surface of the outer catalyst electrode layer, and an inner current collector disposed on the inner peripheral surface of the inner catalyst electrode layer When the outer catalyst electrode layer is a hydrogen electrode, the electrode composite body is outside the outer current collector, and when the inner catalyst electrode layer is a hydrogen electrode, the hydrogen is transmitted inside the inner current collector. A membrane electrode assembly for a tubular fuel cell is provided, which is provided with a tube-shaped gas permeation regulating membrane that does not allow air to pass therethrough.

本発明のチューブ型燃料電池用膜電極複合体(以下、単に膜電極複合体と称する場合がある。)においては、クロスリークが低減されているため燃料の利用効率を向上させることができる。また、クロスリークに起因する様々な不具合が防止できるので、発電性能に優れた膜電極複合体を得ることができる。   In the membrane electrode assembly for a tube type fuel cell of the present invention (hereinafter sometimes simply referred to as a membrane electrode assembly), the cross-leakage is reduced, so that the fuel utilization efficiency can be improved. In addition, since various problems due to cross leak can be prevented, a membrane electrode assembly having excellent power generation performance can be obtained.

本発明は、燃料利用効率、発電性能の高い膜電極複合体を得ることができるといった効果を奏する。   The present invention has an effect that a membrane electrode assembly having high fuel utilization efficiency and high power generation performance can be obtained.

以下、本発明のチューブ型燃料電池用膜電極複合体について詳細に説明する。
本発明の膜電極複合体は、チューブ状の固体電解質膜と、上記固体電解質膜の外周面に形成された外側触媒電極層と、上記固体電解質膜の内周面に形成された内側触媒電極層と、上記外側触媒電極層の外周面に配置された外側集電体と、上記内側触媒電極層の内周面に配置された内側集電体とを少なくとも有するチューブ型燃料電池用膜電極複合体であって、上記外側触媒電極層が水素極の場合は上記外側集電体の外側に、上記内側触媒電極層が水素極の場合は上記内側集電体の内側に、水素は透過するが空気は透過させない、チューブ形状のガス透過調整膜が設けられていることを特徴とするものである。
Hereinafter, the membrane electrode assembly for a tube type fuel cell of the present invention will be described in detail.
The membrane electrode assembly of the present invention includes a tubular solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, and an inner catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane. And a membrane electrode assembly for a tubular fuel cell, comprising at least an outer current collector disposed on the outer peripheral surface of the outer catalyst electrode layer and an inner current collector disposed on the inner peripheral surface of the inner catalyst electrode layer When the outer catalyst electrode layer is a hydrogen electrode, hydrogen passes through the outer current collector, and when the inner catalyst electrode layer is a hydrogen electrode, hydrogen passes through the inner current collector but air. Is provided with a tube-shaped gas permeation regulating film that does not allow permeation.

本発明の膜電極複合体においては、水素極側にガス透過調整膜が設けられているので、水素が通流する通流管内への空気の流入を遮断することができる。そのため、発電反応に用いられる水素の濃度を高く維持することができ、発電反応に高い濃度の水素を用いることができるので発電性能を向上させることができる。   In the membrane electrode assembly of the present invention, since the gas permeation regulating membrane is provided on the hydrogen electrode side, the inflow of air into the flow tube through which hydrogen flows can be blocked. Therefore, the concentration of hydrogen used in the power generation reaction can be maintained high, and high concentration hydrogen can be used in the power generation reaction, so that power generation performance can be improved.

まず、本発明の膜電極複合体の構造について図を用いて説明する。
図1は、本発明の膜電極複合体の一例を示す概略構造図である。図1に示すように、本発明の膜電極複合体1は、通常のチューブ型膜電極複合体と同様に内側集電体2、その外側面上に内側触媒電極層3、固体電解質膜4、外側触媒電極層5、および外側集電体6がこの順に積層されている。さらに、本発明においては、上記内側集電体2の内側にチューブ形状のガス透過調整膜7が設けられている。なお、図1は、内側触媒電極層3が水素極である場合の例を示す。
以下、本発明の特徴であるガス透過調整膜、および膜電極複合体を構成するその他の層についてそれぞれ説明する。
First, the structure of the membrane electrode assembly of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic structural diagram showing an example of the membrane electrode assembly of the present invention. As shown in FIG. 1, the membrane electrode assembly 1 of the present invention includes an inner current collector 2, an inner catalyst electrode layer 3, a solid electrolyte membrane 4, The outer catalyst electrode layer 5 and the outer current collector 6 are laminated in this order. Furthermore, in the present invention, a tube-shaped gas permeation adjusting film 7 is provided inside the inner current collector 2. FIG. 1 shows an example in which the inner catalyst electrode layer 3 is a hydrogen electrode.
Hereinafter, the gas permeation regulating membrane and the other layers constituting the membrane electrode assembly, which are features of the present invention, will be described.

