JP2007327661A - 排熱回収ボイラ - Google Patents

排熱回収ボイラ Download PDF

Info

Publication number
JP2007327661A
JP2007327661A JP2006157421A JP2006157421A JP2007327661A JP 2007327661 A JP2007327661 A JP 2007327661A JP 2006157421 A JP2006157421 A JP 2006157421A JP 2006157421 A JP2006157421 A JP 2006157421A JP 2007327661 A JP2007327661 A JP 2007327661A
Authority
JP
Japan
Prior art keywords
steam
superheater
rate
heat recovery
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157421A
Other languages
English (en)
Inventor
Katsumi Shimodaira
克己 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006157421A priority Critical patent/JP2007327661A/ja
Publication of JP2007327661A publication Critical patent/JP2007327661A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

【課題】過熱器の厚肉部をも保護できる排熱回収ボイラを提供する。
【解決手段】起動時の過熱蒸気圧力、蒸気ドラム缶内流体温度、蒸気ドラムメタル温度のいずれかを検出する第1の検出手段31と、起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段32と、第1の検出手段31で検出した値の変化率を演算する第1の変化率演算手段50と、第2の検出手段32で検出した値の変化率を演算する第2の変化率演算手段60と、第1の変化率と前記第2の変化率とを参照してタービンバイパス弁22の開度を調整する制御手段53を備えたことを特徴とする。
【選択図】図1

Description

本発明は、複合発電プラント等の高温ガスの熱エネルギーを回収して蒸気を発生する排熱回収ボイラに係り、特にその排熱回収ボイラの起動時におれるタービンバイパス弁の制御に関する。
発電用ガスタービン等の排気は600℃程度の温度を保有しており、排熱回収ボイラはこのような高温ガスからの熱回収により蒸気を発生する装置である。特に発電分野では、ガスタービン,蒸気タービン,発電機と共に構成する複合発電設備(コンバインドサイクルプラント)が普及している。複合発電設備は高い発電効率と高負荷変化率、高速起動停止等の特長を有している。
特に天然ガスを燃料とする複合発電設備は、燃料中の炭素分が少なく、また高効率からCO2排出量が少なく、さらに排気ガスに硫黄酸化物を含まないことなどから更なる普及が期待されている。
図5は、排熱回収ボイラの概略構成図である。排熱回収ボイラには、ガス流れ方向がほぼ水平となる横型とほぼ鉛直となる縦型がある。以下では大容量の排熱回収ボイラで主に採用される横型を例に説明するが、縦型でも同様である。
排熱回収ボイラはケーシング1で囲まれたガスダクト2の中に1つ以上の熱交換器が配置された構造である。熱交換器は内部流体の状態により、節炭器5,蒸発器6,過熱器8などがあり、内部流体とガス温度の相対関係からガス上流側に過熱器8、下流側に節炭器5、中間に蒸発器6が配置される。
各熱交換器は、鉛直方向に配置された伝熱管群から構成され、所望の熱交換量(収熱量)と内部流体流量を確保するため、ガス流れ方向に対して直角方向及びガス流れ方向に複数列の伝熱管を配置することが一般的である。排熱回収ボイラでは小型化を図るため、フィン付伝熱管が一般に採用されている。
図示されないガスタービンから排出された燃焼排ガスG1は排熱回収ボイラのガスダクト2へと導かれ、その中に配置された過熱器8、貫流蒸発器6、節炭器5の順に熱交換を行い、低温ガスG2となり煙突3から排出される。
一方、給水ポンプ4により供給された低温水は節炭器5で飽和温度近傍まで予熱された後に蒸気ドラム7に導かれる。蒸発器6ではガスより受けた熱で管内の水の一部が蒸発し、蒸気ドラム7で気水分離される。蒸発量に相当する飽和水が、蒸気ドラム7から下降管65を通じて蒸発器6に補給される。
蒸気ドラム7で分離された蒸気は蒸気管66を通り過熱器8でさらに高温のガスとの熱交換により所定の温度まで過熱され、タービン加減弁21を通して蒸気タービン9等の需要先に供給される。図中の31は圧力計、32は温度計である。
このような排熱回収ボイラの起動は、次のような手順で行なわれる。
給水弁20を開き、節炭器5と蒸発器6に水を張る。蒸気ドラム7内の水位が既定値に達すると水張り、起動準備が完了し、ガスタービンに点火する。そして入口排ガスG1の持ち込む熱量の増加とともに、蒸発器6内部の水は次第に昇温するとともに密度が低下し、蒸発器6と蒸気ドラム7と下降管65を通して自然循環が開始される。
蒸発器6への入熱が更に増加すると、蒸気が発生する。発生した蒸気は蒸気ドラム7で熱水と分離され、過熱器8を介して蒸気タービン9へと送られる。過熱器8へ送った蒸気の分だけ蒸気ドラム7内の水位が低下するから、これを補うため給水弁20を操作し、給水量GFWを増加させて水位を保持する。
蒸気タービン9への蒸気供給は、タービン加減弁21入口の蒸気圧力,温度が所定の値になるまで開始されない。それまでの間は過熱器8を出た蒸気の一部または全部をタービンバイパス弁22を通して復水器へと排出するが、復水器の代わりに大気放出する場合もある。
起動に際しては、厚肉部品の熱応力を抑制する必要がある。排熱回収ボイラにおいて最も厚肉の部品は蒸気ドラム7である。蒸気ドラム7の温度は飽和蒸気圧力に一意に対応するため、タービンバイパス弁22は蒸気の昇圧率を規定の値に保つよう制御される。
図6は、前記タービンバイパス弁22の制御例を示す回路図である。図5に示すように過熱器8の出口側の蒸気管67に付設された圧力計31で検出した蒸気圧力の時間微分を微分器50で求め、関数設定器51で与えられる設定値に対する偏差を減算器52で算出する。そしてこの偏差に基いて制御器53は前記タービンバイパス弁22の開度を調節して、蒸気のバイパス量を加減する。
具体的には昇圧率が過大、すなわち減算器52の出力が正の値の場合にタービンバイパス弁22を開き、昇圧率が過小すなわち減算器52の出力が負の場合にタービンバイパス弁22を閉じる方向に操作する。
図5では圧力計31を過熱器8の出口側に設置したが、蒸気ドラム7の出口側に設置する場合もある。また、図6では蒸気圧力を検出したが、蒸気圧力の代わりに蒸気ドラム7の缶内流体の温度又は蒸気ドラム7のメタル温度を参照する場合もある。
なお、コンバインドサイクルプラントの蒸気温度制御方法に関しては、例えば下記のような特許文献を挙げることができる。
特開平9−105503号公報
ところで、ガスタービンの排気温度・流量特性は、ガスタービンの型式により様々である。図7は、各タイプでのガスタービン負荷に対する排ガス温度特性を示す図である。この図に示すように従来はタイプA、タイプBのようにガスタービン負荷とともに排気温度が徐々に上昇するタイプが多かったが、近年はタイプCのように低負荷より最高温度に近い温度となる型式のものがある。
図8は、ガスタービンと排熱回収ボイラの間にバイパススタック16を設けたプラントの概略構成図である。このプラントでは、ガスタービンの起動が完了するまではダンパ15を閉じて排熱回収ボイラへはガスタービン排ガスを送らず、ガスタービンの起動が完了した後にダンパ15を操作し、ガスタービン排ガスを通気して排熱回収ボイラを起動するようになっている。この場合、排熱回収ボイラに導入されるガスタービン排ガスは、当初より定格温度に達している。
特に図7に示すタイプCのような特性を有するガスタービン、あるいは図8のバイパススタック16を採用したプラントにおいて、従来技術では過熱器8の熱応力が充分に抑制されないという課題がある。
排熱回収ボイラの起動に際しては、熱交換器の熱容量の影響によりガス流れ方向上流側の熱交換器に熱吸収が偏る。上流側の熱交換器のメタルとガスとの温度差が大きい間は、該熱交換器との熱交換によりガス温度が低下するためである。
この現象は、ガス温度が高温であるほど顕著となる。このため図7に示すタイプCのような特性を有するガスタービン、あるいは図8のバイパススタック16を採用したプラントでは、ガス流れ方向最上流にある過熱器8の起動時の熱吸収量が多く、蒸気の昇温率が急速になる傾向にある。
これに対して従来のタービンバイパス弁制御では、蒸気圧力または蒸気ドラム7の温度のみを参照している。これは蒸気ドラム7が最も厚肉の部品のため、一般に最も大きな応力が生じると考えられたためであるが、過熱器8の厚肉部は保護されない。
図9は前述の様子を示す図で、排熱回収ボイラの起動特性の一例を示している。同図では経過時間とともガスタービン(GT)排気温度、蒸気温度、蒸気圧力、過熱器の熱応力ならびに蒸気ドラムの熱応力の変化を示している。この図に示すように、起動時におけるガスタービン(GT)排気温度の急激な上昇に伴い、蒸気温度も急激に上昇する。このため蒸気ドラムよりも過熱器の熱応力が大きいことが分かり、特に過熱器の厚肉部は熱的に保護されていない。
なお、多くのプラントでは過熱器8の蒸気温度を制御する目的で、過熱器8の入口側にスプレー減温器を設ける。スプレー減温器は蒸気中に水を噴霧し、潜熱を利用して蒸気温度を低減するものである。スプレー減温器では、スプレー水を過剰に注入すると水滴が過熱器8に飛散し、割れを起こす。このため、蒸気発生量が少ない起動時過程においては、効果的に使用できないことがある。
以上の説明は、蒸気ドラム7を備えた自然循環型排熱回収ボイラについて説明したが、蒸気ドラム7の代わりに気水分離機を備えた貫流型排熱回収ボイラにおいても同様に発生する課題である。
本発明の目的は、過熱器の厚肉部をも保護できる排熱回収ボイラを提供することにある。
前記目的を達成するため本発明の第1の手段は、
過熱器と、その過熱器に供給する蒸気と熱水とを分離する蒸気ドラムと、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
その排熱回収ボイラ起動時の過熱蒸気圧力、蒸気ドラム缶内流体温度、蒸気ドラムメタル温度のいずれかを検出する第1の検出手段と、
排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
前記第1の変化率と前記第2の変化率とを参照して前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とするものである。
本発明の第2の手段は、
過熱器と、その過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
その排熱回収ボイラ起動時の過熱蒸気圧力、蒸気ドラム缶内流体温度、蒸気ドラムメタル温度のいずれかを検出する第1の検出手段と、
排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
前記第1の変化率に対応した第1の目標値を設定する第1の目標値設定手段と、
前記第2の変化率に対応した第2の目標値を設定する第2の目標値設定手段と、
前記第1の変化率と第1の目標値との偏差を演算する第1の偏差値演算手段と、
前記第2の変化率と第2の目標値との偏差を演算する第2の偏差値演算手段と、
前記第1の偏差値演算手段によって演算された第1の偏差値と前記第2の偏差値演算手段によって演算された第2の偏差値の高い方の偏差値を選択する高値選択手段と、
その高値選択手段で選択された偏差値に基いて前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とするものである。
本発明の第3の手段は、
過熱器と、その過熱器に供給する蒸気と熱水とを分離する気水分離器と、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
その排熱回収ボイラ起動時の過熱蒸気圧力、気水分離器内流体温度、気水分離器メタル温度のいずれかを検出する第1の検出手段と、
排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
前記第1の変化率と前記第2の変化率とを参照して前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とするものである。
本発明の第4の手段は、
過熱器と、その過熱器に供給する蒸気と熱水とを分離する気水分離器と、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
その排熱回収ボイラ起動時の過熱蒸気圧力、気水分離器内流体温度、気水分離器メタル温度のいずれかを検出する第1の検出手段と、
排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
前記第1の変化率に対応した第1の目標値を設定する第1の目標値設定手段と、
前記第2の変化率に対応した第2の目標値を設定する第2の目標値設定手段と、
前記第1の変化率と第1の目標値との偏差を演算する第1の偏差値演算手段と、
前記第2の変化率と第2の目標値との偏差を演算する第2の偏差値演算手段と、
前記第1の偏差値演算手段によって演算された第1の偏差値と前記第2の偏差値演算手段によって演算された第2の偏差値の高い方の偏差値を選択する高値選択手段と、
その高値選択手段で選択された偏差値に基いて前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とするものである。
本発明の第5の手段は前記第1ないし第4の手段において、当該排熱回収ボイラの煙道入口側にガスタービンからの排ガスの当該排熱回収ボイラへの通気遮断ならびに通気を切り替えるバイパススタックを設けたことを特徴とするものである。
本発明は前述のような構成になっており、排熱回収ボイラ起動時の蒸気ドラムと過熱器厚肉部の過大な熱応力発生を防止し、疲労破壊を防ぐという効果がある。また、貫流型排熱回収ボイラに適用した場合、気水分離器と過熱器厚肉部の過大な熱応力発生を防止し、疲労破壊を防ぐという効果がある。
次に本発明の実施形態について図とともに説明する。蒸気ドラム7を備えた自然循環型排熱回収ボイラの基本的な構成は、図5に示したものと同様であるのでそれの説明は省略する。
図1は、本発明の実施形態に係るタービンバイパス弁の制御回路図である。図5に示すように過熱器8の出口側蒸気管67に付設された圧力計31で検出した蒸気圧力の時間微分を微分器50で求め、関数設定器51で与えられる設定値(目標値)に対する偏差値を減算器52で算出して、蒸気圧力変化率として出力する。
一方、過熱器8の出口側蒸気管67に付設された温度計32により出口蒸気温度が検出され、その過熱器出口蒸気温度に基いて微分器60で蒸気温度変化率が求められる。この蒸気温度変化率と、設定器61で予め設定されている設定値(目標値)との偏差値を減算器62で求める。
このようにして求められた過熱器8の出口蒸気温度変化率と前述の蒸気圧力変化率のうち、大きい方の値を高値選択器70で選択し、その値に基き制御器53によりタービンバイパス弁22の開度を調整する。具体的には、偏差すなわち高値選択器70の出力が正の値の場合にはタービンバイパス弁22を開き、負の値の場合にはタービンバイパス弁22を閉じる方向に操作する。
なお、タービンバイパス弁22の開度に対する蒸気圧力変化率と過熱器8の出口蒸気温度変化率の感度の違いを調整するため、ゲイン器63により調整し、その結果を出口蒸気温度変化率として前記高値選択器70に入力している。
蒸気圧力と飽和蒸気温度は図2に示すような関係にあり、この関係を考慮して各蒸気圧力に対する蒸気圧力変化率目標値は図3に示すように設定され、その情報が前記関数設定器51に格納されている。なお、過熱器8の出口蒸気温度変化目標値は一定値として前記設定器61に格納されている。
前述のタービンバイパス弁22を開くこと、すなわち蒸気量を増加することは、昇圧率、過熱器8の出口蒸気昇温率のいずれに対しても減じる方向に作用する。従って蒸気ドラム7、過熱器8の熱応力の原因となる蒸気圧力変化率と過熱器8の出口蒸気温度変化率それぞれの目標値に対する偏差を算出し、いずれか大なる偏差にもとづいてタービンバイパス弁22を操作することにより、蒸気圧力変化率、過熱器8の出口蒸気温度変化率は常に目標値以下に保たれる。それぞれの目標値は許容熱応力に対して適切に設定されるので、蒸気ドラム7、過熱器8のいずれの熱応力も許容値以下に保たれ、疲労破壊を起こすことはない。
本実施形態においては、請求項に記載されている第1の検出手段は圧力計31に相当し、第2の検出手段は温度計32に相当し、第1の変化率演算手段は微分器50に相当し、第2の変化率演算手段は微分器60に相当し、第1の目標値設定手段は設定器51に相当し、第2の目標値設定手段は設定器61に相当し、第1の偏差値演算手段は減算器52に相当し、第2の偏差値演算手段は減算器62に相当し、高値選択手段は高値選択器70に相当し、制御手段は制御器53に相当する。
図4は、本実施形態における排熱回収ボイラの起動特性を示す図である。同図でも経過時間とともガスタービン(GT)排気温度、蒸気温度、蒸気圧力、過熱器の熱応力ならびに蒸気ドラムの熱応力の変化を示している。なお、図中の点線は図9に示す従来技術の特性曲線であり、本発明との比較のために示している。
この図に示すように、起動時にはガスタービン(GT)排気温度の急激な上昇があるが、本発明では蒸気温度の急激な上昇が抑制されている。そのため過熱器ならびに蒸気ドラム、特に過熱器の厚肉部の熱応力の発生が軽減されていることが分かる。
本実施形態では、蒸気圧力と過熱器8の出口蒸気温度を用いたが、より直接的に、蒸気圧力に代えて蒸気ドラム7の缶内流体温度や蒸気ドラム7のメタル温度、過熱器8の出口蒸気温度に代えて過熱器8の厚肉部メタル温度を用いても良い。図5において点Aは蒸気ドラム7の缶内流体温度の測定点、点Bは蒸気ドラム7のメタル温度の測定点、点Cは過熱器8の例えば出口ヘッダなどの厚肉部におけるメタル温度の測定点である。また、変化率を制御する代わりに、蒸気圧力、温度の目標値を時間的に変化させても良い。
蒸気ドラム7の代わりに気水分離器を備える貫流型排熱回収ボイラの場合も気水分離器が最も厚肉の部品であり、かつ、その内部流体の温度は飽和蒸気温度であるから、本発明は前記貫流型排熱回収ボイラにも適用可能である。
本発明の実施形態に係るタービンバイパス弁の制御回路図である。 蒸気圧力と飽和蒸気温度との関係を示す特性図である。 本発明の実施形態における各蒸気圧力に対する蒸気圧力変化率目標値を示す特性図である。 本発明の実施形態における排熱回収ボイラの起動特性を示す図である。 排熱回収ボイラの概略構成図である。 従来技術におけるタービンバイパス弁の制御回路図である。 各種タイプの排熱回収ボイラのガスタービン負荷とガスタービン排気温度との関係を示す特性図である。 バイパススタックを備えた排熱回収ボイラの概略構成図である。 従来技術における排熱回収ボイラの起動特性を示す図である。
符号の説明
1:ケーシング、2:ガスダクト、3:煙突、4:給水ポンプ、5:節炭器、6:蒸発器、7:蒸気ドラム、8:過熱器、9:蒸気タービン、15:バイパススタック、16:ダンパ、20:給水弁、21:タービン加減弁、22:タービンバイパス弁、31:圧力計、32:温度計、50:微分器、51:関数設定器、52:減算器、53:制御器、60:微分器、61:設定器、62:減算器、63:ゲイン器、65:下降管、66:蒸気管、67:蒸気管。

Claims (5)

  1. 過熱器と、その過熱器に供給する蒸気と熱水とを分離する蒸気ドラムと、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
    その排熱回収ボイラ起動時の過熱蒸気圧力、蒸気ドラム缶内流体温度、蒸気ドラムメタル温度のいずれかを検出する第1の検出手段と、
    排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
    前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
    前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
    前記第1の変化率と前記第2の変化率とを参照して前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とする排熱回収ボイラ。
  2. 過熱器と、その過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
    その排熱回収ボイラ起動時の過熱蒸気圧力、蒸気ドラム缶内流体温度、蒸気ドラムメタル温度のいずれかを検出する第1の検出手段と、
    排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
    前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
    前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
    前記第1の変化率に対応した第1の目標値を設定する第1の目標値設定手段と、
    前記第2の変化率に対応した第2の目標値を設定する第2の目標値設定手段と、
    前記第1の変化率と第1の目標値との偏差を演算する第1の偏差値演算手段と、
    前記第2の変化率と第2の目標値との偏差を演算する第2の偏差値演算手段と、
    前記第1の偏差値演算手段によって演算された第1の偏差値と前記第2の偏差値演算手段によって演算された第2の偏差値の高い方の偏差値を選択する高値選択手段と、
    その高値選択手段で選択された偏差値に基いて前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とする排熱回収ボイラ。
  3. 過熱器と、その過熱器に供給する蒸気と熱水とを分離する気水分離器と、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
    その排熱回収ボイラ起動時の過熱蒸気圧力、気水分離器内流体温度、気水分離器メタル温度のいずれかを検出する第1の検出手段と、
    排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
    前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
    前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
    前記第1の変化率と前記第2の変化率とを参照して前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とする排熱回収ボイラ。
  4. 過熱器と、その過熱器に供給する蒸気と熱水とを分離する気水分離器と、前記過熱器で発生した過熱蒸気を蒸気タービンに供給する蒸気管と、その蒸気管から分岐して発生した過熱蒸気の少なくとも一部をバイパスするタービンバイパス弁とを備えた排熱回収ボイラにおいて、
    その排熱回収ボイラ起動時の過熱蒸気圧力、気水分離器内流体温度、気水分離器メタル温度のいずれかを検出する第1の検出手段と、
    排熱回収ボイラ起動時の過熱器蒸気温度または過熱器厚肉部メタル温度を検出する第2の検出手段と、
    前記第1の検出手段で検出した値の変化率を演算する第1の変化率演算手段と、
    前記第2の検出手段で検出した値の変化率を演算する第2の変化率演算手段と、
    前記第1の変化率に対応した第1の目標値を設定する第1の目標値設定手段と、
    前記第2の変化率に対応した第2の目標値を設定する第2の目標値設定手段と、
    前記第1の変化率と第1の目標値との偏差を演算する第1の偏差値演算手段と、
    前記第2の変化率と第2の目標値との偏差を演算する第2の偏差値演算手段と、
    前記第1の偏差値演算手段によって演算された第1の偏差値と前記第2の偏差値演算手段によって演算された第2の偏差値の高い方の偏差値を選択する高値選択手段と、
    その高値選択手段で選択された偏差値に基いて前記タービンバイパス弁の開度を調整する制御手段とを備えたことを特徴とする排熱回収ボイラ。
  5. 請求項1ないし4のいずれか1項記載の排熱回収ボイラにおいて、当該排熱回収ボイラの煙道入口側にガスタービンからの排ガスの当該排熱回収ボイラへの通気遮断ならびに通気を切り替えるバイパススタックを設けたことを特徴とする排熱回収ボイラ。
JP2006157421A 2006-06-06 2006-06-06 排熱回収ボイラ Pending JP2007327661A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157421A JP2007327661A (ja) 2006-06-06 2006-06-06 排熱回収ボイラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157421A JP2007327661A (ja) 2006-06-06 2006-06-06 排熱回収ボイラ

Publications (1)

Publication Number Publication Date
JP2007327661A true JP2007327661A (ja) 2007-12-20

Family

ID=38928244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157421A Pending JP2007327661A (ja) 2006-06-06 2006-06-06 排熱回収ボイラ

Country Status (1)

Country Link
JP (1) JP2007327661A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101043A1 (ja) * 2016-12-02 2018-06-07 株式会社神戸製鋼所 熱エネルギー回収装置及びその立ち上げ運転方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124905A (ja) * 1984-07-16 1986-02-03 バブコツク日立株式会社 ボイラ起動制御装置
JP2000130108A (ja) * 1998-10-28 2000-05-09 Toshiba Corp 複合サイクル発電プラントの起動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124905A (ja) * 1984-07-16 1986-02-03 バブコツク日立株式会社 ボイラ起動制御装置
JP2000130108A (ja) * 1998-10-28 2000-05-09 Toshiba Corp 複合サイクル発電プラントの起動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101043A1 (ja) * 2016-12-02 2018-06-07 株式会社神戸製鋼所 熱エネルギー回収装置及びその立ち上げ運転方法

Similar Documents

Publication Publication Date Title
JP4854422B2 (ja) 貫流型排熱回収ボイラの制御方法
JP5523810B2 (ja) コンバインドサイクル発電設備及びその給水加熱方法
US20110023487A1 (en) Method for controlling a steam generator and control circuit for a steam generator
JP5130145B2 (ja) ボイラプラント,ボイラプラントの制御装置及びその制御方法
US7861527B2 (en) Reheater temperature control
JP2007248018A (ja) 再燃ボイラの給水予熱器の制御装置
WO2020110473A1 (ja) ボイラシステム及び発電プラント並びにボイラシステムの運転方法
JP6419888B1 (ja) 発電プラント及びその運転方法
JP4847213B2 (ja) 貫流型排熱回収ボイラ
JP2007187352A (ja) ボイラの起動方法
WO2016047400A1 (ja) ボイラ、コンバインドサイクルプラント並びにボイラの蒸気冷却方法
JP2007248017A (ja) 再燃ボイラの節炭器の温度制御装置
JP6526763B2 (ja) ボイラプラント及びボイラプラント運転方法
JP2006125760A (ja) 排熱回収ボイラ及びその制御方式
JP2007327661A (ja) 排熱回収ボイラ
JP5766527B2 (ja) 貫流ボイラの制御方法及び装置
JP2005009792A (ja) 排熱回収ボイラ
JP2019124436A (ja) 排熱回収ボイラの給水方法及び排熱回収ボイラ
JP6891090B2 (ja) 発電プラント及びその運転方法
JP2005214047A (ja) コンバインドサイクル発電プラントおよびその運転方法
EP3473820A1 (en) Method and installation of cogenertion in heat plants, especially those equipped with water-tube boilers
JP5457779B2 (ja) プラントシステムとその給水温度制御方法
JP2908085B2 (ja) 排熱回収ボイラ
JP2007285220A (ja) コンバインドサイクル発電設備
JP2949287B2 (ja) 排熱回収ボイラの補助蒸気抽気方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090420

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110620

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403