JP2007327892A - Interference measuring apparatus and interference measuring method - Google Patents

Interference measuring apparatus and interference measuring method Download PDF

Info

Publication number
JP2007327892A
JP2007327892A JP2006160447A JP2006160447A JP2007327892A JP 2007327892 A JP2007327892 A JP 2007327892A JP 2006160447 A JP2006160447 A JP 2006160447A JP 2006160447 A JP2006160447 A JP 2006160447A JP 2007327892 A JP2007327892 A JP 2007327892A
Authority
JP
Japan
Prior art keywords
measurement
test object
shielding plate
interference
light shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006160447A
Other languages
Japanese (ja)
Other versions
JP4886372B2 (en
Inventor
Kentaro Suenaga
健太郎 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006160447A priority Critical patent/JP4886372B2/en
Publication of JP2007327892A publication Critical patent/JP2007327892A/en
Application granted granted Critical
Publication of JP4886372B2 publication Critical patent/JP4886372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coordinate calibration method capable of efficiently calibrating the abscissas of measurement data of a surface shape measured with an interferometer, and that is easily applicable to various kinds of objects to be inspected. <P>SOLUTION: Surface shape measurement by the use of the interferometer is performed, after integrating a light-shielding plate 2 and an object to be inspected 1 into a body, and restricting the measuring area by an edge 2a of the shielding plate 2. Moreover, the positional relation between the measuring area restricted by the shielding plate 2 and reference coordinates of a surface to be inspected 1a are specified by respective reference surfaces 1b, 1c, 2b, 2c, and relative position information of the measuring area is found separately, beforehand. The measuring area restricted by the shielding plate 2 is extracted from measurement results of the interferometer, and the abscissas of the surface shape measurement data are calibrated by the interferometer, based on the relative positional information, with respect to a reference coordinate system on the object 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レンズやミラー等の光学素子の高精度な面形状を測定するための干渉計測装置および干渉計測方法に関するものである。   The present invention relates to an interference measuring apparatus and an interference measuring method for measuring a highly accurate surface shape of an optical element such as a lens or a mirror.

近年、光学機器の高精度化に伴い、その機器を構成するレンズやミラー等の光学素子の面形状も高精度に加工することが求められている。光学素子等を高精度に加工する方法として、光学素子の面形状を測定して所望形状との差を求め、その情報をもとに加工機にて部分的に修正加工を行い、所望の形状に近づけていく方法が一般的に採用されている。   In recent years, with the increase in accuracy of optical devices, it is required to process the surface shape of optical elements such as lenses and mirrors constituting the device with high accuracy. As a method of processing optical elements, etc. with high accuracy, the surface shape of the optical element is measured to obtain the difference from the desired shape, and the correction shape is partially processed by the processing machine based on the information, and the desired shape is obtained. The method of approaching is generally adopted.

修正加工を行うための面形状測定装置として、測定精度に優れた干渉計を用いる干渉計測装置がある。この装置では、被検面上の各点の横座標、すなわち干渉計の光軸に垂直な面内における位置情報と、干渉縞を取り込むエリアセンサとの対応を高精度に取り、エリアセンサ上の座標系で表された面形状測定データを被検物上の横座標で表すように校正する。このときの基準となる座標系は加工機においても利用可能な基準座標系である必要があり、たとえば光学素子に形成された基準面により定義された座標系が挙げられる。このように、基準面により定義された基準座標系で表された面形状測定データに基づいて、修正加工位置と修正加工量を決定し、基準面を参照して加工を実施することにより、干渉計による測定結果を用いた修正加工が可能となる。   As a surface shape measuring device for performing correction processing, there is an interference measuring device using an interferometer having excellent measurement accuracy. With this device, the abscissa of each point on the surface to be measured, that is, the positional information in the plane perpendicular to the optical axis of the interferometer, and the area sensor that captures the interference fringes are taken with high precision, The surface shape measurement data represented in the coordinate system is calibrated so as to be represented by the abscissa on the test object. The coordinate system used as a reference at this time must be a reference coordinate system that can be used in a processing machine. For example, a coordinate system defined by a reference surface formed on an optical element can be used. Thus, based on the surface shape measurement data expressed in the reference coordinate system defined by the reference surface, the correction processing position and the correction processing amount are determined, and the processing is performed with reference to the reference surface, thereby interfering. Correction processing using the measurement result by the meter becomes possible.

干渉計による面形状測定において横座標の絶対位置を校正するための従来の手法としては、特許文献1に開示されたものがある。これは、被検面上に光散乱領域などのパターンを形成した校正用光学部材を利用する。パターンは、校正用光学部材の基準面を参照して形成することにより、基準面との関係が既知となる。この校正用光学部材を干渉計により測定した結果からパターン部分を特定して重心位置を算出し、既知であるパターンと基準面との関係を利用すれば、横座標の絶対位置を校正する校正値(座標校正値)を得ることができる。あとは校正用光学部材に代えて被検物の面形状を干渉計で測定し、得られた面形状測定データに校正値を適用することで、測定された面形状の横座標の絶対位置を算出することができる。
特開2002−333305号公報
As a conventional method for calibrating the absolute position of the abscissa in the surface shape measurement by the interferometer, there is one disclosed in Patent Document 1. This utilizes a calibration optical member in which a pattern such as a light scattering region is formed on the surface to be examined. By forming the pattern with reference to the reference surface of the calibration optical member, the relationship with the reference surface becomes known. A calibration value that calibrates the absolute position of the abscissa if the pattern portion is specified from the result of measuring the optical member for calibration with the interferometer, the center of gravity is calculated, and the relationship between the known pattern and the reference plane is used. (Coordinate calibration value) can be obtained. After that, the surface shape of the test object is measured with an interferometer instead of the calibration optical member, and the absolute value of the abscissa of the measured surface shape is obtained by applying the calibration value to the obtained surface shape measurement data. Can be calculated.
JP 2002-333305 A

しかしながら特許文献1に開示された手法で得られる校正値は、面形状測定データの横座標を校正用光学部材の基準面で定義される座標系に変換するものである。従って、校正用光学部材を被検物に交換した際に、被検物の基準面位置が校正用光学部材の基準面位置と一致していなければ横座標校正値に誤差が生じる。   However, the calibration value obtained by the method disclosed in Patent Document 1 is used to convert the abscissa of the surface shape measurement data into a coordinate system defined by the reference surface of the calibration optical member. Therefore, when the calibration optical member is replaced with the test object, an error occurs in the abscissa calibration value if the reference surface position of the test object does not match the reference surface position of the calibration optical member.

しかしながら、校正用光学部材を被検物に置き換えた際に干渉縞の状態が変化して縞が密になれば、干渉縞が疎となるように被検物の位置や姿勢を調整する必要があるため、被検物の基準面位置が校正用光学部材の基準面位置と異なる場合は容易に生じる。   However, when the state of the interference fringes changes and the fringes become dense when the calibration optical member is replaced with the test object, it is necessary to adjust the position and orientation of the test object so that the interference fringes become sparse. Therefore, it easily occurs when the reference surface position of the test object is different from the reference surface position of the calibration optical member.