1.ガス透過調整膜
本発明に用いられるガス透過調整膜はチューブ形状のものである。ここで、チューブ形状とは、両端が開口している通常の管状のものでもよく、一方の端部が開口しており、他方の端部が閉塞しているものでもよい。
1. Gas Permeation Control Film The gas permeation control film used in the present invention has a tube shape. Here, the tube shape may be a normal tubular shape having both ends open, or may have one end opened and the other end closed.

また、ガス透過調整膜の径は、内側触媒電極層が水素極の場合は内側触媒電極層の内径よりも小さく、外側触媒電極層が水素極の場合は外側触媒電極層の外径よりも大きければ特に限定されるものではない。上記ガス透過調整膜の径は、内側触媒電極層の内側、または外側触媒電極層の外側とガス透過調整膜とが密着するような径であってもよいし、内側触媒電極層の内側、または、外側触媒電極層の外側とガス透過調整膜との間に空間ができるような径であってもよい。   Further, the diameter of the gas permeation regulating membrane should be smaller than the inner diameter of the inner catalytic electrode layer when the inner catalytic electrode layer is a hydrogen electrode, and larger than the outer diameter of the outer catalytic electrode layer when the outer catalytic electrode layer is a hydrogen electrode. There is no particular limitation. The diameter of the gas permeation regulating membrane may be such that the inside of the inner catalytic electrode layer, or the outer side of the outer catalytic electrode layer and the gas permeation regulating membrane are in close contact, the inner side of the inner catalytic electrode layer, or The diameter may be such that a space is formed between the outside of the outer catalyst electrode layer and the gas permeation regulating film.

本発明においてガス透過調整膜は、ガス透過調整膜の両面の圧力に差がある場合のみに、圧力の高い方から低い方へと水素を透過させるものであることが好ましい。上記のように、差圧がかかった時のみに水素を透過させるガス透過調整膜を用いることにより、膜電極複合体に水素を供給する必要がないときに水素を水素通流管内に留めておくことが可能になり、水素を有効に利用することができるからである。   In the present invention, it is preferable that the gas permeation regulating membrane allows hydrogen to permeate from the higher pressure side to the lower side only when there is a difference in pressure between both sides of the gas permeation regulating membrane. As described above, by using a gas permeation regulating membrane that allows hydrogen to permeate only when a differential pressure is applied, hydrogen is kept in the hydrogen flow pipe when it is not necessary to supply hydrogen to the membrane electrode assembly. This is because hydrogen can be used effectively.

通常、燃料電池の出力を下げる際等には、水素を供給する配管に設けられている供給弁を閉めるなどの方法により水素の供給を停止する。この際、差圧が無い場合でも水素を透過させるガス透過調整膜を用いると、上記供給弁を閉めて水素の供給を停止した場合に、供給弁より下流に存在する水素は上記固体電解質膜を透過して空気極側へ到達し、発電反応に利用されることなく、通流する空気と共に排出されてしまう。しかしながら、差圧がある場合のみに水素を透過させるガス透過調整膜を用いると、上記供給弁が閉じているときは、その下流の通流管の圧力が低下して水素がガス透過調整膜を透過できる程の差圧は生じないため、通流管内に水素を留めることができる。   Usually, when the output of the fuel cell is lowered, the supply of hydrogen is stopped by a method such as closing a supply valve provided in a pipe for supplying hydrogen. At this time, when a gas permeation regulating membrane that allows hydrogen to permeate even when there is no differential pressure, when the supply valve is closed and the supply of hydrogen is stopped, the hydrogen present downstream from the supply valve is not allowed to pass through the solid electrolyte membrane. It permeates and reaches the air electrode side and is discharged together with the flowing air without being used for the power generation reaction. However, if a gas permeation control membrane that allows hydrogen to pass through only when there is a differential pressure, when the supply valve is closed, the pressure in the downstream flow pipe decreases so that hydrogen passes through the gas permeation control membrane. Since there is no differential pressure that can be permeated, hydrogen can be retained in the flow pipe.

上述したような効果を得るため、ガス透過調整膜は、その両面における差圧が10KPa以上、中でも100〜200KPaであるときのみに水素を透過させるものであることが好ましい。差圧が上記範囲に満たない場合でも水素が透過してしまうと、上述したような効果が得られなくなり、水素を有効利用できない可能性がある。一方、差圧が上記範囲を超えても水素が透過しない場合は、水素を透過させるためにガス透過調整膜に高い圧力をかける必要があり、その高い圧力によってガス透過調整膜が破損してしまう可能性がある。   In order to obtain the effects as described above, it is preferable that the gas permeation adjusting film allows hydrogen to permeate only when the differential pressure between both surfaces is 10 KPa or more, particularly 100 to 200 KPa. Even if the differential pressure is less than the above range, if hydrogen permeates, the above-described effects cannot be obtained, and hydrogen may not be used effectively. On the other hand, when hydrogen does not permeate even if the differential pressure exceeds the above range, it is necessary to apply a high pressure to the gas permeation regulating membrane in order to permeate the hydrogen, and the gas permeation regulating membrane is damaged by the high pressure. there is a possibility.

本発明において、ガス透過調整膜は膜電極複合体の内側触媒電極層の内側、または外側触媒電極層の外側に設けられるが、中でも内側触媒電極層の内側に設けられることが好ましい。用いられるガス透過調整膜が上述したような、差圧がかかると水素を透過するものである場合、内側触媒電極層の内側にガス透過調整膜のチューブを配置し、上記チューブの内側に水素を通流させ、上記チューブの内圧を高めることにより、容易に差圧を発生させることができるからである。
上述したようなガス透過調整膜を形成する材料は、水素は透過するが空気は透過させないものであれば特に限定されるものではなく、例えば、アクリロニトリルブタジエンゴム(NBR)等が好適に用いられる。
In the present invention, the gas permeation regulating membrane is provided inside the inner catalyst electrode layer of the membrane electrode assembly or outside the outer catalyst electrode layer, and among these, it is preferably provided inside the inner catalyst electrode layer. When the gas permeation adjustment membrane used is such that hydrogen permeates when a differential pressure is applied as described above, a gas permeation adjustment membrane tube is disposed inside the inner catalyst electrode layer, and hydrogen is introduced inside the tube. This is because the differential pressure can be easily generated by increasing the internal pressure of the tube.
The material for forming the gas permeation regulating film as described above is not particularly limited as long as it allows hydrogen to permeate but does not allow air to permeate. For example, acrylonitrile butadiene rubber (NBR) is preferably used.

上記ガス透過調整膜の膜厚は、用いられる材料により大きく異なるものではあるが、50〜1000μmの範囲内、中でも100〜200μmの範囲内であることが好ましい。膜厚が上記範囲に満たないと、ガス透過調整膜の強度が十分でなく、ガス圧等により破損してしまう可能性がある。一方、膜厚が上記範囲を超えると、膜が厚すぎて水素の透過性が低下してしまう可能性がある。   The thickness of the gas permeation adjusting film varies greatly depending on the material used, but is preferably in the range of 50 to 1000 μm, and more preferably in the range of 100 to 200 μm. If the film thickness is less than the above range, the gas permeation adjusting film is not strong enough and may be damaged by gas pressure or the like. On the other hand, if the film thickness exceeds the above range, the film may be too thick and hydrogen permeability may be reduced.

2.その他
本発明の膜電極複合体の構成においては、上述したガス透過調整膜以外の構成に関しては、特に限定されるものではなく、一般的なチューブ形状の膜電極複合体の構成と同様のものを用いることができる。一般的なチューブ形状の膜電極複合体の構成としては、例えば、内側集電体、その外側面上に内側触媒電極層、固体電解質膜、外側触媒電極層、および外側集電体がこの順に積層されているもの等を挙げることができ、さらに上記内側触媒電極層の内側、または外側触媒電極層の外側にガス透過調整膜を設けることにより本発明の膜電極複合体を得ることができる。
以下、本発明の膜電極複合体を構成する、上記ガス透過調整膜以外の構成について説明する。
2. Others In the configuration of the membrane electrode assembly of the present invention, the configuration other than the above-described gas permeation regulating membrane is not particularly limited, and the same configuration as that of a general tube-shaped membrane electrode assembly is used. Can be used. As a configuration of a general tube-shaped membrane electrode composite, for example, an inner current collector, an inner catalyst electrode layer, a solid electrolyte membrane, an outer catalyst electrode layer, and an outer current collector are laminated in this order on the outer surface. Further, the membrane electrode assembly of the present invention can be obtained by providing a gas permeation regulating film inside the inner catalyst electrode layer or outside the outer catalyst electrode layer.
Hereinafter, configurations other than the gas permeation regulating membrane constituting the membrane electrode assembly of the present invention will be described.

本発明に用いられる固体電解質膜としては、チューブ状の形態を有し、かつプロトン伝導性に優れかつ電流を流さない材料からなるものであれば特に限定されるものではない。このような固体電解質膜を形成する電解質材料としては、ナフィオン(商品名:Nafion、デュポン株式会社製)などに代表されるようなフッ素系樹脂、アミド系樹脂に代表されるような炭化水素系樹脂等有機系のもの、または、ケイ素酸化物を主成分とするものなどの無機系のもの等を挙げることができ、中でも無機系のもの、特にケイ素酸化物を主成分とするものが好ましい。無機系の電解質材料は多孔質構造を有する場合が多くガスが透過しやすく、固体電解質膜として用いた場合にクロスリークが生じやすいため、本発明の膜電極複合体とした場合の効果が大きいからである。   The solid electrolyte membrane used in the present invention is not particularly limited as long as it is made of a material having a tubular shape and excellent proton conductivity and does not flow current. Examples of the electrolyte material that forms such a solid electrolyte membrane include fluorine resins such as Nafion (trade name: Nafion, manufactured by DuPont), and hydrocarbon resins such as amide resins. Examples thereof include inorganic materials such as organic materials, and those containing silicon oxide as a main component, among which inorganic materials, particularly those containing silicon oxide as a main component are preferred. Inorganic electrolyte materials often have a porous structure, and gas is likely to permeate. When used as a solid electrolyte membrane, cross-leakage is likely to occur, so the effect of the membrane electrode assembly of the present invention is great. It is.

上記無機系の電解質材料を用いた固体電解質膜としては、多孔質ガラスをチューブ状に成形し、そのナノ細孔内の表面を改質して、プロトン導電性を付与したチューブ状固体電解質膜や、チューブ状のリン酸ガラスを応用したもの等を挙げることができる。上記多孔質ガラスを用いたものとしては、例えば多孔質ガラスの細孔内表面のOH基にメルカプトプロピルトリメトキシシランのシランカップリング剤を反応させ、その後にメルカプト基の−SHを酸化することにより、プロトン伝導性を有するスルホン酸基を導入する方法(化学と工業 第57巻 第1号(2004年)p41〜p44)等を挙げることができる。また、リン酸ガラスを応用したものとしては、燃料電池 Vol.3 No.3 2004 p69〜p71に報告された例等を挙げることができる。   As the solid electrolyte membrane using the inorganic electrolyte material, a tube-shaped solid electrolyte membrane provided with proton conductivity by forming a porous glass into a tube shape, modifying the surface in the nanopore, In addition, a tube-like phosphate glass is applied. As the above-mentioned porous glass, for example, by reacting a silane coupling agent of mercaptopropyltrimethoxysilane with an OH group on the pore inner surface of the porous glass, and then oxidizing -SH of the mercapto group. And a method of introducing a sulfonic acid group having proton conductivity (Chemical and Industrial Vol. 57 No. 1 (2004) p41 to p44) and the like. In addition, as an application of phosphate glass, fuel cell Vol. 3 No. 3 2004 p69 to p71 can be mentioned.

また、本発明に用いられる内側触媒電極層、および外側触媒電極層は特に限定されるものではなく、通常の平面構造の燃料電池用膜電極複合体に用いられている材料をチューブ形状に成形したものを用いることが可能である。具体的には、パーフルオロスルホン酸系ポリマー(商品名:NafionTM、デュポン株式会社製)等のプロトン伝導材、カーボンブラックやカーボンナノチューブ等の導電性材料、および上記導電性材料に担持された白金等の触媒を含むものである。 Further, the inner catalyst electrode layer and the outer catalyst electrode layer used in the present invention are not particularly limited, and a material used for a fuel cell membrane electrode assembly having a normal planar structure is formed into a tube shape. Can be used. Specifically, proton conductive materials such as perfluorosulfonic acid polymer (trade name: Nafion TM , manufactured by DuPont), conductive materials such as carbon black and carbon nanotubes, and platinum supported on the conductive material And the like.

本発明の膜電極複合体において、発電反応により発生した電力の集電方法は特に限定されるものではなく、通常のチューブ形状の膜電極複合体における集電の方法により行うことができる。例えば、上記内側触媒電極層、および外側触媒電極層を集電体としても利用して集電することもできるが、本発明においては、上記内側触媒電極層の内側に内側集電体、上記外側触媒電極層の外側に外側集電体を形成することが好ましい。触媒電極層に導電性の高い集電体を密着させて集電を行うことにより、電子の移動を円滑にし、効率よく集電を行うことができるからである。   In the membrane electrode assembly of the present invention, the method for collecting the electric power generated by the power generation reaction is not particularly limited, and can be performed by the method for collecting current in a normal tube-shaped membrane electrode assembly. For example, the inner catalyst electrode layer and the outer catalyst electrode layer can also be used as a current collector to collect current, but in the present invention, the inner current collector and the outer It is preferable to form an outer current collector outside the catalyst electrode layer. This is because current collection can be performed efficiently by collecting electrons by bringing a highly conductive current collector into close contact with the catalyst electrode layer.

上記内側集電体、および外側集電体は導電性が高く、膜電極複合体のチューブ形状の径方向にガスを透過するものであれば特に限定されるものではない。このような内側集電体、および外側集電体の形状の例としては、バネ形状のもの、管の壁面部に、その壁面を貫通する孔を多数有する形状や、管の壁面部が網目構造のもの、複数の直線状の導電体がチューブ形状の軸方向に配置されたもの等を挙げることができ、中でもバネ形状のものが好適に用いられる。また、このような形状の内側集電体、および外側集電体を形成する材料としては、例えば、カーボンまたは、ステンレス鋼、チタン、白金、金、TiC、TiSi、SiO,B,NdO,TiB等の金属等を挙げることができる。 The inner current collector and the outer current collector are not particularly limited as long as they have high conductivity and allow gas to permeate in the radial direction of the tube shape of the membrane electrode assembly. Examples of the shape of the inner current collector and the outer current collector include a spring shape, a shape having a large number of holes penetrating the wall surface of the tube, and a wall surface of the tube having a mesh structure. And those in which a plurality of linear conductors are arranged in the axial direction of a tube shape. Among them, a spring shape is preferably used. The inner current collector having such a shape, and as a material for forming the outer collector, for example, carbon or stainless steel, titanium, platinum, gold, TiC, TiSi 2, SiO 2 , B 2 O 3 , Nd 2 O, TiB 2 and other metals.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明の膜電極複合体の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the membrane electrode assembly of this invention.

符号の説明Explanation of symbols

1 … 膜電極複合体
2 … 内側集電体
3 … 内側触媒電極層
4 … 固体電解質膜
5 … 外側触媒電極層
6 … 外側集電体
7 … ガス透過調整膜
DESCRIPTION OF SYMBOLS 1 ... Membrane electrode complex 2 ... Inner collector 3 ... Inner catalyst electrode layer 4 ... Solid electrolyte membrane 5 ... Outer catalyst electrode layer 6 ... Outer collector 7 ... Gas permeation control membrane

Claims (1)

チューブ状の固体電解質膜と、前記固体電解質膜の外周面に形成された外側触媒電極層と、前記固体電解質膜の内周面に形成された内側触媒電極層と、前記外側触媒電極層の外周面に配置された外側集電体と、前記内側触媒電極層の内周面に配置された内側集電体とを少なくとも有するチューブ型燃料電池用膜電極複合体であって、
前記外側触媒電極層が水素極の場合は前記外側集電体の外側に、前記内側触媒電極層が水素極の場合は前記内側集電体の内側に、水素は透過するが空気は透過させない、チューブ形状のガス透過調整膜が設けられていることを特徴とするチューブ型燃料電池用膜電極複合体。
A tubular solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, an inner catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane, and an outer periphery of the outer catalyst electrode layer A membrane fuel cell membrane electrode assembly having at least an outer current collector disposed on a surface and an inner current collector disposed on an inner peripheral surface of the inner catalyst electrode layer,
When the outer catalyst electrode layer is a hydrogen electrode, outside the outer current collector, when the inner catalyst electrode layer is a hydrogen electrode, inside the inner current collector, hydrogen permeates but air does not permeate, A membrane electrode assembly for a tube type fuel cell, comprising a tube-shaped gas permeation regulating membrane.
JP2004246523A 2004-08-26 2004-08-26 Membrane electrode assembly for tube type fuel cell Pending JP2006066186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246523A JP2006066186A (en) 2004-08-26 2004-08-26 Membrane electrode assembly for tube type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246523A JP2006066186A (en) 2004-08-26 2004-08-26 Membrane electrode assembly for tube type fuel cell

Publications (1)

Publication Number Publication Date
JP2006066186A true JP2006066186A (en) 2006-03-09

Family

ID=36112502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246523A Pending JP2006066186A (en) 2004-08-26 2004-08-26 Membrane electrode assembly for tube type fuel cell

Country Status (1)

Country Link
JP (1) JP2006066186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328939A (en) * 2006-06-06 2007-12-20 Toyota Motor Corp Tube type solid electrolyte fuel battery
JP2007329060A (en) * 2006-06-09 2007-12-20 Nok Corp Fuel cell module
JP2008277046A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Cylindrical fuel battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505417A (en) * 2000-07-24 2004-02-19 マイクロセル・コーポレイション Microcell electrochemical devices and assemblies and methods of making and using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505417A (en) * 2000-07-24 2004-02-19 マイクロセル・コーポレイション Microcell electrochemical devices and assemblies and methods of making and using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328939A (en) * 2006-06-06 2007-12-20 Toyota Motor Corp Tube type solid electrolyte fuel battery
JP2007329060A (en) * 2006-06-09 2007-12-20 Nok Corp Fuel cell module
JP2008277046A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Cylindrical fuel battery

Similar Documents

Publication Publication Date Title
JP4172174B2 (en) Fuel cell
JP2006173106A (en) Method for controlling water flow and distribution in direct methanol fuel cell
JP2007005294A (en) Gas-liquid separation apparatus
WO2012007998A1 (en) Fuel cell
JP5248070B2 (en) Fuel cell power generation system
JP2012248341A (en) Fuel cell
JP4915045B2 (en) Membrane electrode composite for tube fuel cell and tube fuel cell
JP2000208156A (en) Solid polymer fuel cell system
JP2006066186A (en) Membrane electrode assembly for tube type fuel cell
JP2010027243A (en) Fuel cell
JP2006140104A (en) Tube type fuel cell device and operation method of tube type fuel cell
JP2006221970A (en) Operation method of direct methanol fuel cell
JP5665631B2 (en) Fuel cell
JP4720185B2 (en) Membrane electrode composite for tubular fuel cell with heat insulation tube
JP4674452B2 (en) Membrane electrode composite for tube fuel cell
JP2006216418A (en) Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2010232062A (en) Fuel cell
JP4961879B2 (en) Fuel cell system
JP2009301849A (en) Fuel cell stack
JP4752216B2 (en) Membrane electrode composite for tube fuel cell
JP4934967B2 (en) Membrane electrode composite for fuel cell
JP4973396B2 (en) Fuel cell and diffusion layer
JP2010123432A (en) Fuel cell
JP2006216416A (en) Membrane electrode assembly bundle for tube type fuel cell
JP2008235188A (en) Cell of fuel cell and fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130