JP5084180B2 - Tube type solid electrolyte fuel cell - Google Patents

Tube type solid electrolyte fuel cell Download PDF

Info

Publication number
JP5084180B2
JP5084180B2 JP2006157114A JP2006157114A JP5084180B2 JP 5084180 B2 JP5084180 B2 JP 5084180B2 JP 2006157114 A JP2006157114 A JP 2006157114A JP 2006157114 A JP2006157114 A JP 2006157114A JP 5084180 B2 JP5084180 B2 JP 5084180B2
Authority
JP
Japan
Prior art keywords
fuel cell
tube
conductive
solid electrolyte
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006157114A
Other languages
Japanese (ja)
Other versions
JP2007328939A (en
Inventor
徹 宇田
建司 簑島
雄介 井川
穣 幸田
雅弘 今西
治通 中西
成亮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Toyota Motor Corp
Original Assignee
Nok Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2006157114A priority Critical patent/JP5084180B2/en
Publication of JP2007328939A publication Critical patent/JP2007328939A/en
Application granted granted Critical
Publication of JP5084180B2 publication Critical patent/JP5084180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、チューブ型固体電解質燃料電池に関する。さらに詳しくは、電極や集電体の作製が容易なチューブ型固体電解質燃料電池に関する。   The present invention relates to a tube type solid electrolyte fuel cell. More specifically, the present invention relates to a tube type solid electrolyte fuel cell in which an electrode and a current collector can be easily manufactured.

固体電解質燃料電池の構造は、固体高分子形電解質であって、主流のスタック構造によって代表されるような平板型のものと、固体酸化物燃料電池(solid oxide fuel cell;SOFC)で一部採用されているチューブ型のものに大別される。チューブ型固体電解質燃料電池は、ガスシール性にすぐれ、大面積化が容易であることから小型化が可能とされるが、平板型のものと比べて燃料極や空気極などの電極の作製や集電体の作製が困難であるという問題を有している。   Solid electrolyte fuel cell structure is a solid polymer electrolyte, flat plate type as represented by mainstream stack structure and solid oxide fuel cell (SOFC) partly adopted It is roughly divided into tube-type ones. The tube-type solid electrolyte fuel cell is excellent in gas sealability and can be reduced in size because of its large area, but it is possible to produce electrodes such as a fuel electrode and an air electrode as compared with a flat type. There is a problem that it is difficult to manufacture a current collector.

さらに、その集電方法としては、固体電解質燃料電池のアノード側電極とカソード側電極に金属ワイヤをらせん状に巻付け、電池を取出す方法が提案されているが、電極と金属ワイヤとの接触面積が小さいため、接触抵抗が大きくなるという問題がみられる。また、金属マイクロフィラメントや金属ファブリック網を電極に巻付ける方法も提案されているが、金以外の金属では剛性が高いため、やはり電極との接触面積が小さく、接触抵抗が大きくなる。
特表平8−507896号公報 特開2003−59508号公報 特表2005−518075号公報
Furthermore, as a method for collecting the current, a method in which a metal wire is spirally wound around an anode side electrode and a cathode side electrode of a solid electrolyte fuel cell and the battery is taken out has been proposed, but the contact area between the electrode and the metal wire is proposed. Has a problem that the contact resistance increases. A method of winding a metal microfilament or metal fabric net around an electrode has also been proposed. However, since a metal other than gold has high rigidity, the contact area with the electrode is also small and the contact resistance is large.
JP-T 8-507896 JP 2003-59508 A JP 2005-518075 gazette

これに対し、内筒部や外周部に金属めっきを施し、集電体とすれば、電極-集電体間の接触抵抗は低減されるものの、電解質への燃料ガスや空気の拡散が阻害されるために、発電効率が著しく低下する。また、SOFCでは一般的であるインタコネクタによる集電は、インタコネクタの形成が難しく、また燃料電池の構成が複雑になるという問題がみられる。   On the other hand, if metal plating is applied to the inner cylinder part or outer peripheral part to make a current collector, the contact resistance between the electrode and current collector is reduced, but the diffusion of fuel gas and air to the electrolyte is hindered. Therefore, the power generation efficiency is significantly reduced. In addition, current collection by an interconnector, which is common in SOFC, has problems that it is difficult to form the interconnector and that the configuration of the fuel cell is complicated.

また、複数の貫通孔を有する多孔質基体が、その貫通孔内に固体電解質層を空気極層と燃料極層で狭持した筒状燃料電池を備えた燃料電池ブロックにおいて、導電性の多孔質基体にチューブ型の燃料電池要素を挿入した構成のものが提案されているが、ここで用いられている多孔質基体はそれ自体がブロック状を呈し、柔軟性に欠けるばかりではなく、集電のための構成が煩雑になったり、集電時の効率的な導電性の発現に欠けるなどの問題が考えられる。
特開2005−174846号公報
In the fuel cell block having a cylindrical fuel cell in which a porous substrate having a plurality of through-holes has a solid electrolyte layer sandwiched between the air electrode layer and the fuel electrode layer in the through-holes, the conductive porous A structure in which a tube-type fuel cell element is inserted into a substrate has been proposed, but the porous substrate used here is not only in a block shape and lacks flexibility but also has a current collecting capacity. For this reason, there may be problems such as a complicated configuration for lack of efficiency and lack of efficient conductivity during current collection.
Japanese Patent Laid-Open No. 2005-174846

本発明の目的は、集電効率にすぐれ、電極や集電体の作製が容易なチューブ型固体電解質燃料電池を提供することにある。   An object of the present invention is to provide a tube-type solid electrolyte fuel cell that is excellent in current collection efficiency and easy to produce electrodes and current collectors.

かかる本発明の目的は、導電性不織布シートよりなる第1の集電体の面方向に、導電性不織布円筒体として成形された第1の孔部を複数設け、該第1の孔部にチューブ型燃料電池セルが挿入され、(1)第1の孔部より口径の小さい導電性不織布円筒体として形成された第2の孔部を複数設け、該第2の孔部に導電線が第2の集電体として挿入され、あるいは(2)前記第1の孔部相互間に導電線が第2の集電体として織り込まれ、これら第2の集電体が不織布シートと一体化されたチューブ型固体電解質燃料電池によって達成される。 An object of the present invention is to provide a plurality of first hole portions formed as a conductive nonwoven fabric cylindrical body in the surface direction of the first current collector made of a conductive nonwoven fabric sheet, and a tube is formed in the first hole portion. (1) A plurality of second holes formed as a conductive nonwoven cylindrical body having a smaller diameter than the first holes are provided, and the conductive wires are second in the second holes. Or (2) a tube in which conductive wires are woven as a second current collector between the first holes, and these second current collectors are integrated with a nonwoven fabric sheet This is achieved by a solid electrolyte fuel cell.

このチューブ型固体電解質燃料電池にあっては、チューブ型燃料電池セルが、導電線を挿入した多孔質導電性円筒体の外周部に電極、固体電解質および電極を順次積層させた円柱状積層体で構成され、集電効率の点から、導電性不織布シートよりなる第1の集電体の面方向に設けられた第1の孔部相互間に導電線を織り込んで、不織布シートと一体化して用いられるIn this tube-type solid electrolyte fuel cell, the tube-type fuel cell is a cylindrical laminate in which an electrode, a solid electrolyte, and an electrode are sequentially laminated on the outer periphery of a porous conductive cylinder into which a conductive wire is inserted. is composed, in terms of current collecting efficiency, the first hole incorporate a conductive wire therebetween provided in the surface direction of the first current collector made of a conductive nonwoven fabric sheet, using integrated with the nonwoven fabric sheet It is done .

請求項1〜記載のチューブ型固体電解質燃料電池によれば、複数本のチューブ型燃料電池セルで発生した電流は、チューブ型燃料電池セルが挿入されている導電性不織布シートによって燃料電池全体から集電されるために抵抗が均一となり、また第2の集電体が用いられているため、さらに集電効率が向上する。 According to the tube-type solid electrolyte fuel cell according to any one of claims 1 to 6, the current generated in the plurality of tube-type fuel cells is generated from the entire fuel cell by the conductive nonwoven sheet in which the tube-type fuel cells are inserted. Since the current is collected, the resistance becomes uniform, and since the second current collector is used, the current collection efficiency is further improved.

請求項記載のチューブ型固体電解質燃料電池にあっては、それぞれの導電性電極が燃料側電極としてのアノード型電極および空気側電極としてのカソード電極として用いられる。 In the tube type solid electrolyte fuel cell according to claim 7 , each conductive electrode is used as an anode electrode as a fuel side electrode and a cathode electrode as an air side electrode.

請求項記載のチューブ型固体電解質燃料電池にあっては、チューブ型燃料電池セルが周辺の燃料電池セル群または第2の集電体によって固定され、補強される。 In the tube-type solid electrolyte fuel cell according to any one of claims 8 to 9 , the tube-type fuel cell is fixed and reinforced by a peripheral fuel cell group or a second current collector.

請求項1012記載のチューブ型固体電解質燃料電池にあっては、無機円柱体よりなる支持体によって補強することにより、燃料電池の構成要素であるチューブ型燃料電池セルにクラックや割れを生じ難い効果を高め得るばかりではなく、燃料電池発電時の昇温または降温によって発生するチューブ型燃料電池セル群およびモジュールの熱膨張または熱収縮、さらにこれに伴って生ずる熱応力を、筒状ケース内に収容してモジュール化する際に用いられたOリングやガスケット等で吸収することができる。 In the tube type solid electrolyte fuel cell according to claim 10-12, wherein, by reinforcing the support made from inorganic cylinder, a tubular fuel cell which is a component of a fuel cell hardly cracks and breakage Not only can the effect be improved, but also the thermal expansion or contraction of the tube-type fuel cell groups and modules generated by the temperature rise or fall during fuel cell power generation, and the thermal stress caused by this in the cylindrical case It can be absorbed by O-rings, gaskets, etc. that are used for housing and modularization.

また、請求項1314記載のチューブ型固体電解質燃料電池の製造法によれば、チューブ型固体電解質燃料電池の製造を容易なものとする。 Further, according to the claim 13-14 tube type solid electrolyte fuel cell of the method according to the manufacturing of the tubular solid electrolyte fuel cell and easy.

導電性不織布シート9よりなる第1の集電体の面方向には、導電性不織布円筒体1として形成された第1の孔部が複数設けられ、この第1の孔部にはチューブ型燃料電池セルが挿入され、導電性不織布シート9と一体化される。チューブ型燃料電池セルは、導電線6を挿入した多孔質導電性円筒体2の外周部に電極3、固体電解質4および電極5を順次積層して形成される円柱状積層体よりなる。   A plurality of first holes formed as the conductive nonwoven fabric cylindrical body 1 are provided in the surface direction of the first current collector made of the conductive nonwoven fabric sheet 9, and the tube-type fuel is provided in the first hole. The battery cell is inserted and integrated with the conductive nonwoven sheet 9. The tube-type fuel cell comprises a columnar laminate formed by sequentially laminating an electrode 3, a solid electrolyte 4 and an electrode 5 on the outer periphery of a porous conductive cylinder 2 having a conductive wire 6 inserted therein.