また、被検物の設計値が異なれば、被検面と基準面との関係も異なるため、校正用光学部材や校正値をそのまま使用できず、個々の設計値ごとに校正用光学部材を用意する必要があり、多様な光学素子を測定する場合に多大なコストがかかってしまう。   Also, if the design value of the test object is different, the relationship between the test surface and the reference surface is also different, so calibration optical members and calibration values cannot be used as they are, and calibration optical members are prepared for each design value. Therefore, when measuring various optical elements, a large cost is required.

本発明は、前記課題に鑑みてなされたものであり、干渉計で測定した面形状測定データの横座標を簡単に校正可能であって、しかも多種多様な被検物にも容易に適用できる干渉計測装置および干渉計測方法を提供することを目的とするものである。   The present invention has been made in view of the above problems, and can easily calibrate the abscissa of surface shape measurement data measured by an interferometer and can be easily applied to a wide variety of specimens. An object of the present invention is to provide a measuring device and an interference measuring method.

上記目的を達成するため、本発明の干渉計測装置は、被検物によって反射された被検光と参照光とを互いに干渉させることにより得られる干渉縞を検出器により検出し、検出された干渉縞の情報に基づいて前記被検物の面形状を測定する干渉計と、前記被検物の測定領域を限定するための測定領域限定手段と、前記測定領域限定手段により限定される前記測定領域と前記被検物上の基準座標との位置関係を特定し、前記測定領域の相対位置情報を得るための位置特定手段と、前記干渉計の測定結果から前記測定領域の面形状測定データを抽出し、前記基準座標に対する前記測定領域の前記相対位置情報に基づいて前記面形状測定データを校正する演算手段と、を備えたことを特徴とする。   In order to achieve the above object, the interference measuring apparatus of the present invention detects interference fringes obtained by causing the test light reflected by the test object and the reference light to interfere with each other, and detects the detected interference. An interferometer that measures the surface shape of the test object based on fringe information, a measurement area limiting means for limiting the measurement area of the test object, and the measurement area limited by the measurement area limiting means And position reference means for obtaining relative position information of the measurement area, and extracting surface shape measurement data of the measurement area from the measurement result of the interferometer And calculating means for calibrating the surface shape measurement data based on the relative position information of the measurement area with respect to the reference coordinates.

本発明の干渉計測方法は、被検物によって反射された被検光と参照光とを互いに干渉させることにより得られる干渉縞を検出器により検出し、検出された干渉縞の情報に基づいて前記被検物の面形状を測定する干渉計測方法において、前記被検物の測定領域を測定領域限定手段によって限定する測定領域限定工程と、前記測定領域と前記被検物上の基準座標との位置関係を特定し、前記測定領域の相対位置情報を得るための位置特定工程と、前記干渉縞に基づく測定結果から前記測定領域の面形状測定データを抽出する測定領域抽出工程と、前記基準座標に対する前記測定領域の前記相対位置情報に基づいて、前記面形状測定データを校正する工程と、を有することを特徴とする。   According to the interference measurement method of the present invention, an interference fringe obtained by causing the test light reflected by the test object and the reference light to interfere with each other is detected by a detector, and the interference fringe is based on the detected interference fringe information. In the interferometry method for measuring the surface shape of the test object, a measurement area limiting step for limiting the measurement area of the test object by a measurement area limiting means, and the positions of the measurement area and the reference coordinates on the test object A position identifying step for identifying a relationship and obtaining relative position information of the measurement region; a measurement region extracting step for extracting surface shape measurement data of the measurement region from a measurement result based on the interference fringes; and Calibrating the surface shape measurement data based on the relative position information of the measurement region.

干渉計により測定した面形状測定データを被検物上の基準座標で表すための座標校正を簡単に行うことができる。また、多種多様な被検物に対しても、安価に製作可能な遮光板で容易に対応することができ、しかも、装置側に特殊なステージや測定器などを必要とせず、既存の干渉計において容易に実施可能であるため、装置コストを大幅に低減できる。   Coordinate calibration for representing the surface shape measurement data measured by the interferometer with the reference coordinates on the object can be easily performed. In addition, it can easily handle a wide variety of specimens with a light-shielding plate that can be manufactured at low cost, and does not require a special stage or measuring instrument on the device side. Therefore, the apparatus cost can be greatly reduced.

干渉計の面形状測定精度は3次元座標測定器などと比較して極めて優れているため、干渉計による面形状測定データを用いて所望形状との差から修正加工量および修正加工位置を求めて加工することにより、高精度な光学素子の生産が可能となる。   The surface shape measurement accuracy of the interferometer is extremely superior to that of a three-dimensional coordinate measuring instrument, etc., so that the amount of correction machining and the correction processing position are obtained from the difference from the desired shape using the surface shape measurement data obtained by the interferometer. By processing, a highly accurate optical element can be produced.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、測定領域である被検面1aと2つの基準面(外形基準)1c、1bを有する被検物1に対して、図2に示す遮光板2を用いる。遮光板2は、測定領域限定手段である開口部を形成するエッジ2aと、被検物1の基準面1b、1cに対応する位置合わせ手段である基準面(外形基準)2b、2cを有する。   As shown in FIG. 1, a light shielding plate 2 shown in FIG. 2 is used for a test object 1 having a test surface 1a and two reference surfaces (outer shape references) 1c and 1b, which are measurement areas. The light shielding plate 2 includes an edge 2a that forms an opening that is a measurement area limiting unit, and reference surfaces (outer shape references) 2b and 2c that are alignment units corresponding to the reference surfaces 1b and 1c of the test object 1.

すなわち、干渉計による測定領域を限定するための開口部を有する遮光板2を、干渉計の光路に設置し、被検光の光束を限定する。遮光板2の開口部の形状は、被検光の光束内に設置した際に、開口部のエッジ2aから被検面1aに下ろした垂線の長さが全周に渡って等しくなるように設計される。   That is, the light-shielding plate 2 having an opening for limiting the measurement region by the interferometer is installed in the optical path of the interferometer to limit the light beam of the test light. The shape of the opening of the light-shielding plate 2 is designed so that the lengths of the perpendiculars drawn from the edge 2a of the opening to the test surface 1a are equal over the entire circumference when installed in the light beam of the test light. Is done.

遮光板2の開口部と被検物1上の基準座標(x、y座標)との位置関係を特定する位置特定手段は、位置測定によるものと、外形基準等の位置合わせ手段を用いるものとの2通りがある。   Position specifying means for specifying the positional relationship between the opening of the light shielding plate 2 and the reference coordinates (x, y coordinates) on the test object 1 is based on position measurement, and uses positioning means such as an external reference. There are two ways.

位置測定によるものは、被検物に遮光板を固定した上で被検物との位置関係を測定することにより、測定領域と被検物上の基準座標系との位置関係を特定する。被検物に遮光板を固定することが困難である場合は、被検物の保持冶具に遮光板を固定してもよい。被検物と遮光板との位置関係の測定は、座標測定器を用いることで実施可能である。   In the case of the position measurement, the positional relationship between the measurement region and the reference coordinate system on the test object is specified by measuring the positional relationship with the test object after fixing the light shielding plate to the test object. When it is difficult to fix the light shielding plate to the test object, the light shielding plate may be fixed to the holding jig for the test object. The measurement of the positional relationship between the test object and the light shielding plate can be performed by using a coordinate measuring device.

位置関係を特定するために位置合わせ手段を用いる場合は、図1および図2に示すように、被検物1と遮光板2を位置合わせ用の外形基準である基準面1b、1c、2b、2cにより位置決めした上で固定手段によって一体化することが望ましい。これにより被検物1上の基準座標と遮光板2の開口部との位置関係を特定し、遮光板2の開口部によって限定される測定領域の相対位置情報を得ることができる。被検物1に遮光板2を固定することが困難である場合は、図5に示すように、被検物1の保持冶具4に対して被検物1と遮光板2をそれぞれ位置合わせして一体化してもよい。   When using alignment means for specifying the positional relationship, as shown in FIGS. 1 and 2, reference surfaces 1b, 1c, 2b, which are external reference for alignment of the object 1 and the light shielding plate 2, It is desirable to integrate by fixing means after positioning by 2c. Thereby, the positional relationship between the reference coordinates on the test object 1 and the opening of the light shielding plate 2 can be specified, and the relative position information of the measurement region limited by the opening of the light shielding plate 2 can be obtained. When it is difficult to fix the light shielding plate 2 to the test object 1, the test object 1 and the light shielding plate 2 are respectively aligned with the holding jig 4 of the test object 1, as shown in FIG. May be integrated.

いずれの場合も、被検物1と遮光板2を突き当て部材3に突き当て、外形基準で位置決めすることにより行われることが望ましい。   In any case, it is desirable that the test object 1 and the light shielding plate 2 are abutted against the abutting member 3 and positioned on the basis of the outer shape.

そして、演算手段によって、干渉計による測定結果から、遮光板により限定された測定領域を抽出し、面形状測定データの横座標を校正する。測定領域の抽出は、干渉縞を縞一色状態とした上で干渉縞強度分布を取得し、干渉縞強度値が高い領域を抽出することにより行われることが望ましい。あるいは、被検物や参照原器を微小量光軸方向に移動させたり、被検光の波長を微小量変化させたりした場合の干渉縞強度変化率を取得し、干渉縞強度変化率が大きな領域を抽出してもよい。ここで微小量とは、干渉縞が認識できる範囲内を意味する。   Then, a measurement area limited by the light shielding plate is extracted from the measurement result obtained by the interferometer by the calculation means, and the abscissa of the surface shape measurement data is calibrated. It is desirable that the measurement region is extracted by obtaining an interference fringe intensity distribution after making the interference fringes in a single-color state and extracting a region having a high interference fringe intensity value. Alternatively, the interference fringe intensity change rate is obtained when the test object or reference prototype is moved in the optical axis direction by a minute amount or the wavelength of the test light is changed by a minute amount. An area may be extracted. Here, the minute amount means a range in which interference fringes can be recognized.

続いて、干渉計による測定領域の面形状測定データを被検物上の基準座標で表すための座標校正を行う。これは、遮光板の開口部による測定領域と被検物上の基準座標との相対位置情報を用いて、干渉計による測定領域の位置を基準座標で表わすための横座標校正値(座標校正値)を算出し、干渉計による前記面形状測定データに適用することで行われる。   Subsequently, coordinate calibration is performed to represent the surface shape measurement data of the measurement region by the interferometer with the reference coordinates on the test object. This is based on the abscissa calibration value (coordinate calibration value) for representing the position of the measurement area by the interferometer in reference coordinates using the relative position information of the measurement area by the opening of the light shielding plate and the reference coordinates on the test object. ) And is applied to the surface shape measurement data by the interferometer.

さらに、干渉計による測定結果から抽出した測定領域の歪みに伴って発生する横座標校正値の誤差量を求めて、横座標の補正をするとよい。まず、被検物の形状情報と、遮光板の開口部の形状情報を用いて、干渉計による測定結果から抽出した測定領域の歪み方と横座標校正値の誤差量との関係を予め求めておく。そして、各被検物に対する計測を行うごとに、抽出した測定領域の歪み方から横座標校正値の誤差量(座標誤差)を求めて補正する。   Further, the abscissa correction value may be corrected by obtaining an error amount of the abscissa calibration value generated with the distortion of the measurement region extracted from the measurement result by the interferometer. First, using the shape information of the test object and the shape information of the opening of the light shielding plate, the relationship between the distortion of the measurement region extracted from the measurement result by the interferometer and the error amount of the abscissa calibration value is obtained in advance. deep. Each time measurement is performed on each test object, an error amount (coordinate error) of the abscissa calibration value is obtained and corrected from the distortion of the extracted measurement region.

図1ないし図3は実施例1を説明する図である。図1に示す被検物1に対して、図2に示す遮光板2を密着させて固定する。被検物1は、x、y方向の外形基準である基準面1b、1cを備えており、これにより横座標を定義する。遮光板2は、光の反射を抑えるために粗面処理された薄い板で、被検物1との位置合わせのために、互いに直交する2つの外形基準である基準面2b、2cを備えている。   1 to 3 are diagrams for explaining the first embodiment. A light shielding plate 2 shown in FIG. 2 is brought into close contact with the test object 1 shown in FIG. The test object 1 includes reference planes 1b and 1c that are external reference in the x and y directions, thereby defining the abscissa. The light-shielding plate 2 is a thin plate that has been roughened to suppress light reflection, and includes two reference surfaces 2b and 2c that are orthogonal to each other for alignment with the test object 1. Yes.

遮光板2の中央部には、干渉計測定時に被検光を通過させる開口部を有し、開口部の周縁をなすエッジ2aの形状と2つの基準面2b、2cとの位置関係は既知であるものとする。エッジ2aの形状は、後述するように、被検物1の被検面1aの設計形状に依存するが、エッジ2aが点対称形状をしている場合は、切り欠き(形状部)2d、2e等によって回転角(方向性)を識別可能に構成する。   The central portion of the light shielding plate 2 has an opening that allows test light to pass through during interferometer measurement, and the positional relationship between the shape of the edge 2a that forms the periphery of the opening and the two reference surfaces 2b and 2c is known. It shall be. As will be described later, the shape of the edge 2a depends on the design shape of the test surface 1a of the test object 1, but when the edge 2a has a point-symmetric shape, notches (shape portions) 2d, 2e For example, the rotation angle (direction) can be identified.

遮光板2を用いた横座標校正法について図3および図4を用いて説明する。   The abscissa calibration method using the light shielding plate 2 will be described with reference to FIGS.

干渉計による面形状測定前に、図3に示すように、突き当て部材3を用いて被検物1の基準面1b、1cと遮光板2の基準面2b、2cを一致させたうえで、図示しない固定手段によって被検物1と遮光板2を一体化する。このとき遮光板2の開口部が測定領域である被検面1aと一致するように遮光板2の開口形状を設計する。より具体的には、被検物1と遮光板2を一体化した時に遮光板2のエッジ2aから被検物1の被検面1aに下ろした垂線の長さが開口部全周にわたって等しくなるように設計する。遮光板2の開口部の形状は、被検面1aが平面の場合は任意に設計でき、被検面1aが球面の場合は円形の開口部となる。   Before the surface shape measurement by the interferometer, as shown in FIG. 3, the reference surfaces 1 b and 1 c of the test object 1 are matched with the reference surfaces 2 b and 2 c of the light shielding plate 2 using the abutting member 3. The test object 1 and the light shielding plate 2 are integrated by a fixing means (not shown). At this time, the opening shape of the light shielding plate 2 is designed so that the opening of the light shielding plate 2 coincides with the test surface 1a which is the measurement region. More specifically, when the test object 1 and the light shielding plate 2 are integrated, the lengths of the perpendiculars drawn from the edge 2a of the light shielding plate 2 to the test surface 1a of the test object 1 become equal over the entire circumference of the opening. To design. The shape of the opening of the light shielding plate 2 can be arbitrarily designed when the test surface 1a is a flat surface, and becomes a circular opening when the test surface 1a is a spherical surface.

このように被検物1と遮光板2を一体化して干渉計に装着し、被検面1aの面形状を測定する。その測定結果は、図4に示すように、遮光板2の開口部のエッジ2aにより限定された領域のみが測定され、外側にある被検物1の基準面1b、1cの位置情報を得ることはできない。すなわち、被検面1aの基準座標に対する位置情報(相対位置情報)を直接干渉計の測定結果から求めることはできない。また、干渉計の測定結果の横座標はエリアセンサのピクセル単位で表されており、1ピクセルあたりの長さは被検面1aの曲率半径により変化する。   In this way, the test object 1 and the light shielding plate 2 are integrated and mounted on the interferometer, and the surface shape of the test surface 1a is measured. As a result of the measurement, as shown in FIG. 4, only the region limited by the edge 2a of the opening of the light shielding plate 2 is measured, and the position information of the reference surfaces 1b and 1c of the test object 1 on the outside is obtained. I can't. That is, position information (relative position information) with respect to the reference coordinates of the test surface 1a cannot be obtained directly from the measurement result of the interferometer. The abscissa of the measurement result of the interferometer is expressed in pixel units of the area sensor, and the length per pixel varies depending on the radius of curvature of the test surface 1a.

しかしながら、遮光板2のエッジ2aの形状および基準面2b、2cとの位置関係は既知であり、被検物1の基準面1b、1cと遮光板2の基準面2b、2cを一致させているため、エッジ2aの位置情報から基準座標の位置を求めることができる。ただし、面形状測定時にエッジ2aの全周が同時に測定される必要があるため、測定領域外で、なおかつ、干渉計の被検光の光束範囲内にエッジ2aの全周が入るように遮光板2を設計しなければならない。   However, the shape of the edge 2a of the light shielding plate 2 and the positional relationship with the reference surfaces 2b and 2c are known, and the reference surfaces 1b and 1c of the test object 1 and the reference surfaces 2b and 2c of the light shielding plate 2 are made to coincide. Therefore, the position of the reference coordinate can be obtained from the position information of the edge 2a. However, since it is necessary to measure the entire circumference of the edge 2a at the same time when measuring the surface shape, the light shielding plate is arranged so that the entire circumference of the edge 2a is located outside the measurement region and within the light flux range of the test light of the interferometer. 2 must be designed.

エッジ2aの位置情報から被検物1上の基準座標の位置を求める手順を以下に説明する。   A procedure for obtaining the position of the reference coordinate on the test object 1 from the position information of the edge 2a will be described below.

まず、干渉計の測定結果から開口部のエッジ2aの位置情報を抽出する。これは干渉縞をいわゆるワンカラーにしたうえで干渉縞強度を測定し、測定された干渉縞強度が急峻に変化する場所を開口部のエッジ2aとみなして抽出することで可能である。干渉縞強度の空間的な変化は、一般的な画像処理技術により定量化できる。例えば、SobelフィルタやLaplacianフィルタなどの微分フィルタを適用することにより、エッジ2aに対応するエリアセンサの画素がエッジとして強調される。   First, position information of the edge 2a of the opening is extracted from the measurement result of the interferometer. This can be done by measuring the interference fringe intensity after making the interference fringe so-called one-color, and extracting the place where the measured interference fringe intensity changes sharply as the edge 2a of the opening. The spatial variation of the interference fringe intensity can be quantified by a general image processing technique. For example, by applying a differential filter such as a Sobel filter or a Laplacian filter, the pixel of the area sensor corresponding to the edge 2a is emphasized as an edge.

他の抽出方法としては、被検物や参照原器を微小量光軸方向に移動させたり、被検光の波長を微小量変化させたりした場合の干渉縞強度変化率を取得し、干渉縞強度変化率が大きな領域を抽出してもよい。また、いわゆる位相シフト法により干渉縞強度を変調させた際に、干渉縞変調が起こる場所は開口部のエッジ2aの内側、干渉縞変調が起こらない場所は開口部のエッジ2aの外側とみなしてエッジ2aを抽出してもよい。   As another extraction method, the interference fringe intensity change rate is obtained by moving the test object or reference prototype in the direction of the optical axis or changing the wavelength of the test light by a minute amount. A region having a large intensity change rate may be extracted. Further, when the interference fringe intensity is modulated by the so-called phase shift method, the place where the interference fringe modulation occurs is regarded as the inside of the edge 2a of the opening, and the place where the interference fringe modulation does not occur is regarded as the outside of the edge 2a of the opening. The edge 2a may be extracted.

次に、抽出したエッジ2aを既知である実形状とフィッティングすることにより測定結果の1ピクセルあたりの長さおよび基準面1b、1cの位置を求める。ただし測定結果として得られる点群の横座標は被検面1a上における座標を表しているため、被検面1aが球面の場合、エッジ2aの実形状データをそのまま使用すると倍率に誤差が発生する。そこで被検面1aの曲率半径と、開口部のエッジ2aから被検面1aに下ろした垂線の長さを用いてエッジ2aの実形状データを拡大したうえでフィッティングする。例えば被検面1aが曲率半径Rの凹面で、エッジ2aから被検面1aに下ろした垂線の長さがhであるとき、エッジ2aの実形状データをR/(R−h)倍に拡大してフィッティングする。   Next, by fitting the extracted edge 2a with a known actual shape, the length per pixel of the measurement result and the positions of the reference planes 1b and 1c are obtained. However, since the abscissa of the point group obtained as a measurement result represents the coordinates on the test surface 1a, if the test surface 1a is a spherical surface, using the actual shape data of the edge 2a as it is causes an error in the magnification. . Therefore, the actual shape data of the edge 2a is enlarged using the radius of curvature of the test surface 1a and the length of the perpendicular line dropped from the edge 2a of the opening to the test surface 1a. For example, when the test surface 1a is a concave surface having a radius of curvature R and the length of the perpendicular line extending from the edge 2a to the test surface 1a is h, the actual shape data of the edge 2a is enlarged by R / (R−h) times. And fitting.

フィッティングはエッジ2a全周の情報を用いることが好ましいが、エッジ2aの形状を代表するパラメータを用いて実施してもよい。例えばエッジ2aが円形であれば、測定結果より抽出されたエッジ2aを円形近似して中心位置と半径を求め、さらに切り欠きをなす1辺を求めることで1ピクセルあたりの長さおよび基準面1b、1cの位置を求めることができる。   The fitting is preferably performed using information about the entire circumference of the edge 2a, but may be performed using a parameter representative of the shape of the edge 2a. For example, if the edge 2a is circular, the edge 2a extracted from the measurement result is circularly approximated to obtain the center position and radius, and further, one side forming a notch is obtained to determine the length per pixel and the reference plane 1b. The position of 1c can be obtained.

最後に、求めた1ピクセルあたりの長さおよび基準面1b、1cの位置を用いて基準座標の位置を割り出し、面形状測定データの横座標が基準座標を表すように校正する。面形状測定データが基準座標で表されれば、加工機において基準面1b、1cを参照して修正加工位置を決定することにより、干渉計による面形状測定データに基づいた修正加工が可能となる。   Finally, using the obtained length per pixel and the positions of the reference surfaces 1b and 1c, the position of the reference coordinates is determined, and calibration is performed so that the abscissa of the surface shape measurement data represents the reference coordinates. If the surface shape measurement data is expressed in reference coordinates, the correction processing position based on the surface shape measurement data by the interferometer can be obtained by determining the correction processing position with reference to the reference surfaces 1b and 1c in the processing machine. .

なお、遮光板2のエッジ2aが点対称形状をしている場合、特徴形状として切り欠き1d、1eを使用しているが、これに限定されるものではなく、例えばエッジ2aの外側に小円を設けその重心位置を基準としてもよい。   In addition, when the edge 2a of the light-shielding plate 2 has a point-symmetric shape, the cutouts 1d and 1e are used as the characteristic shapes. However, the present invention is not limited to this. For example, a small circle is formed outside the edge 2a. And the position of the center of gravity may be used as a reference.

また、遮光板2に基準面2b、2cを設け、突き当て部材3を利用して被検物1の基準面1b、1cと遮光板2の基準面2b、2cを一致させているが、このような位置合わせ手段を用いる方式に限定されるものではない。遮光板2のエッジ2aと被検物1の基準座標系との関係が既知となるように被検物1と遮光板2を一体化できればよい。例えば、基準面をもたない遮光板2を被検物1と一体化させ、3次元座標測定器により被検物1の基準面1b、1cと遮光板2のエッジ2aの形状を測定してもよい。   Further, the light shielding plate 2 is provided with reference surfaces 2b and 2c, and the abutting member 3 is used to make the reference surfaces 1b and 1c of the test object 1 coincide with the reference surfaces 2b and 2c of the light shielding plate 2. It is not limited to the system using such alignment means. The test object 1 and the light shielding plate 2 may be integrated so that the relationship between the edge 2a of the light shielding plate 2 and the reference coordinate system of the test object 1 is known. For example, the light shielding plate 2 having no reference surface is integrated with the test object 1, and the shapes of the reference surfaces 1b and 1c of the test object 1 and the edge 2a of the light shielding plate 2 are measured by a three-dimensional coordinate measuring device. Also good.

図5は実施例2を説明するものである。本実施例では、干渉計測用の保持冶具4に遮光板2が固定される。保持冶具4は被検物1と遮光板2を位置決めするための突き当て部材3を備えており(図5の(b)参照)、遮光板2の基準面を突き当て部材3に突き当てて遮光板2を位置決めしたうえで、保持冶具4に遮光板2を固定する。さらに、保持冶具4の突き当て部材3に被検物1の基準面を突き当てて被検物1を位置決めすることにより、遮光板2の開口部のエッジ2aとの関係を既知とすることができる。   FIG. 5 illustrates the second embodiment. In the present embodiment, the light shielding plate 2 is fixed to the holding jig 4 for interference measurement. The holding jig 4 includes an abutting member 3 for positioning the test object 1 and the light shielding plate 2 (see FIG. 5B), and the reference surface of the light shielding plate 2 is abutted against the abutting member 3. After positioning the light shielding plate 2, the light shielding plate 2 is fixed to the holding jig 4. Furthermore, by positioning the test object 1 by abutting the reference surface of the test object 1 against the abutting member 3 of the holding jig 4, the relationship with the edge 2a of the opening of the light shielding plate 2 may be known. it can.

実施例1と同様に、干渉計による測定結果から遮光板2の開口部のエッジ2aを抽出し、被検物1上の基準座標の位置を求めて、面形状測定データの横座標が被検物1上の基準座標を表すように校正する。   As in the first embodiment, the edge 2a of the opening of the light shielding plate 2 is extracted from the measurement result by the interferometer, the position of the reference coordinate on the test object 1 is obtained, and the abscissa of the surface shape measurement data is detected. Calibrate to represent reference coordinates on object 1.

本実施例では、干渉計測用の保持冶具4が遮光板2を備えており、面形状測定を行うために被検物1を保持冶具4に装着した段階で横座標校正のための準備が完了する。そのため測定タクトを通常の面形状測定と同程度に抑えることができるという利点を有する。   In this embodiment, the holding jig 4 for interference measurement is provided with the light shielding plate 2, and preparation for abscissa calibration is completed at the stage when the test object 1 is mounted on the holding jig 4 in order to perform surface shape measurement. To do. Therefore, there is an advantage that the measurement tact can be suppressed to the same level as that of the normal surface shape measurement.

なお、本実施例は、遮光板2の基準面や、保持冶具4の突き当て部材3の利用に限定されるものではない。保持冶具4に対して被検物1を着脱する際に高精度に位置決め可能な機能を備え、なおかつ、被検物1を保持冶具4に装着した状態において遮光板2のエッジ2aと被検物1の基準座標との位置関係が既知となればよい。   In addition, a present Example is not limited to utilization of the reference plane of the light-shielding plate 2, and the butting member 3 of the holding jig 4. FIG. A function capable of positioning with high accuracy when the test object 1 is attached to and detached from the holding jig 4, and the edge 2 a of the light shielding plate 2 and the test object in a state where the test object 1 is mounted on the holding jig 4. It is only necessary that the positional relationship with one reference coordinate is known.

このようにして干渉計による面形状測定データの横座標を校正可能であるが、遮光板2と干渉計本体との位置関係によっては干渉計の測定結果から抽出した遮光板2のエッジ2aの形状が歪む場合があり、エッジ2aによる相対位置情報に基づく横座標校正値の誤差要因となる。以下に、干渉計の測定結果から抽出した開口部のエッジ形状の歪みに伴う座標誤差の補正方法について説明する。   In this way, the abscissa of the surface shape measurement data by the interferometer can be calibrated, but depending on the positional relationship between the light shielding plate 2 and the interferometer body, the shape of the edge 2a of the light shielding plate 2 extracted from the measurement result of the interferometer May be distorted, causing an error in the abscissa calibration value based on the relative position information by the edge 2a. Hereinafter, a method for correcting the coordinate error accompanying the distortion of the edge shape of the opening extracted from the measurement result of the interferometer will be described.

図6は、干渉計5により、参照面6aを有する参照原器6を用いて被検物1の被検面1aの平面形状を測定する場合を示している。図6において被検物1と遮光板2は突き当て部材3を介して位置決めされているが、遮光板2が干渉計5の光軸7に対して傾いて取り付けられているため、遮光板2の開口部を通過する被検光が遮光板2の傾き量に応じて変化する。その結果、遮光板2のエッジ2aが真円であっても、干渉計5の測定結果から抽出されるエッジ形状は図7に示すように楕円状に歪む。楕円状に歪んでいる場合に円形とみなしてフィッティングし、面形状の測定結果に対する基準座標の位置を求めると、被検物1の基準座標系の横座標であるx、y軸が計算結果では、X、Y軸となる。このように、実際には図7におけるx、y座標を有する基準座標系に対して横座標誤差が発生する。   FIG. 6 shows a case where the interferometer 5 measures the planar shape of the test surface 1a of the test object 1 using the reference prototype 6 having the reference surface 6a. In FIG. 6, the test object 1 and the light shielding plate 2 are positioned via the abutting member 3. However, since the light shielding plate 2 is attached to be inclined with respect to the optical axis 7 of the interferometer 5, the light shielding plate 2. The test light passing through the opening changes in accordance with the amount of inclination of the light shielding plate 2. As a result, even if the edge 2a of the light shielding plate 2 is a perfect circle, the edge shape extracted from the measurement result of the interferometer 5 is distorted into an ellipse as shown in FIG. When the ellipse is distorted and fitted as a circle, the position of the reference coordinate with respect to the measurement result of the surface shape is obtained, and the x and y axes, which are the abscissas of the reference coordinate system of the test object 1, are calculated. , X and Y axes. As described above, an abscissa error actually occurs with respect to the reference coordinate system having the x and y coordinates in FIG.

そこで、干渉計5の測定結果から抽出した遮光板2のエッジ形状の歪みに伴う横座標の誤差を以下のように補正する。   Therefore, the error of the abscissa accompanying the distortion of the edge shape of the light shielding plate 2 extracted from the measurement result of the interferometer 5 is corrected as follows.

まず、被検面1aの形状情報と遮光板2のエッジ2aの形状情報を用いて光軸7に対する遮光板2の傾き量と干渉計5の測定結果の歪みとの関係を求める。そして、測定結果から抽出したエッジ形状をエッジ2aの実形状にフィッティングする際に、傾き量もパラメータに含めてフィッティングする。最後に遮光板2の傾き量も考慮して干渉計の測定結果と被検物1上の基準座標系との関係を求めることによりエッジ形状の歪みに伴う誤差も補正される。   First, the relationship between the amount of inclination of the light shielding plate 2 with respect to the optical axis 7 and the distortion of the measurement result of the interferometer 5 is obtained using the shape information of the test surface 1 a and the shape information of the edge 2 a of the light shielding plate 2. Then, when fitting the edge shape extracted from the measurement result to the actual shape of the edge 2a, the amount of inclination is also included in the parameters. Finally, the error due to the distortion of the edge shape is also corrected by obtaining the relationship between the measurement result of the interferometer and the reference coordinate system on the test object 1 in consideration of the tilt amount of the light shielding plate 2.

球面測定の場合もエッジ形状の歪みに伴う横座標誤差が発生するため、平面の場合と同様にして補正する。球面と平面で異なる点は、干渉計5の光軸7に対する遮光板2の傾きだけでなく、光軸7に垂直な面内に遮光板2が横ずれしても干渉計5の測定結果から抽出したエッジ形状が歪む。そのため、測定結果から抽出したエッジ形状を、エッジ2aの実形状にフィッティングする際に、遮光板2の傾き量に加えて干渉計5の光軸7に垂直な面内の横ずれ量もパラメータに含めてフィッティングする。光軸7に対して、遮光板2が傾いても横ずれしても干渉計5の測定結果から抽出したエッジ形状は楕円に近い形に歪むが、どちらも真の楕円ではなく、異なる歪み方をする。従って遮光板2の傾き量と横ずれ量は独立なパラメータであり、同時にフィッティングさせることができる。   Also in the case of spherical measurement, since an abscissa error accompanying distortion of the edge shape occurs, correction is performed in the same manner as in the case of a plane. The difference between the spherical surface and the plane is not only the inclination of the light shielding plate 2 with respect to the optical axis 7 of the interferometer 5, but also extracted from the measurement result of the interferometer 5 even if the light shielding plate 2 is laterally displaced in a plane perpendicular to the optical axis 7. The edge shape is distorted. Therefore, when fitting the edge shape extracted from the measurement result to the actual shape of the edge 2a, in addition to the inclination amount of the light shielding plate 2, the lateral displacement amount in the plane perpendicular to the optical axis 7 of the interferometer 5 is also included in the parameters. To fit. Although the edge shape extracted from the measurement result of the interferometer 5 is distorted to a shape close to an ellipse even if the light shielding plate 2 is tilted or laterally shifted with respect to the optical axis 7, neither is a true ellipse but different distortion methods. To do. Therefore, the tilt amount and the lateral shift amount of the light shielding plate 2 are independent parameters and can be fitted simultaneously.

また、干渉計5による面形状測定時には、干渉縞をいわゆる縞一色状態で測定するため、被検物1と干渉計5の光軸7との位置関係は任意ではなく限定される。さらに、被検物1と遮光板2が突き当て部材3を介して位置決めされていることから、光軸7と遮光板2の位置関係も限定される。従って、干渉計5の光軸7と遮光板2の位置関係を拘束条件としてフィッティングに含めるとさらに高精度に横座標校正が可能である。ただし、被検物1と遮光板2の形状精度が良好である必要がある。   Further, when the surface shape is measured by the interferometer 5, the interference fringes are measured in a so-called fringe one-color state, and therefore the positional relationship between the test object 1 and the optical axis 7 of the interferometer 5 is not arbitrary and is limited. Furthermore, since the test object 1 and the light shielding plate 2 are positioned via the abutting member 3, the positional relationship between the optical axis 7 and the light shielding plate 2 is also limited. Therefore, when the positional relationship between the optical axis 7 of the interferometer 5 and the light shielding plate 2 is included in the fitting as a constraint, the abscissa calibration can be performed with higher accuracy. However, the shape accuracy of the test object 1 and the light shielding plate 2 needs to be good.

実施例1による被検物のみを示す立面図である。FIG. 3 is an elevation view showing only a test object according to Example 1. 実施例1による遮光板のみを示す立面図である。FIG. 3 is an elevation view showing only a light shielding plate according to Example 1. 実施例1による被検物と遮光板を一体化した状態で示すもので、(a)はその立面図、(b)は(a)のA−A線に沿ってとった断面図である。The test object and light-shielding plate by Example 1 are shown in the state integrated, (a) is the elevation, (b) is sectional drawing taken along the AA line of (a). . 面形状測定データにおける被検面と遮光板のエッジの関係を示す図である。It is a figure which shows the relationship between the to-be-tested surface and the edge of a light-shielding plate in surface shape measurement data. 実施例2を示すもので、(a)は遮光板と一体化した保持冶具を示す立面図、(b)は保持冶具と被検物を示す断面図である。FIG. 7 shows Example 2, in which (a) is an elevational view showing a holding jig integrated with a light shielding plate, and (b) is a cross-sectional view showing the holding jig and a test object. 被検物の倒れを説明する図である。It is a figure explaining the fall of a test object. 測定領域の歪みを示す図である。It is a figure which shows the distortion of a measurement area | region.

符号の説明Explanation of symbols

1 被検物
1a 被検面
1b、1c、2b、2c 基準面
2 遮光板
2a エッジ
3 突き当て部材
4 保持冶具
5 干渉計
6 参照原器
6a 参照面
7 光軸
DESCRIPTION OF SYMBOLS 1 Test object 1a Test surface 1b, 1c, 2b, 2c Reference surface 2 Light-shielding plate 2a Edge 3 Abutting member 4 Holding jig 5 Interferometer 6 Reference master 6a Reference surface 7 Optical axis

Claims (12)

被検物によって反射された被検光と参照光とを互いに干渉させることにより得られる干渉縞を検出器により検出し、検出された干渉縞の情報に基づいて前記被検物の面形状を測定する干渉計と、前記被検物の測定領域を限定するための測定領域限定手段と、前記測定領域限定手段により限定される前記測定領域と前記被検物上の基準座標との位置関係を特定し、前記測定領域の相対位置情報を得るための位置特定手段と、前記干渉計の測定結果から前記測定領域の面形状測定データを抽出し、前記基準座標に対する前記測定領域の前記相対位置情報に基づいて前記面形状測定データを校正する演算手段と、を備えたことを特徴とする干渉計測装置。   The detector detects the interference fringes obtained by causing the test light reflected by the test object and the reference light to interfere with each other, and measures the surface shape of the test object based on the information of the detected interference fringes An interferometer, a measurement area limiting means for limiting the measurement area of the test object, and a positional relationship between the measurement area limited by the measurement area limiting means and reference coordinates on the test object And a position specifying means for obtaining relative position information of the measurement area, and surface shape measurement data of the measurement area is extracted from the measurement result of the interferometer, And an arithmetic means for calibrating the surface shape measurement data based thereon. 前記測定領域限定手段は、前記被検光の光束内に設置された開口部を備えた遮光板を有することを特徴とする請求項1記載の干渉計測装置。   The interference measurement apparatus according to claim 1, wherein the measurement region limiting unit includes a light shielding plate having an opening provided in a light beam of the test light. 前記遮光板は、前記開口部の方向性を示す形状部を有することを特徴とする請求項2記載の干渉計測装置。   The interference measurement apparatus according to claim 2, wherein the light shielding plate has a shape portion indicating the directionality of the opening. 前記位置特定手段は、前記被検物と前記遮光板とを位置合わせする位置合わせ手段を有することを特徴とする請求項2または3記載の干渉計測装置。   The interference measurement apparatus according to claim 2, wherein the position specifying unit includes an alignment unit that aligns the test object and the light shielding plate. 前記位置特定手段は、前記被検物または前記被検物の保持冶具と前記遮光板とを固定する固定手段を有することを特徴とする請求項4記載の干渉計測装置。   The interference measurement apparatus according to claim 4, wherein the position specifying unit includes a fixing unit that fixes the test object or a holding jig for the test object and the light shielding plate. 前記被検物および前記遮光板は、それぞれ互いに位置合わせ用の外形基準を有することを特徴とする請求項4記載の干渉計測装置。   The interference measurement apparatus according to claim 4, wherein the test object and the light shielding plate have an outer shape reference for alignment with each other. 被検物によって反射された被検光と参照光とを互いに干渉させることにより得られる干渉縞を検出器により検出し、検出された干渉縞の情報に基づいて前記被検物の面形状を測定する干渉計測方法において、
前記被検物の測定領域を測定領域限定手段によって限定する測定領域限定工程と、
前記測定領域と前記被検物上の基準座標との位置関係を特定し、前記測定領域の相対位置情報を得るための位置特定工程と、
前記干渉縞に基づく測定結果から前記測定領域の面形状測定データを抽出する測定領域抽出工程と、
前記基準座標に対する前記測定領域の前記相対位置情報に基づいて、前記面形状測定データを校正する工程と、を有することを特徴とする干渉計測方法。
The detector detects the interference fringes obtained by causing the test light reflected by the test object and the reference light to interfere with each other, and measures the surface shape of the test object based on the information of the detected interference fringes In the interference measurement method to
A measurement region limiting step of limiting the measurement region of the test object by a measurement region limiting means;
Identifying the positional relationship between the measurement area and the reference coordinates on the test object, a position specifying step for obtaining relative position information of the measurement area,
A measurement region extraction step for extracting surface shape measurement data of the measurement region from the measurement result based on the interference fringes;
A step of calibrating the surface shape measurement data based on the relative position information of the measurement area with respect to the reference coordinates.
前記測定領域限定工程において、遮光板を前記被検光の光束内に設置し、前記光束を限定することを特徴とする請求項7記載の干渉計測方法。   The interference measurement method according to claim 7, wherein, in the measurement region limiting step, a light shielding plate is installed in a light beam of the test light to limit the light beam. 前記位置特定工程において、前記被検物と前記遮光板とを位置合わせして一体化することで、前記被検物と前記遮光板との位置関係を特定することを特徴とする請求項8記載の干渉計測方法。   9. The positional relationship between the test object and the light shielding plate is specified by aligning and integrating the test object and the light shielding plate in the position specifying step. Interference measurement method. 前記測定領域抽出工程において、干渉縞を縞一色状態としたうえで干渉縞強度分布を取得し、干渉縞強度値が増大する領域を抽出することを特徴とする請求項7ないし9いずれか1項記載の干渉計測方法。   10. The method according to claim 7, wherein, in the measurement region extraction step, the interference fringe intensity distribution is acquired after the interference fringes are in a single-colored state, and a region where the interference fringe intensity value increases is extracted. The interference measurement method described. 前記測定領域抽出工程において、前記被検物を前記被検光の光軸方向に移動させるか、または前記被検光の波長を変化させることで、干渉縞強度変化率を取得し、前記干渉縞強度変化率が増大する領域を抽出することを特徴とする請求項7ないし10いずれか1項記載の干渉計測方法。   In the measurement region extraction step, the interference fringe intensity change rate is obtained by moving the test object in the optical axis direction of the test light or changing the wavelength of the test light, and the interference fringe The interference measurement method according to claim 7, wherein a region where the intensity change rate increases is extracted. 前記測定領域抽出工程において、抽出した前記測定領域の歪みに伴って発生する座標誤差を修正する工程を有することを特徴とする請求項7ないし11いずれか1項記載の干渉計測方法。   The interference measurement method according to claim 7, further comprising a step of correcting a coordinate error caused by the distortion of the extracted measurement region in the measurement region extraction step.
JP2006160447A 2006-06-09 2006-06-09 Interference measuring apparatus and interference measuring method Expired - Fee Related JP4886372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160447A JP4886372B2 (en) 2006-06-09 2006-06-09 Interference measuring apparatus and interference measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160447A JP4886372B2 (en) 2006-06-09 2006-06-09 Interference measuring apparatus and interference measuring method

Publications (2)

Publication Number Publication Date
JP2007327892A true JP2007327892A (en) 2007-12-20
JP4886372B2 JP4886372B2 (en) 2012-02-29

Family

ID=38928454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160447A Expired - Fee Related JP4886372B2 (en) 2006-06-09 2006-06-09 Interference measuring apparatus and interference measuring method

Country Status (1)

Country Link
JP (1) JP4886372B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117766A (en) * 2009-12-01 2011-06-16 Canon Inc Interference measuring method
EP2549222A1 (en) 2011-07-22 2013-01-23 Mitutoyo Corporation Abscissa calibration jig and abscissa calibration method of laser interference measuring apparatus
CN110243306A (en) * 2019-07-22 2019-09-17 中国工程物理研究院激光聚变研究中心 Plane surface shape sub-aperture stitching interferometer measuring device and method based on robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243332A (en) * 1985-04-22 1986-10-29 Ricoh Co Ltd Identification of background area for fringe scanning interference measuring system
JPH08110204A (en) * 1994-10-12 1996-04-30 Toshio Honda Anti-vibration interferometer
JP2002206915A (en) * 2001-01-09 2002-07-26 Nikon Corp Abscissa calibration method for facial shape measuring device and facial shape measuring device
JP2002333305A (en) * 2001-05-08 2002-11-22 Nikon Corp Interference measuring apparatus and lateral coordinate measuring method
JP2004037124A (en) * 2002-06-28 2004-02-05 Fuji Photo Optical Co Ltd Method for extracting circular region of stripe image
JP2004226305A (en) * 2003-01-24 2004-08-12 Canon Inc Coordinate calibration method
JP2006133059A (en) * 2004-11-05 2006-05-25 Canon Inc Device for measuring interference

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243332A (en) * 1985-04-22 1986-10-29 Ricoh Co Ltd Identification of background area for fringe scanning interference measuring system
JPH08110204A (en) * 1994-10-12 1996-04-30 Toshio Honda Anti-vibration interferometer
JP2002206915A (en) * 2001-01-09 2002-07-26 Nikon Corp Abscissa calibration method for facial shape measuring device and facial shape measuring device
JP2002333305A (en) * 2001-05-08 2002-11-22 Nikon Corp Interference measuring apparatus and lateral coordinate measuring method
JP2004037124A (en) * 2002-06-28 2004-02-05 Fuji Photo Optical Co Ltd Method for extracting circular region of stripe image
JP2004226305A (en) * 2003-01-24 2004-08-12 Canon Inc Coordinate calibration method
JP2006133059A (en) * 2004-11-05 2006-05-25 Canon Inc Device for measuring interference

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117766A (en) * 2009-12-01 2011-06-16 Canon Inc Interference measuring method
EP2549222A1 (en) 2011-07-22 2013-01-23 Mitutoyo Corporation Abscissa calibration jig and abscissa calibration method of laser interference measuring apparatus
US8879068B2 (en) 2011-07-22 2014-11-04 Mitutoyo Corporation Abscissa calibration jig and abscissa calibration method of laser interference measuring apparatus
CN110243306A (en) * 2019-07-22 2019-09-17 中国工程物理研究院激光聚变研究中心 Plane surface shape sub-aperture stitching interferometer measuring device and method based on robot

Also Published As

Publication number Publication date
JP4886372B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
CN109307480B (en) Method for detecting multi-surface shape of transmission element
US9128004B2 (en) Measurement method, measurement apparatus, non-transitory computer-readable storage medium, and optical element fabrication method
US8294902B2 (en) Measuring method and measuring device for measuring a shape of a measurement surface using a reference standard for calibration
TWI723129B (en) Method and system for optical three-dimensional topography measurement
KR20110106823A (en) Aspheric object measuring method and apparatus
CN107250714B (en) Method and apparatus for interferometric detection
KR20150011313A (en) Interferometer, lithography apparatus, and method of manufacturing article
US7576858B2 (en) Position detecting method
CN112539714B (en) Eccentricity detection method, processing method and detection equipment
JP6552312B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4886372B2 (en) Interference measuring apparatus and interference measuring method
JP7204428B2 (en) Eccentricity measuring method, lens manufacturing method, and eccentricity measuring device
KR100954998B1 (en) Measurement apparatus for measuring surface map
JP2000097663A (en) Interferometer
CN107305119A (en) The scaling method and test platform of a kind of inclining test for the long optical flat of standard
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
US8976337B2 (en) Method of measuring mark position and measuring apparatus
JP2009267064A (en) Measurement method and exposure apparatus
JP2006133059A (en) Device for measuring interference
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
JP2005090962A (en) Measuring method and measuring device of optical element
JP5010964B2 (en) Angle measuring method and apparatus
JP5307528B2 (en) Measuring method and measuring device
JP2011117766A (en) Interference measuring method
JP5618727B2 (en) Shape measuring method and shape measuring device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4886372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees