JP2007328014A - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
JP2007328014A
JP2007328014A JP2006157151A JP2006157151A JP2007328014A JP 2007328014 A JP2007328014 A JP 2007328014A JP 2006157151 A JP2006157151 A JP 2006157151A JP 2006157151 A JP2006157151 A JP 2006157151A JP 2007328014 A JP2007328014 A JP 2007328014A
Authority
JP
Japan
Prior art keywords
lens
lens group
objective lens
group
microscope objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157151A
Other languages
Japanese (ja)
Other versions
JP4959230B2 (en
Inventor
Yasuhiro Yamawaki
康弘 山脇
Takafumi Yamamoto
啓文 山本
Keisuke Hamamoto
啓介 濱元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006157151A priority Critical patent/JP4959230B2/en
Publication of JP2007328014A publication Critical patent/JP2007328014A/en
Application granted granted Critical
Publication of JP4959230B2 publication Critical patent/JP4959230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope objective lens having a correction ring that corrects deterioration in imaging performance caused by a change in the thickness of a transparent parallel flat plate such as a cover glass, the objective lens which is designed so as to ensure a space for a moving mechanism by the correction ring. <P>SOLUTION: The microscope objective lens includes: a first lens group with positive refractive power; a second lens group with positive refractive power, which is movable along an optical axis; a third lens group having at least one cemented lens; and a fourth lens group having a convex face which is located closest to an object. The microscope objective lens satisfies conditions described below, ensures the moving mechanism by means of the correction ring, is compact and has satisfactory imaging performance. The conditions are (1) 6<f<SB>2</SB>/f<16, (2) 0.2<f<SB>2</SB>/f<SB>3</SB><1.2, and (3) ¾R<SB>3</SB>¾/¾R<SB>4</SB>¾>4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、顕微鏡対物レンズに関し、特に、物体側に配置されたカバーガラス等の透明な平行平面板の厚さが変化した場合でも良好な結像性能が得られるようにした補正環付顕微鏡対物レンズに関するものである。     The present invention relates to a microscope objective lens, and in particular, a microscope objective with a correction ring that can obtain good imaging performance even when the thickness of a transparent plane parallel plate such as a cover glass disposed on the object side changes. It relates to lenses.

一般に、顕微鏡対物レンズは、カバーガラス等の平行平面板の厚さが設計値より大きく異なる場合は、その結像性能が劣化する。この傾向は、対物レンズの開口数(NA)が大きくなる程顕著になる。     In general, when the thickness of a plane parallel plate such as a cover glass differs greatly from a design value, the imaging performance of the microscope objective lens deteriorates. This tendency becomes more prominent as the numerical aperture (NA) of the objective lens increases.

従来、カバーガラスの厚さの変化に応じて、対物レンズ内のレンズ間隔を変化させて、収差変動を補正するいわゆる補正環対物レンズが知られている。     Conventionally, a so-called correction ring objective lens that corrects aberration fluctuations by changing the lens interval in the objective lens according to the change in the thickness of the cover glass is known.

このような補正環対物レンズの従来例として、下記文献のレンズ系が知られている。
特開平10−142510号公報 特開平8−114747号公報 これら従来例のうち、特許文献1に記載されている対物レンズは、物体側から順に、物体側に凹面を向けた負の屈折力を持つレンズと像側に凸面を向けた正の屈折力を持つレンズとの接合レンズからなる第1レンズ群と、負の屈折力の接合面を有する接合レンズの第2レンズ群と、発散光束を収斂光束に変える第3レンズ群と、最も像側の面が凹面である負の屈折力を有する第4レンズ群とより構成され、第2レンズ群を光軸に沿って移動させてカバーガラスの厚さの変化による収差補正を行なっている。
As a conventional example of such a correction ring objective lens, a lens system disclosed in the following document is known.
Japanese Patent Laid-Open No. 10-142510 Among these conventional examples, the objective lens described in Patent Document 1 has, in order from the object side, a lens having a negative refractive power with a concave surface facing the object side and a convex surface on the image side. A first lens group composed of a cemented lens with a lens having a positive refractive power directed to the second lens group, a second lens group of a cemented lens having a cemented surface having a negative refractive power, and a third lens group that converts a divergent light beam into a convergent light beam And a fourth lens group having a negative refractive power whose surface closest to the image side is a concave surface, and the second lens group is moved along the optical axis to correct aberration by changing the thickness of the cover glass. Is doing.

また、特許文献2には、物体側から順に、物体側に凹面を向けた正のメニスカスレンズ成分を有し、物体からの光をほぼ平行光束に変換する正の屈折力を有する第1レンズ群と、発散性の接合面を含み合成の屈折力が正の屈折力である第2レンズ群と、強い発散作用を持つ負の屈折面を有する第3レンズ群と負の屈折力を有する第4レンズ群にて構成された対物レンズで、第2レンズ群を光軸に沿って移動させることにより、カバーガラスの厚さの変化による収差補正を行なっている。     Patent Document 2 discloses a first lens group having a positive meniscus lens component having a concave surface directed toward the object side in order from the object side and having a positive refractive power for converting light from the object into a substantially parallel light beam. A second lens group that includes a divergent cementing surface and has a combined refractive power of positive refractive power, a third lens group that has a negative refractive surface having a strong diverging action, and a fourth lens having negative refractive power. With the objective lens configured by the lens group, the second lens group is moved along the optical axis, thereby correcting the aberration by changing the thickness of the cover glass.

近年、ガラス等の透明な平行平面板の下に配線を行なう製品や、光学素子を組み込んだ電子機器が増加しており、液晶基板の検査等に見られるような、透明な平行平面板越しに物体の検査を行ない得る装置の需要が高まっている。     In recent years, there are an increasing number of products that carry wiring under transparent parallel flat plates such as glass and electronic devices incorporating optical elements. Through transparent parallel flat plates, such as those found in liquid crystal substrate inspection, etc. There is an increasing demand for devices capable of inspecting objects.

このような装置に用いられる顕微鏡対物レンズは、高開口数であることと、長作動距離であることが求められ、補正環対物レンズにおいても高開口数であることと、長作動距離であることが求められる。補正環対物レンズの場合、更に透明な平行平面板越しの物体検査装置に組み込み易いように、コンパクトであることが要求される。     The microscope objective lens used in such an apparatus is required to have a high numerical aperture and a long working distance, and the correction ring objective lens also has a high numerical aperture and a long working distance. Is required. The correction ring objective lens is required to be compact so that it can be easily incorporated into an object inspection apparatus through a transparent plane-parallel plate.

しかし、対物レンズは、高NAで、長作動距離になるにつれ、レンズの径は大になる傾向にある。     However, the objective lens has a high NA, and the lens diameter tends to increase as the working distance increases.

前記特許文献1の対物レンズは、NAが大きく、収差が抑えられ、高解像で高コントラストであるが、移動群の後ろの群の光線高を十分に抑えきれず、対物レンズの最大光線高つまり対物レンズ全体の径が大であり、装置に組み込みにくい。     The objective lens of Patent Document 1 has a large NA, suppressed aberrations, high resolution and high contrast, but cannot sufficiently suppress the ray height of the group behind the moving group, and the maximum ray height of the objective lens. In other words, the overall diameter of the objective lens is large and it is difficult to incorporate it into the apparatus.

また、特許文献2の対物レンズは、NAが大きく、接合レンズにより色収差が補正され、高解像で高コントラストであるが、移動群の光線高が高く、補正群の移動メカ機構を配置するスペースがなくなり、移動機構を配置すると移動機構を含む対物レンズ全体の径が大になり、装置に組み込みにくい。     The objective lens of Patent Document 2 has a large NA, chromatic aberration is corrected by a cemented lens, high resolution and high contrast, but the moving group has a high beam height, and a space for arranging the moving mechanism of the correcting group. If the moving mechanism is disposed, the diameter of the entire objective lens including the moving mechanism becomes large, and it is difficult to incorporate it into the apparatus.

本発明は、上記のような従来例の問題点を解決するためになされたもので、良好な結像性能を有し、かつ補正環による移動機構のスペースを確保したコンパクトな対物レンズを提供するものである。     The present invention has been made in order to solve the above-described problems of the conventional example, and provides a compact objective lens having good imaging performance and ensuring a space for a moving mechanism by a correction ring. Is.

本発明の顕微鏡対物レンズは、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有し光軸に沿って移動可能な第2レンズ群と、少なくとも一つの接合レンズを有する第3レンズ群と、最も物体側の面が物体側に凸の面で全体として負の屈折力を有する第4レンズ群にて構成され、次の条件(1)、(2)、(3)を満足するものである。     The microscope objective lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power and movable along the optical axis, and at least one joint. A third lens group having a lens, and a fourth lens group having a negative refractive power as a whole with the most object side surface convex to the object side, and the following conditions (1), (2), (3) is satisfied.

(1) 6<f2/f<16
(2) 0.2<f2/f3<1.2
(3) |R3|/|R4|>4
ただし、f2は第2レンズ群の焦点距離、f3は第3レンズ群の焦点距離、fは対物レンズ全系の焦点距離、R3は第3レンズ群の最も像側の面の曲率半径、R4は第4レンズ群の最も物体側の面の曲率半径である。
(1) 6 <f 2 / f <16
(2) 0.2 <f 2 / f 3 <1.2
(3) | R 3 | / | R 4 |> 4
Where f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, f is the focal length of the entire objective lens system, and R 3 is the radius of curvature of the most image side surface of the third lens group. , R 4 is the radius of curvature of the surface of the fourth lens group closest to the object side.

また、本発明の対物レンズは、上記構成のレンズ系であって、全系の焦点距離が下記条件(5)を満足するもので、更に条件(4)を満足することを特徴とする。     The objective lens according to the present invention is a lens system having the above-described configuration, wherein the focal length of the entire system satisfies the following condition (5), and further satisfies the condition (4).

(4) −10<f4/f<−2
(5) 1<f<5
ただし、f4は第4レンズ群の焦点距離である。
(4) −10 <f 4 / f <−2
(5) 1 <f <5
Here, f 4 is the focal length of the fourth lens group.

本発明の顕微鏡対物レンズは、前記のレンズ構成つまり前記の第1、第2、第3、第4レンズ群よりなり、条件(1)、(2)、(3)を満足するレンズ系で、全系の焦点距離fが下記条件(7)を満足する範囲内で、第4レンズ群の焦点距離f4’が条件(6)を満足するものである。 The microscope objective lens according to the present invention is a lens system that includes the lens configuration, that is, the first, second, third, and fourth lens groups, and satisfies the conditions (1), (2), and (3). The focal length f 4 ′ of the fourth lens group satisfies the condition (6) within the range where the focal length f of the entire system satisfies the following condition (7).

(6) −40<f4’/f<−20
(7) 8<f<11
本発明の顕微鏡対物レンズにおいて、第1レンズ群が下記条件(8)を満足することが望ましい。
(6) −40 <f 4 ′ / f <−20
(7) 8 <f <11
In the microscope objective lens of the present invention, it is desirable that the first lens group satisfies the following condition (8).

(8) 1<f1/f<5
ただし、f1は第1レンズ群の焦点距離である。
(8) 1 <f 1 / f <5
Here, f 1 is the focal length of the first lens group.

前記の顕微鏡対物レンズにおいて、即ち、前記第1レンズ群、第2レンズ群、第3レンズ群にて構成され、条件(1)、(2)、(3)を満足する対物レンズで、第2レンズ群のうちの最も高い光線高をH2、第3レンズ群のうちの最も高い光線高をH3とする時、下記条件(9)を満足することが望ましい。 In the microscope objective lens, that is, an objective lens configured by the first lens group, the second lens group, and the third lens group and satisfying the conditions (1), (2), and (3), It is desirable to satisfy the following condition (9), where H 2 is the highest ray height in the lens group and H 3 is the highest ray height in the third lens group.

(9) H2/H3<1
また、前記本発明の対物レンズにおいて、第1レンズ群の最も物体側のレンズの屈折率N1を下記条件(10)を満足する範囲内にすることが望ましい。
(9) H 2 / H 3 <1
In the objective lens of the present invention, it is desirable that the refractive index N 1 of the lens closest to the object side in the first lens group be within a range satisfying the following condition (10).

(10) N1>1.7
前記顕微鏡対物レンズにおいて、第1レンズ群の物体側の面の曲率半径をR1、像側の面の曲率半径をR2とする時、下記条件(11)を満足することが好ましい。
(10) N 1 > 1.7
In the microscope objective lens, when the radius of curvature of the object side surface of the first lens unit is R 1 and the radius of curvature of the image side surface is R 2 , the following condition (11) is preferably satisfied.

(11) |R1|/|R2|>1
前記本発明の対物レンズにおいて、第4レンズ群を凸レンズと凹レンズを接合した接合レンズを含む構成とし、凸レンズのアッベ数をν(4p)とする時、下記条件(12)を満足することが望ましい。
(11) | R 1 | / | R 2 |> 1
In the objective lens of the present invention, when the fourth lens group includes a cemented lens in which a convex lens and a concave lens are cemented, and the Abbe number of the convex lens is ν (4p) , it is preferable that the following condition (12) is satisfied. .

(12) ν(4p)<35
前記本発明の顕微鏡対物レンズにおいて、第3レンズ群と第4レンズ群の間の空気間隔をDとする時、下記条件(13)を満足することが好ましい。
(12) ν (4p) <35
In the microscope objective lens according to the present invention, it is preferable that the following condition (13) is satisfied, where D is an air space between the third lens group and the fourth lens group.

(13) 0<D<3
尚、本発明の顕微鏡対物レンズは、以上述べた通りであるが、下記の通りのレンズ系も本発明の目的を達成し得る。
(13) 0 <D <3
Although the microscope objective lens of the present invention is as described above, the following lens system can also achieve the object of the present invention.

即ち、本発明の対物レンズは、前記のように、物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有し光軸に沿って移動可能な第2レンズ群と、少なくとも一つの接合レンズを有する第3レンズ群と、最も物体側の面が物体側に凸の面である第4レンズ群とよりなり、前記の条件(1)、(2)、(3)を満足するレンズ系で、全系の焦点距離fが前記の(5)に示す範囲内であって、条件(4)を満足するもの、あるいは全系の焦点距離fが前記の(7)に示す範囲内であって、条件(6)を満足する対物レンズで、更に条件(8)、(9)、(10)、(11)、(12)、(13)の少なくとも一つの条件を満足するレンズ系も本発明の目的を達成し得る。     That is, as described above, the objective lens of the present invention includes the first lens group having positive refractive power and the second lens group having positive refractive power and movable along the optical axis in order from the object side. And a third lens group having at least one cemented lens and a fourth lens group in which the most object-side surface is a convex surface on the object side, and the conditions (1), (2), (3 ) Satisfying the condition (4) in which the focal length f of the entire system is within the range shown in the above (5), or the focal length f of the entire system is the above (7). In the objective lens satisfying the condition (6), at least one of the conditions (8), (9), (10), (11), (12), and (13) is satisfied. A satisfactory lens system can also achieve the object of the present invention.

次に、上記の本発明のレンズ構成並びに各条件の設定の理由について述べる。     Next, the lens configuration of the present invention and the reason for setting each condition will be described.

本発明の顕微鏡対物レンズは、前述のように、正の第1レンズ群と、正の第2レンズ群と、少なくとも一つの接合レンズ成分を含む正の第3レンズ群と、最も物体側の面が物体側に凸の面である負の第4レンズ群とよりなり、前記条件(1)、(2)、(3)を満足する。     As described above, the microscope objective lens according to the present invention includes the positive first lens group, the positive second lens group, the positive third lens group including at least one cemented lens component, and the most object-side surface. Consists of a negative fourth lens unit having a convex surface on the object side, and satisfies the conditions (1), (2), and (3).

本発明の対物レンズは、まず正の第1レンズ群により物体より出る高いNAの光線の開き角を小さくする作用を有する。     The objective lens of the present invention has an action of reducing the opening angle of a high NA light beam emitted from an object by the positive first lens group.

そして、次の第2レンズ群により光束径の広がりを抑えるようにしている。これにより、球面収差や色収差を効果的に補正するようにしている。また、この第2レンズ群は、光軸に沿って移動させることによりガラス等の透明な平行平面板の厚さの変化による球面収差の変動を調整している。     Then, the spread of the beam diameter is suppressed by the next second lens group. Thereby, spherical aberration and chromatic aberration are effectively corrected. In addition, the second lens group adjusts the variation in spherical aberration due to the change in the thickness of a transparent plane parallel plate such as glass by being moved along the optical axis.

更に、第2レンズ群は、条件(1)を満足するようにその屈折力を規定している。     Further, the second lens group defines its refractive power so as to satisfy the condition (1).

この条件(1)において、f2/fが下限値の6よりも小になると、第2レンズ群の屈折力が強くなりすぎて負の球面収差が発生し、第1レンズ群で発生する球面収差を補正することが困難である。逆に条件(1)の上限値の16より大になると、第2レンズ群の屈折力が弱くなり、光束径を抑えきれず、次の第3レンズ群の最大光線高が高くなりすぎて、対物レンズ全体の径が大になる。 Under this condition (1), when f 2 / f is smaller than the lower limit of 6, the refractive power of the second lens group becomes too strong and negative spherical aberration occurs, and a spherical surface generated in the first lens group. It is difficult to correct aberrations. On the other hand, if the value exceeds the upper limit of 16 in the condition (1), the refractive power of the second lens group becomes weak, the beam diameter cannot be suppressed, and the maximum ray height of the next third lens group becomes too high. The diameter of the entire objective lens becomes large.

次に、第2レンズ群からの光束は、第3レンズ群により収斂される。     Next, the light flux from the second lens group is converged by the third lens group.

本発明の対物レンズは、第2レンズ群を移動させるため、この移動群の移動機構のスペースを確保する必要がある。そのため、光線高のバランスをとることを特徴としている。     Since the objective lens of the present invention moves the second lens group, it is necessary to secure a space for the moving mechanism of the moving group. Therefore, it is characterized by balancing the beam height.

対物レンズ全体の最大光線高よりも、移動レンズ群の光線高が小であるとメカ機構を含めた対物レンズ全体の径を大にすることなしに移動レンズ群のメカ機構を配置することができる。     If the light beam height of the moving lens group is smaller than the maximum light beam height of the entire objective lens, the mechanical mechanism of the moving lens group can be arranged without increasing the diameter of the entire objective lens including the mechanical mechanism. .

このような関係にするためには、第2レンズ群と第3レンズ群の屈折力の比が条件(2)を満足する必要がある。     In order to achieve such a relationship, the ratio of the refractive powers of the second lens group and the third lens group needs to satisfy the condition (2).

(2) 0.2<f2/f3<1.2
この条件(2)は、第2レンズ群と第3レンズ群における収斂させる屈折力の比を定めたもので、これにより第2レンズ群と第3レンズ群の収斂のバランスをとるようにしている。
(2) 0.2 <f 2 / f 3 <1.2
This condition (2) defines the ratio of the refractive powers to be converged in the second lens group and the third lens group, so that the convergence of the second lens group and the third lens group is balanced. .

第2レンズ群の焦点距離が第3レンズ群の焦点距離よりも小さいか、近い値であると両レンズ群による収斂のバランスをとることができる。     If the focal length of the second lens group is smaller than or close to the focal length of the third lens group, it is possible to balance convergence by both lens groups.

2/f3の値が条件(2)の上限値の1.2よりも大になると、移動レンズ群(第2レンズ群)より後ろのレンズ群の光線高が高くなりすぎて、対物レンズ全体の径が大きくなる。また光線高の高い光線では、高次の収差が発生する。 If the value of f 2 / f 3 is larger than the upper limit of 1.2 of the condition (2), the ray height of the lens group behind the moving lens group (second lens group) becomes too high, and the objective lens The overall diameter increases. In addition, high-order aberrations occur in light rays having a high ray height.

逆にf2/f3の値が下限値の0.2より外れて小になると、移動レンズ群である第2レンズ群の光線高が高くなりすぎて移動群のメカ機構のスペースがなくなる。 On the other hand, when the value of f 2 / f 3 is smaller than the lower limit of 0.2, the height of the light beam of the second lens group, which is the moving lens group, becomes too high, and there is no space for the mechanical mechanism of the moving group.

更に、本発明の対物レンズは、第3レンズ群が接合レンズ成分を含むことにより、色収差の補正を行なっている。     Furthermore, the objective lens of the present invention corrects chromatic aberration by the third lens group including a cemented lens component.

また、本発明のレンズ径は、第1レンズ群、第2レンズ群、第3レンズ群に大きな屈折力を有する。そのために、第4レンズ群をその最も物体側の面を物体側に凸の面とし、このレンズ群全体を負の屈折力を有するようにし、更に、第3レンズ群の最も像側の面と第4レンズ群の最も物体側の面の曲率半径の関係を条件(3)を満足するように定める必要がある。     The lens diameter of the present invention has a large refractive power in the first lens group, the second lens group, and the third lens group. For this purpose, the fourth lens group has its most object-side surface convex toward the object side, the entire lens group has negative refractive power, and the third lens group has the most image-side surface. It is necessary to determine the relationship of the radius of curvature of the surface closest to the object side of the fourth lens group so as to satisfy the condition (3).

(3) |R3|/|R4|>4
この条件(3)より外れ|R3|/|R4|の値が4より小になると、第3レンズ群から第4レンズ群にかけて光線を十分に下げることができなくなり、十分な負の屈折力を得られず、ペッツバール和を適正な値にコントロールできなくなる。
(3) | R 3 | / | R 4 |> 4
If the value of | R 3 | / | R 4 | deviates from this condition (3) and becomes smaller than 4, the light beam cannot be lowered sufficiently from the third lens group to the fourth lens group, and sufficient negative refraction is caused. Unable to gain power, the Petzval sum cannot be controlled to an appropriate value.

本発明の対物レンズは、全系の焦点距離fが、下記条件(5)の範囲内のレンズ系の場合、第4レンズ群の焦点距離f4を次の条件(4)を満足するようにしている。 In the objective lens of the present invention, when the focal length f of the whole system is a lens system within the range of the following condition (5), the focal length f 4 of the fourth lens group satisfies the following condition (4). ing.

(4) −10<f4/f<−2
(5) 1<f<5
条件(4)においてf4/fの値が上限値の−2より大になると、コマ収差が発生するため好ましくない。またf4/fの値が下限値の−10より小になると、この第4レンズ群の負の屈折力が小になり、ペッツバール和を適正な値に保つことができなくなる。
(4) −10 <f 4 / f <−2
(5) 1 <f <5
In the condition (4), if the value of f 4 / f is larger than the upper limit value −2, coma is generated, which is not preferable. If the value of f 4 / f is smaller than the lower limit of −10, the negative refractive power of the fourth lens group becomes small, and the Petzval sum cannot be maintained at an appropriate value.

また、本発明の対物レンズの全系の焦点距離fが下記条件(7)の範囲内の場合は、第4レンズ群の焦点距離f4’が下記条件(6)を満足することが望ましい。 When the focal length f of the entire objective lens system of the present invention is within the range of the following condition (7), it is desirable that the focal length f 4 ′ of the fourth lens group satisfies the following condition (6).

(6) −40<f4’/f<−20
(7) 8<f<11
この場合も、f4’/fの値が条件(6)の上限値の−20より大になると、コマ収差が発生するため好ましくない。またf4’/fの値が下限値の−40より小になると、この第4レンズ群の負の屈折力が小になり、ペッツバール和を適正な値に保つことができなくなる。
(6) −40 <f 4 ′ / f <−20
(7) 8 <f <11
Also in this case, if the value of f 4 ′ / f is larger than the upper limit value −20 of the condition (6), coma is generated, which is not preferable. If the value of f 4 ′ / f becomes smaller than the lower limit value of −40, the negative refractive power of the fourth lens group becomes small, and the Petzval sum cannot be maintained at an appropriate value.

本発明の対物レンズは、前述のように、第1レンズ群において物体から出る高NAの光束の開き角を小さくしている。この第1レンズ群の屈折力f1は、次の条件(8)を満足するように設定することが望ましい。 As described above, the objective lens of the present invention reduces the opening angle of the high NA light beam emitted from the object in the first lens group. The refractive power f 1 of the first lens group is desirably set so as to satisfy the following condition (8).

(8) 1<f1/f<5
この条件(8)は、第1レンズ群の屈折力を規定するもので、球面収差、コマ収差、色収差を補正し、また光線高をコントロールするための条件である。
(8) 1 <f 1 / f <5
This condition (8) defines the refractive power of the first lens group, and is a condition for correcting spherical aberration, coma aberration, and chromatic aberration, and for controlling the beam height.

この条件(8)において、f1/fが下限値の1より小になると、この第1レンズ群の屈折力が強くなりすぎて、球面収差、コマ収差、色収差が大きく補正不足になり、この第1レンズ群より後のレンズ群にての補正が困難になる。 In this condition (8), if f 1 / f is smaller than the lower limit of 1, the refractive power of the first lens group becomes too strong, and the spherical aberration, coma aberration, and chromatic aberration are greatly corrected, and this Correction in the lens group after the first lens group becomes difficult.

逆に、f1/fが上限値の5より大になると、第1レンズ群の屈折力が弱くなりすぎて、光束径を十分絞りきれなくなり、次の第2レンズ群で光線高が高くなり、移動群である第2レンズ群の移動させるためのメカ機構のスペースを確保できなるなる。更に、第2レンズ群での光線高が高くなることにより高次の球面収差が発生する。 On the other hand, if f 1 / f is larger than the upper limit of 5, the refractive power of the first lens group becomes too weak, and the beam diameter cannot be sufficiently reduced, and the beam height becomes higher in the next second lens group. The space for the mechanical mechanism for moving the second lens group, which is the moving group, can be secured. Furthermore, higher-order spherical aberration occurs due to an increase in the height of light rays in the second lens group.

以上述べた本発明の顕微鏡対物レンズにおいて、下記条件(9)を満足することが望ましい。     In the microscope objective lens of the present invention described above, it is preferable that the following condition (9) is satisfied.

(9) H2/H3<1
この条件(9)において、H2/H3の値が上限値1より大になると、第2レンズ群の光線高が高くなりレンズの径が大になり、移動群のメカ機構のスペースがなくなる。
(9) H 2 / H 3 <1
Under this condition (9), if the value of H 2 / H 3 is larger than the upper limit value 1, the height of the light beam of the second lens group becomes high, the lens diameter becomes large, and the space for the mechanical mechanism of the moving group is eliminated. .

更に、本発明の対物レンズにおいて、下記条件(10)を満足することが望ましい。     Furthermore, in the objective lens of the present invention, it is preferable that the following condition (10) is satisfied.

(10) N1>1.7
第1レンズ群の最も物体側のレンズの屈折率N1に関する条件で、球面収差、コマ収差を良好に補正するための条件である。この屈折率N1を大きな値にすることにより、このレンズの像側の面の曲率を緩くして球面収差、コマ収差の発生を防ぐことができる。N1の値の条件(10)の下限値の1.7より小になると、球面収差、コマ収差が発生し、後のレンズ群にて補正することが困難になる。
(10) N 1 > 1.7
This is a condition for satisfactorily correcting spherical aberration and coma aberration under the condition relating to the refractive index N 1 of the lens closest to the object side of the first lens group. By making this refractive index N 1 a large value, the curvature of the image side surface of this lens can be relaxed to prevent the occurrence of spherical aberration and coma. If the N 1 value condition (10) is less than the lower limit of 1.7, spherical aberration and coma occur, making it difficult to correct with the subsequent lens group.

また、本発明の顕微鏡対物レンズにおいて、下記条件(11)を満足すればより望ましい。     In the microscope objective lens of the present invention, it is more desirable if the following condition (11) is satisfied.

(11) |R1|/|R2|>1
ただし、R1、R2は、夫々第1レンズ群の最も物体側のレンズの物体側の面の曲率半径および像側の面の曲率半径である。
(11) | R 1 | / | R 2 |> 1
Here, R 1 and R 2 are the radius of curvature of the object side surface and the radius of curvature of the image side surface of the lens closest to the object side in the first lens group, respectively.

この条件(11)は長い作動距離の対物レンズで、球面収差、コマ収差、フレア等に関するものである。     This condition (11) is an objective lens having a long working distance, and relates to spherical aberration, coma aberration, flare and the like.

長作動距離の対物レンズは、第1レンズ群の最も物体側の面の曲率半径を大にしてフレアを小さくし、像側の面の曲率半径を小さくして球面収差、コマ収差の発生を防ぐようにしている。     The objective lens with a long working distance increases the radius of curvature of the surface closest to the object side of the first lens unit to reduce flare, and decreases the radius of curvature of the surface on the image side to prevent the occurrence of spherical aberration and coma. Like that.

この条件(11)において、下限値の1より小になると、フレアが発生すると共に、球面収差、コマ収差が発生し、このレンズ以降のレンズにより補正しきれなくなる。     In this condition (11), if the lower limit value is smaller than 1, flare occurs, spherical aberration and coma occur, and the lens after this lens cannot be corrected.

また、本発明の対物レンズにおいて、第4レンズ群中の接合レンズの凸レンズのアッベ数ν(4p)が下記条件(12)を満足することが望ましい。 In the objective lens of the present invention, it is desirable that the Abbe number ν (4p) of the convex lens of the cemented lens in the fourth lens group satisfies the following condition (12).

(12) ν(4p)<35
上記条件(12)は、色収差を補正するためのもので、前記凸レンズのアッベ数ν(4p)が35より大になると、色収差が補正不足になる。
(12) ν (4p) <35
The condition (12) is for correcting chromatic aberration. When the Abbe number ν (4p) of the convex lens is larger than 35, the chromatic aberration is insufficiently corrected.

更に、本発明の顕微鏡対物レンズにおいて、第3レンズ群と第4レンズ群の軸上空気間隔Dを下記条件(13)を満足する範囲内に設定することが望ましい。     Furthermore, in the microscope objective lens of the present invention, it is desirable to set the axial air distance D between the third lens group and the fourth lens group within a range that satisfies the following condition (13).

(13) 0<D<3
この空気間隔Dが上限値の3以上になって大になると、第3レンズ群にて高くなっている第4レンズ群のスペースが小になりすぎる。もしくは、第4レンズ群の負の屈折力を強くせざるを得なくなり、コマ収差が発生するため好ましくない。
(13) 0 <D <3
When the air distance D becomes 3 or more, which is the upper limit value, the space of the fourth lens group that is high in the third lens group becomes too small. Alternatively, the negative refracting power of the fourth lens group has to be increased, and coma is generated.

本発明の対物レンズは、十分良好な結像性能を有し、補正環による移動機構のスペースを確保し、しかもコンパクトな構成で、透明な平行平面板の厚さの変化による収差変動を良好に補正し得るものである。     The objective lens of the present invention has a sufficiently good imaging performance, secures a space for a moving mechanism by a correction ring, and has a compact configuration, and favors aberration fluctuation due to a change in the thickness of a transparent plane parallel plate. It can be corrected.

次に本発明の顕微鏡対物レンズの各実施例について述べる。     Next, examples of the microscope objective lens according to the present invention will be described.

本発明の顕微鏡対物レンズの実施例1は、図1に示す通りの構成であって、下記データを有する。
NA=0.45、WD=7.7、β=−20、f=9
1 =511.7622 d1 =2.8337 n1 =1.75500 ν1 =52.32
2 =-10.6395 d2 =1.6761
3 =786.4951 d3 =1.4031 n2 =1.63775 ν2 =42.41
4 =11.7157 d4 =4.0224 n3 =1.43875 ν3 =94.93
5 =-13.7840 d5 =1.2031
6 =20.4811 d6 =3.8894 n4 =1.43875 ν4 =94.93
7 =-9.9917 d7 =1.4079 n5 =1.63775 ν5 =42.41
8 =-63.5867 d8 =2.5875
9 =6.9516 d9 =6.0001 n6 =1.43875 ν6 =94.93
10=-12.8237 d10=1.9998 n7 =1.51633 ν7 =64.14
11=6.2806 d11=6.4514
12=-3.9606 d12=2.1830 n8 =1.51633 ν8 =64.14
13=-340.3705 d13=3.7868 n9 =1.74100 ν9 =52.64
14=-9.3379

カバーガラス厚(mm) 0 0.7 2
WD 8.119 7.698 6.921
2 2.19 1.676 0.65
5 0.69 1.203 2.229

(1) f2/f=6.537
(2) f2/f3=0.707
(3) |R3|/|R4|=9.147
(6) f4’/f=−19.172
(7) f=8.954
(8) f1/f=1.546
(9) H2/H3=0.992
(10) N1=1.755
(11) |R1|/|R2|=48.100
(12) ν(4p)=52.640
(13) D=2.588

上記データ中、r1 ,r2 ,・・・は各レンズ面の曲率半径、d1 ,d2 ,・・・は各レンズの肉厚および空気間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。また、NAは開口数、WDは作動距離、βは倍率、fは全系の焦点距離、である。尚、上記値において長さの単位はmmである。
Example 1 of the microscope objective lens of the present invention has a configuration as shown in FIG. 1 and has the following data.
NA = 0.45, WD = 7.7, β = −20, f = 9
r 1 = 511.7622 d 1 = 2.8337 n 1 = 1.75500 ν 1 = 52.32
r 2 = -10.6395 d 2 = 1.6761
r 3 = 786.4951 d 3 = 1.4031 n 2 = 1.63775 ν 2 = 42.41
r 4 = 11.7157 d 4 = 4.0224 n 3 = 1.43875 ν 3 = 94.93
r 5 = -13.7840 d 5 = 1.2031
r 6 = 20.4811 d 6 = 3.8894 n 4 = 1.43875 ν 4 = 94.93
r 7 = -9.9917 d 7 = 1.4079 n 5 = 1.63775 ν 5 = 42.41
r 8 = -63.5867 d 8 = 2.5875
r 9 = 6.9516 d 9 = 6.0001 n 6 = 1.43875 ν 6 = 94.93
r 10 = -12.8237 d 10 = 1.9998 n 7 = 1.51633 ν 7 = 64.14
r 11 = 6.2806 d 11 = 6.4514
r 12 = -3.9606 d 12 = 2.1830 n 8 = 1.51633 ν 8 = 64.14
r 13 = −340.3705 d 13 = 3.7868 n 9 = 1.74100 ν 9 = 52.64
r 14 = -9.3379

Cover glass thickness (mm) 0 0.7 2
WD 8.119 7.698 6.921
d 2 2.19 1.676 0.65
d 5 0.69 1.203 2.229

(1) f 2 /f=6.537
(2) f 2 / f 3 = 0.707
(3) | R 3 | / | R 4 | = 9.147
(6) f 4 ′ /f=−19.172
(7) f = 8.954
(8) f 1 /f=1.546
(9) H 2 / H 3 = 0.992
(10) N 1 = 1.755
(11) | R 1 | / | R 2 | = 48.100
(12) ν (4p) = 52.640
(13) D = 2.588

In the above data, r 1 , r 2 ,... Are the radius of curvature of each lens surface, d 1 , d 2 ,... Are the thickness and air spacing of each lens, and n 1 , n 2 ,. Refractive index of each lens, ν 1 , ν 2 ,... NA is the numerical aperture, WD is the working distance, β is the magnification, and f is the focal length of the entire system. In the above values, the unit of length is mm.

この実施例1は、図1に示すように、単体の両凸レンズ(r1〜r2)よりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)よりなる第2レンズ群G2と、両凸レンズ(r6〜r7)と像側に凸面を向けた負のメニスカスレンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第3レンズ群G3と、両凸レンズ(r9〜r10)と両凹レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と物体側に凹面を向けた負のメニスカスレンズ(r12〜r13)と像側に凸面を向けた正のメニスカスレンズ(r13〜r14)を貼り合わせた接合メニスカスレンズ(r12〜r14)とよりなる第4レンズ群G4とにて構成された対物レンズである。 In the first embodiment, as shown in FIG. 1, a first lens group G1 including a single biconvex lens (r 1 to r 2 ) and a negative meniscus lens (r 3 to r 4 ) having a convex surface facing the object side. ) And a biconvex lens (r 4 to r 5 ) and a cemented lens (r 3 to r 5 ), a biconvex lens (r 6 to r 7 ), and a convex surface facing the image side. negative meniscus lens (r 7 ~r 8) and the third lens group G3 composed of a cemented junction lens (r 6 ~r 8), biconvex lens (r 9 ~r 10) and a biconcave lens (r 10 ~r 11) a bonded cemented meniscus lens (r 9 ~r 11) and a negative meniscus lens having a concave surface on the object side (r 12 ~r 13) and a positive meniscus lens having a convex surface directed toward the image side (r 13 ˜r 14 ) and a cemented meniscus lens (r 12 ˜r 14 ) and a fourth lens group It is an objective lens composed of G4.

この実施例1の対物レンズは、使用するカバーガラスの厚さに応じて第2レンズ群G2を光軸に沿って移動させて補正を行なう。つまり間隔d2 、d5 を変化させて補正を行なう。 The objective lens of Example 1 performs correction by moving the second lens group G2 along the optical axis in accordance with the thickness of the cover glass to be used. That is, correction is performed by changing the distances d 2 and d 5 .

このカバーガラスの厚さに対する作動距離WD、第2レンズ群の移動量(d2 、d5の変化量)をデータ中に示してある。 The working distance WD with respect to the thickness of the cover glass and the amount of movement of the second lens group (the amount of change in d 2 and d 5 ) are shown in the data.

この実施例1は、データに示すように全系の焦点距離がf=9であって条件(7)に示す範囲内の値である。したがって、第4レンズ群G4が条件(6)を満足する。又データに示すように、条件(1)、(2)、(3)、(8)、(9)、(10)、(11)、(12)、(13)を満足する。     In the first embodiment, as shown in the data, the focal length of the entire system is f = 9, which is a value within the range shown in the condition (7). Therefore, the fourth lens group G4 satisfies the condition (6). As shown in the data, the conditions (1), (2), (3), (8), (9), (10), (11), (12), and (13) are satisfied.

この実施例1における第2レンズ群の各位置における収差状況は、つまりカバーガラスの厚さが0mmの時、0.7mmの時、2mmの時の収差状況は夫々図10、図11、図12に示す通りである。     The aberration states at each position of the second lens group in Example 1, that is, the aberration states when the cover glass thickness is 0 mm, 0.7 mm, and 2 mm are shown in FIGS. 10, 11, and 12, respectively. As shown in

尚、この実施例1の対物レンズは、無限遠補正型であり、図37に示す結像レンズと組み合わせて用いられる。したがって、前記収差図も上記結像レンズを装着した状態でのものである。     The objective lens of Example 1 is an infinity correction type, and is used in combination with the imaging lens shown in FIG. Therefore, the aberration diagram is also in a state where the imaging lens is mounted.

これら図10、図11、図12より明らかなように、収差はいずれも良好に補正されており、カバーガラスの厚さの変化による収差の変動は第2レンズ群の移動により良好に補正されている。     As is clear from FIGS. 10, 11, and 12, all the aberrations are well corrected, and the variation in aberration due to the change in the cover glass thickness is well corrected by the movement of the second lens group. Yes.

本発明の顕微鏡対物レンズの実施例2は、図2に示す通りの構成であって、下記データを有する。

NA=0.45、WD=7.7、β=−20、f=9
1 =351.0865 d1 =2.8152 n1 =1.75500 ν1 =52.32
2 =-10.6513 d2 =1.5666
3 =281.3200 d3 =1.3969 n2 =1.63775 ν2 =42.41
4 =11.6679 d4 =4.0041 n3 =1.43875 ν3 =94.93
5 =-13.9484 d5 =1.8755
6 =20.3507 d6 =3.8962 n4 =1.43875 ν4 =94.93
7 =-9.5944 d7 =1.3983 n5 =1.63775 ν5 =42.41
8 =-82.6239 d8 =2.5950
9 =6.8783 d9 =6.0035 n6 =1.43875 ν6 =94.93
10=-12.1962 d10=2.0045 n7 =1.51633 ν7 =64.14
11=6.6924 d11=6.4612
12=-3.8209 d12=2.1906 n8 =1.51633 ν8 =64.14
13=121.4062 d13=3.7920 n9 =1.74100 ν9 =52.64
14=-9.3348

カバーガラス厚(mm) 0 0.7 2
WD 8.117 7.692 6.913
2 2.027 1.567 0.556
5 1.417 1.878 2.888

(1) f2/f=6.207
(2) f2/f3=0.518
(3) |R3|/|R4|=12.012
(6) f4’/f=−37.237
(7) f=8.992
(8) f1/f=1.528
(9) H2/H3=0.996
(10) N1=1.755
(11) |R1|/|R2|=32.962
(12) ν(4p)=52.640
(13) D=2.950

この実施例2は、図2に示すように、単体の両凸レンズ(r1〜r2)よりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第2レンズ群G2と、両凸レンズ(r6〜r7)と像側に凸面を向けた負のメニスカスレンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第3レンズ群G3と、両凸レンズ(r9〜r10)と両凹レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と両凹レンズ(r12〜r13)と両凸レンズ(r13〜r14)とを貼り合わせた接合メニスカスレンズ(r12〜r14)からなる第4レンズ群G4とにて構成されたレンズ系である。
Example 2 of the microscope objective lens of the present invention has a configuration as shown in FIG. 2 and has the following data.

NA = 0.45, WD = 7.7, β = −20, f = 9
r 1 = 351.0865 d 1 = 2.8152 n 1 = 1.75500 ν 1 = 52.32
r 2 = -10.6513 d 2 = 1.5666
r 3 = 281.3200 d 3 = 1.3969 n 2 = 1.63775 ν 2 = 42.41
r 4 = 11.6679 d 4 = 4.0041 n 3 = 1.43875 ν 3 = 94.93
r 5 = -13.9484 d 5 = 1.8755
r 6 = 20.3507 d 6 = 3.8962 n 4 = 1.43875 ν 4 = 94.93
r 7 = -9.5944 d 7 = 1.3983 n 5 = 1.63775 ν 5 = 42.41
r 8 = -82.6239 d 8 = 2.5950
r 9 = 6.8783 d 9 = 6.0035 n 6 = 1.43875 ν 6 = 94.93
r 10 = -12.1962 d 10 = 2.0045 n 7 = 1.51633 ν 7 = 64.14
r 11 = 6.6924 d 11 = 6.4612
r 12 = -3.8209 d 12 = 2.1906 n 8 = 1.51633 ν 8 = 64.14
r 13 = 121.4062 d 13 = 3.7920 n 9 = 1.74100 ν 9 = 52.64
r 14 = -9.3348

Cover glass thickness (mm) 0 0.7 2
WD 8.117 7.692 6.913
d 2 2.027 1.567 0.556
d 5 1.417 1.878 2.888

(1) f 2 /f=6.207
(2) f 2 / f 3 = 0.518
(3) | R 3 | / | R 4 | = 12.012
(6) f 4 ′ /f=−37.237
(7) f = 8.992
(8) f 1 /f=1.528
(9) H 2 / H 3 = 0.996
(10) N 1 = 1.755
(11) | R 1 | / | R 2 | = 32.962
(12) ν (4p) = 52.640
(13) D = 2.950

In Example 2, as shown in FIG. 2, a first lens group G1 composed of a single biconvex lens (r 1 to r 2 ) and a negative meniscus lens (r 3 to r 4 ) having a convex surface facing the object side. ) And a biconvex lens (r 4 to r 5 ) and a cemented lens (r 3 to r 5 ), a second lens group G2, a biconvex lens (r 6 to r 7 ), and a convex surface facing the image side and a negative meniscus lens (r 7 ~r 8) the third lens group G3 composed of a cemented junction lens (r 6 ~r 8), biconvex lens (r 9 ~r 10) and a biconcave lens (r 10 ~ r 11) of the bonded cemented meniscus lens (r 9 ~r 11) and a biconcave lens (r 12 ~r 13) and a biconvex lens (r 13 ~r 14) and a bonded cemented meniscus lens (r 12 ~r 14 ) and a fourth lens group G4.

そして、この実施例2も第2レンズ群G2を光軸に沿って移動させてカバーガラスの厚さの変化による収差を補正している。     In the second embodiment, the second lens group G2 is moved along the optical axis to correct the aberration due to the change in the thickness of the cover glass.

この第2レンズ群G2の移動による間隔d2 、d5 の変化で使用するカバーガラスの値に応じた第2レンズ群の移動量は、データ中に示す通りである。 The amount of movement of the second lens group in accordance with the value of the cover glass used by the change in the distances d 2 and d 5 due to the movement of the second lens group G2 is as shown in the data.

この実施例2も全系の焦点距離がf=9であって条件(7)に示す範囲内の値である。したがって、第4レンズ群G4が条件(6)を満足するレンズ系である。つまり、この実施例2はデータ中に記載するように、条件(1)、(2)、(3)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)を満足する。     In Example 2, the focal length of the entire system is f = 9, which is a value within the range shown in the condition (7). Therefore, the fourth lens group G4 is a lens system that satisfies the condition (6). That is, in the second embodiment, as described in the data, the conditions (1), (2), (3), (6), (7), (8), (9), (10), (11 ), (12), and (13) are satisfied.

また、第2レンズ群の各位置における収差状況は、夫々図13、図14、図15に示す通りで、いずれも良好に補正されている。つまりカバーガラスの厚さの変化による収差の変動は、第2レンズ群の移動により良好に補正される。     In addition, the aberration states at the respective positions of the second lens group are as shown in FIGS. 13, 14, and 15, respectively, and are corrected satisfactorily. That is, the variation in aberration due to the change in the thickness of the cover glass is favorably corrected by the movement of the second lens group.

本発明の顕微鏡対物レンズの実施例3は、図3に示す通りの構成であって、下記データを有する。

NA=0.45、WD=7.6、β=−17、f=10.4
1 =590.8302 d1 =2.7526 n1 =1.75500 ν1 =52.32
2 =-10.8634 d2 =1.6914
3 =188.935 d3 =1.4109 n2 =1.63775 ν2 =42.41
4 =11.804 d4 =4.0068 n3 =1.43875 ν3 =94.93
5 =-15.7728 d5 =1.1681
6 =27.4571 d6 =3.8801 n4 =1.43875 ν4 =94.93
7 =-9.9939 d7 =1.3337 n5 =1.60562 ν5 =43.7
8 =-42.8394 d8 =2.4607
9 =7.131 d9 =5.9995 n6 =1.43875 ν6 =94.93
10=-17.6713 d10=1.9938 n7 =1.51823 ν7 =58.9
11=6.2859 d11=6.4885
12=-3.9297 d12=2.1174 n8 =1.51742 ν8 =52.43
13=-95.1977 d13=3.7247 n9 =1.755 ν9 =52.32
14=-8.7085

カバーガラス厚(mm) 0 0.7 2
WD 8.039 7.619 6.849
2 2.175 1.691 0.629
5 0.684 1.168 2.231

(1) f2/f=6.292
(2) f2/f3=0.882
(3) |R3|/|R4|=6.007
(6) f4’/f=−39.501
(7) f=10.359
(8) f1/f=1.367
(9) H2/H3=0.986
(10) N1=1.775
(11) |R1|/|R2|=54.311
(12) ν(4p)=52.32
(13) D=2.461

この実施例3は、図3に示すように、物体側より順に単体の両凸レンズ(r1〜r2)よりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)よりなる第2レンズ群G2と、両凸レンズ(r6〜r7)と像側に凸面を向けた負のメニスカスレンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第3レンズ群G3と、両凸レンズ(r9〜r10)と両凹レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と物体側に凹面を向けた負のメニスカスレンズ(r12〜r13)と像側に凸面を向けた正のメニスカスレンズ(r13〜r14)とを貼り合わせた接合メニスカスレンズ(r12〜r14)からなる第4レンズ群G4とにて構成されたレンズ系である。
Example 3 of the microscope objective lens of the present invention has a configuration as shown in FIG. 3 and has the following data.

NA = 0.45, WD = 7.6, β = −17, f = 10.4
r 1 = 590.8302 d 1 = 2.7526 n 1 = 1.75500 ν 1 = 52.32
r 2 = -10.8634 d 2 = 1.6914
r 3 = 188.935 d 3 = 1.4109 n 2 = 1.63775 ν 2 = 42.41
r 4 = 11.804 d 4 = 4.0068 n 3 = 1.43875 ν 3 = 94.93
r 5 = -15.7728 d 5 = 1.1681
r 6 = 27.4571 d 6 = 3.8801 n 4 = 1.43875 ν 4 = 94.93
r 7 = -9.9939 d 7 = 1.3337 n 5 = 1.60562 ν 5 = 43.7
r 8 = -42.8394 d 8 = 2.4607
r 9 = 7.131 d 9 = 5.9995 n 6 = 1.43875 ν 6 = 94.93
r 10 = -17.6713 d 10 = 1.99938 n 7 = 1.51823 ν 7 = 58.9
r 11 = 6.2859 d 11 = 6.4885
r 12 = -3.9297 d 12 = 2.1174 n 8 = 1.51742 ν 8 = 52.43
r 13 = −95.1977 d 13 = 3.7247 n 9 = 1.755 ν 9 = 52.32
r 14 = -8.7085

Cover glass thickness (mm) 0 0.7 2
WD 8.0039 7.619 6.849
d 2 2.175 1.691 0.629
d 5 0.684 1.168 2.231

(1) f 2 /f=6.292
(2) f 2 / f 3 = 0.882
(3) | R 3 | / | R 4 | = 6.007
(6) f 4 '/f=-39.501
(7) f = 10.3359
(8) f 1 /f=1.367
(9) H 2 / H 3 = 0.986
(10) N 1 = 1.775
(11) | R 1 | / | R 2 | = 54.311
(12) ν (4p) = 52.32
(13) D = 2.461

In Example 3, as shown in FIG. 3, a first lens group G1 including a single biconvex lens (r 1 to r 2 ) in order from the object side, and a negative meniscus lens (r having a convex surface facing the object side) 3 to r 4 ) and a biconvex lens (r 4 to r 5 ) and a cemented lens (r 3 to r 5 ), a second lens group G2, and a biconvex lens (r 6 to r 7 ) and the image side. convex surface and negative meniscus lens (r 7 ~r 8) a bonded cemented lens (r 6 ~r 8) the third lens group G3 composed of towards a biconvex lens (r 9 ~r 10) and a biconcave lens ( r 10 ~r 11) a bonded cemented meniscus lens (r 9 ~r 11) and a negative meniscus lens having a concave surface on the object side (r 12 ~r 13) and a positive meniscus having a convex surface directed toward the image side lens (r 13 ~r 14) and a bonded cemented meniscus lens (r 12 ~r 14) Tona A fourth lens group G4.

この実施例3も第2レンズ群を移動させてカバーガラス等の厚さの変化による収差の補正を行なっている。     In the third embodiment, the second lens group is moved to correct the aberration due to the change in the thickness of the cover glass or the like.

データ中にはカバーガラスの厚さに対応する第2レンズ群の位置(d2 、d5 )等を示してある。 In the data, the position (d 2 , d 5 ) and the like of the second lens group corresponding to the thickness of the cover glass are shown.

この実施例3は、データに示すように全系の焦点距離がf=9であって条件(7)に示す範囲内の値である。したがって、第4レンズ群G4が条件(6)を満足する。又データに示すように、条件(1)、(2)、(3)、(8)、(9)、(10)、(11)、(12)、(13)を満足する。     In Example 3, as shown in the data, the focal length of the entire system is f = 9, which is a value within the range shown in the condition (7). Therefore, the fourth lens group G4 satisfies the condition (6). As shown in the data, the conditions (1), (2), (3), (8), (9), (10), (11), (12), and (13) are satisfied.

この実施例3における第2レンズ群がデータ中に示す各位置における収差状況は、図16、図17、図18に示す通りである。これら図より明らかなように、いずれも収差は良好に補正されており、カバーガラスの厚さによる収差の変動は良好に補正されている。     The aberration state at each position indicated in the data by the second lens group in Example 3 is as shown in FIG. 16, FIG. 17, and FIG. As is clear from these figures, the aberration is corrected well, and the variation of the aberration due to the thickness of the cover glass is corrected well.

本発明の実施例4は、図4に示す通りのレンズ構成であって、下記データを有する。

NA=0.7、WD=3.3、β=−50、f=3.6
1 =-7.1161 d1 =3.9842 n1 =1.74100 ν1 =52.64
2 =-5.3759 d2 =0.2017
3 =30.4018 d3 =3.6526 n2 =1.49700 ν2 =81.54
4 =-8.3706 d4 =1.4000 n3 =1.72047 ν3 =34.71
5 =-14.5668 d5 =1.1749
6 =31.0081 d6 =1.3300 n4 =1.78590 ν4 =44.2
7 =13.6781 d7 =4.5217 n5 =1.49700 ν5 =81.54
8 =-13.6781 d8 =1.2763
9 =-13.3810 d9 =1.3500 n6 =1.72047 ν6 =34.71
10=17.8619 d10=3.7416 n7 =1.49700 ν7 =81.54
11=-20.0357 d11=0.3057
12=19.6054 d12=3.7698 n8 =1.43875 ν8 =94.93
13=-17.6832 d13=1.4107 n9 =1.83400 ν9 =37.16
14=-48.3594 d14=0.3058
15=28.4034 d15=3.4387 n10=1.61800 ν10=63.33
16=-16.2132 d16=1.6859 n11=1.61340 ν11=44.27
17=-71.1011 d17=1.4457
18=8.1527 d18=3.1866 n12=1.80518 ν12=25.42
19=73.3349 d19=1.4016 n13=1.61340 ν13=44.27
20=3.8916 d20=3.3130
21=-11.7951 d21=0.9147 n14=1.56384 ν14=60.67
22=13.2420

カバーガラス厚(mm) 0 0.7 1.2
WD 3.832 3.333 2.974
5 2.038 1.175 0.409
8 0.413 1.276 2.042

(1) f2/f=6.985
(2) f2/f3=0.590
(3) |R3|/|R4|=−8.721
(4) f4/f=−2.927
(5) f=3.601
(8) f1/f=2.590
(9) H2/H3=0.918
(10) N1=1.741
(11) |R1|/|R2|=1.324
(12) ν(4p)=25.420
(13) D=1.446

この実施例4は、図4に示すように、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と両凸レンズ(r3〜r4)と像側に凸面を向けた負のメニスカスレンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r6〜r7)と両凸レンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第2レンズ群G2と、両凹レンズ(r9〜r10)と両凸レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と両凸レンズ(r12〜r13)と像側に凸面を向けた負のメニスカスレンズ(r13〜r14)とを貼り合わせた接合レンズ(r12〜r14)と両凸レンズ(r15〜r16)と像側に凸面を向けた負のメニスカスレンズ(r16〜r17)とを貼り合わせた接合レンズ(r15〜r17)よりなる第3レンズ群G3と、物体側に凸面を向けた正のメニスカスレンズ(r18〜r19)と像側と凹面を向けた負のメニスカスレンズ(r19〜r20)を貼り合わせた接合メニスカスレンズ(r18〜r20)と単体の両凹レンズ(r21〜r22)とよりなる第4レンズ群G4とにて構成されたレンズ系である。
Example 4 of the present invention has a lens configuration as shown in FIG. 4 and has the following data.

NA = 0.7, WD = 3.3, β = −50, f = 3.6
r 1 = −7.1161 d 1 = 3.9842 n 1 = 1.74100 ν 1 = 52.64
r 2 = -5.3759 d 2 = 0.2017
r 3 = 30.4018 d 3 = 3.6526 n 2 = 1.49700 ν 2 = 81.54
r 4 = −8.3706 d 4 = 1.4000 n 3 = 1.72047 ν 3 = 34.71
r 5 = -14.5668 d 5 = 1.1749
r 6 = 31.0081 d 6 = 1.3300 n 4 = 1.78590 ν 4 = 44.2
r 7 = 13.6781 d 7 = 4.5217 n 5 = 1.49700 ν 5 = 81.54
r 8 = -13.6781 d 8 = 1.2763
r 9 = -13.3810 d 9 = 1.3500 n 6 = 1.72047 ν 6 = 34.71
r 10 = 17.8619 d 10 = 3.7416 n 7 = 1.49700 ν 7 = 81.54
r 11 = -20.0357 d 11 = 0.3057
r 12 = 19.6054 d 12 = 3.7698 n 8 = 1.43875 ν 8 = 94.93
r 13 = -17.6832 d 13 = 1.4107 n 9 = 1.83400 ν 9 = 37.16
r 14 = -48.3594 d 14 = 0.3058
r 15 = 28.4034 d 15 = 3.4387 n 10 = 1.61800 ν 10 = 63.33
r 16 = -16.2132 d 16 = 1.6859 n 11 = 1.61340 ν 11 = 44.27
r 17 = -71.1011 d 17 = 1.4457
r 18 = 8.1527 d 18 = 3.1866 n 12 = 1.80518 ν 12 = 25.42
r 19 = 73.3349 d 19 = 1.4016 n 13 = 1.61340 ν 13 = 44.27
r 20 = 3.8916 d 20 = 3.3130
r 21 = -11.7951 d 21 = 0.9147 n 14 = 1.56384 ν 14 = 60.67
r 22 = 13.2420

Cover glass thickness (mm) 0 0.7 1.2
WD 3.832 3.333 2.974
d 5 2.038 1.175 0.409
d 8 0.413 1.276 2.042

(1) f 2 /f=6.985
(2) f 2 / f 3 = 0.590
(3) | R 3 | / | R 4 | = −8.721
(4) f 4 /f=−2.927
(5) f = 3.601
(8) f 1 /f=2.590
(9) H 2 / H 3 = 0.918
(10) N 1 = 1.741
(11) | R 1 | / | R 2 | = 1.324
(12) ν (4p) = 25.420
(13) D = 1.446

In Example 4, as shown in FIG. 4, in order from the object side, a single positive meniscus lens (r 1 to r 2 ) and a biconvex lens (r 3 to r 4 ) having a convex surface facing the image surface side. and a negative meniscus lens (r 4 ~r 5) a bonded cemented lens (r 3 ~r 5) more becomes the first lens group G1 having a convex surface directed toward the image side, a negative having a convex surface directed toward the object side a meniscus lens (r 6 ~r 7) and a biconvex lens (r 7 ~r 8) a bonded cemented lens (r 6 ~r 8) the second lens group G2 composed of a biconcave lens (r 9 ~r 10) a biconvex lens (r 10 ~r 11) a bonded cemented meniscus lens (r 9 ~r 11) and a biconvex lens (r 12 ~r 13) and a negative meniscus lens having a convex surface directed toward the image side (r 13 ~ r 14) and a bonded cemented lens (r 12 ~r 14) and a biconvex lens (r 15 ~r 16) and convex on the image side A negative meniscus lens (r 16 ~r 17) and a bonded cemented lens (r 15 ~r 17) the third lens group G3 composed of a directed and a convex surface directed toward the object side positive meniscus lens (r 18 ~r 19) and the image side and a concave negative meniscus lens (r 19 ~r 20) a bonded cemented meniscus lens (r 18 ~r 20) and a single double-concave lens (r 21 ~r 22) And a fourth lens group G4.

この実施例4は、f=3.6であって、全系の焦点距離fが条件(5)に示す範囲内のレンズ系である。したがって、実施例4は、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する。     Example 4 is a lens system in which f = 3.6 and the focal length f of the entire system is within the range indicated by the condition (5). Therefore, Example 4 satisfies the conditions (1) to (5) and the conditions (8) to (13).

この実施例4のレンズ系は、第2レンズ群G2を移動させてカバーガラスの厚さの変化による収差変動を補正している。つまりデータ中にカバーガラスの厚さに応じてd5とd8を変化させる。 In the lens system of Example 4, the second lens group G2 is moved to correct aberration variation due to a change in the thickness of the cover glass. That is, d 5 and d 8 are changed in the data according to the thickness of the cover glass.

この実施例4の収差状況は、図19、図20、図21に示す通りで、良好に補正されている。つまり、カバーガラスの厚さに応じて第2レンズ群を移動させて収差の変動を補正している。     The aberration status of Example 4 is corrected well as shown in FIGS. 19, 20, and 21. FIG. That is, the aberration variation is corrected by moving the second lens group in accordance with the thickness of the cover glass.

本発明の実施例5は、図5に示す通りの対物レンズで、下記データを有する。

NA=0.65、WD=3.3、β=−50、f=3.6
1 =-6.6412 d1 =3.5687 n1 =1.74100 ν1 =52.64
2 =-5.0534 d2 =0.4356
3 =23.6979 d3 =3.5505 n2 =1.49700 ν2 =81.54
4 =-8.1019 d4 =1.5638 n3 =1.72047 ν3 =34.71
5 =-11.7521 d5 =1.5309
6 =78.7455 d6 =1.4746 n4 =1.78590 ν4 =44.2
7 =19.2598 d7 =2.4362 n5 =1.49700 ν5 =81.54
8 =-15.8295 d8 =1.9591
9 =-10.1039 d9 =1.4738 n6 =1.72047 ν6 =34.71
10=21.3847 d10=3.1322 n7 =1.49700 ν7 =81.54
11=-14.3025 d11=0.3869
12=36.9212 d12=3.5375 n8 =1.43875 ν8 =94.93
13=-32.2728 d13=2.9110 n9 =1.83400 ν9 =37.16
14=-66.6984 d14=0.2023
15=16.2178 d15=5.7735 n10=1.61800 ν10=63.33
16=-9.5268 d16=2.9318 n11=1.61340 ν11=44.27
17=34.5869 d17=2.2517
18=8.6250 d18=3.6906 n12=1.80518 ν12=25.42
19=-4963.6686 d19=1.8920 n13=1.61340 ν13=44.27
20=3.7707 d20=2.3770
21=-13.6585 d21=1.4756 n14=1.56384 ν14=60.67
22=52.7443

カバーガラス厚(mm) 0 0.7 1.2
WD 3.846 3.335 2.968
5 2.661 1.531 0.617
8 0.829 1.959 2.873

(1) f2/f=10.486
(2) f2/f3=0.300
(3) |R3|/|R4|=4.010
(4) f4/f=−4.643
(5) f=3.601
(8) f1/f=2.260
(9) H2/H3=0.862
(10) N1=1.741
(11) |R1|/|R2|=1.314
(12) ν(4p)=25.420
(13) D=2.252

この実施例5は、図5に示すように、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と両凸レンズ(r3〜r4)と像側に凸面を向けた負のメニスカスレンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r6〜r7)と両凸レンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第2レンズ群G2と、両凹レンズ(r9〜r10)と両凸レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と両凸レンズ(r12〜r13)と像側に凸面を向けた負のメニスカスレンズ(r13〜r14)とを貼り合わせた接合レンズ(r12〜r14)と両凸レンズ(r15〜r16)と両凹レンズ(r16〜r17)とを貼り合わせた接合メニスカスレンズ(r15〜r17)よりなる第3レンズ群G3と、両凸レンズ(r18〜r19)と両凹レンズ(r19〜r20)を貼り合わせた接合メニスカスレンズ(r18〜r20)と単体の両凹レンズ(r21〜r22)とよりなる第4レンズ群G4とにて構成されたレンズ系である。
Example 5 of the present invention is an objective lens as shown in FIG. 5 and has the following data.

NA = 0.65, WD = 3.3, β = −50, f = 3.6
r 1 = -6.6412 d 1 = 3.5687 n 1 = 1.74100 ν 1 = 52.64
r 2 = -5.0534 d 2 = 0.4356
r 3 = 23.6979 d 3 = 3.5505 n 2 = 1.49700 ν 2 = 81.54
r 4 = -8.1019 d 4 = 1.5638 n 3 = 1.72047 ν 3 = 34.71
r 5 = -11.7521 d 5 = 1.5309
r 6 = 78.7455 d 6 = 1.4746 n 4 = 1.778590 ν 4 = 44.2
r 7 = 19.2598 d 7 = 2.4362 n 5 = 1.49700 ν 5 = 81.54
r 8 = -15.8295 d 8 = 1.9591
r 9 = -10.1039 d 9 = 1.4738 n 6 = 1.72047 ν 6 = 34.71
r 10 = 21.3847 d 10 = 3.1322 n 7 = 1.49700 ν 7 = 81.54
r 11 = -14.3025 d 11 = 0.3869
r 12 = 36.9212 d 12 = 3.5375 n 8 = 1.43875 ν 8 = 94.93
r 13 = -32.2728 d 13 = 2.9110 n 9 = 1.83400 ν 9 = 37.16
r 14 = -66.6984 d 14 = 0.2023
r 15 = 16.2178 d 15 = 5.7735 n 10 = 1.61800 ν 10 = 63.33
r 16 = -9.5268 d 16 = 2.9318 n 11 = 1.61340 ν 11 = 44.27
r 17 = 34.5869 d 17 = 2.2517
r 18 = 8.6250 d 18 = 3.6906 n 12 = 1.80518 ν 12 = 25.42
r 19 = -4963.6686 d 19 = 1.8920 n 13 = 1.61340 ν 13 = 44.27
r 20 = 3.7707 d 20 = 2.3770
r 21 = -13.6585 d 21 = 1.4756 n 14 = 1.56384 ν 14 = 60.67
r 22 = 52.7443

Cover glass thickness (mm) 0 0.7 1.2
WD 3.846 3.335 2.968
d 5 2.661 1.531 0.617
d 8 0.829 1.959 2.873

(1) f 2 /f=10.486
(2) f 2 / f 3 = 0.300
(3) | R 3 | / | R 4 | = 4.010
(4) f 4 /f=−4.643
(5) f = 3.601
(8) f 1 /f=2.260
(9) H 2 / H 3 = 0.862
(10) N 1 = 1.741
(11) | R 1 | / | R 2 | = 1.314
(12) ν (4p) = 25.420
(13) D = 2.252

As shown in FIG. 5, the fifth embodiment includes a single positive meniscus lens (r 1 to r 2 ) and a biconvex lens (r 3 to r 4 ) with a convex surface facing the image surface side in order from the object side. and a negative meniscus lens (r 4 ~r 5) a bonded cemented lens (r 3 ~r 5) more becomes the first lens group G1 having a convex surface directed toward the image side, a negative having a convex surface directed toward the object side a meniscus lens (r 6 ~r 7) and a biconvex lens (r 7 ~r 8) a bonded cemented lens (r 6 ~r 8) the second lens group G2 composed of a biconcave lens (r 9 ~r 10) a biconvex lens (r 10 ~r 11) a bonded cemented meniscus lens (r 9 ~r 11) and a biconvex lens (r 12 ~r 13) and a negative meniscus lens having a convex surface directed toward the image side (r 13 ~ r 14) and the a bonded cemented lens (r 12 ~r 14) and a biconvex lens (r 15 ~r 16) biconcave lens (R 16 ~r 17) and a bonded cemented meniscus lens and (r 15 ~r 17) the third lens group G3 composed of a biconvex lens (r 18 ~r 19) and a biconcave lens (r 19 ~r 20) Is a lens system composed of a cemented meniscus lens (r 18 to r 20 ) and a fourth lens group G4 including a single biconcave lens (r 21 to r 22 ).

この実施例5は、全系の焦点距離fがデータに示すようにf=3.6であって、条件(5)に示す範囲のレンズ系である。したがって、実施例5は、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する対物レンズである。     The fifth embodiment is a lens system in which the focal length f of the entire system is f = 3.6 as shown in the data, and is in the range shown in the condition (5). Therefore, Example 5 is an objective lens that satisfies the conditions (1) to (5) and the conditions (8) to (13).

この実施例5のレンズ系も、第2レンズ群G2を移動させてカバーガラスの厚さの変化による収差変動を補正している。つまりデータに示すように、カバーガラスの厚さに対応してd5とd8を変化させて収差変動を補正している。 Also in the lens system of Example 5, the second lens group G2 is moved to correct the aberration variation due to the change in the thickness of the cover glass. That is, as shown in the data, aberration variation is corrected by changing d 5 and d 8 corresponding to the thickness of the cover glass.

この実施例5の収差状況は、図22、図23、図24に示す通りで、良好に補正されている。つまり、カバーガラスの厚さの変化による収差の変動を補正している。     The aberration state of Example 5 is corrected as shown in FIGS. 22, 23, and 24. That is, the variation in aberration due to the change in the thickness of the cover glass is corrected.

本発明の実施例6は、図6に示す通りの対物レンズで、下記データを有する。

NA=0.65、WD=3.49、β=−50、f=3.6
1 =-6.6651 d1 =3.9041 n1 =1.74100 ν1 =52.64
2 =-5.3303 d2 =0.2960
3 =20.5175 d3 =3.6703 n2 =1.49700 ν2 =81.54
4 =-8.6224 d4 =1.6318 n3 =1.72047 ν3 =34.71
5 =-12.5643 d5 =1.1662
6 =186.6075 d6 =1.4671 n4 =1.78590 ν4 =44.2
7 =32.0895 d7 =4.3406 n5 =1.49700 ν5 =81.54
8 =-17.0960 d8 =1.5963
9 =-10.8824 d9 =1.5113 n6 =1.72047 ν6 =34.71
10=15.1231 d10=3.7860 n7 =1.49700 ν7 =81.54
11=-18.3524 d11=0.3896
12=17.6826 d12=5.0208 n8 =1.43875 ν8 =94.93
13=-17.1958 d13=2.7453 n9 =1.83400 ν9 =37.16
14=-49.0717 d14=0.2018
15=19.5170 d15=4.0367 n10=1.61800 ν10=63.33
16=-11.2916 d16=1.8551 n11=1.61340 ν11=44.27
17=-124.4000 d17=1.4947
18=7.5168 d18=3.2427 n12=1.80518 ν12=25.42
19=21.8154 d19=1.4959 n13=1.61340 ν13=44.27
20=3.5464 d20=3.1412
21=-13.9111 d21=0.8932 n14=1.56384 ν14=60.67
22=11.1115

カバーガラス厚(mm) 0 0.7 1.2
WD 4 3.491 3.126
5 2.158 1.166 0.405
8 0.605 1.596 2.358

(1) f2/f=11.286
(2) f2/f3=1.190
(3) |R3|/|R4|=−16.550
(4) f4/f=−2.856
(5) f=3.601
(8) f1/f=2.309
(9) H2/H3=0.839
(10) N1=1.741
(11) |R1|/|R2|=1.250
(12) ν(4p)=25.420
(13) D=1.495

この実施例6は、図6に示すように、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と両凸レンズ(r3〜r4)と像側に凸面を向けた負のメニスカスレンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、物体側に凸面を向けた負のメニスカスレンズ(r6〜r7)と両凸レンズ(r7〜r8)を貼り合わせた接合レンズ(r6〜r8)よりなる第2レンズ群G2と、両凹レンズ(r9〜r10)と両凸レンズ(r10〜r11)を貼り合わせた接合メニスカスレンズ(r9〜r11)と両凸レンズ(r12〜r13)と像側に凸面を向けた負のメニスカスレンズ(r13〜r14)とを貼り合わせた接合レンズ(r12〜r14)と両凸レンズ(r15〜r16)と像側に凸面を向けた負のメニスカスレンズ(r16〜r17)とを貼り合わせた接合レンズ(r15〜r17)よりなる第3レンズ群G3と、物体側に凸面を向けた正のメニスカスレンズ(r18〜r19)と像側に凹面を向けた負のメニスカスレンズ(r19〜r20)を貼り合わせた接合メニスカスレンズ(r18〜r20)と単体の両凹レンズ(r21〜r22)とよりなる第4レンズ群G4とにて構成されたレンズ系である。
Example 6 of the present invention is an objective lens as shown in FIG. 6 and has the following data.

NA = 0.65, WD = 3.49, β = −50, f = 3.6
r 1 = -6.6651 d 1 = 3.9041 n 1 = 1.74100 ν 1 = 52.64
r 2 = -5.3303 d 2 = 0.2960
r 3 = 20.5175 d 3 = 3.6703 n 2 = 1.49700 ν 2 = 81.54
r 4 = -8.6224 d 4 = 1.6318 n 3 = 1.72047 ν 3 = 34.71
r 5 = -12.5643 d 5 = 1.1662
r 6 = 186.6075 d 6 = 1.4671 n 4 = 1.78590 ν 4 = 44.2
r 7 = 32.0895 d 7 = 4.3406 n 5 = 1.49700 ν 5 = 81.54
r 8 = -17.0960 d 8 = 1.5963
r 9 = -10.8824 d 9 = 1.5113 n 6 = 1.72047 ν 6 = 34.71
r 10 = 15.1231 d 10 = 3.7860 n 7 = 1.49700 ν 7 = 81.54
r 11 = -18.3524 d 11 = 0.3896
r 12 = 17.6826 d 12 = 5.0208 n 8 = 1.43875 ν 8 = 94.93
r 13 = -17.1958 d 13 = 2.7453 n 9 = 1.83400 ν 9 = 37.16
r 14 = -49.0717 d 14 = 0.2018
r 15 = 19.5170 d 15 = 4.0367 n 10 = 1.61800 ν 10 = 63.33
r 16 = -11.2916 d 16 = 1.8551 n 11 = 1.61340 ν 11 = 44.27
r 17 = -124.4000 d 17 = 1.4947
r 18 = 7.5168 d 18 = 3.2427 n 12 = 1.80518 ν 12 = 25.42
r 19 = 21.8154 d 19 = 1.4959 n 13 = 1.61340 ν 13 = 44.27
r 20 = 3.5464 d 20 = 3.1412
r 21 = -13.9111 d 21 = 0.8932 n 14 = 1.56384 ν 14 = 60.67
r 22 = 11.1115

Cover glass thickness (mm) 0 0.7 1.2
WD 4 3.491 3.126
d 5 2.158 1.166 0.405
d 8 0.605 1.596 2.358

(1) f 2 /f=11.286
(2) f 2 / f 3 = 1.190
(3) | R 3 | / | R 4 | = −16.550
(4) f 4 /f=−2.856
(5) f = 3.601
(8) f 1 /f=2.309
(9) H 2 / H 3 = 0.839
(10) N 1 = 1.741
(11) | R 1 | / | R 2 | = 1.250
(12) ν (4p) = 25.420
(13) D = 1.495

In Example 6, as shown in FIG. 6, in order from the object side, a single positive meniscus lens (r 1 to r 2 ) and a biconvex lens (r 3 to r 4 ) having a convex surface facing the image surface side. and a negative meniscus lens (r 4 ~r 5) a bonded cemented lens (r 3 ~r 5) more becomes the first lens group G1 having a convex surface directed toward the image side, a negative having a convex surface directed toward the object side a meniscus lens (r 6 ~r 7) and a biconvex lens (r 7 ~r 8) a bonded cemented lens (r 6 ~r 8) the second lens group G2 composed of a biconcave lens (r 9 ~r 10) a biconvex lens (r 10 ~r 11) a bonded cemented meniscus lens (r 9 ~r 11) and a biconvex lens (r 12 ~r 13) and a negative meniscus lens having a convex surface directed toward the image side (r 13 ~ r 14) and a bonded cemented lens (r 12 ~r 14) and a biconvex lens (r 15 ~r 16) and convex on the image side A negative meniscus lens (r 16 ~r 17) and a bonded cemented lens (r 15 ~r 17) the third lens group G3 composed of a directed and a convex surface directed toward the object side positive meniscus lens (r 18 ~r 19) and a negative meniscus lens (r 19 ~r 20) a bonded cemented meniscus lens (r 18 ~r 20) and single biconcave lens having a concave surface on the image side (r 21 ~r 22) And a fourth lens group G4.

この実施例6は、全系の焦点距離fがf=3.6で、条件(5)の範囲の焦点距離のレンズ系である。     The sixth embodiment is a lens system in which the focal length f of the entire system is f = 3.6 and the focal length is in the range of the condition (5).

この実施例6は、データに示すように、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する。     In Example 6, as shown in the data, the conditions (1) to (5) and the conditions (8) to (13) are satisfied.

また、第2レンズ群G2をデータに示すようにd5とd8を変化させて移動することによって、カバーガラスの厚さの変化による収差変動を補正している。 Further, by moving by changing d 5 and d 8 to show the second lens group G2 to the data, and correcting the aberration fluctuation due to changes in the thickness of the cover glass.

この実施例6の収差状況は、図25、図26、図27に示す通りで、良好に補正されている。つまり、カバーガラスの厚さの変化による収差の変動は、良好に補正されている。     The aberration status of Example 6 is corrected well as shown in FIGS. 25, 26, and 27. FIG. That is, the variation in aberration due to the change in the thickness of the cover glass is corrected satisfactorily.

本発明の実施例7は、図7に示す通りの対物レンズで、下記データを有する。

NA=0.8、WD=1.5、β=−100、f=1.8
1 =-6.4131 d1 =1.8872 n1 =1.88300 ν1 =40.76
2 =-3.5144 d2 =0.15
3 =116.8536 d3 =1.7485 n2 =1.72047 ν2 =34.71
4 =9.8301 d4 =3.9577 n3 =1.49700 ν3 =81.54
5 =-6.0797 d5 =1.1614
6 =14.897 d6 =2.7659 n4 =1.43875 ν4 =94.93
7 =-10.2282 d7 =1.1828
8 =-7.8385 d8 =1.6088 n5 =1.75500 ν5 =52.32
9 =20.1451 d9 =3.8246 n6 =1.43875 ν6 =94.93
10=-7.1339 d10=1.3945 n7 =1.65412 ν7 =39.68
11=-14.5872 d11=0.1
12=28.1671 d12=3.7541 n8 =1.56907 ν8 =71.3
13=-14.8567 d13=0.2
14=14.172 d14=1 n9 =1.72916 ν9 =54.68
15=8.8213 d15=3.5586 n10=1.43875 ν10=94.93
16=-15.6932 d16=1.0289 n11=1.72047 ν11=34.71
17=-292.431 d17=0.1
18=10.3581 d18=3.928 n12=1.60300 ν12=65.44
19=15 d19=3.4576 n13=1.51633 ν13=64.14
20=3.222 d20=5.0454
21=4.7959 d21=2.0368 n14=1.80518 ν14=25.42
22=-13.4523 d22=0.4 n15=1.75500 ν15=52.32
23=5.0917 d23=1.2
24=-9.9082 d24=1.2 n16=1.80518 ν16=25.42
25=28.8646

カバーガラス厚(mm) 0 0.4 0.7
WD 1.78 1.499 1.287
5 1.621 1.161 0.737
7 0.724 1.183 1.609

(1) f2/f=7.946
(2) f2/f3=0.238
(3) |R3|/|R4|=28.232
(4) f4/f=−4.647
(5) f=1.8
(8) f1/f=3.039
(9) H2/H3=0.748
(10) N1=1.883
(11) |R1|/|R2|=1.825
(12) ν(4p)=25.42
(13) D=0.1

実施例7のレンズ系は、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、単体の両凸レンズ(r6〜r7)よりなる第2レンズ群G2と、両凹レンズ(r8〜r9)と両凸レンズ(r9〜r10)と像側に凸面を向けた負のメニスカスレンズ(r10〜r11)を貼り合わせた3枚の接合レンズ(r8〜r11)と単体の両凸レンズ(r12〜r13)と物体側に凸面を向けた負のメニスカスレンズ(r14〜r15)と両凸レンズ(r15〜r16)と像側に凸面を向けた負のメニスカスレンズ(r16〜r17)とを貼り合わせた3枚接合レンズ(r14〜r17)よりなる第3レンズ群G3と、物体側に凸面を向けた正のメニスカスレンズ(r18〜r19)と像側に凹面を向けた負のメニスカスレンズ(r19〜r20)を貼り合わせた接合メニスカスレンズ(r18〜r20)と両凸レンズ(r21〜r22)と両凹レンズ(r22〜r23)とを貼り合わせた接合メニスカスレンズ(r21〜r23)と単体の両凹レンズ(r24〜r25)とよりなる第4レンズ群G4とにて構成されたレンズ系である。
Example 7 of the present invention is an objective lens as shown in FIG. 7 and has the following data.

NA = 0.8, WD = 1.5, β = -100, f = 1.8
r 1 = -6.4131 d 1 = 1.8872 n 1 = 1.88300 ν 1 = 40.76
r 2 = -3.5144 d 2 = 0.15
r 3 = 116.8536 d 3 = 1.7485 n 2 = 1.72047 ν 2 = 34.71
r 4 = 9.8301 d 4 = 3.99577 n 3 = 1.49700 ν 3 = 81.54
r 5 = -6.0797 d 5 = 1.1614
r 6 = 14.897 d 6 = 2.7659 n 4 = 1.43875 ν 4 = 94.93
r 7 = -10.2282 d 7 = 1.1828
r 8 = -7.8385 d 8 = 1.6088 n 5 = 1.75500 ν 5 = 52.32
r 9 = 20.1451 d 9 = 3.8246 n 6 = 1.43875 ν 6 = 94.93
r 10 = −7.1339 d 10 = 1.3945 n 7 = 1.65412 ν 7 = 39.68
r 11 = -14.5872 d 11 = 0.1
r 12 = 28.1671 d 12 = 3.7541 n 8 = 1.56907 ν 8 = 71.3
r 13 = -14.8567 d 13 = 0.2
r 14 = 14.172 d 14 = 1 n 9 = 1.72916 ν 9 = 54.68
r 15 = 8.8213 d 15 = 3.5586 n 10 = 1.43875 ν 10 = 94.93
r 16 = -15.6932 d 16 = 1.0289 n 11 = 1.72047 ν 11 = 34.71
r 17 = -292.431 d 17 = 0.1
r 18 = 10.3581 d 18 = 3.928 n 12 = 1.60300 ν 12 = 65.44
r 19 = 15 d 19 = 3.4576 n 13 = 1.51633 ν 13 = 64.14
r 20 = 3.222 d 20 = 5.0454
r 21 = 4.7959 d 21 = 2.0368 n 14 = 1.80518 ν 14 = 25.42
r 22 = -13.4523 d 22 = 0.4 n 15 = 1.75500 ν 15 = 52.32
r 23 = 5.0917 d 23 = 1.2
r 24 = -9.9082 d 24 = 1.2 n 16 = 1.80518 ν 16 = 25.42
r 25 = 28.8646

Cover glass thickness (mm) 0 0.4 0.7
WD 1.78 1.499 1.287
d 5 1.621 1.161 0.737
d 7 0.724 1.183 1.609

(1) f 2 /f=7.946
(2) f 2 / f 3 = 0.238
(3) | R 3 | / | R 4 | = 28.232
(4) f 4 /f=−4.647
(5) f = 1.8
(8) f 1 /f=3.039
(9) H 2 / H 3 = 0.748
(10) N 1 = 1.883
(11) | R 1 | / | R 2 | = 1.825
(12) ν (4p) = 25.42.
(13) D = 0.1

In the lens system of Example 7, in order from the object side, a single positive meniscus lens (r 1 to r 2 ) having a convex surface facing the image surface side and a negative meniscus lens (r 3 to r 2 ) having a convex surface facing the object side. r 4) and a biconvex lens (r 4 ~r 5) and more becomes the first lens group G1 and the cemented cemented lens (r 3 ~r 5), a single double-convex lens (r 6 ~r 7) first and the second lens group G2, 3 sheets obtained by bonding a biconcave lens (r 8 ~r 9) and a biconvex lens (r 9 ~r 10) and a negative meniscus lens having a convex surface directed toward the image side (r 10 ~r 11) cemented lens (r 8 ~r 11) and a single biconvex lens (r 12 ~r 13) and a negative meniscus lens having a convex surface directed toward the object side (r 14 ~r 15) and a biconvex lens of (r 15 ~r 16 ) And a negative meniscus lens (r 16 to r 17 ) having a convex surface facing the image side, a cemented three-piece lens (r 14 ˜r 17 ), a positive meniscus lens (r 18 ˜r 19 ) having a convex surface facing the object side, and a negative meniscus lens (r 19 ˜r 20 ) having a concave surface facing the image side. the bonded cemented meniscus lens (r 18 ~r 20) and a biconvex lens (r 21 ~r 22) and a biconcave lens (r 22 ~r 23) and a bonded cemented meniscus lens and (r 21 ~r 23) a lens system which is constituted by a single double-concave lens (r 24 ~r 25) and become more fourth lens group G4.

この実施例7のレンズ系は、データ中に示すように全系の焦点距離fがf=1.8であって、条件(5)の範囲内の焦点距離である。したがって、第4レンズ群が条件(4)を満足する。つまり実施例7はデータに示すように、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する。     In the lens system of Example 7, as shown in the data, the focal length f of the entire system is f = 1.8, and the focal length is within the range of the condition (5). Therefore, the fourth lens group satisfies the condition (4). That is, Example 7 satisfies the conditions (1) to (5) and the conditions (8) to (13) as shown in the data.

この実施例7も、第2レンズ群G2を移動して、つまり、カバーガラスの厚さの変化に対応して、データに示すように、間隔d5、d7を変化させて、カバーガラスの厚さの変化による収差変動を補正している。 In Example 7, the second lens group G2 is moved, that is, the distances d 5 and d 7 are changed corresponding to the change in the thickness of the cover glass, as shown in the data, Aberration fluctuation due to thickness change is corrected.

この実施例7の収差状況は、図28、図29、図30に示す通りで、良好に補正されている。つまり、カバーガラスの厚さの変化による収差の変動は、良好に補正されている。     The aberration status of Example 7 is corrected as shown in FIGS. 28, 29, and 30. That is, the variation in aberration due to the change in the thickness of the cover glass is corrected satisfactorily.

本発明の実施例8の光学系は、図8に示す通りの構成で、下記データを有する。

NA=0.85、WD=1.28、β=−100、f=1.8
1 =-10.1037 d1 =1.5759 n1 =1.88300 ν1 =40.76
2 =-5.4838 d2 =0.15
3 =73.2387 d3 =2.278 n2 =1.74951 ν2 =35.33
4 =14.3381 d4 =4.6437 n3 =1.49700 ν3 =81.54
5 =-6.6845 d5 =1.273
6 =473.0632 d6 =2.3126 n4 =1.58913 ν4 =61.14
7 =-16.3646 d7 =1.5111
8 =66.6774 d8 =4.8207 n5 =1.43875 ν5 =94.93
9 =-8.7946 d9 =1.35 n6 =1.65412 ν6 =39.68
10=-31.5482 d10=0.1
11=27.0709 d11=2.473 n7 =1.49700 ν7 =81.54
12=-29.8881 d12=0.2
13=18.2202 d13=1.4 n8 =1.72916 ν8 =54.68
14=9.0694 d14=5.7345 n9 =1.43875 ν9 =94.93
15=-7.7731 d15=1.2 n10=1.61340 ν10=44.27
16=118.3338 d16=0.1
17=6.0069 d17=3.5034 n11=1.49700 ν11=81.54
18=100.0715 d18=2.5178 n12=1.61340 ν12=44.27
19=3.9277 d19=3.1927
20=4.5166 d20=2.4729 n13=1.80518 ν13=25.42
21=-9.4524 d21=0.62 n14=1.72916 ν14=54.68
22=3.66 d22=1.5328
23=-2.9476 d23=1.0016 n15=1.69895 ν15=30.13
24=-6.9668

カバーガラス厚(mm) 0 0.4 0.7
WD 1.454 1.282 1.161
5 2.148 1.273 0.499
7 0.637 1.511 2.286

(1) f2/f=4.244
(2) f2/f3=14.942
(3) |R3|/|R4|=19.7
(4) f4/f=−9.087
(5) f=1.8
(8) f1/f=4.244
(9) H2/H3=0.956
(10) N1=1.883
(11) |R1|/|R2|=1.842
(12) ν(4p)=25.42
(13) D=0.1

この実施例8のレンズ系は、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、単体の両凸レンズ(r6〜r7)よりなる第2レンズ群G2と、両凸レンズ(r8〜r9)と像側に凸面を向けた負のメニスカスレンズ(r9〜r10)とを貼り合わせた接合レンズ(r8〜r10)と単体の両凸レンズ(r11〜r12)と物体側に凸面を向けた負のメニスカスレンズ(r13〜r14)と両凸レンズ(r14〜r15)と両凹レンズ(r15〜r16)とを貼り合わせた3枚接合レンズ(r13〜r16)よりなる第3レンズ群G3と、物体側に凸面を向けた正のメニスカスレンズ(r17〜r18)と像側に凹面を向けた負のメニスカスレンズ(r18〜r19)とを貼り合わせた接合メニスカスレンズ(r17〜r19)と両凸レンズ(r20〜r21)と両凹レンズ(r21〜r22)とを貼り合わせた接合メニスカスレンズ(r20〜r22)と物体側に凹面を向けた単体の負のメニスカスレンズ(r23〜r24)とよりなる第4レンズ群G4とにて構成された対物レンズである。
The optical system of Example 8 of the present invention has the following data with the configuration shown in FIG.

NA = 0.85, WD = 1.28, β = −100, f = 1.8
r 1 = -10.1037 d 1 = 1.5759 n 1 = 1.88300 ν 1 = 40.76
r 2 = -5.4838 d 2 = 0.15
r 3 = 73.2387 d 3 = 2.278 n 2 = 1.74951 ν 2 = 35.33
r 4 = 14.3381 d 4 = 4.6437 n 3 = 1.49700 ν 3 = 81.54
r 5 = -6.6845 d 5 = 1.273
r 6 = 473.0632 d 6 = 2.3126 n 4 = 1.58913 ν 4 = 61.14
r 7 = -16.3646 d 7 = 1.5111
r 8 = 66.6774 d 8 = 4.8207 n 5 = 1.43875 ν 5 = 94.93
r 9 = -8.7946 d 9 = 1.35 n 6 = 1.65412 ν 6 = 39.68
r 10 = -31.5482 d 10 = 0.1
r 11 = 27.0709 d 11 = 2.473 n 7 = 1.49700 ν 7 = 81.54
r 12 = -29.8881 d 12 = 0.2
r 13 = 18.2202 d 13 = 1.4 n 8 = 1.72916 ν 8 = 54.68
r 14 = 9.0694 d 14 = 5.7345 n 9 = 1.43875 ν 9 = 94.93
r 15 = -7.7731 d 15 = 1.2 n 10 = 1.61340 ν 10 = 44.27
r 16 = 118.3338 d 16 = 0.1
r 17 = 6.0069 d 17 = 3.5034 n 11 = 1.49700 ν 11 = 81.54
r 18 = 100.0715 d 18 = 2.5178 n 12 = 1.61340 ν 12 = 44.27
r 19 = 3.9277 d 19 = 3.1927
r 20 = 4.5166 d 20 = 2.4729 n 13 = 1.80518 ν 13 = 25.42
r 21 = −9.4524 d 21 = 0.62 n 14 = 1.72916 ν 14 = 54.68
r 22 = 3.66 d 22 = 1.5328
r 23 = -2.9476 d 23 = 1.0016 n 15 = 1.69895 ν 15 = 30.13
r 24 = -6.9668

Cover glass thickness (mm) 0 0.4 0.7
WD 1.454 1.282 1.161
d 5 2.148 1.273 0.499
d 7 0.637 1.511 2.286

(1) f 2 /f=4.244
(2) f 2 / f 3 = 14.942
(3) | R 3 | / | R 4 | = 19.7
(4) f 4 /f=−9.087
(5) f = 1.8
(8) f 1 /f=4.244
(9) H 2 / H 3 = 0.956
(10) N 1 = 1.883
(11) | R 1 | / | R 2 | = 1.842
(12) ν (4p) = 25.42.
(13) D = 0.1

In the lens system of Example 8, in order from the object side, a single positive meniscus lens (r 1 to r 2 ) having a convex surface facing the image surface side and a negative meniscus lens (r 3 having a convex surface facing the object side). ˜r 4 ) and a biconvex lens (r 4 ˜r 5 ) and a cemented lens (r 3 ˜r 5 ), a first lens group G1, and a single biconvex lens (r 6 ˜r 7 ). a second lens group G2, a double convex lens (r 8 ~r 9) and a negative meniscus lens having a convex surface directed toward the image side (r 9 ~r 10) and a bonded cemented lens (r 8 ~r 10) A single biconvex lens (r 11 to r 12 ), a negative meniscus lens (r 13 to r 14 ) having a convex surface facing the object side, a biconvex lens (r 14 to r 15 ), and a biconcave lens (r 15 to r 16 ) towards DOO a third lens group G3 composed of a bonded three cemented lenses (r 13 ~r 16), a convex surface on the object side Positive meniscus lens (r 17 ~r 18) and a negative meniscus lens having a concave surface on the image side (r 18 ~r 19) and a bonded cemented meniscus lens (r 17 ~r 19) biconvex lens (r 20 ~r 21) and a biconcave lens (r 21 ~r 22) cemented meniscus lens (r 20 bonding the ~r 22) and a single negative meniscus lens having a concave surface on the object side (r 23 ~r 24 ) And the fourth lens group G4.

この実施例8の対物レンズの全系の焦点距離fはf=1.8であって、条件(5)の範囲内の値で、したがって、この実施例8は条件(4)を満足する。つまり実施例8の対物レンズは、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する。     The focal length f of the entire objective lens of Example 8 is f = 1.8, which is a value within the range of the condition (5). Therefore, this Example 8 satisfies the condition (4). That is, the objective lens of Example 8 satisfies the conditions (1) to (5) and the conditions (8) to (13).

また実施例8も、第2レンズ群G2を移動してカバーガラスの厚さの変化による収差変動を補正している。例えばデータに示すように、カバーガラスの厚さに応じて、第2レンズ群を移動して、その前後の間隔d5、d7を変化させて収差変動を補正している。 In the eighth embodiment, the second lens group G2 is moved to correct the aberration variation due to the change in the cover glass thickness. For example, as shown in the data, the aberration variation is corrected by moving the second lens group in accordance with the thickness of the cover glass and changing the distances d 5 and d 7 before and after the second lens group.

この実施例8の収差状況は、図31、図32、図33に示す通りで、いずれも良好に補正されている。つまり、カバーガラスの厚さの変化による収差の変動は、良好に補正されている。     The aberration status of Example 8 is as shown in FIGS. 31, 32, and 33, and all are well corrected. That is, the variation in aberration due to the change in the thickness of the cover glass is corrected satisfactorily.

本発明の実施例9は、図9に示す通りの対物レンズで、下記データを有する。

NA=0.8、WD=1.5、β=−100、f=1.8
1 =-11.0153 d1 =1.25 n1 =1.88300 ν1 =40.76
2 =-4.7398 d2 =0.15
3 =75.4804 d3 =1.834 n2 =1.74951 ν2 =35.33
4 =12.2874 d4 =5.2782 n3 =1.49700 ν3 =81.54
5 =-6.7073 d5 =1.3145
6 =-460.618 d6 =2.2185 n4 =1.58913 ν4 =61.14
7 =-15.4389 d7 =1.3144
8 =-315.987 d8 =4.6485 n5 =1.43875 ν5 =94.93
9 =-7.6277 d9 =1.5 n6 =1.65412 ν6 =39.68
10=-22.2502 d10=0.1
11=25.6319 d11=2.6017 n7 =1.49700 ν7 =81.54
12=-122.917 d12=0.2
13=11.0415 d13=1.2 n8 =1.72916 ν8 =54.68
14=7.2433 d14=6.1973 n9 =1.43875 ν9 =94.93
15=-10.786 d15=1 n10=1.61340 ν10=44.27
16=25 d16=0.1
17=5.4163 d17=3.262 n11=1.49700 ν11=81.54
18=-226.993 d18=3.1635 n12=1.61340 ν12=44.27
19=2.8676 d19=4.6293
20=4.1817 d20=1.9386 n13=1.80518 ν13=25.42
21=-14.5209 d21=0.5 n14=1.755 ν14=52.32
22=3.9555 d22=1.4401
23=-3.4982 d23=0.6 n15=1.80518 ν15=25.42
24=-5.8209

カバーガラス厚(mm) 0 0.4 0.7
WD 1.693 1.499 1.358
5 2.18 1.314 0.546
7 0.449 1.314 2.083

(1) f2/f=15.711
(2) f2/f3=0.704
(3) |R3|/|R4|=4.74
(4) f4/f=−9.017
(5) f=1.8
(8) f1/f=3.791
(9) H2/H3=0.942
(10) N1=1.883
(11) |R1|/|R2|=2.324
(12) ν(4p)=25.42
(13) D=0.1

この実施例9は、物体側より順に、像面側に凸面を向けた単体の正のメニスカスレンズ(r1〜r2)と物体側に凸面を向けた負のメニスカスレンズ(r3〜r4)と両凸レンズ(r4〜r5)を貼り合わせた接合レンズ(r3〜r5)とよりなる第1レンズ群G1と、像側に凸面を向けた単体の正のメニスカスレンズ(r6〜r7)よりなる第2レンズ群G2と、物体側に凹面を向けた正のメニスカスレンズ(r8〜r9)と像側に凸面を向けた負のメニスカスレンズ(r9〜r10)とを貼り合わせた接合レンズ(r8〜r10)と単体の両凸レンズ(r11〜r12)と物体側に凸面を向けた負のメニスカスレンズ(r13〜r14)と両凸レンズ(r14〜r15)と両凹レンズ(r15〜r16)を貼り合わせた3枚接合レンズ(r13〜r16)よりなる第3レンズ群G3と、両凸レンズ(r17〜r18)と両凹レンズ(r18〜r19)を貼り合わせた接合メニスカスレンズ(r17〜r19)と両凸レンズ(r20〜r21)と両凹レンズ(r21〜r22)とを貼り合わせた接合メニスカスレンズ(r20〜r22)と物体側に凹面を向けた単体の負のメニスカスレンズ(r23〜r24)とよりなる第4レンズ群G4とにて構成されたレンズ系である。
Example 9 of the present invention is an objective lens as shown in FIG. 9 and has the following data.

NA = 0.8, WD = 1.5, β = -100, f = 1.8
r 1 = -11.0153 d 1 = 1.25 n 1 = 1.88300 ν 1 = 40.76
r 2 = -4.7398 d 2 = 0.15
r 3 = 75.4804 d 3 = 1.834 n 2 = 1.74951 ν 2 = 35.33
r 4 = 12.2874 d 4 = 5.2782 n 3 = 1.49700 ν 3 = 81.54
r 5 = -6.7073 d 5 = 1.3145
r 6 = -460.618 d 6 = 2.2185 n 4 = 1.58913 ν 4 = 61.14
r 7 = -15.4389 d 7 = 1.3144
r 8 = -315.987 d 8 = 4.6485 n 5 = 1.43875 ν 5 = 94.93
r 9 = -7.6277 d 9 = 1.5 n 6 = 1.65412 ν 6 = 39.68
r 10 = -22.2502 d 10 = 0.1
r 11 = 25.6319 d 11 = 2.6017 n 7 = 1.49700 ν 7 = 81.54
r 12 = -122.917 d 12 = 0.2
r 13 = 11.0415 d 13 = 1.2 n 8 = 1.72916 ν 8 = 54.68
r 14 = 7.2433 d 14 = 6.1973 n 9 = 1.43875 ν 9 = 94.93
r 15 = -10.786 d 15 = 1 n 10 = 1.61340 ν 10 = 44.27
r 16 = 25 d 16 = 0.1
r 17 = 5.4163 d 17 = 3.262 n 11 = 1.49700 ν 11 = 81.54
r 18 = -226.993 d 18 = 3.1635 n 12 = 1.61340 ν 12 = 44.27
r 19 = 2.8676 d 19 = 4.6293
r 20 = 4.1817 d 20 = 1.9386 n 13 = 1.80518 ν 13 = 25.42
r 21 = -14.5209 d 21 = 0.5 n 14 = 1.755 ν 14 = 52.32
r 22 = 3.9555 d 22 = 1.4401
r 23 = -3.4982 d 23 = 0.6 n 15 = 1.80518 ν 15 = 25.42
r 24 = -5.8209

Cover glass thickness (mm) 0 0.4 0.7
WD 1.593 1.499 1.358
d 5 2.18 1.314 0.546
d 7 0.449 1.314 2.083

(1) f 2 /f=15.711
(2) f 2 / f 3 = 0.704
(3) | R 3 | / | R 4 | = 4.74
(4) f 4 /f=−9.017
(5) f = 1.8
(8) f 1 /f=3.791
(9) H 2 / H 3 = 0.942
(10) N 1 = 1.883
(11) | R 1 | / | R 2 | = 2.324
(12) ν (4p) = 25.42.
(13) D = 0.1

In Example 9, in order from the object side, a single positive meniscus lens (r 1 to r 2 ) having a convex surface facing the image side and a negative meniscus lens (r 3 to r 4 ) having a convex surface facing the object side. ) And a biconvex lens (r 4 to r 5 ) and a cemented lens (r 3 to r 5 ), and a single positive meniscus lens (r 6 having a convex surface facing the image side). a second lens group G2 composed of ~r 7), a concave surface directed toward the object side positive meniscus lens (r 8 ~r 9) and a negative meniscus lens having a convex surface directed toward the image side (r 9 ~r 10) A cemented lens (r 8 to r 10 ), a single biconvex lens (r 11 to r 12 ), a negative meniscus lens (r 13 to r 14 ) with a convex surface facing the object side, and a biconvex lens (r 14 ~r 15) and a biconcave lens (r 15 ~r 16) of the bonded cemented triplet (r 13 ~r 16) And Li Cheng the third lens group G3, biconvex lens (r 17 ~r 18) and a biconcave lens (r 18 ~r 19) a bonded cemented meniscus lens (r 17 ~r 19) and a biconvex lens (r 20 ~r 21 ) and a bi-concave lens (r 21 to r 22 ) bonded together, a cemented meniscus lens (r 20 to r 22 ), and a single negative meniscus lens (r 23 to r 24 ) with the concave surface facing the object side. And a fourth lens group G4.

この実施例9の対物レンズは、全系の焦点距離fがf=1.8であって、条件(5)の範囲内のレンズ系であり、条件(4)を満足する。つまり実施例9は、条件(1)乃至条件(5)および条件(8)乃至条件(13)を満足する。     The objective lens of Example 9 is a lens system in which the focal length f of the entire system is f = 1.8 and within the range of the condition (5), and satisfies the condition (4). That is, Example 9 satisfies the conditions (1) to (5) and the conditions (8) to (13).

また実施例9のレンズ系は、カバーガラス等の透明な平行平面板の厚さの変化による収差変動を、第2レンズ群G2を移動して補正している。データに示すように、この実施例9は、カバーガラスの厚さに応じて、第2レンズ群G2を移動して(間隔d5、d7を変化させて)収差変動を補正している。 In the lens system of Example 9, aberration variation due to a change in the thickness of a transparent plane-parallel plate such as a cover glass is corrected by moving the second lens group G2. As shown in the data, in Example 9, aberration variation is corrected by moving the second lens group G2 (changing the distances d 5 and d 7 ) according to the thickness of the cover glass.

この実施例9の収差状況は、図34、図35、図36に示す通りで、いずれも良好に補正されている。つまり、カバーガラスの厚さの変化による収差の変動は、良好に補正されている。     The aberration status of Example 9 is as shown in FIGS. 34, 35, and 36, and all are well corrected. That is, the variation in aberration due to the change in the thickness of the cover glass is corrected satisfactorily.

尚、実施例1と同様に実施例2乃至実施例9も無限遠補正のレンズ系であり、例えば図37に示すような結像レンズを配置して使用される。     As with the first embodiment, the second to ninth embodiments are also infinity-corrected lens systems, and are used with an imaging lens as shown in FIG. 37, for example.

この図37に示す結像レンズは、次のデータを有する。

F=180
1 =68.754 D1 =7.732 N1 =1.487 V1 =70.2
2 =-37.567 D2 =3.474 N2 =1.806 V2 =40.9
3 =-102.847 D3 =0.697
4 =84.309 D4 =6.023 N3 =1.834 V3 =37.1
5 =-50.710 D5 =3.029 N4 =1.644 V4 =40.8
6 =40.661
ここで、R1 ,R2 ,・・・R6は結像レンズの各レンズ面の曲率半径、D1 ,D2 ,・・・D5 は結像レンズの各レンズの肉厚および空気間隔、N1 ,N2 ,N3 ,N4は結像レンズの各レンズの屈折率、V1 ,V2 ,V3 ,V4は結像レンズの各レンズのアッベ数、Fは結像レンズの焦点距離である。
The imaging lens shown in FIG. 37 has the following data.

F = 180
R 1 = 68.754 D 1 = 7.732 N 1 = 1.487 V 1 = 70.2
R 2 = −37.567 D 2 = 3.474 N 2 = 1.806 V 2 = 40.9
R 3 = -102.847 D 3 = 0.697
R 4 = 84.309 D 4 = 6.023 N 3 = 1.834 V 3 = 37.1
R 5 = -50.710 D 5 = 3.029 N 4 = 1.644 V 4 = 40.8
R 6 = 40.661
Wherein, R 1, R 2, ··· R 6 is the radius of curvature of each lens surface of the imaging lens, D 1, D 2, ··· D 5 is the thickness and air space of the lens of the imaging lens , N 1 , N 2 , N 3 , and N 4 are the refractive indexes of the lenses of the imaging lens, V 1 , V 2 , V 3 , and V 4 are Abbe numbers of the lenses of the imaging lens, and F is the imaging lens Is the focal length.

前記実施例1〜実施例9の対物レンズは、図37に示す結像レンズとの間隔が50mm〜170mmの間のいずれかの間隔を設けた配置にて用いられる。     The objective lenses of Examples 1 to 9 are used in an arrangement in which the distance between the objective lens and the imaging lens shown in FIG. 37 is 50 mm to 170 mm.

前記各実施例の収差図は、対物レンズと結像レンズとの間隔が119mmの時のものである。しかし、119mm以外で前記範囲内の間隔であれば、前記収差図に示すものとほぼ同様の収差状況である。     The aberration diagrams of the respective examples are obtained when the distance between the objective lens and the imaging lens is 119 mm. However, if the distance is within the above range other than 119 mm, the aberration situation is almost the same as that shown in the aberration diagram.

本発明の対物は、補正環付顕微鏡対物レンズで、カバーガラス等の透明な平行平面板の厚さの変化にも対応でき、厚さの変化による収差変動を容易に補正し得て、常に良好な結像性能にての物体の観察が可能である。     The objective of the present invention is a microscope objective lens with a correction ring, which can respond to changes in the thickness of a transparent plane parallel plate such as a cover glass, and can easily correct aberration variations due to thickness changes, and is always good. It is possible to observe an object with excellent imaging performance.

本発明の実施例1の断面図Sectional drawing of Example 1 of this invention 本発明の実施例2の断面図Sectional drawing of Example 2 of this invention 本発明の実施例3の断面図Sectional drawing of Example 3 of this invention 本発明の実施例4の断面図Sectional drawing of Example 4 of this invention 本発明の実施例5の断面図Sectional drawing of Example 5 of this invention 本発明の実施例6の断面図Sectional drawing of Example 6 of this invention 本発明の実施例7の断面図Sectional drawing of Example 7 of this invention 本発明の実施例8の断面図Sectional drawing of Example 8 of this invention 本発明の実施例9の断面図Sectional drawing of Example 9 of this invention 本発明の実施例1のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 1 of the present invention is 0 mm 本発明の実施例1のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 1 of the present invention is 0.7 mm. 本発明の実施例1のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 1 of the present invention is 1.2 mm 本発明の実施例2のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 2 of the present invention is 0 mm 本発明の実施例2のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 2 of the present invention is 0.7 mm 本発明の実施例2のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 2 of the present invention is 1.2 mm. 本発明の実施例3のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 3 of the present invention is 0 mm 本発明の実施例3のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 3 of the present invention is 0.7 mm 本発明の実施例3のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 3 of the present invention is 1.2 mm. 本発明の実施例4のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 4 of the present invention is 0 mm 本発明の実施例4のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 4 of the present invention is 0.7 mm 本発明の実施例4のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 4 of the present invention is 1.2 mm 本発明の実施例5のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 5 of the present invention is 0 mm 本発明の実施例5のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when thickness of cover glass of Example 5 of the present invention is 0.7 mm 本発明の実施例5のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 5 of the present invention is 1.2 mm 本発明の実施例6のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 6 of the present invention is 0 mm 本発明の実施例6のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 6 of the present invention is 0.7 mm. 本発明の実施例6のカバーガラスの厚さが1.2mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 6 of the present invention is 1.2 mm. 本発明の実施例7のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 7 of the present invention is 0 mm 本発明の実施例7のカバーガラスの厚さが0.4mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 7 of the present invention is 0.4 mm 本発明の実施例7のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when thickness of cover glass of Example 7 of the present invention is 0.7 mm 本発明の実施例8のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 8 of the present invention is 0 mm 本発明の実施例8のカバーガラスの厚さが0.4mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 8 of the present invention is 0.4 mm 本発明の実施例8のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 8 of the present invention is 0.7 mm 本発明の実施例9のカバーガラスの厚さが0mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 9 of the present invention is 0 mm 本発明の実施例9のカバーガラスの厚さが0.4mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 9 of the present invention is 0.4 mm 本発明の実施例9のカバーガラスの厚さが0.7mmの場合の収差図Aberration diagram when the thickness of the cover glass of Example 9 of the present invention is 0.7 mm 上記各実施例の対物レンズと組み合わせて用いられる結像レンズの断面図Sectional drawing of the imaging lens used in combination with the objective lens of each of the above embodiments

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group

Claims (9)

物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有し光軸に沿って移動可能な第2レンズ群と、少なくとも一つの接合レンズ成分を含み全体として正の屈折力を有する第3レンズ群と、最も物体側の面が物体側に向けた凸面で全体として負の屈折力を有する第4レンズ群にて構成され、下記条件(1)、(2)、(3)を満足する顕微鏡対物レンズ。
(1) 6<f2/f<16
(2) 0.2<f2/f3<1.2
(3) |R3|/|R4|>4
ただし、f2は第2レンズ群の焦点距離、f3は第3レンズ群の焦点距離、fは対物レンズ全系の焦点距離、R3は第3レンズ群の最も像側の面の曲率半径、R4は第4レンズ群の最も物体側の面の曲率半径である。
In order from the object side, the first lens group having a positive refractive power, the second lens group having a positive refractive power and movable along the optical axis, and at least one cemented lens component as a whole are positive. The third lens group having refractive power and the fourth lens group having a negative refractive power as a whole with the most object-side surface facing the object side, and the following conditions (1), (2), A microscope objective lens satisfying (3).
(1) 6 <f 2 / f <16
(2) 0.2 <f 2 / f 3 <1.2
(3) | R 3 | / | R 4 |> 4
Where f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, f is the focal length of the entire objective lens system, and R 3 is the radius of curvature of the most image side surface of the third lens group. , R 4 is the radius of curvature of the surface of the fourth lens group closest to the object side.
全系の焦点距離fが下記(5)の範囲内で下記条件(4)を満足する請求項1の顕微鏡対物レンズ。
(4) −10<f4/f<−2
(5) 1<f<5
ただし、f4は第4レンズ群の焦点距離である。
The microscope objective lens according to claim 1, wherein the focal length f of the entire system satisfies the following condition (4) within the range of the following (5).
(4) −10 <f 4 / f <−2
(5) 1 <f <5
Here, f 4 is the focal length of the fourth lens group.
全系の焦点距離fが下記(7)の範囲内で下記条件(6)を満足する請求項1の顕微鏡対物レンズ。
(6) −40<f4’/f<−20
(7) 8<f<11
ただし、f4’は第4レンズ群の焦点距離である。
The microscope objective lens according to claim 1, wherein the focal length f of the entire system satisfies the following condition (6) within the range of the following (7).
(6) −40 <f 4 ′ / f <−20
(7) 8 <f <11
Here, f 4 ′ is the focal length of the fourth lens group.
下記条件(8)を満足する請求項1、2又は3の顕微鏡対物レンズ。
(8) 1<f1/f<5
ただし、f1は前記第1レンズ群の焦点距離である。
The microscope objective lens according to claim 1, 2 or 3, which satisfies the following condition (8).
(8) 1 <f 1 / f <5
Here, f 1 is the focal length of the first lens group.
下記条件(9)を満足する請求項1、2、3又は4の顕微鏡対物レンズ。
(9) H2/H3<1
ただし、H2は第2レンズ群の最も高い光線高、H3は第3レンズ群の最も高い光線高である。
The microscope objective lens according to claim 1, 2, 3, or 4, which satisfies the following condition (9).
(9) H 2 / H 3 <1
However, H 2 is the highest beam height of the second lens group, and H 3 is the highest beam height of the third lens group.
下記条件(10)を満足する請求項1、2、3、4又は5の顕微鏡対物レンズ。
(10) N1>1.7
ただし、N1は第1レンズ群の最も物体側のレンズの屈折率である。
The microscope objective lens according to claim 1, 2, 3, 4 or 5, which satisfies the following condition (10).
(10) N 1 > 1.7
N 1 is the refractive index of the lens closest to the object side in the first lens group.
下記条件(11)を満足する請求項1、2、3、4、5又65の顕微鏡対物レンズ。
(11) |R1|/|R2|>1
ただし、R1、R2は夫々前記第1レンズ群の最も物体側のレンズの物体側の面および像側の面の曲率半径である。
The microscope objective lens according to claim 1, 2, 3, 4, 5, or 65 satisfying the following condition (11).
(11) | R 1 | / | R 2 |> 1
Here, R 1 and R 2 are the radii of curvature of the object-side surface and the image-side surface of the most object-side lens of the first lens group, respectively.
前記第4レンズ群が凸レンズと凹レンズを接合した接合レンズを含み下記条件(12)を満足する請求項1、2、3、4、5、6又は7の顕微鏡対物レンズ。
(12) ν(4p)<35
ただし、ν(4p)は、前記第4レンズ群の接合レンズの凸レンズのアッベ数である。
The microscope objective lens according to claim 1, wherein the fourth lens group includes a cemented lens in which a convex lens and a concave lens are cemented, and satisfies the following condition (12).
(12) ν (4p) <35
Where ν (4p) is the Abbe number of the convex lens of the cemented lens of the fourth lens group.
下記条件(13)を満足する請求項1、2、3、4、5、6、7又は8の顕微鏡対物レンズ。
(13) 0<D<3
ただし、Dは第3レンズ群と第4レンズ群の光軸上の空気間隔(mm)である。
The microscope objective lens according to claim 1, 2, 3, 4, 5, 6, 7 or 8, which satisfies the following condition (13).
(13) 0 <D <3
Here, D is the air space (mm) on the optical axis of the third lens group and the fourth lens group.
JP2006157151A 2006-06-06 2006-06-06 Microscope objective lens Active JP4959230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157151A JP4959230B2 (en) 2006-06-06 2006-06-06 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157151A JP4959230B2 (en) 2006-06-06 2006-06-06 Microscope objective lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012016026A Division JP5277324B2 (en) 2012-01-30 2012-01-30 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2007328014A true JP2007328014A (en) 2007-12-20
JP4959230B2 JP4959230B2 (en) 2012-06-20

Family

ID=38928551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157151A Active JP4959230B2 (en) 2006-06-06 2006-06-06 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP4959230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131225A3 (en) * 2008-06-06 2009-12-16 Olympus Medical Systems Corporation Objective optical system
CN104267490A (en) * 2014-10-29 2015-01-07 南京康庄光电仪器有限公司 Microscope objective
CN108254911A (en) * 2018-01-25 2018-07-06 张佳 A kind of micro objective
JP2019003001A (en) * 2017-06-14 2019-01-10 オリンパス株式会社 Objective lens
CN113219631A (en) * 2021-04-30 2021-08-06 江西凤凰光学科技有限公司 Long-focus optical lens
WO2024090587A1 (en) * 2022-10-27 2024-05-02 株式会社ニコン Microscope objective lens, microscope optical system, and microscope device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275813A (en) * 1985-05-31 1986-12-05 Nippon Kogaku Kk <Nikon> High magnification microscopic objective lens
JPH08114747A (en) * 1994-10-17 1996-05-07 Olympus Optical Co Ltd Microscope objective lens
JPH10142510A (en) * 1996-11-08 1998-05-29 Nikon Corp Objective lens for microscope
JPH10142509A (en) * 1996-11-14 1998-05-29 Nikon Corp Microscope objective lens
JP2003015046A (en) * 2001-06-28 2003-01-15 Nikon Corp Immersion system microscope objective
JP2005266131A (en) * 2004-03-17 2005-09-29 Nikon Corp Immersion-type microscope objective lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275813A (en) * 1985-05-31 1986-12-05 Nippon Kogaku Kk <Nikon> High magnification microscopic objective lens
JPH08114747A (en) * 1994-10-17 1996-05-07 Olympus Optical Co Ltd Microscope objective lens
JPH10142510A (en) * 1996-11-08 1998-05-29 Nikon Corp Objective lens for microscope
JPH10142509A (en) * 1996-11-14 1998-05-29 Nikon Corp Microscope objective lens
JP2003015046A (en) * 2001-06-28 2003-01-15 Nikon Corp Immersion system microscope objective
JP2005266131A (en) * 2004-03-17 2005-09-29 Nikon Corp Immersion-type microscope objective lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131225A3 (en) * 2008-06-06 2009-12-16 Olympus Medical Systems Corporation Objective optical system
US7982975B2 (en) 2008-06-06 2011-07-19 Olympus Medical Systems Corp. Objective optical system
CN104267490A (en) * 2014-10-29 2015-01-07 南京康庄光电仪器有限公司 Microscope objective
CN104267490B (en) * 2014-10-29 2016-08-24 南京康庄光电仪器有限公司 A kind of micro objective
JP2019003001A (en) * 2017-06-14 2019-01-10 オリンパス株式会社 Objective lens
CN108254911A (en) * 2018-01-25 2018-07-06 张佳 A kind of micro objective
CN113219631A (en) * 2021-04-30 2021-08-06 江西凤凰光学科技有限公司 Long-focus optical lens
WO2024090587A1 (en) * 2022-10-27 2024-05-02 株式会社ニコン Microscope objective lens, microscope optical system, and microscope device

Also Published As

Publication number Publication date
JP4959230B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5277324B2 (en) Microscope objective lens
JP3280402B2 (en) Microscope objective lens
US7262922B2 (en) Immersion microscope objective lens
JP3299808B2 (en) Immersion microscope objective lens
JPH06281860A (en) Two-group zoom lens
JPH1078543A (en) Optical system
JP3313163B2 (en) Microscope objective lens
JP2006113486A (en) Immersion system microscope objective
CN112424665B (en) Endoscope optical system
JP4959230B2 (en) Microscope objective lens
US20030043473A1 (en) Liquid immersion type microscope objective lens
JPH07120677A (en) Compact three-group zoom lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP4742355B2 (en) Immersion microscope objective lens
JP3454935B2 (en) Microscope objective lens
JPH0961708A (en) Standard lens system
JP4098492B2 (en) Immersion microscope objective lens
JP2005091755A (en) Afocal zoom lens for microscope
JP4646551B2 (en) Microscope objective lens
JPH08136816A (en) Objective lens of microscope
JP3093835B2 (en) Microscope objective lens
JPH10333044A (en) Microscope objective lens
JP2891369B2 (en) Microscope objective lens
JP2012083486A (en) Object lens
JPH07287169A (en) Microscope objective

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250