導電性不織布シートとしては、カーボン繊維不織布シート、ステンレス鋼繊維、銅繊維等の金属繊維の不織布シート等が用いられ、好ましくはカーボン繊維の不織布シートが用いられる。カーボン繊維としては、その繊維径が約5〜50μm、好ましくは約10〜30μmで、繊維長が約5〜100mm、好ましくは約30〜80mmのものが用いられ、その不織布シートの形成はボンディングプロセスによって行われ、膜厚は約50〜500μm、好ましくは約100〜250μm程度のものが一般に用いられる。   As the conductive nonwoven fabric sheet, a carbon fiber nonwoven fabric sheet, a nonwoven fabric sheet of metal fiber such as stainless steel fiber, copper fiber, or the like is used, and a carbon fiber nonwoven fabric sheet is preferably used. Carbon fibers having a fiber diameter of about 5 to 50 μm, preferably about 10 to 30 μm, and a fiber length of about 5 to 100 mm, preferably about 30 to 80 mm are used. The film thickness is generally about 50 to 500 μm, preferably about 100 to 250 μm.

チューブ型燃料電池セルは、導電線を挿入した多孔質導電性円筒体の外周部に電極、固体電解質および電極を順次積層させた円柱状積層体として形成される。   The tube-type fuel cell is formed as a columnar laminate in which an electrode, a solid electrolyte, and an electrode are sequentially laminated on the outer peripheral portion of a porous conductive cylinder into which a conductive wire is inserted.

導電性不織布円筒体1の内径は、円柱状積層体の最外周層となる電極層5の外径と同じくして、それと不織布シートとの接触面積をなるべく最大となるように設定される。円柱状積層体の一層を形成する多孔質導電性円筒体2の内周面には、その内周面の内径と外径を同じくして、接触面積をなるべく最大とした導電線6が挿入される。この導電線6は、電気抵抗の少ない単線であることが好ましく、またそこに耐腐食性を付与するために金めっきを施したもの、例えば金めっきSUS線等であってもよい。導電線6は、一般にアノード側電極用として用いられるが、カソード側電極用としても用いることができる。   The inner diameter of the conductive nonwoven fabric cylindrical body 1 is set so that the contact area between it and the nonwoven fabric sheet is maximized in the same manner as the outer diameter of the electrode layer 5 serving as the outermost peripheral layer of the columnar laminate. On the inner peripheral surface of the porous conductive cylinder 2 forming one layer of the columnar laminate, the conductive wire 6 having the same inner diameter and outer diameter of the inner peripheral surface and having the largest contact area is inserted. The The conductive wire 6 is preferably a single wire with low electrical resistance, and may be a gold-plated wire such as a gold-plated SUS wire for imparting corrosion resistance thereto. The conductive wire 6 is generally used for an anode side electrode, but can also be used for a cathode side electrode.

多孔質導電性円筒体は、炭化チタン、ホウ素化チタン、珪素化チタンTiSi等を焼結し、円筒状としたものが用いられる。好ましくは、珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合中空糸膜を乾湿式紡糸して製膜し、得られた複合中空糸膜を約1300〜1800℃、好ましくは約1350〜1600℃で焼成し、その際少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成して得られた、珪素化チタンTiSiを主成分として形成された導電性多孔質中空糸膜が用いられる。 As the porous conductive cylindrical body, a cylindrical body obtained by sintering titanium carbide, titanium boride, siliconized titanium TiSi or the like is used. Preferably, a composite hollow fiber membrane is formed by dry-wet spinning from a membrane forming stock solution in which a titanium silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance, and the resulting composite hollow fiber membrane is about 1300. Baked at ~ 1800 ° C, preferably about 1350-1600 ° C, and at the heating temperature range of at least 400 ° C, the main component is titanium silicide TiSi obtained by baking in vacuum or inert atmosphere environment The formed conductive porous hollow fiber membrane is used.

また、固体電解質としては、一般に固体高分子型電解質または固体酸化物電解質が用いられる。   As the solid electrolyte, a solid polymer electrolyte or a solid oxide electrolyte is generally used.

本発明の一つの態様においては、導電性不織布シート9よりなる第1の集電体の面方向に、第1の孔部1よりも口径の小さい導電性不織布円筒体8として形成された第2の孔部を複数設け、この第2の孔部には導電線7が第2の集電体として挿入され、一体化される。導電線6および7において、一方の導電線を燃料側電極としてのアノード側電極とし、他方の導電線を空気側電極としてのカソード側電極として用いられる。 In one aspect of the present invention, a second conductive nonwoven cylindrical body 8 having a smaller diameter than the first hole 1 is formed in the surface direction of the first current collector made of the conductive nonwoven sheet 9. A plurality of holes are provided, and the conductive wire 7 is inserted into the second hole as a second current collector and integrated. In the conductive lines 6 and 7, one conductive line is used as an anode side electrode as a fuel side electrode, and the other conductive line is used as a cathode side electrode as an air side electrode.

導電性不織布シート9に設けられる第1の孔部1と第2の孔部8とは、図1の縦断面図および図2の平面図に示される如く、交互に設けられることが好ましいが、特にこれに限定されない。また、これらの孔部の配列は平行であればよい。これらの孔部は、例えば1枚の導電性不織布シートを間隔を置いて、一般には等間隔でループ部を形成させ、ループ部の基部を縫い合わせて円筒状孔部を形成させてもよく、あるいは2枚のシートを円筒状孔部形成1個所当り円筒体の半周に相当する長さで2個所柔軟性を有する繊維、好ましくは導電性繊維で縫い合わせ、この縫い合わせ部分を第1の孔部(および第2の孔部)としてもよい。また、1枚の長い導電性不織布シートを用い、第1の孔部分および第2の孔部分を形成させる部分で、他の幅の狭い導電性不織布シートと縫い合わせて円筒体とすることもできる。第1の孔部および第2の孔部の間は、好ましくは導電性不織布円筒体と同材質の導電性不織布シート9で一体的に接続されている。   The first hole 1 and the second hole 8 provided in the conductive nonwoven fabric sheet 9 are preferably provided alternately as shown in the longitudinal sectional view of FIG. 1 and the plan view of FIG. It is not particularly limited to this. Moreover, the arrangement | sequence of these hole parts should just be parallel. These holes may be formed, for example, by forming a loop part at regular intervals, with one conductive non-woven sheet being spaced, and stitching the base part of the loop part to form a cylindrical hole. Two sheets are sewed together with a flexible fiber, preferably a conductive fiber, at a length corresponding to a half circumference of the cylindrical body per cylindrical hole forming portion, and this stitched portion is connected to the first hole (and It is good also as a 2nd hole part). Moreover, it is also possible to use one long conductive nonwoven fabric sheet and sew it with another narrow conductive nonwoven fabric sheet at a portion where the first hole portion and the second hole portion are formed to form a cylindrical body. The first hole portion and the second hole portion are preferably integrally connected by a conductive nonwoven fabric sheet 9 made of the same material as the conductive nonwoven fabric cylindrical body.

本発明の他の態様によれば、導電性不織布円筒体として第2の孔部を形成させる代りに、導電性不織布シート9よりなる第1の集電体の面方向に設けられた第1の孔部1相互間に導電線7が第2の集電体として織り込まれ、一体化されてもよく、かかる態様の縦断面図が図3に示され、そこの織り込み方向の断面図が図4に示されている。このような構成をとることにより、不織布シートと導電線とは密に固定され、良好な接触状態を保つことができる。ただし、これら両者間の接触面積が小さく、接触抵抗が大となるようであれば、非接触部分を銀ペースト等の導電性接着剤を用いて接着してもよい。 According to another aspect of the present invention, instead of forming the second hole as the conductive nonwoven fabric cylindrical body, the first current collector provided in the surface direction of the first current collector made of the conductive nonwoven fabric sheet 9 is used. The conductive wire 7 may be woven and integrated as a second current collector between the holes 1, and a longitudinal sectional view of such a mode is shown in FIG. 3, and a sectional view in the weaving direction is shown in FIG. 4. Is shown in By taking such a structure, a nonwoven fabric sheet and a conductive wire are closely fixed, and a favorable contact state can be maintained. However, if the contact area between the two is small and the contact resistance is large, the non-contact portion may be bonded using a conductive adhesive such as silver paste.

また、集電を行うため、その太さが約0.5〜2μmの各導電線6、7はそれらをそれぞれ間接的または直接的に挿入させた導電性不織布円筒体部分よりも長さが長く設定されるが、その設定方向は片側のみ突き出るように挿入され、その片側の方向も第1の孔部と第2の孔部とでは反対方向となるように設定される(図2参照)。   Further, in order to collect current, the conductive wires 6 and 7 having a thickness of about 0.5 to 2 μm are set to be longer than the conductive non-woven cylindrical part into which they are inserted indirectly or directly. However, the setting direction is inserted so as to protrude only on one side, and the direction on the one side is also set to be opposite in the first hole and the second hole (see FIG. 2).

導電性不織布シートよりなる第1の集電体は、好ましくは導電線よりなる第2の集電体と共に、ロール状に捲かれた状態もしくは折り畳まれた状態、好ましくはロール状に捲かれた状態とされ、そのような状態でチューブ型燃料電池セルが固定され、その断面図が図5として示される。   The first current collector made of a conductive nonwoven sheet is preferably rolled or folded, preferably rolled into a roll, together with a second current collector made of a conductive wire. In such a state, the tubular fuel cell is fixed, and a cross-sectional view thereof is shown in FIG.

このようにロール状に捲かれた状態で固定されたチューブ型燃料電池セル群は、モジュールケース内に収容され、モジュール化される。モジュール化の態様も、そこで用いられる筒状ケースの形状により特に限定されるものではないが、例えば図5(第2の孔部を設けた場合)あるいは図6(第2の集電体としての導電線を織り込んだ場合)に示される如くロール状に捲かれた状態で円筒状ケース内に収容するなどして用いられる。   The tube-type fuel cell group fixed in such a rolled state is accommodated in a module case and modularized. The mode of modularization is not particularly limited by the shape of the cylindrical case used there, but for example, FIG. 5 (when the second hole is provided) or FIG. 6 (as the second current collector) In the case where the conductive wire is woven, it is used by being housed in a cylindrical case in a state of being rolled up.

図7は、図5に示された態様において、円筒状ケース内に収容してモジュール化した状態を示す中心線縦断面図(ただし、内部は正面図)であり、また図8はその正面図である。ロール状に捲かれたチューブ型燃料電池セル群は、モジュールケース10内に収容され、燃料ガス部と空気部とを分けるように、第1の孔部の端部をポッティング剤11によってシールする。ポッティング剤としては接着剤が用いられ、作動温度に応じてエポキシ樹脂等の有機系接着剤やアルミナ等の無機系接着剤を用いることができる。あるいは、ポッティング部に円筒状体を固定するための貫通孔を設けた無機系支持板を設置する方法を用いることもできる。なお、符号13は燃料ガス入口、14は燃料ガス出口、15は空気入口、16は空気出口である。また、符号25はモジュールケース末端側ポッティング部であり、それの形成は燃料ガスの入口13および出口14からポッティング剤を注入することにより行われる。
特開2004−267852号公報
FIG. 7 is a centerline longitudinal sectional view (however, the inside is a front view) showing a state of being housed in a cylindrical case and modularized in the embodiment shown in FIG. 5, and FIG. 8 is a front view thereof. It is. The tubular fuel cell group wound in a roll shape is accommodated in the module case 10, and the end portion of the first hole portion is sealed with the potting agent 11 so as to separate the fuel gas portion and the air portion. An adhesive is used as the potting agent, and an organic adhesive such as an epoxy resin or an inorganic adhesive such as alumina can be used depending on the operating temperature. Or the method of installing the inorganic type support plate which provided the through-hole for fixing a cylindrical body to a potting part can also be used. Reference numeral 13 denotes a fuel gas inlet, 14 denotes a fuel gas outlet, 15 denotes an air inlet, and 16 denotes an air outlet. Reference numeral 25 denotes a module case end-side potting portion, which is formed by injecting a potting agent from the fuel gas inlet 13 and outlet 14.
JP 2004-267852 A

モジュールケース10端面部には、それぞれアノード側導電線6およびカソード側導電線7を接続し、導通させるための集電体12、12′がそれぞれ設けられる。集電体は、各導電線6、7の端部を挿入できるような貫通孔(図示せず)を設けた金属製円板で形成され、貫通孔部では各導電線が半田等の導電性材料で封止固定することが行われる。   Current collectors 12 and 12 'for connecting and conducting the anode-side conductive wire 6 and the cathode-side conductive wire 7 are provided on the end surface of the module case 10 respectively. The current collector is formed of a metal disk provided with a through hole (not shown) through which the end of each conductive wire 6, 7 can be inserted. In the through hole, each conductive wire is electrically conductive such as solder. Sealing and fixing with a material is performed.

本発明の円筒型固体電解質燃料電池は、このようにして構成され、用いられるが、一体に接続された、ロール状に捲かれた導電性不織布シートよりなるチューブ型燃料電池セル群は、さらにその外周部に好ましくは複数本の無機円柱体を均等に配することにより、その機械的安定性をさらに確保することができる。図9および図10の断面図には、無機円柱体21、21′、21′′を3本均等に配した状態が示されている。   The cylindrical solid electrolyte fuel cell of the present invention is constructed and used in this manner, but the tube type fuel cell group composed of conductive nonwoven sheets wound in a roll and connected together is further The mechanical stability can be further ensured by preferably uniformly arranging a plurality of inorganic cylindrical bodies on the outer peripheral portion. 9 and 10 show a state in which three inorganic cylinders 21, 21 ', 21' 'are evenly arranged.

無機円柱体としては、チューブ型燃料電池セルと熱膨張係数が大きく異ならなければ任意の材質のものを使用し得るが、強度やコストなどの面からはアルミナ、ムライト、ジルコニア等の円柱体であることが好ましく、一般にはその太さが約3〜6mm程度のものが用いられる。無機円柱体の配し方は、チューブ型燃料電池セルと無機円柱体とを一束にする際、チューブ型燃料電池セル型を弱い緊迫力で傷付けずにまとめることのできる方法であれば何でもよく、一応とめるだけであるので例えば輪ゴムを用いるなど汎用の方法を用いることができる。   As the inorganic cylinder, any material can be used as long as the coefficient of thermal expansion is not significantly different from that of the tube-type fuel cell, but from the viewpoint of strength, cost, etc., it is a cylinder of alumina, mullite, zirconia or the like. In general, a material having a thickness of about 3 to 6 mm is used. The method of arranging the inorganic cylinders is not limited as long as the tube-type fuel cells and the inorganic cylinders are bundled together as long as the tube-type fuel cells can be bundled together with a weak force without damaging them. Therefore, a general-purpose method such as using a rubber band can be used.

その外周部に無機円柱体を配した円筒状セル群は、その両端部を円筒体に挿入し、円筒体挿入部をポッティングした上で、筒状ケース内に収容され、モジュール化された状態で用いられる。図11は、図5に示された態様において、円筒状ケース内に収容してモジュール化した状態を示す中心線縦断面図(ただし、内部は正面図)であり、3本の無機円柱体21、21′、21′′を配したチューブ型燃料電池セル群はその両端部で円筒体22に挿入され、チューブ型燃料電池セル群間、これと無機円柱体および円筒体との間をそれぞれポッティング23し、またOリング24でシールした上で、筒状ケース10内に収容され、モジュール化される。なお、符号25は筒状ケース両末端ポッティング部である。   The cylindrical cell group in which the inorganic columnar body is arranged on the outer peripheral portion is inserted into the cylindrical body at both ends, and the cylindrical body insertion portion is potted, and then accommodated in the cylindrical case and modularized. Used. FIG. 11 is a centerline longitudinal sectional view (however, the inside is a front view) showing a state in which it is housed in a cylindrical case and modularized in the embodiment shown in FIG. , 21 ′, 21 ″ are inserted into the cylindrical body 22 at both ends of the tube-type fuel cell group, and the tube-type fuel battery cell group is potted between the inorganic cylindrical body and the cylindrical body. 23, and after sealing with an O-ring 24, it is accommodated in the cylindrical case 10 and modularized. Reference numeral 25 denotes a cylindrical case both ends potting portion.

このモジュール化に際しては、例えば下記特許文献に記載されるような方法が用いられる。まず、チューブ型燃料電池セル群間、これと無機円柱体および円筒体との間で、端部における仮接着が行われる。仮接着は、常温以上の融点、好ましくは常温乃至約70℃の融点を有し、溶媒抽出、加熱溶融等の除去手段で容易に除去できる有機化合物であれば任意のものを用いることができ、例えばポリエチレングリコール#1540(融点44〜48℃)、ポリエチレングリコール#6000(融点56〜63℃)、n-テトラデシルアルコール(融点38℃)、パラフィン(融点42〜70℃)、1-エイコサノール(融点64〜66℃)等を、仮接着すべき両者間に溶融または有機溶媒溶液などとして流し込み、固化させることによって行われる。また、この仮接着部分は、空気や液体が漏れることがないように、封止状態であることが求められる。
特開2001−353426号公報
For this modularization, for example, a method as described in Patent Document 6 below is used. First, temporary bonding at the end is performed between the tube-type fuel cell groups and between the inorganic columnar body and the cylindrical body. Temporary adhesion may be any organic compound that has a melting point of room temperature or higher, preferably from room temperature to about 70 ° C., and can be easily removed by removal means such as solvent extraction and heat melting, For example, polyethylene glycol # 1540 (melting point 44-48 ° C.), polyethylene glycol # 6000 (melting point 56-63 ° C.), n-tetradecyl alcohol (melting point 38 ° C.), paraffin (melting point 42-70 ° C.), 1-eicosanol (melting point) 64 to 66 ° C.) or the like is poured as a molten or organic solvent solution between the two to be temporarily bonded, and solidified. In addition, the temporarily bonded portion is required to be in a sealed state so that air and liquid do not leak.
JP 2001-353426 A

円筒体としては、一般に長さが約30〜100mm程度に設定された樹脂製円筒体であって、その外周面にOリング、ガスケット等が嵌装できる溝や切欠きを有するものが用いられる。また、その材質は、発電時に環境に耐え得るものであればどのような種類の樹脂であってもよいが、例えば固体高分子形電解質燃料電池にあっては、ポリスルホン、ポリフェニレンスルホン、ポリエーテルスルホン等のポリスルホン系樹脂製のものが好んで用いられる。   As the cylindrical body, a resin-made cylindrical body generally having a length of about 30 to 100 mm and having a groove or a notch in which an O-ring, a gasket or the like can be fitted is used. The material may be any type of resin that can withstand the environment during power generation. For example, in a polymer electrolyte fuel cell, polysulfone, polyphenylenesulfone, polyethersulfone is used. Those made of a polysulfone resin such as are preferably used.

末端部を仮接着した後、長さ方向中央部側から上記各要素の間隙間にポッティング剤が充填される。ポッティング剤としては、前述の如きものが用いられ、ポッティング剤の固化後、仮接着剤である有機化合物の除去が行われる。末端部におけるこのような封止方法は、一方の末端部について行われた後、他方の末端部について行われる。   After temporarily bonding the end portions, a potting agent is filled into the gaps between the elements from the central portion in the length direction. As the potting agent, those described above are used, and after the potting agent is solidified, the organic compound as the temporary adhesive is removed. Such a sealing method at the end portion is performed on one end portion and then on the other end portion.

このようにして両末端部をポッティング層で固定した、無機円筒体を配したチューブ型燃料電池セル群と樹脂円筒体との一体化物は、モジュールケースに挿入され、円筒体外表面とケース内表面間をゴム製またはエラストマー製のOリング、ガスケット等で封止する。   In this way, the integrated body of the tubular fuel cell group with the inorganic cylindrical body and the resin cylindrical body, both ends of which are fixed by the potting layer, is inserted into the module case, and between the outer surface of the cylindrical body and the inner surface of the case. Is sealed with a rubber or elastomer O-ring, gasket, or the like.

次いで、モジュールケース両端部をアルミ箔、セロファン等の導電線を突き刺すことができるようなシートで仮封止し、モジュール両端を上記の如きポッティング剤25で充填する。次いで、導電線の本数分の孔を穿設した金属板からなる集電板12をモジュール両端に配置し、導電線6、7を集電板12、12′の孔の部分に挿入する。集電板と導電線との間の隙間は、半田や導電性接着剤等の導電性材料を用いて封止され、固定される。   Next, both ends of the module case are temporarily sealed with a sheet capable of piercing a conductive wire such as aluminum foil or cellophane, and both ends of the module are filled with the potting agent 25 as described above. Next, current collecting plates 12 made of a metal plate having holes corresponding to the number of conductive wires are arranged at both ends of the module, and the conductive wires 6 and 7 are inserted into the holes of the current collecting plates 12 and 12 '. The gap between the current collector plate and the conductive wire is sealed and fixed using a conductive material such as solder or a conductive adhesive.

本発明に係るチューブ型固体電解質燃料電池の一実施態様の断面図である。1 is a cross-sectional view of an embodiment of a tube-type solid electrolyte fuel cell according to the present invention. 本発明に係るチューブ型固体電解質燃料電池の一実施態様の平面図である。It is a top view of one embodiment of the tube type solid electrolyte fuel cell concerning the present invention. 本発明に係るチューブ型固体電解質燃料電池の他の実施態様の断面図である。It is sectional drawing of the other embodiment of the tube type solid electrolyte fuel cell which concerns on this invention. 一方の導電性線状体をシート状導電性織物に織り込んだ状態を示す織り込み方向の断面図である。It is sectional drawing of the weaving direction which shows the state which woven one conductive linear body in the sheet-like conductive fabric. 本発明のチューブ型固体電解質燃料電池の一実施態様をロール状に捲いた状態を示す断面図である。It is sectional drawing which shows the state which wound up one embodiment of the tube type solid electrolyte fuel cell of this invention in roll shape. 本発明の円筒型固体電解質燃料電池の他の実施態様をロール状に捲いた状態を示す断面図である。It is sectional drawing which shows the state which rolled another embodiment of the cylindrical solid electrolyte fuel cell of this invention in roll shape. 円筒状ケースに収容してモジュール化した状態を示す中心線縦面図(ただし、内部は正面図)である。FIG. 2 is a vertical view of the center line showing a modularized state housed in a cylindrical case (however, the inside is a front view). モジュール化した円筒型固体電解質燃料電池を円筒状ケースに収容した状態を示す正面図である。It is a front view which shows the state which accommodated the cylindrical solid electrolyte fuel cell modularized in the cylindrical case. 本発明のチューブ型固体電解質燃料電池の一実施態様で、無機円柱体を配したものの断面図である。It is sectional drawing of what arranged the inorganic cylinder in one embodiment of the tube type solid electrolyte fuel cell of this invention. 本発明のチューブ型固体電解質燃料電池の他の実施態様で、無機円柱体を配したものの断面図である。It is sectional drawing of what arrange | positioned the inorganic cylindrical body in the other embodiment of the tube type solid electrolyte fuel cell of this invention. 無機円柱体を配し、円筒状ケースに収容してモジュール化した状態を示す中心線縦面図(ただし、内部は正面図)である。It is a centerline vertical view (however, the inside is a front view) which shows the state which arrange | positioned the inorganic cylinder and accommodated in the cylindrical case, and was modularized.

符号の説明Explanation of symbols

1 導電性不織布円筒体(第1の孔部)
2 多孔質導電性円筒体
3 電極
4 固体電解質
5 電極
6 導電線
7 導電線
8 導電性不織布円筒体(第2の孔部)
9 導電性不織布シート
11 ポッティング層
12、12′ 集電体
21、21′、21′′ 無機円柱体
22 円筒体
23 ポッティング部
24 Oリング
25 ポッティング部
1 Conductive non-woven fabric cylindrical body (first hole)
2 Porous conductive cylindrical body 3 Electrode 4 Solid electrolyte 5 Electrode 6 Conductive wire 7 Conductive wire 8 Conductive nonwoven fabric cylindrical body (second hole)
9 Conductive nonwoven sheet
11 Potting layer
12, 12 'current collector
21, 21 ′, 21 ″ inorganic cylinder
22 Cylindrical body
23 Potting part
24 O-ring
25 Potting part

Claims (14)

導電性不織布シートよりなる第1の集電体の面方向に、導電性不織布円筒体として形成された第1の孔部を複数設け、該第1の孔部にチューブ型燃料電池セルが挿入され、(1)第1の孔部より口径の小さい導電性不織布円筒体として形成された第2の孔部を複数設け、該第2の孔部に導電線が第2の集電体として挿入され、あるいは(2)前記第1の孔部相互間に導電線が第2の集電体として織り込まれ、これら第2の集電体が不織布シートと一体化されたチューブ型固体電解質燃料電池。 A plurality of first holes formed as a conductive nonwoven fabric cylindrical body are provided in the surface direction of the first current collector made of the conductive nonwoven fabric sheet, and a tube type fuel cell is inserted into the first hole. (1) A plurality of second holes formed as conductive nonwoven cylindrical bodies having a smaller diameter than the first holes are provided, and conductive wires are inserted as second current collectors into the second holes. Or (2) A tube type solid electrolyte fuel cell in which conductive wires are woven between the first holes as a second current collector, and these second current collectors are integrated with a nonwoven fabric sheet. 前記導電性不織布シートがカーボン繊維不織布シートである請求項1記載のチューブ型固体電解質燃料電池。 The tube-type solid electrolyte fuel cell according to claim 1, wherein the conductive nonwoven fabric sheet is a carbon fiber nonwoven fabric sheet. 前記チューブ型燃料電池セルが、導電線を挿入した多孔質導電性円筒体の外周部に電極、固体電解質および電極を順次積層させた円柱状積層体である請求項1記載のチューブ型固体電解質燃料電池。 2. The tube-type solid electrolyte fuel according to claim 1, wherein the tube-type fuel cell is a cylindrical laminate in which an electrode, a solid electrolyte, and an electrode are sequentially laminated on an outer peripheral portion of a porous conductive cylinder into which a conductive wire is inserted. battery. 前記多孔質導電性円筒体が珪素化チタンTiSiを主成分として形成された導電性多孔質中空糸膜である請求項3記載のチューブ型固体電解質燃料電池。 4. The tube-type solid electrolyte fuel cell according to claim 3, wherein the porous conductive cylindrical body is a conductive porous hollow fiber membrane formed with titanium silicide TiSi as a main component. 前記固体電解質が固体高分子形電解質または固体酸化物電解質である請求項3記載のチューブ型固体電解質燃料電池。 The tube type solid electrolyte fuel cell according to claim 3, wherein the solid electrolyte is a solid polymer electrolyte or a solid oxide electrolyte. 前記導電性不織布シートに第1の孔部と第2の孔部とが交互に設けられた請求項1記載のチューブ型固体電解質燃料電池。The tube-type solid electrolyte fuel cell according to claim 1, wherein the conductive nonwoven fabric sheet is provided with first holes and second holes alternately. 前記チューブ型燃料電池セル内に挿入された導電線または前記第2の集電体のどちらか一方燃料側電極としてのアノード側電極とし、前記チューブ型燃料電池セル内に挿入された導電線または前記第2の集電体の他方空気側電極としてのカソード側電極とした請求項記載のチューブ型固体電解質燃料電池。 Either the conductive wire inserted into the tubular fuel cell or the second current collector is used as an anode electrode as a fuel side electrode, and the conductive wire inserted into the tubular fuel cell or The tube-type solid electrolyte fuel cell according to claim 3, wherein the other of the second current collectors is a cathode side electrode as an air side electrode. 導電性不織布シートよりなる第1の集電体がロール状に捲かれた状態もしくは折り畳まれた状態とされ、そのような状態でチューブ型燃料電池セルが固定された請求項1記載のチューブ型固体電解質燃料電池。The tube-type solid according to claim 1, wherein the first current collector made of a conductive nonwoven fabric sheet is rolled or folded, and the tube-type fuel cell is fixed in such a state. Electrolyte fuel cell. 筒状ケース内に収容され、モジュール化された状態で用いられる請求項8記載のチューブ型固体電解質燃料電池。The tube-type solid electrolyte fuel cell according to claim 8, which is housed in a cylindrical case and used in a modularized state. ロール状に捲かれあるいは折り畳まれた状態のチューブ型燃料電池セル群の外周部に無機円柱体を配してなる請求項8記載のチューブ型固体電解質燃料電池。The tube-type solid electrolyte fuel cell according to claim 8, wherein an inorganic columnar body is disposed on an outer peripheral portion of the tube-type fuel cell group that is wound or folded in a roll shape. その外周部に前記無機円柱体を配したチューブ型燃料電池セル群を円筒体に挿入し、チューブ型燃料電池セル群両端部をポッティングした請求項10記載のチューブ型固体電解質燃料電池。The tube-type solid electrolyte fuel cell according to claim 10, wherein a tube-type fuel cell group in which the inorganic columnar body is arranged on the outer periphery thereof is inserted into a cylindrical body, and both ends of the tube-type fuel cell group are potted. 筒状ケース内に収容され、モジュール化された状態で用いられる請求項11記載のチューブ型固体電解質燃料電池。 The tube-type solid electrolyte fuel cell according to claim 11, which is housed in a cylindrical case and used in a modularized state. 導電性不織布シートよりなる第1の集電体の面方向に、チューブ型燃料電池セルを挿入可能な、導電性不織布円筒体よりなる第1の孔部を複数設け、該孔部にチューブ型燃料電池セルを挿入し、(1)第1の孔部より口径の小さい導電性不織布円筒体として形成された第2の孔部を複数設け、該第2の孔部に導電線が第2の集電体として挿入され、あるいは(2)前記第1の孔部相互間に導電線が第2の集電体として織り込まれ、これら第2の集電体が不織布シートと一体化することを特徴とするチューブ型固体電解質燃料電池の製造法。In the surface direction of the first current collector made of a conductive nonwoven sheet, a plurality of first holes made of a conductive nonwoven cylindrical body into which tube type fuel cells can be inserted are provided, and the tube type fuel is placed in the holes. A battery cell is inserted, and (1) a plurality of second holes formed as a conductive nonwoven cylindrical body having a smaller diameter than that of the first holes are provided, and the conductive wires are provided in the second holes. Or (2) a conductive wire is woven as a second current collector between the first holes, and the second current collector is integrated with the nonwoven fabric sheet. A manufacturing method for a tubular solid electrolyte fuel cell. 前記チューブ型燃料電池セルが、導電線を挿入した多孔質導電性円筒体の外周部に電極、固体電解質および電極を順次積層させた円柱状積層体である請求項13記載のチューブ型固体電解質燃料電池の製造法。14. The tube-type solid electrolyte fuel according to claim 13, wherein the tube-type fuel cell is a columnar laminated body in which an electrode, a solid electrolyte, and an electrode are sequentially laminated on an outer peripheral portion of a porous conductive cylinder into which a conductive wire is inserted. Battery manufacturing method.
JP2006157114A 2006-06-06 2006-06-06 Tube type solid electrolyte fuel cell Expired - Fee Related JP5084180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157114A JP5084180B2 (en) 2006-06-06 2006-06-06 Tube type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157114A JP5084180B2 (en) 2006-06-06 2006-06-06 Tube type solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2007328939A JP2007328939A (en) 2007-12-20
JP5084180B2 true JP5084180B2 (en) 2012-11-28

Family

ID=38929270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157114A Expired - Fee Related JP5084180B2 (en) 2006-06-06 2006-06-06 Tube type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5084180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035558A1 (en) * 2006-09-19 2008-03-27 Hisamitsu Pharmaceutical Co., Inc. Device for percutaneous absorption preparation
US8419708B2 (en) 2006-02-10 2013-04-16 Hisamitsu Pharmaceuticals Co., Inc. Transdermal drug administration apparatus having microneedles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771261B2 (en) * 2008-02-27 2011-09-14 独立行政法人産業技術総合研究所 Electrochemical reactor bundle, stack and electrochemical reaction system composed of them
CA3076800A1 (en) * 2017-09-25 2019-03-28 National University Corporation Chiba University Porous conductor having conductive nanostructure and electricity storage device using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790666B2 (en) * 1989-07-28 1998-08-27 日本碍子株式会社 Fuel cell generator
US7695843B2 (en) * 2004-02-13 2010-04-13 Microcell Corporation Microfibrous fuel cell assemblies comprising fiber-supported electrocatalyst layers, and methods of making same
JP4438525B2 (en) * 2004-06-11 2010-03-24 トヨタ自動車株式会社 FUEL CELL CELL MODULE, MANUFACTURING METHOD THEREOF, AND FUEL CELL
JP4789429B2 (en) * 2004-06-11 2011-10-12 トヨタ自動車株式会社 Membrane electrode composite for tube fuel cell
JP2006066186A (en) * 2004-08-26 2006-03-09 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell
JP2006140104A (en) * 2004-11-15 2006-06-01 Toyota Motor Corp Tube type fuel cell device and operation method of tube type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419708B2 (en) 2006-02-10 2013-04-16 Hisamitsu Pharmaceuticals Co., Inc. Transdermal drug administration apparatus having microneedles
WO2008035558A1 (en) * 2006-09-19 2008-03-27 Hisamitsu Pharmaceutical Co., Inc. Device for percutaneous absorption preparation

Also Published As

Publication number Publication date
JP2007328939A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
ES2359869T3 (en) COMBUSTION BATTERY CONSTITUTED BY A PLURALITY OF ELEMENTARY CELLS CONNECTED IN SERIES THROUGH CURRENT COLLECTORS.
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
US20080118812A1 (en) Fuel cell stack and fuel cell device including the same
EP1531513A2 (en) Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells
WO2000002275A2 (en) Electrochemical fuel cell having an undulate membrane electrode assembly
JP2011515794A (en) Electrochemical cells and membranes related thereto
JP5084180B2 (en) Tube type solid electrolyte fuel cell
EP2211414A1 (en) Fuel cell stack device, fuel cell stack connection device, and fuel cell device
JP2008034278A (en) Fuel cell
ES2552390T3 (en) An improved electrochemical cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP2014114168A (en) Jointing material, and stack structure of fuel battery using the jointing material
JP2016225035A (en) Cell stack device, module and module housing apparatus
US20120015275A1 (en) Solid oxide fuel cell and fuel cell stack
JP6158683B2 (en) Cell stack device, module and module storage device
JP2010003470A (en) Fuel cell
JP2015162287A (en) Fuel battery cell stack device and fuel cell device
JP2007317612A (en) Fuel cell stack device, fuel cell stack coupling device, and fuel cell
KR101694144B1 (en) Flat tubular solid oxide fuel cell and method of manufacturing the same
JP2004288608A (en) Assembly of cylindrical solid oxide fuel battery cell
JP2007066702A (en) Fuel cell
JP2007012293A (en) Electrode structure for solid electrolyte fuel cell
JP2014017244A (en) Stack structure of fuel cell
EP2602852B1 (en) Device for solid oxide fuel cell or solid oxide electrolysis cell comprising integral one-piece current collector and manifold

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees