JP2891369B2 - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JP2891369B2
JP2891369B2 JP1184563A JP18456389A JP2891369B2 JP 2891369 B2 JP2891369 B2 JP 2891369B2 JP 1184563 A JP1184563 A JP 1184563A JP 18456389 A JP18456389 A JP 18456389A JP 2891369 B2 JP2891369 B2 JP 2891369B2
Authority
JP
Japan
Prior art keywords
group
aberration
cover glass
refractive power
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1184563A
Other languages
Japanese (ja)
Other versions
JPH0350517A (en
Inventor
良治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP1184563A priority Critical patent/JP2891369B2/en
Publication of JPH0350517A publication Critical patent/JPH0350517A/en
Application granted granted Critical
Publication of JP2891369B2 publication Critical patent/JP2891369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、物体側に配置される透明な平行平面板(カ
バーガラス)の厚さの変化に対し諸収差を良好に補正し
得るようにした高倍率顕微鏡対物レンズに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is intended to satisfactorily correct various aberrations with respect to a change in the thickness of a transparent parallel flat plate (cover glass) disposed on the object side. And a high magnification microscope objective lens.

[従来の技術] 一般に顕微鏡対物レンズは、カバーガラスの厚みが一
定であるとして設計してある。そのためカバーガラスの
厚みが変化した場合、その結像性能は劣化してしまいNA
が大きくなる程この現象は顕著になる。そこで第1群に
入射する光線高がほぼ一定になるように対物レンズ全体
を動かしてガラスと第1群との距離を僅かに変化させて
いる。
[Prior Art] Generally, a microscope objective lens is designed on the assumption that the thickness of a cover glass is constant. Therefore, if the thickness of the cover glass changes, its imaging performance will deteriorate and the NA
This phenomenon becomes more remarkable as becomes larger. Therefore, the distance between the glass and the first lens unit is slightly changed by moving the entire objective lens so that the height of the light beam incident on the first lens unit becomes substantially constant.

近年、細胞培養,遺伝子操作などのバイオテクノロジ
ー分野が発展しているがその時に用いるガラスシャー
レ、プラスチックシャーレの厚みはばらつきが多いた
め、シャーレの厚み(透明な平行平面板の厚み)によっ
て悪化する収差を補正できる機構を持ち、しかもその厚
さの変化に対して余裕のある長い作動距離を持つ顕微鏡
対物レンズが必要となる。このような顕微鏡対物レンズ
として特公昭61−30245号公報に記載されたものが知ら
れている。この従来例はカバーガラスの厚みが0〜2mm
の変化に対して収差補正ができ、長い作動距離の顕微鏡
対物レンズである。
In recent years, biotechnology fields such as cell culture and genetic manipulation have been developed. However, the thicknesses of glass dishes and plastic dishes used at that time vary widely, and aberrations are aggravated by the thickness of the dishes (thickness of the transparent parallel flat plate). Therefore, a microscope objective lens having a mechanism capable of compensating for the thickness and having a long working distance with a margin for a change in its thickness is required. As such a microscope objective lens, one described in JP-B-61-30245 is known. In this conventional example, the thickness of the cover glass is 0 to 2 mm.
Is a microscope objective lens with a long working distance that can correct aberrations for changes in

また高倍率,高NAの顕微鏡対物レンズとして特開昭59
−100409号,特開昭60−205521号,特開昭60−247613号
の各公報に記載されているレンズ系が知られている。こ
の従来例は、カバーガラスの厚さの補正範囲が狭いが長
い作動距離を有している。
As a microscope objective lens with high magnification and high NA
The lens systems described in JP-A-100409, JP-A-60-205521 and JP-A-60-247613 are known. In this conventional example, the correction range of the thickness of the cover glass is narrow, but has a long working distance.

又特公昭61−30245号記載の従来例は40倍ぐらいまで
の倍率を保ち、NAが0.6以下で、カバーガラスの厚みに
対する補正を可能にした顕微鏡対物レンズで、カバーガ
ラスの厚さ全域にわたって比較的良好に収差が補正され
ている。
The conventional example described in JP-B-61-30245 is a microscope objective lens that maintains the magnification up to about 40 times, NA is 0.6 or less, and enables correction for the thickness of the cover glass.Compared over the entire thickness of the cover glass The aberration is corrected satisfactorily.

[発明が解決しようとする課題] これらの従来例のうち高倍率で高いNAのカバーガラス
補正用顕微鏡対物レンズ(特開昭59−100409号,特開昭
60−205521号,特開昭60−247613号)は、カバーガラス
の厚みの変化による球面収差,コマ収差を十分補正する
ことが出来ない。特にNA0.8,倍率100×ぐらいの対物レ
ンズ(特開昭60−247613号)では、補正範囲の境界での
球面収差,色収差の曲がりおよびコマ収差が大きくな
り、その収差補正は非常に困難である。
[Problems to be Solved by the Invention] Among these conventional examples, a microscope objective lens for correcting a cover glass having a high NA and a high magnification (Japanese Patent Application Laid-Open Nos.
60-205521, JP-A-60-247613) cannot sufficiently correct spherical aberration and coma due to a change in the thickness of the cover glass. In particular, with an objective lens having an NA of 0.8 and a magnification of about 100 × (Japanese Patent Application Laid-Open No. 60-247613), spherical aberration, chromatic aberration bending and coma aberration at the boundary of the correction range become large, and it is extremely difficult to correct the aberration. is there.

本発明は、カバーガラスの厚みの変化に対して補正可
能な全域で諸収差が良好に補正された高倍,高NA,長作
動距離顕微鏡対物レンズを提供することを目的としてい
る。
An object of the present invention is to provide a high-magnification, high NA, long working distance microscope objective lens in which various aberrations are satisfactorily corrected over the entire range that can be corrected for a change in cover glass thickness.

[課題を解決するための手段] 本発明の顕微鏡対物レンズは、像側に凸面を向けた正
のメニスカスレンズを含み射出光束が発散光である正の
屈折力の第1群G1と、負の屈折力の接合面を少なくとも
1面以上有し光軸上を移動可能な正の屈折力の第2群G2
と、負の屈折力の第3群G3からなり第1群G1と物体との
間に配置される透明な平行平面板(カバーガラス等)の
厚みの変化に対応して第2群G2が第1群G1,第3群G3
対して相対的に移動可能であり、平行平面板が厚くなっ
た場合には第1群G1と第2群G2との間の距離が短くなる
ように第2群G2を光軸方向に移動させ、平行平面板が薄
くなった場合には第1群G1と第2群G2との間の距離が長
くなるように第2群G2を光軸方向に移動させることを特
徴としている。
Microscope objective of the present invention [Means for Solving the Problems] includes a first group G 1 having a positive refractive power the light flux is divergent light includes positive meniscus lens having a convex surface directed toward the image side, a negative Second group G 2 having a positive refractive power and having at least one joining surface having a refractive power of
When the second group G in response to changes in the thickness of the transparent parallel flat plate disposed between the first group G 1 and the object and a third group G 3 having a negative refractive power (a cover glass or the like) 2 is relatively movable with respect to the first group G 1 and the third group G 3 , and the distance between the first group G 1 and the second group G 2 when the plane-parallel plate becomes thicker the so moves the second group G 2 to be shorter in the direction of the optical axis, the distance between the first group G 1 and the second group G 2 in the case of a plane-parallel plate becomes thinner becomes longer It is characterized by moving the 2 group G 2 in the optical axis direction.

一般に顕微鏡対物レンズにおいてカバーガラスの厚み
の変化によって発生する収差を補正するためにレンズを
移動するが、高NAの対物レンズの場合収差変動時に球面
収差,コマ収差,色収差の変動が大きい。そのため固定
群,移動群の各群で発生する収差を小さくしないとカバ
ーガラスの厚みの変化によりカバーガラスを含む全系で
発生する収差が大になり補正できなくなる。
Generally, a microscope objective lens is moved to correct aberration caused by a change in the thickness of a cover glass. In the case of a high NA objective lens, spherical aberration, coma, and chromatic aberration vary greatly when the aberration varies. Therefore, unless the aberration generated in each of the fixed group and the moving group is reduced, the aberration generated in the entire system including the cover glass becomes large due to a change in the thickness of the cover glass, and correction cannot be performed.

本発明の顕微鏡対物レンズにおいては、第1群G1が正
の屈折力を有していて、球面収差と色収差が補正不足に
なるが第1群G1の最終面で発散光束にしているので第1
群全体としては収差量は小さくなっている。第2群G2
正の屈折力を持っているが第1群G1より屈折力が弱く負
の屈折力を持つ接合面によって第2群全体で発生する球
面収差,色収差をいくぶん補正過剰にし、第1群G1で発
生する収差と打ち消し合うようにしている。
In the microscope objective lens of the present invention, the first group G 1 is have a positive refractive power, since the spherical aberration and the chromatic aberration is insufficiently corrected and the divergent light beam by the final surface of the first group G 1 First
The aberration amount is small for the entire group. The second group G 2 is a spherical aberration but has a positive refractive power generated in the entire second group by bonding surface having a negative refractive power refractive power weaker than the first group G 1, the chromatic aberration somewhat overcorrected , so that it cancels the aberration occurring in the first group G 1.

カバーガラスが厚くなった場合、射出光線高がより高
くなるためカバーガラス面で発生する球面収差,色収差
が発散方向に増大する。この時、第1群G1へ入射する光
線高も高くなり、第1群G1の収斂作用が強くなるのでカ
バーガラスで発生する収差とは逆方向の収差が増大す
る。しかしカバーガラス厚の変化によって増大した発散
方向の収差よりも、第1群G1で発生する収差の変化量が
小さいため、カバーガラスで発生する収差変化を補正し
きれない。そこで第1群G1と第2群G2間の距離を短くし
第2群G2へ入射する光線の光線高を低くし、第2群G2
発生する発散方向の収差を小さくしレンズ系全体の収差
を小さくしている。逆にカバーガラスの厚みが薄くなっ
た場合は、第1群G1と第2群G2間の間隔を長くして第2
群G2へ入射する光線の高さを高くして第2群G2で発生す
る発散方向の収差を大きくしてカバーガラスの厚みの変
化によって減少した発散方向の収差を補い全体としての
収差のバランスをとっている。
When the cover glass is thickened, the height of the emitted light becomes higher, so that spherical aberration and chromatic aberration generated on the cover glass surface increase in the diverging direction. In this case, it is higher height of light rays incident on the first group G 1, the aberration converging action of the first group G 1 is generated in the cover glass since stronger reverse aberration increases. But above aberrations of the diverging direction is increased by a change in thickness of the cover glass, since the change amount of the aberration occurring in the first group G 1 is small, can not be corrected aberration change generated in the cover glass. Therefore the first group G 1 and to lower the ray height of a ray incident on the distance shorter second group G 2 between the second group G 2, reduced by the lens aberration of the diverging direction generated by the second group G 2 The aberration of the entire system is reduced. If the thickness of the cover glass becomes thinner Conversely, the longer the first group G 1 and the distance between the second group G 2 second
Aberrations as a whole compensate the aberration of the diverging direction is reduced by a change in the thickness of the larger to cover glass aberrations of the diverging direction generated by the second group G 2 by increasing the height of the light beam incident to the group G 2 Balanced.

第3群G3は、負の屈折力を有しペッツバール和を小さ
くするとともに軸上色収差と倍率の色収差の補正を行な
っている。この第3群G3も第1群G1,第2群G2と同様に
発生する収差量は小さくカバーガラスの厚みの変化によ
るこの第3群G3での収差の変化量は小さい。
Third group G 3 is performed to correct the longitudinal chromatic aberration and lateral chromatic aberration while reducing the Petzval sum has a negative refractive power. The third group G 3 also the first group G 1, the amount of change in aberrations in the third group G 3 due to the change in aberration is small cover glass thickness produced in the same manner as the second group G 2 is small.

本発明の顕微鏡対物レンズは、前述のようにカバーガ
ラスの厚みの変化による収差変動を補正するために、第
1群G1と第3群G3に対して相対的に第2群G2を移動させ
る。又第1群G1と第2群G2の間は、第1群G1で発生する
負の球面収差を小さくするために発散光束になるように
している。そのために第1群G1の最も像側の面の曲率半
径riは、次の条件(1),(2)を満足することが望ま
しい。
Microscope objective of the present invention, in order to correct the aberration variation due to change in thickness of the cover glass as described above, a relatively second group G 2 with respect to the first group G 1 and the third group G 3 Move. Also between the first group G 1 and the second group G 2 is set to be in the divergent light beam in order to reduce the negative spherical aberration produced by the first group G 1. The radius of curvature r i of the most image side surface of the first group G 1 For that purpose, the following conditions (1), it is desirable to satisfy the (2).

(1) |ri|/f>50 (ri<0の時) (2) ri/f>6.5 (ri>0の時) ただしfは対物レンズ全系の焦点距離である。(1) | r i | / f> 50 (when r i <0) (2) r i /f>6.5 (when r i > 0) where f is the focal length of the entire objective lens system.

条件(1)よりも|ri|が小になるとri面から第2群G2
へ向かう光線の発散性が弱くなる。つまり第1群G1の収
斂作用が強くなり、第1群G1で発生する球面収差,コマ
収差,色収差が大きくなる。そのためカバーガラスの厚
さの変化によって発生する収差を第2群G2の移動だけで
は補正できなくなる。
Condition (1) than | r i | is small when r i second group from the surface G 2
The divergence of the light rays going toward is weakened. That converging action of the first group G 1 becomes strong, the spherical aberration occurring in the first group G 1, coma, chromatic aberration increases. Therefore the aberration caused by a change in thickness of the cover glass only movement of the second group G 2 becomes impossible to correct.

条件(2)よりもriが小になると、この面から第2群
G2へ向かう光束の発散性が強すぎて、カバーガラスの厚
みの変化にともない第2群G2が移動する時の第2群G2
の入射光線高の変化が大きくなる。そのため第2群G2
発生する諸収差時に色収差の変動が激しく十分な性能を
得ることが出来ない。
When r i is smaller than the condition (2), the second group
And divergence is too strong of a light beam towards the G 2, the incident light height of the change to the second group G 2 when the second group G 2 with the change of the thickness of the cover glass is moved is increased. Therefore it is impossible to change the chromatic aberration obtain vigorous sufficient performance when various aberrations generated in the second group G 2.

本発明の顕微鏡対物レンズにおいて、次の条件
(3),(4)を満足するようにすれば更に良好な諸収
差を補正することが出来る。
If the following conditions (3) and (4) are satisfied in the microscope objective lens of the present invention, it is possible to correct various aberrations more favorably.

(3) 2<f1/f<6 (4) 4<f2/f<10 ただし、f1,f2は夫々第1群,第2群の焦点距離であ
る。
(3) 2 <f 1 / f <6 (4) 4 <f 2 / f <10 where f 1 and f 2 are the focal lengths of the first group and the second group, respectively.

条件(3)の下限を越えると第1群G1の収斂作用が強
くなりすぎて、第1群G1で発生する収差量が大きくカバ
ーガラスの厚みの変化によって変動する球面収差,コマ
収差,色収差を第2群G2を移動させただけでは十分に補
正出来ない。また対物レンズの作動距離も短くなる。条
件(3)の上限を越えると第1群G1の収斂作用が弱くな
り、第2群G2,第3群G3で球面収差,色収差の補正をし
なければならないが、第2群G2に入射する光線の光線高
が高くなり、カバーガラスの厚みの変化による収差の変
化特に色収差の変化が大きく補正しにくくなる。
Condition (3) exceeds the lower limit too strong converging action of the first group G 1 is, spherical aberration, coma aberration generated in the first group G 1 is varied by a change in the increase of the cover glass thickness, only chromatic aberration moving the second group G 2 can not sufficiently corrected. Also, the working distance of the objective lens is shortened. Converging action of Above the upper limit first group G 1 of the condition (3) is weakened, the second group G 2, the spherical aberration in the third lens group G 3, must be a correction of the chromatic aberration, the second group G The ray height of the ray incident on 2 becomes high, and it becomes difficult to largely correct the change in aberration due to the change in the thickness of the cover glass, especially the change in chromatic aberration.

条件(4)の下限を外れると移動群である第2群G2
屈折力が強くなりすぎて第2群G2の移動による球面収
差,色収差の変動が大きく、また第2群G2で発生する収
差が発散する方向に増えるために全系の色収差を補正で
きなくなる。条件(4)の上限を越えると第2群G2の屈
折力が弱くなり、第1群G1からの射出光束が発散光であ
るために光束を所定の位置に結像させるためには第3群
G3の屈折力を正方向に強めなければならない。そのため
第3群G3の負の屈折力が弱くなりペッツバール和が大き
くなる。また色収差,コマ収差,非点隔差などの諸収差
のバランスがくずれカバーガラスの厚みの変化による収
差の補正が困難になる。
Condition (4) the spherical aberration due to movement of the second group G 2 the refractive power becomes too strong in the second group G 2 is a mobile group out of the lower limit of the variation of chromatic aberration is large, and in the second group G 2 Since the generated aberration increases in the diverging direction, the chromatic aberration of the entire system cannot be corrected. Condition (4) exceeds the upper limit refractive power of the second group G 2 becomes weak, because the light flux from the first group G 1 is for forming in place a light beam to a divergent light is first 3 groups
We must strengthen the refractive power of G 3 in the positive direction. Therefore Petzval sum negative refractive power of the third group G 3 becomes weaker increases. Further, the balance of various aberrations such as chromatic aberration, coma, and astigmatism is lost, and it becomes difficult to correct the aberration due to a change in the thickness of the cover glass.

カバーガラスの厚みの変化に対する収差変動を補正す
るために移動する第2群G2中に負の屈折力の接合面を少
なくとも1面設ける必要があるが、この接合面が次の条
件(5)を満足すれば収差変動を更に良好に補正するこ
とが出来る。
Cover glass must be provided at least one surface of the bonding surface of the negative refractive power in the second group G 2 to move in order to correct the aberration fluctuation to changes in the thickness of, this bonding surface of the following conditions (5) Is satisfied, aberration fluctuations can be corrected even more favorably.

(5) 0.02<{(nN−nP)/rc}f<0.13 ただしrcは上記負の屈折力を持つ接合面の曲率半径、
nN,nPは夫々上記接合面前後の凹レンズおよび凸レンズ
の屈折率である。
(5) 0.02 <{(n N -n P) / r c} f <0.13 However r c is the radius of curvature of the cemented surface with the negative refractive power,
n N and n P are the refractive indices of the concave lens and the convex lens before and after the joint surface, respectively.

条件(5)の下限を外れると接合面の負の屈折力が弱
くなり発散方向の収差の発生が少なくなるためカバーガ
ラスの厚みが変化した時、全系の球面収差,色収差を補
正できなくなる。条件(5)の上限を越えると第2群で
発散作用が強くなり発散方向に球面収差,色収差が発生
する。そのため条件(4)の上限を越えた場合と同様に
第3群の収斂作用を強めなければならず、カバーガラス
の厚みの変化に対して収差変動が大きくなり十分良好な
性能を得ることができない。
When the value falls below the lower limit of the condition (5), the negative refractive power of the cemented surface is weakened, and the occurrence of aberration in the diverging direction is reduced. Therefore, when the thickness of the cover glass changes, spherical aberration and chromatic aberration of the entire system cannot be corrected. When the value exceeds the upper limit of the condition (5), the diverging action becomes strong in the second lens unit, and spherical aberration and chromatic aberration occur in the diverging direction. Therefore, similarly to the case where the upper limit of the condition (4) is exceeded, the convergence of the third lens group must be strengthened, and the variation in aberration becomes large with respect to the change in the thickness of the cover glass, so that sufficient satisfactory performance cannot be obtained. .

[実施例] 次に本発明の顕微鏡対物レンズの各実施例を示す。[Examples] Next, examples of the microscope objective lens of the present invention will be described.

実施例1 f=1.54,d0=1.065 r1=−9.84 d1=2.1 n1=1.755 ν=52.33 r2=−3.13 d2=0.16 r3=8.39 d3=3.2 n2=1.456 ν=90.31 r4=−4.76 d4=0.8 n3=1.6134 ν=43.84 r5=15.12 d5(可変) r6=15.29 d6=1.05 n4=1.6968 ν=56.49 r7=8.48 d7=4.32 n5=1.456 ν=90.31 r8=−9.42 d8=0.25 r9=73.13 d9=2.3 n6=1.43389 ν=95.15 r10=−14.92 d10=0.25 r11=21.81 d11=−3.39 n7=1.43389 ν=95.15 r12=−8.3 d12=1.1 n8=1.883 ν=40.78 r13=−88.45 d13=0.15 r14=12.64 d14=7 n9=1.618 ν=63.38 r15==−7.21 d15=3.13 n10=1.53375 ν10=55.52 r16=8.06 d16(可変) r17=6.56 d17=3.59 n11=1.7847 ν11=26.22 r18=−6.13 d18=3.19 n12=1.74 ν12=31.7 r19=4.58 d19=1.39 r20=−2.59 d20=0.7 n13=1.84666 ν13=23.78 r21=−5.38 ri(=r5)/f=9.8 f1/f=3.09 f2/f=5.45 {n4−n5)/r7}f=0.044 {(n8−n7/r12}f=0.083 t d0 d5 d16 0.7 1.164 2.57 3.99 1.1 1.065 1.9 4.66 1.5 0.974 1.08 5.49 実施例2 f=1.54,d0=1.22 r1=−8.17 d1=2.1 n1=1.755 ν=52.33 r2=−3.17 d2=0.16 r3=9.3 d3=3 n2=1.456 ν=90.31 r4=−5.38 d4=0.8 n3=1.6134 ν=43.84 r5=18.99 d5(可変) r6=12.85 d6=1.05 n4=1.72916 ν=54.68 r7=7.61 d7=4.32 n5=1.456 ν=90.31 r8=−9.35 d8=0.4 r9=15.32 d9=1.1 n6=1.7865 ν=50 r10=7.61 d10=5 n7=1.456 ν=90.31 r11=−8.38 d11=−1.1 n8=1.883 ν=40.78 r12=−22.85 d12=0.2 r13=34.48 d13=2.2 n9=1.456 ν=90.31 r14=−50.55 d14=0.2 r15=12.36 d15=6.5 n10=1.56907 ν10=71.3 r16=−6.41 d16=2.26 n11=1.53375 ν11=55.52 r17=7.15 d17(可変) r18=5.7 d18=3.76 n12=1.7847 ν12=26.22 r19=−8.32 d19=2.81 n13=1.74 ν13=31.7 r20=3.21 d20=1.39 r21=−2.2 d21=0.7 n14=1.84666 ν14=23.78 r22=−4.06 ri(=r5)/f=12.4 f1/f=3.42 f2/f=6.06 {(n4−n5)/r7}f=0.055 {(n6−n7)/r10}f=0.067 {(n8−n7)/r11}f=0.078 t d0 d5 d17 0.7 1.333 2.59 2.47 1.1 1.22 1.9 3.16 1.5 1.119 1.06 4 実施例3 f=1.54,d0=1.276 r1=−8.23 d1=2.1 n1=1.755 ν=52.33 r2=−3.2 d2=0.16 r3=9.17 d3=3.1 n2=1.456 ν=90.31 r4=−5.4 d4=0.8 n3=1.6134 ν=43.84 r5=18.51 d5(可変) r6=13.39 d6=1.05 n4=1.6968 ν=56.49 r7=7.7 d7=4.32 n5=1.456 ν=90.31 r8=−10.51 d8=0.1 r9=26.46 d9=1.1 n6=1.6968 ν=56.49 r10=8.78 d10=3.39 n7=1.497 ν=81.61 r11=−16.68 d11=0.1 r12=15.83 d12=3.39 n8=1.456 ν=90.31 r13=−9.52 d13=1.1 n9=1.883 ν=40.78 r14=109.35 d14=0.15 r15=15.66 d15=7 n10=1.618 ν10=63.38 r16=−6.11 d16=2.37 n11=1.53375 ν11=55.52 r17=9.98 d17(可変) r18=5.81 d18=3.47 n12=1.7847 ν12=26.22 r19=−9.2 d19=3.04 n13=1.74 ν13=31.7 r20=3.28 d20=1.39 r21=−2.19 d21=0.7 n14=1.84666 ν14=23.78 r22=−3.96 ri(=r5)/f=12.1 f1/f=3.44 f2/f=6.05 {(n4−n5)/r7}f=0.048 {(n6−n7)/r10}f=0.035 {(n9−n8)/r13}f=0.069 t d0 d5 d17 0.7 1.398 2.56 3.07 1.1 1.276 1.9 3.73 1.5 1.166 1.1 4.53 実施例4 f=1.54,d0=1.08 r1=−7.34 d1=2.1 n1=1.6968 ν=56.49 r2=−2.92 d2=0.16 r3=13.37 d3=2.35 n2=1.43389 ν=95.15 r4=−6.92 d4=0.8 n4=1.72916 ν=54.68 r5=−200 d5(可変) r6=13.04 d6=1.05 n4=1.72916 ν=54.68 r7=7.84 d7=4.32 n5=1.43389 ν=95.15 r8=−9.65 d8=0.4 r9=31.98 d9=1.1 n6=1.72916 ν=54.68 r10=8.82 d10=3.39 n7=1.456 ν=90.31 r11=−15.69 d11=0.1 r12=35.18 d12=3.39 n8=1.456 ν=90.31 r13=−9.31 d13=1.1 n9=1.883 ν=40.78 r14=−38.3 d14=0.15 r15=8.65 d15=7 n10=1.56907 ν10=71.3 r16=−5.66 d16=2.82 n11=1.56384 ν11=60.69 r17=5.37 d17(可変) r18=5.36 d18=3.48 n12=1.7552 ν12=27.51 r19=33.53 d19=2.86 n13=1.6765 ν13=37.5 r20=3.68 r20=1.39 r21=−2.3 d21=0.7 n14=1.80518 ν14=25.43 r22=−4.13 |ri(=r5)|/f=130.1 f1/f=3.66 f2/f=5.37 {(n4−n5)|r4}f=0.058 {(n6−n7)/r10}f=0.048 {(n9−n8/r13}f=0.071 t d0 d5 d17 0.7 1.193 2.48 3.7 1.1 1.08 1.8 4.37 1.5 0.977 0.98 5.19 実施例5 f=1.54,d0=1.515 r1=−6.83 d1=2.29 n1=1.7865 ν=50 r2=−3.47 d2=0.2 r3=10.99 d3=2.3 n2=1.456 ν=90.31 r4=−12.53 d4=0.85 n3=1.72916 ν=54.68 r5=31.99 d5(可変) r6=12.1 d6=1.1 n4=1.7865 ν=50 r7=7.57 d7=4.27 n5=1.43425 ν=95 r8=−10.31 d8=0.5 r9=12.97 d9=1.1 n6=1.7865 ν=50 r10=7.8 d10=3.8 n7=1.43425 ν=95 r11=−16.71 d11=0.15 r12=11.1 d12=3.2 n8=1.456 ν=90.31 r13=−9.06 d13=1 n9=1.874 ν=35.26 r14=196.89 d14=1.3 r15=−18.98 d15=3.1 n10=1.618 ν10=63.38 r16=−4.97 d16=1.03 n11=1.5213 ν11=52.55 r17=53.97 d17(可変) r18=4.83 d18=2.7 n12=1.80518 ν12=25.43 r19=83.77 d19=2.01 n13=1.74 ν13=31.7 r20=2.65 d20=1.7 r21=−2.29 d21=0.7 n14=1.7847 ν14=26.22 r22=−4.08 ri(=r5)/f=20.8 f1/f=4.14 f2/f=6.98 {(n4−n5)/r7}f=0.072 {(n6−n7)/r10}f=0.07 {(n9−n8)/r13}f=0.071 t d0 d5 d17 0.9 1.618 2.31 8.52 1.2 1.515 1.8 9.03 1.5 1.418 1.21 9.62 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…は
各レンズの厚さ、n1,n2,…は各レンズの屈折率、ν1
2,…は各レンズのアッベ数である。又d0は作動距離、t
はカバーガラスの厚みである。
Example 1 f = 1.54, d 0 = 1.065 r 1 = -9.84 d 1 = 2.1 n 1 = 1.755 ν 1 = 52.33 r 2 = -3.13 d 2 = 0.16 r 3 = 8.39 d 3 = 3.2 n 2 = 1.456 ν 2 = 90.31 r 4 = -4.76 d 4 = 0.8 n 3 = 1.6134 ν 3 = 43.84 r 5 = 15.12 d 5 ( variable) r 6 = 15.29 d 6 = 1.05 n 4 = 1.6968 ν 4 = 56.49 r 7 = 8.48 d 7 = 4.32 n 5 = 1.456 ν 5 = 90.31 r 8 = -9.42 d 8 = 0.25 r 9 = 73.13 d 9 = 2.3 n 6 = 1.43389 ν 6 = 95.15 r 10 = -14.92 d 10 = 0.25 r 11 = 21.81 d 11 = -3.39 n 7 = 1.43389 ν 7 = 95.15 r 12 = -8.3 d 12 = 1.1 n 8 = 1.883 ν 8 = 40.78 r 13 = -88.45 d 13 = 0.15 r 14 = 12.64 d 14 = 7 n 9 = 1.618 ν 9 = 63.38 r 15 ==-7.21 d 15 = 3.13 n 10 = 1.53375 ν 10 = 55.52 r 16 = 8.06 d 16 (variable) r 17 = 6.56 d 17 = 3.59 n 11 = 1.7847 ν 11 = 26.22 r 18 = −6.13 d 18 = 3.19 n 12 = 1.74 ν 12 = 31.7 r 19 = 4.58 d 19 = 1.39 r 20 = −2.59 d 20 = 0.7 n 13 = 1.84666 ν 13 = 23.78 r 21 = −5.38 r i (= r 5 ) /F=9.8 f 1 /f=3.09 f 2 /f=5.45 {n 4 −n5) / r 7 } f = 0.044 {(n 8 −n 7 / r 12 } f = 0.083 t d 0 d 5 d 16 0.7 1.164 2.57 3.99 1.1 1.065 1.9 4.66 1.5 0.974 1.08 5.49 Example 2 f = 1.54, d 0 = 1.22 r 1 = −8.17 d 1 = 2.1 n 1 = 1.755 ν 1 = 52.33 r 2 = −3.17 d 2 = 0.16 r 3 = 9.3 d 3 = 3 n 2 = 1.456 ν 2 = 90.31 r 4 = −5.38 d 4 = 0.8 n 3 = 1.6134 ν 4 = 43.84 r 5 = 18.99 d 5 (variable) r 6 = 12.85 d 6 = 1.05 n 4 = 1.72916 ν 4 = 54.68 r 7 = 7.61 d 7 = 4.32 n 5 = 1.456 ν 5 = 90.31 r 8 = −9.35 d 8 = 0.4 r 9 = 15.32 d 9 = 1.1 n 6 = 1.7865 ν 6 = 50 r 10 = 7.61 d 10 = 5 n 7 = 1.456 v 7 = 90.31 r 11 = -8.38 d 11 = -1.1 n 8 = 1.883 v 8 = 40.78 r 12 = -22.85 d 12 = 0.2 r 13 = 34.48 d 13 = 2.2 n 9 = 1.456 ν 9 = 90.31 r 14 = -50.55 d 14 = 0.2 r 15 = 12.36 d 15 = 6.5 n 10 = 1.56907 ν 10 = 71.3 r 16 = -6.41 d 16 = 2.26 n 11 = 1.53375 ν 11 = 55.52 r 17 = 7.15 d 17 (variable ) R 18 = 5.7 d 18 = 3.76 n 12 = 1.7847 ν 12 = 26.22 r 19 = −8.32 d 19 = 2.81 n 13 = 1.74 ν 13 = 31.7 r 20 = 3.21 d 20 = 1.39 r 21 = −2.2 d 21 = 0.7 n 14 = 1.84666 ν 14 = 23.78 r 22 = −4.06 r i (= r 5 ) /f=12.4 f 1 /f=3.42 f 2 /f=6.06 {(n 4 −n 5 ) / r 7 } f = 0.055 {(n 6 −n 7 ) / r 10 } f = 0.067 {(n 8 −n 7 ) / r 11 } f = 0.078 t d 0 d 5 d 17 0.7 1.333 2.59 2.47 1.1 1.22 1.9 3.16 1.5 1.119 1.06 4 example 3 f = 1.54, d 0 = 1.276 r 1 = -8.23 d 1 = 2.1 n 1 = 1.755 ν 1 = 52.33 r 2 = -3.2 d 2 = 0.16 r 3 = 9.17 d 3 = 3.1 n 2 = 1.456 ν 2 = 90.31 r 4 = −5.4 d 4 = 0.8 n 3 = 1.6134 ν 3 = 43.84 r 5 = 18.51 d 5 (variable) r 6 = 13.39 d 6 = 1.05 n 4 = 1.6968 ν 4 = 56.49 r 7 = 7.7 d 7 = 4.32 n 5 = 1.456 ν 5 = 90.31 r 8 = -10.51 d 8 = 0.1 r 9 = 26.46 d 9 = 1.1 n 6 = 1.6968 ν 6 = 56.49 r 10 = 8.78 d 10 = 3.39 n 7 = 1.497 ν 7 = 81.61 r 11 = -16.68 d 11 = 0.1 r 12 15.83 d 12 = 3.39 n 8 = 1.456 ν 8 = 90.31 r 13 = -9.52 d 13 = 1.1 n 9 = 1.883 ν 9 = 40.78 r 14 = 109.35 d 14 = 0.15 r 15 = 15.66 d 15 = 7 n 10 = 1.618 ν 10 = 63.38 r 16 = -6.11 d 16 = 2.37 n 11 = 1.53375 ν 11 = 55.52 r 17 = 9.98 d 17 ( variable) r 18 = 5.81 d 18 = 3.47 n 12 = 1.7847 ν 12 = 26.22 r 19 = - 9.2 d 19 = 3.04 n 13 = 1.74 ν 13 = 31.7 r 20 = 3.28 d 20 = 1.39 r 21 = -2.19 d 21 = 0.7 n 14 = 1.84666 ν 14 = 23.78 r 22 = -3.96 r i (= r 5) /f=12.1 f 1 /f=3.44 f 2 /f=6.05 {(n 4 −n 5 ) / r 7 } f = 0.048 {(n 6 −n 7 ) / r 10 } f = 0.035 {(n 9 −n 8 ) / r 13 } f = 0.069 t d 0 d 5 d 17 0.7 1.398 2.56 3.07 1.1 1.276 1.9 3.73 1.5 1.166 1.1 4.53 Example 4 f = 1.54, d 0 = 1.08 r 1 = −7.34 d 1 = 2.1 n 1 = 1.6968 v 1 = 56.49 r 2 = −2.92 d 2 = 0.16 r 3 = 13.37 d 3 = 2.35 n 2 = 1.43389 v 2 = 95.15 r 4 = −6.92 d 4 = 0.8 n 4 = 1.72916 v 3 = 54.68 r 5 = −200 d 5 (possible Change) r 6 = 13.04 d 6 = 1.05 n 4 = 1.79216 ν 4 = 54.68 r 7 = 7.84 d 7 = 4.32 n 5 = 1.43389 ν 5 = 95.15 r 8 = −9.65 d 8 = 0.4 r 9 = 31.98 d 9 = 1.1 n 6 = 1.72916 ν 6 = 54.68 r 10 = 8.82 d 10 = 3.39 n 7 = 1.456 ν 7 = 90.31 r 11 = -15.69 d 11 = 0.1 r 12 = 35.18 d 12 = 3.39 n 8 = 1.456 ν 8 = 90.31 r 13 = -9.31 d 13 = 1.1 n 9 = 1.883 ν 9 = 40.78 r 14 = -38.3 d 14 = 0.15 r 15 = 8.65 d 15 = 7 n 10 = 1.56907 ν 10 = 71.3 r 16 = -5.66 d 16 = 2.82 n 11 = 1.56384 v 11 = 60.69 r 17 = 5.37 d 17 (variable) r 18 = 5.36 d 18 = 3.48 n 12 = 1.7552 v 12 = 27.51 r 19 = 33.53 d 19 = 2.86 n 13 = 1.6765 v 13 = 37.5 r 20 = 3.68 r 20 = 1.39 r 21 = -2.3 d 21 = 0.7 n 14 = 1.80518 ν 14 = 25.43 r 22 = -4.13 | r i (= r 5) | /f=130.1 f 1 /f=3.66 f 2 / f = 5.37 {(n 4- n 5 ) | r 4 } f = 0.058 {(n 6- n 7 ) / r 10 } f = 0.048 {(n 9- n 8 / r 13 } f = 0.071 t d 0 d 5 d 17 0.7 1.193 2.48 3.7 1.1 1.08 1.8 4.37 1.5 0.977 0.98 5.19 Example 5 f = 1.54, d 0 = 1.515 r 1 = −6.83 d 1 = 2.29 n 1 = 1.7865 ν 1 = 50 r 2 = −3.47 d 2 = 0.2 r 3 = 10.99 d 3 = 2.3 n 2 = 1.456 ν 2 = 90.31 r 4 = −12.53 d 4 = 0.85 n 3 = 1.79216 ν 3 = 54.68 r 5 = 31.99 d 5 (variable) r 6 = 12.1 d 6 = 1.1 n 4 = 1.7865 ν 4 = 50 r 7 = 7.57 d 7 = 4.27 n 5 = 1.43425 ν 5 = 95 r 8 = -10.31 d 8 = 0.5 r 9 = 12.97 d 9 = 1.1 n 6 = 1.7865 ν 6 = 50 r 10 = 7.8 d 10 = 3.8 n 7 = 1.43425 ν 7 = 95 r 11 = −16.71 d 11 = 0.15 r 12 = 11.1 d 12 = 3.2 n 8 = 1.456 ν 8 = 90.31 r 13 = −9.06 d 13 = 1 n 9 = 1.874 ν 9 = 35.26 r 14 = 196.89 d 14 = 1.3 r 15 = −18.98 d 15 = 3.1 n 10 = 1.618 ν 10 = 63.38 r 16 = −4.97 d 16 = 1.03 n 11 = 1.5213 ν 11 = 52.55 r 17 = 53.97 d 17 ( variable) r 18 = 4.83 d 18 = 2.7 n 12 = 1.80518 ν 12 = 25.43 r 19 = 83.77 d 19 = 2.01 n 13 = 1.74 ν 13 = 31.7 r 20 = 2.65 d 20 = 1.7 r 21 = -2.29 d 21 0.7 n 14 = 1.7847 ν 14 = 26.22 r 22 = -4.08 r i (= r 5) /f=20.8 f 1 /f=4.14 f 2 /f=6.98 {(n 4 -n 5) / r 7} f = 0.072 {(n 6 −n 7 ) / r 10 } f = 0.07 {(n 9 −n 8 ) / r 13 } f = 0.071 t d 0 d 5 d 17 0.9 1.618 2.31 8.52 1.2 1.515 1.8 9.03 1.5 1.418 1.21 9.62 where r 1 , r 2 , ... is the radius of curvature of each lens surface, d 1 , d 2 , ... is the thickness of each lens, n 1 , n 2 , ... is the refractive index of each lens, ν 1 , ν
2 ,... Are Abbe numbers of the lenses. D 0 is the working distance, t
Is the thickness of the cover glass.

実施例1乃至実施例5は夫々第1図乃至第5図に示す
レンズ構成である。これら実施例におけるカバーガラス
の厚みtに応じた第2群G2の移動による間隔の変化量は
データー中に示す通りである。
Examples 1 to 5 have the lens configurations shown in FIGS. 1 to 5, respectively. The amount of change in distance due to movement of the second group G 2 corresponding to the thickness t of the cover glass in these examples are shown in the data.

これら実施例のうち実施例1〜3は、カバーガラスの
材質をガラスシヤーレとして設計している。ガラスシヤ
ーレはd線に対する屈折率が1.52287でアッベ数が59.89
である。
In Examples 1 to 3 among these examples, the material of the cover glass is designed as a glass shear. Glass shear has a d-line refractive index of 1.52287 and an Abbe number of 59.89.
It is.

また実施例4,5は、カバーガラスの材質をプラスチッ
クシヤーレ(ポリスチレン)として設計している。ポリ
スチレンのd線に対する屈折率は1.59108、アッベ数は3
0.85である。
In Examples 4 and 5, the material of the cover glass is designed as plastic shear (polystyrene). Polystyrene has a d-line refractive index of 1.59108 and an Abbe number of 3.
0.85.

またカバーガラスの厚みの補正範囲は実施例1〜4が
0.7〜1.5mm、実施例5が0.9〜1.5mmである。又倍数、N
A、像高は全実施例とも夫々100×、0.8、10.5である。
The correction range of the thickness of the cover glass is the same as in Examples 1 to 4.
0.7 to 1.5 mm, and Example 5 is 0.9 to 1.5 mm. Multiples, N
A, the image height is 100 ×, 0.8, and 10.5 in all examples.

実施例1の収差状況は第6図乃至第8図に示す通りで
ある。その内第6図はカバーガラスの厚みtが0.7mm、
第7図は1.1mm、第8図は1.5mmに対するものである。
The aberration states of the first embodiment are as shown in FIGS. FIG. 6 shows that the cover glass has a thickness t of 0.7 mm.
7 is for 1.1 mm and FIG. 8 is for 1.5 mm.

実施例2の収差状況は、第9図乃至第11図に示す通り
で第9図はt=0.7mm,第10図はt=1.1mmに、第11図は
t=1.5mmに対するものである。
The aberration states of the second embodiment are as shown in FIGS. 9 to 11, wherein FIG. 9 is for t = 0.7 mm, FIG. 10 is for t = 1.1 mm, and FIG. 11 is for t = 1.5 mm. .

実施例3の収差状況は第12図(t=0.7mm)、第13図
(t=1.1mm)、第14図(t=1.5mm)に示す通りであ
る。
The aberration conditions of the third embodiment are as shown in FIG. 12 (t = 0.7 mm), FIG. 13 (t = 1.1 mm), and FIG. 14 (t = 1.5 mm).

実施例4の収差状況は第15図(t=0.7mm)、第16図
(t=1.1mm)、第17図(t=1.5mm)に示す通りであ
る。
The aberration states of the fourth embodiment are as shown in FIG. 15 (t = 0.7 mm), FIG. 16 (t = 1.1 mm), and FIG. 17 (t = 1.5 mm).

実施例5の収差状況は第18図(t=0.9mm)、第19図
(t=1.2mm)、第20図(t=1.5mm)に示す通りであ
る。
The aberration conditions of the fifth embodiment are as shown in FIG. 18 (t = 0.9 mm), FIG. 19 (t = 1.2 mm), and FIG. 20 (t = 1.5 mm).

[発明の効果] 本発明の顕微鏡対物レンズは、以上述べたようなレン
ズ構成とし第2群を光軸方向に移動させることによって
高倍,高NAであってしかもカバーガラスの厚みの変化に
対して諸収差が良好に補正されている。
[Effects of the Invention] The microscope objective lens of the present invention has a lens configuration as described above, and has a high magnification and a high NA by moving the second lens unit in the optical axis direction. Various aberrations are satisfactorily corrected.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第5図は夫々本発明の実施例1乃至実施例5
の断面図、第6図乃至第8図は実施例1の収差曲線図、
第9図乃至第11図は実施例2の収差曲線図、第12図乃至
第14図は実施例3の収差曲線図、第15図乃至第17図は実
施例4の収差曲線図、第18図乃至第20図は実施例5の収
差曲線図である。
1 to 5 show Embodiments 1 to 5 of the present invention, respectively.
6 to 8 are aberration curve diagrams of the first embodiment,
9 to 11 are aberration curve diagrams of the second embodiment, FIGS. 12 to 14 are aberration curve diagrams of the third embodiment, FIGS. 15 to 17 are aberration curve diagrams of the fourth embodiment, and FIGS. FIG. 20 to FIG. 20 are aberration curve diagrams of the fifth embodiment.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】像側に凸面を向けた正のメニスカスレンズ
を含み射出光束が発散光である正の屈折力の第1群と、
負の屈折力の接合面を少なくとも1面以上有し光軸上を
移動可能な正の屈折力の第2群と、負の屈折力の第3群
とからなり、前記第1群と物体との間に配置される透明
な平行平面板が厚くなった場合には前記第1群と前記第
2群との間の距離が短くなるように前記第2群を光軸方
向に移動させ、前記平行平面板が薄くなった場合には前
記第1群と前記第2群との間の距離が長くなるように前
記第2群を光軸方向に移動させることを特徴とした顕微
鏡対物レンズ。
1. A first group having a positive refractive power, comprising a positive meniscus lens having a convex surface facing the image side, wherein an emitted light beam is divergent light;
A second group of positive refractive power having at least one joining surface of negative refractive power and movable on the optical axis; and a third group of negative refractive power. When the transparent parallel plane plate disposed between the first group and the second group is moved, the second group is moved in the optical axis direction so that the distance between the first group and the second group becomes shorter. A microscope objective lens characterized in that the second group is moved in the optical axis direction so that the distance between the first group and the second group becomes longer when the plane-parallel plate becomes thinner.
【請求項2】前記第1群の最も像側の面の曲率半径を
ri、全系の焦点距離をfとした時、次の条件を満足する
請求項(1)の顕微鏡対物レンズ。 |ri|/f>50(ri<0の時) ri/f>6.5(ri>0の時)
2. The radius of curvature of the most image side surface of the first lens unit is
r i, when the focal length of the whole system is f, the microscope objective lens according to claim to satisfy the following condition (1). | r i | / f> 50 (when r i <0) r i /f>6.5 (when r i > 0)
JP1184563A 1989-07-19 1989-07-19 Microscope objective lens Expired - Fee Related JP2891369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184563A JP2891369B2 (en) 1989-07-19 1989-07-19 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184563A JP2891369B2 (en) 1989-07-19 1989-07-19 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPH0350517A JPH0350517A (en) 1991-03-05
JP2891369B2 true JP2891369B2 (en) 1999-05-17

Family

ID=16155397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184563A Expired - Fee Related JP2891369B2 (en) 1989-07-19 1989-07-19 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP2891369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10162160B2 (en) 2015-12-25 2018-12-25 Olympus Corporation Microscope objective

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299808B2 (en) * 1993-03-29 2002-07-08 オリンパス光学工業株式会社 Immersion microscope objective lens
JP4646551B2 (en) * 2004-06-09 2011-03-09 オリンパス株式会社 Microscope objective lens
JP4727252B2 (en) * 2005-02-17 2011-07-20 オリンパス株式会社 Small objective optical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247613A (en) * 1984-05-23 1985-12-07 Nippon Kogaku Kk <Nikon> High-magnification objective lens for microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10162160B2 (en) 2015-12-25 2018-12-25 Olympus Corporation Microscope objective

Also Published As

Publication number Publication date
JPH0350517A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
JP3299808B2 (en) Immersion microscope objective lens
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JP3313163B2 (en) Microscope objective lens
US6111703A (en) Image pickup optical system
US4368956A (en) Compact photographic objective
US5636067A (en) Taking lens system
JP2991524B2 (en) Wide-angle lens
JP2641514B2 (en) Single group objective lens
JPH07120671A (en) Wide angle lens
JPH0519165A (en) Small-sized zoom lens
JP3454935B2 (en) Microscope objective lens
JP3735909B2 (en) Retro focus lens
US4373786A (en) Photographic objective of reduced size
US4458991A (en) Photographic objective of reduced size
JP2007328014A (en) Microscope objective lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP2901066B2 (en) Zoom lens
JP2891369B2 (en) Microscope objective lens
US5076676A (en) Objective lens system for microscopes
US5191473A (en) Objectives
JP3335391B2 (en) High magnification microscope objective
US4027951A (en) Parfocal low-magnification microscope objective lens systems
JP3242451B2 (en) Microscope objective lens
US5532879A (en) Microscope objective lens
JP3140497B2 (en) Wide-field eyepiece

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees