JP2007327466A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2007327466A
JP2007327466A JP2006160863A JP2006160863A JP2007327466A JP 2007327466 A JP2007327466 A JP 2007327466A JP 2006160863 A JP2006160863 A JP 2006160863A JP 2006160863 A JP2006160863 A JP 2006160863A JP 2007327466 A JP2007327466 A JP 2007327466A
Authority
JP
Japan
Prior art keywords
cylinder
exhaust
valve
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006160863A
Other languages
Japanese (ja)
Inventor
Shinichiro Nokawa
真一郎 能川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006160863A priority Critical patent/JP2007327466A/en
Publication of JP2007327466A publication Critical patent/JP2007327466A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To improve supercharging efficiency in a supercharger by making a part of air flowing in a cylinder from an intake passage, flow out to an exhaust passage as it is. <P>SOLUTION: This control device has two cylinders 2R and 2L. Respectively independent intake passages 4R and 4L are connected to the respective cylinders, and respectively independent exhaust passages 6R and 6L are connected. An exhaust turbine 10 of the supercharger 8 is arranged only in the exhaust passage connected to one cylinder, and a compressor 9 of the supercharger is arranged only in the intake passage connected to the other cylinder. Suction exhaust valve control is performed for controlling at least one of the valve closing timing of an exhaust valve 20 and the valve opening timing of an intake valve 19 in the respective cylinders so that an overlapping period of a period of opening the exhaust valve and a period of opening the intake valve in the cylinders connected with the intake passage provided with the compressor of the supercharger, becomes longer than an overlapping period of the period of opening the exhaust valve and the period of opening the intake valve in the cylinders connected with the exhaust passage provided with the exhaust turbine of the supercharger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

特許文献1に過給機付の内燃機関が記載されている。そして、同文献に記載の内燃機関では、各気筒から過給機の排気タービンに供給される排気ガスの圧力が高くなるように各気筒における排気弁の開閉弁タイミングを制御し、過給機の過給効率を向上させるようにしている。すなわち、特許文献1に記載された内燃機関は、4つの気筒を有し、これら気筒にそれぞれ排気管が接続されている。そして、これら4つの排気管のうち排気行程が順序的に連続して行われる2つの気筒にそれぞれ接続された排気管同士が合流して過給機の排気タービンまで延び、残りの2つの気筒(これら気筒の排気行程も順序的に連続して行われる)にそれぞれ接続された排気管同士が合流して同じ過給機の排気タービンまで延びている。さらに、互いに合流する排気管が接続された2つの気筒において排気弁が開弁されている期間が大きく重なるように各気筒における排気弁の開閉弁タイミングが制御される。これにより、互いに合流する排気管が接続された2つの気筒のうち先に排気行程が行われる気筒から排出される排気ガスに後に排気行程が行われる気筒から排出される排気ガスが干渉し、その結果、過給機の排気タービンに供給される排気ガスの圧力が高くなり、過給機の過給効率が向上する。このように、過給機を備えた内燃機関に対しては、過給機の過給効率をできるだけ向上させる要求がある。   Patent Document 1 describes an internal combustion engine with a supercharger. In the internal combustion engine described in the same document, the timing of the exhaust valve in each cylinder is controlled so that the pressure of the exhaust gas supplied from each cylinder to the exhaust turbine of the supercharger increases, The supercharging efficiency is improved. That is, the internal combustion engine described in Patent Document 1 has four cylinders, and an exhaust pipe is connected to each of the cylinders. Of these four exhaust pipes, the exhaust pipes connected to the two cylinders in which the exhaust strokes are sequentially performed are merged to extend to the exhaust turbine of the supercharger, and the remaining two cylinders ( Exhaust strokes of these cylinders are also performed sequentially in sequence), and the exhaust pipes connected to each other merge to extend to the exhaust turbine of the same supercharger. Further, the opening / closing valve timings of the exhaust valves in each cylinder are controlled so that the periods during which the exhaust valves are opened in the two cylinders to which the exhaust pipes that merge with each other are connected substantially overlap. As a result, the exhaust gas discharged from the cylinder in which the exhaust stroke is performed first interferes with the exhaust gas discharged from the cylinder in which the exhaust stroke is performed first among the two cylinders to which the exhaust pipes that merge with each other are connected. As a result, the pressure of the exhaust gas supplied to the exhaust turbine of the supercharger increases, and the supercharging efficiency of the supercharger improves. Thus, there is a demand for an internal combustion engine provided with a supercharger to improve the supercharging efficiency of the supercharger as much as possible.

特開昭63−140822号公報JP-A-63-140822 実公平4−24085号公報Japanese Utility Model Publication No. 4-24085 特開平6−229212号公報JP-A-6-229212

ところで、種々の理由から、複数の気筒からなる2つの気筒群を備える内燃機関において、各気筒群にそれぞれ独立した吸気通路を接続すると共にそれぞれ独立した排気通路を接続し、一方の気筒群に接続された排気通路内にのみ過給機の排気タービンを配置すると共に他方の気筒群に接続された吸気通路内にのみ過給機のコンプレッサを配置するようにした変則過給タイプの内燃機関が知られている。こうした変則過給タイプの内燃機関に対しても、過給機の過給効率をできるだけ向上させる要求がある。   By the way, for various reasons, in an internal combustion engine having two cylinder groups consisting of a plurality of cylinders, an independent intake passage is connected to each cylinder group and an independent exhaust passage is connected to one cylinder group. An irregular supercharged internal combustion engine is known in which an exhaust turbine of a supercharger is disposed only in the exhaust passage formed and a compressor of the supercharger is disposed only in an intake passage connected to the other cylinder group. It has been. There is also a demand for improving the supercharging efficiency of a supercharger as much as possible even for such an irregular supercharging type internal combustion engine.

本発明の目的は、上述した変則過給タイプの内燃機関において、過給機の過給効率を向上させることにある。   An object of the present invention is to improve the supercharging efficiency of a supercharger in the above-described irregular supercharging type internal combustion engine.

上記課題を解決するために、1番目の発明では、2つの気筒を備え、各気筒にそれぞれ独立した吸気通路が接続されると共にそれぞれ独立した排気通路が接続され、一方の気筒に接続された排気通路内にのみ過給機の排気タービンが配置されると共に他方の気筒に接続された吸気通路内にのみ過給機のコンプレッサが配置された内燃機関において、過給機のコンプレッサが配置された吸気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が、過給機の排気タービンが配置された排気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間よりも長くなるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方を制御する吸排気弁制御が行われる。   In order to solve the above-mentioned problem, in the first invention, there are two cylinders, each of which has an independent intake passage connected to each cylinder and an independent exhaust passage, and an exhaust connected to one of the cylinders. In an internal combustion engine in which a supercharger exhaust turbine is disposed only in a passage and a supercharger compressor is disposed only in an intake passage connected to the other cylinder, intake air in which the supercharger compressor is disposed In the cylinder connected to the exhaust passage where the exhaust turbine of the supercharger is connected, the period in which the exhaust valve is opened in the cylinder to which the passage is connected overlaps the period in which the intake valve is opened. At least the closing timing of the exhaust valve and the opening timing of the intake valve in each cylinder so that the period during which the exhaust valve is open and the period during which the intake valve is open are longer. Intake and exhaust valves control is performed to control the person.

2番目の発明では、1番目の発明において、前記吸排気弁制御が内燃機関が過渡運転状態にあるときに行われる。   In the second invention, in the first invention, the intake and exhaust valve control is performed when the internal combustion engine is in a transient operation state.

上記課題を解決するために、3番目の発明では、2つの気筒を備え、各気筒にそれぞれ独立した吸気通路が接続されると共にそれぞれ独立した排気通路が接続され、一方の気筒に接続された排気通路内にのみ過給機の排気タービンが配置されると共に他方の気筒に接続された吸気通路内にのみ過給機のコンプレッサが配置され、各気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が予め定められた期間となるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方が制御される内燃機関において、該内燃機関が過渡運転状態にあるときには、過給機のコンプレッサが配置された吸気通路が配置された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が前記予め定められた期間よりも長くなると共に、過給機の排気タービンが配置された排気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が前記予め定められた期間よりも短くなるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方を制御する吸排気弁制御が行われる。   In order to solve the above problems, in the third aspect of the invention, there are two cylinders, each of which has an independent intake passage connected to each cylinder and an independent exhaust passage, and an exhaust connected to one of the cylinders. The supercharger exhaust turbine is disposed only in the passage, and the supercharger compressor is disposed only in the intake passage connected to the other cylinder, and the period during which the exhaust valve is open in each cylinder and the intake air In an internal combustion engine in which at least one of the closing timing of the exhaust valve and the opening timing of the intake valve in each cylinder is controlled so that a period overlapping with a period during which the valve is open is a predetermined period. When the internal combustion engine is in a transient operation state, a period in which the exhaust valve is open and a period in which the intake valve is open in the cylinder in which the intake passage in which the compressor of the supercharger is arranged is arranged During which the exhaust valve is opened and the intake valve is opened in the cylinder to which the exhaust passage where the exhaust turbine of the supercharger is connected is connected. Intake / exhaust valve control is performed to control at least one of the exhaust valve closing timing and the intake valve opening timing in each cylinder so that a period overlapping with a predetermined period is shorter than the predetermined period. .

4番目の発明では、1〜3番目の発明のいずれか1つにおいて、内燃機関が吸気通路に燃料を噴射する吸気通路用燃料噴射弁と気筒内に燃料を噴射する気筒内用燃料噴射弁とを各気筒毎に有し、前記吸排気弁制御が行われるときに過給機のコンプレッサが配置された排気通路が接続された気筒において気筒内用燃料噴射弁からのみ燃料を噴射するコンプレッサ側燃料噴射制御が行われる。   In a fourth aspect, in any one of the first to third aspects, an intake passage fuel injection valve in which the internal combustion engine injects fuel into the intake passage, and an in-cylinder fuel injection valve injects fuel into the cylinder; For each cylinder, and when the intake / exhaust valve control is performed, the compressor side fuel that injects fuel only from the cylinder fuel injection valve in the cylinder to which the exhaust passage in which the compressor of the supercharger is disposed is connected Injection control is performed.

5番目の発明では、4番目の発明において、前記コンプレッサ側燃料噴射制御による気筒内用燃料噴射弁からの燃料噴射タイミングが対応する気筒において排気弁が閉弁した後のタイミングに設定される。   In the fifth invention, in the fourth invention, the fuel injection timing from the cylinder fuel injection valve by the compressor side fuel injection control is set to the timing after the exhaust valve is closed in the corresponding cylinder.

6番目の発明では、1〜5番目の発明のいずれか1つにおいて、前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒において気筒内用燃料噴射弁からのみ燃料を噴射する排気タービン側燃料噴射制御が行われ、該排気タービン側燃料噴射制御による気筒内用燃料噴射弁からの燃料噴射タイミングが対応する気筒において吸気弁が開弁している間のタイミングに設定される。   In a sixth aspect of the invention, in any one of the first to fifth aspects of the present invention, in the cylinder to which the exhaust passage in which the exhaust turbine of the supercharger is disposed is connected when the intake / exhaust valve control is performed. Exhaust turbine side fuel injection control for injecting fuel only from the fuel injection valve is performed, and the intake valve is opened in the cylinder corresponding to the fuel injection timing from the in-cylinder fuel injection valve by the exhaust turbine side fuel injection control. The timing is set while

7番目の発明では、1〜6番目の発明のいずれか1つにおいて、内燃機関が気筒内の燃料に点火する点火栓を各気筒毎に有し、前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングを吸排気弁制御が行われていないときに該点火栓により燃料に点火するタイミングよりも遅くする点火タイミング制御が行われる。   According to a seventh invention, in any one of the first to sixth inventions, the internal combustion engine has an ignition plug for igniting fuel in the cylinder for each cylinder, and an excess is detected when the intake / exhaust valve control is performed. The timing at which the fuel is ignited by the spark plug corresponding to the cylinder to which the exhaust passage where the exhaust turbine of the feeder is disposed is connected is higher than the timing at which the fuel is ignited by the spark plug when the intake / exhaust valve control is not performed. Ignition timing control is performed to delay.

8番目の発明では、1〜6番目の発明のいずれか1つにおいて、内燃機関が気筒内の燃料に点火する点火栓を各気筒毎に有し、前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングを過給機のコンプレッサが配置された吸気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングよりも遅くする点火タイミング制御が行われる。   In an eighth aspect according to any one of the first to sixth aspects, the internal combustion engine has a spark plug for igniting the fuel in the cylinder for each cylinder, and the control is performed when the intake / exhaust valve control is performed. The timing at which the fuel is ignited by the spark plug corresponding to the cylinder to which the exhaust passage of the turbocharger is connected is connected to the cylinder to which the intake passage to which the compressor of the supercharger is connected is connected. Ignition timing control that is slower than the timing of igniting the fuel is performed.

本発明によれば、過給機のコンプレッサが配置された側の気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なるいわゆるバルブオーバラップ期間が長い。ここで、過給機のコンプレッサが配置された側の気筒に接続された吸気通路内の圧力は、コンプレッサの過給効果によって、該気筒に接続された排気通路内の圧力よりも高い。したがって、吸気通路から気筒内に流入した空気の一部がそのまま排気通路に流出し、その分、コンプレッサに対する負荷が小さくなる。このため、過給機の過給効果が大きくなる。   According to the present invention, the so-called valve overlap period in which the period in which the exhaust valve is open and the period in which the intake valve is open overlaps in the cylinder on the side where the compressor of the supercharger is disposed. Here, the pressure in the intake passage connected to the cylinder on the side where the compressor of the supercharger is arranged is higher than the pressure in the exhaust passage connected to the cylinder due to the supercharging effect of the compressor. Therefore, a part of the air flowing into the cylinder from the intake passage flows out to the exhaust passage as it is, and the load on the compressor is reduced accordingly. For this reason, the supercharging effect of the supercharger increases.

一方、過給機の排気タービンが配置された側の気筒に接続された排気通路内の圧力は、排気タービンの抵抗によって、該気筒に接続された吸気通路内の圧力よりも高い。このため、バルブオーバラップ期間が長いと、排気通路へ流出するのではなく吸気通路内に流出してしまう排気ガスが多くなり、その分、排気タービンに供給される排気ガスの圧力が低下する可能性がある。しかしながら、本発明によれば、過給機の排気タービンが配置された側の気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なるいわゆるバルブオーバラップ期間が短い。したがって、バルブオーバラップ期間中に排気ガスが排気通路から気筒内に逆流することが抑制される。このため、過給機の過給効果が大きくなる。   On the other hand, the pressure in the exhaust passage connected to the cylinder on the side where the exhaust turbine of the supercharger is disposed is higher than the pressure in the intake passage connected to the cylinder due to the resistance of the exhaust turbine. For this reason, if the valve overlap period is long, the amount of exhaust gas flowing into the intake passage rather than into the exhaust passage increases, and the pressure of the exhaust gas supplied to the exhaust turbine can be reduced accordingly. There is sex. However, according to the present invention, there is a so-called valve overlap period in which the period in which the exhaust valve is open and the period in which the intake valve is open overlap in the cylinder on the side of the turbocharger where the exhaust turbine is disposed. short. Therefore, it is possible to suppress the exhaust gas from flowing backward from the exhaust passage into the cylinder during the valve overlap period. For this reason, the supercharging effect of the supercharger increases.

以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の制御装置が適用される内燃機関を示した図であり、図2は、図1の内燃機関の1つの気筒に対応する断面図である。これら図1および図2に示した内燃機関は、2つのバンク1R、1Lを備えたいわゆるV型の内燃機関である。各バンク1R、1Lには、それぞれ、3つの気筒♯1〜♯3、♯4〜♯6が設けられており、これら3つの気筒が気筒群2R、2Lを構成する。一方の気筒群2Rには、吸気ポート3Rを介して吸気管4Rが接続されている。他方の気筒群2Lには、吸気ポート3Lを介して別の吸気管4Lが接続されている。すなわち、各気筒群2R、2Lには、それぞれ、独立した吸気管4R、4Lが接続されている。また、一方の気筒群2Rには、排気ポート5Rを介して排気管6Rが接続されている。他方の気筒群2Lには、排気ポート5Lを介して別の排気管6Lが接続されている。すなわち、各気筒群2R、2Lには、それぞれ、独立した排気管6R、6Lが接続されている。これら排気管6R、6Lは、その下流側の端部において、共通の1つの排気管(以下「排気集合管」という)7に接続されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing an internal combustion engine to which the control device of the present invention is applied, and FIG. 2 is a cross-sectional view corresponding to one cylinder of the internal combustion engine of FIG. The internal combustion engine shown in FIGS. 1 and 2 is a so-called V-type internal combustion engine having two banks 1R and 1L. Each bank 1R, 1L is provided with three cylinders # 1 to # 3 and # 4 to # 6, respectively, and these three cylinders constitute cylinder groups 2R and 2L. One cylinder group 2R is connected to an intake pipe 4R via an intake port 3R. Another cylinder 4L is connected to another intake pipe 4L via an intake port 3L. That is, independent intake pipes 4R and 4L are connected to the cylinder groups 2R and 2L, respectively. An exhaust pipe 6R is connected to one cylinder group 2R via an exhaust port 5R. Another cylinder 6L is connected to another exhaust pipe 6L via an exhaust port 5L. That is, independent exhaust pipes 6R and 6L are connected to the cylinder groups 2R and 2L, respectively. The exhaust pipes 6R and 6L are connected to a common exhaust pipe (hereinafter referred to as “exhaust collecting pipe”) 7 at the downstream end thereof.

また、図示した内燃機関は、1つの過給機8を備える。過給機8のコンプレッサ9は、一方の気筒群2Rに接続された吸気管4R内に配置されている。一方、過給機8の排気タービン10は、他方の気筒群2Lに接続された排気管6L内に配置されている。また、各排気管6R、6L内には、それぞれ、三元触媒11R、11Lが配置されている。さらに、排気集合管7内には、三元触媒12とNOx触媒13とが配置されている。また、各吸気管4R、4L内には、スロットル弁14R、14L、エアフローメータ15R、15L、および、エアクリーナ16R、16Lが配置されている。   The illustrated internal combustion engine includes one supercharger 8. The compressor 9 of the supercharger 8 is disposed in the intake pipe 4R connected to one cylinder group 2R. On the other hand, the exhaust turbine 10 of the supercharger 8 is disposed in an exhaust pipe 6L connected to the other cylinder group 2L. Three-way catalysts 11R and 11L are arranged in the exhaust pipes 6R and 6L, respectively. Further, a three-way catalyst 12 and a NOx catalyst 13 are arranged in the exhaust collecting pipe 7. Further, throttle valves 14R and 14L, air flow meters 15R and 15L, and air cleaners 16R and 16L are arranged in the intake pipes 4R and 4L.

また、図示した内燃機関は、図2に示したように、各気筒に対応して、それぞれ、吸気ポート3R、3L内に燃料を噴射する燃料噴射弁(以下「ポート燃料噴射弁」という)17R、17Lと、気筒内に燃料を噴射する燃料噴射弁(以下「筒内燃料噴射弁」という)18R、18Lとを有する。   Further, as shown in FIG. 2, the internal combustion engine shown in the figure corresponds to each cylinder, and a fuel injection valve (hereinafter referred to as “port fuel injection valve”) 17R that injects fuel into the intake ports 3R and 3L, respectively. , 17L, and fuel injection valves (hereinafter referred to as “in-cylinder fuel injection valves”) 18R, 18L for injecting fuel into the cylinders.

なお、図2において、19は吸気弁、20は排気弁、21は燃焼室、22はピストン、23は点火栓、24はシリンダヘッド、25はシリンダブロックをそれぞれ示している。また、図示した内燃機関は、吸気弁の開弁タイミングおよび閉弁タイミングを変更すると共に排気弁の開弁タイミングおよび閉弁タイミングを変更するいわゆる可変動弁機構を有する。   In FIG. 2, 19 is an intake valve, 20 is an exhaust valve, 21 is a combustion chamber, 22 is a piston, 23 is a spark plug, 24 is a cylinder head, and 25 is a cylinder block. The illustrated internal combustion engine also has a so-called variable valve mechanism that changes the opening timing and closing timing of the intake valve and changes the opening timing and closing timing of the exhaust valve.

また、電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31により互いに接続されたRAM(ランダムアクセスメモリ)32、ROM(リードオンリメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35、および、出力ポート36を有する。エアフローメータ15R、15Lの出力信号は、対応するAD変換器37を介して入力ポート35に入力される。また、負荷センサ38は、アクセルペダル39の踏込量に比例した出力信号を出力し、この出力信号は、対応するAD変換器37を介して入力ポート35に入力される。また、クランク角センサ40は、クランクシャフトが、例えば、30°回転する毎に出力パルスを発生し、この出力パルスは、入力ポート35に入力される。一方、出力ポート36は、対応する駆動回路37を介して、スロットル弁14R、14L、ポート燃料噴射弁17R、17L、筒内燃料噴射弁18R、18L、および、点火栓23に接続される。   The electronic control unit 30 includes a digital computer, and is connected to each other by a bidirectional bus 31. A RAM (random access memory) 32, a ROM (read only memory) 33, a CPU (microprocessor) 34, an input port 35, and And an output port 36. The output signals of the air flow meters 15R and 15L are input to the input port 35 via the corresponding AD converter 37. The load sensor 38 outputs an output signal proportional to the amount of depression of the accelerator pedal 39, and this output signal is input to the input port 35 via the corresponding AD converter 37. The crank angle sensor 40 generates an output pulse every time the crankshaft rotates, for example, 30 °, and this output pulse is input to the input port 35. On the other hand, the output port 36 is connected to the throttle valves 14R and 14L, the port fuel injection valves 17R and 17L, the in-cylinder fuel injection valves 18R and 18L, and the spark plug 23 through corresponding drive circuits 37.

次に、本実施形態の内燃機関の制御について図3を参照して説明する。なお、図3において、TDCは圧縮上死点、EXは排気弁20のリフト曲線、INは吸気弁19のリフト曲線を示している。   Next, control of the internal combustion engine of the present embodiment will be described with reference to FIG. In FIG. 3, TDC is the compression top dead center, EX is the lift curve of the exhaust valve 20, and IN is the lift curve of the intake valve 19.

本実施形態では、内燃機関が該内燃機関の負荷が略一定であって該内燃機関が出力するトルク(以下「機関トルク」という)が一定であるいわゆる定常運転状態にあるときには、コンプレッサ9が配置されている吸気管4Rが接続された気筒群(以下「コンプレッサ側気筒群」という)2Rの各気筒♯1〜♯3において、排気弁20が開弁している期間と吸気弁19が開弁している期間とが重なる期間(以下「バルブオーバラップ期間」という)が、図3(A)に示したように、予め定められた長さの期間(以下「基準バルブオーバラップ期間」という)TRになるように、排気弁20の閉弁タイミングおよび吸気弁19の開弁タイミングが制御されると共に、排気タービン10が配置されている排気管6Lが接続された気筒群(以下「排気タービン側気筒群」という)2Lの各気筒♯4〜♯6においても、バルブオーバラップ期間が、図3(B)に示したように、同じ基準バルブオーバラップ期間TRになるように、排気弁20の閉弁タイミングおよび吸気弁19の開弁タイミングが制御される。   In the present embodiment, the compressor 9 is disposed when the internal combustion engine is in a so-called steady operation state in which the load of the internal combustion engine is substantially constant and the torque output by the internal combustion engine (hereinafter referred to as “engine torque”) is constant. In each cylinder # 1 to # 3 of the cylinder group (hereinafter referred to as “compressor side cylinder group”) 2R to which the intake pipe 4R is connected, the period during which the exhaust valve 20 is open and the intake valve 19 are opened. The period (hereinafter referred to as “valve overlap period”) that overlaps with the period of time is a period of a predetermined length (hereinafter referred to as “reference valve overlap period”) as shown in FIG. The valve closing timing of the exhaust valve 20 and the valve opening timing of the intake valve 19 are controlled so as to become TR, and the cylinder group (hereinafter referred to as “exhaust gas” to which the exhaust pipe 6L where the exhaust turbine 10 is disposed is connected. In each of the 2L cylinders # 4 to # 6 (referred to as “bin-side cylinder group”), the exhaust valve is set so that the valve overlap period becomes the same reference valve overlap period TR as shown in FIG. The valve closing timing of 20 and the valve opening timing of the intake valve 19 are controlled.

一方、本実施形態では、内燃機関が該内燃機関の負荷が上昇して機関トルクが上昇するいわゆる過渡運転状態にあるときには、以下の過渡時吸排気弁制御が行われる。すなわち、コンプレッサ側気筒群2Rの各気筒♯1〜♯3においては、バルブオーバラップ期間が、図3(C)に示したように、上記基準バルブオーバラップ期間TRよりも長い期間TLとなるように、排気弁20の閉弁タイミングおよび吸気弁19の開弁タイミングが制御されると共に、排気タービン側気筒群2Lの各気筒♯4〜♯6においては、バルブオーバラップ期間が、図3(D)に示したように、上記基準バルブオーバラップ期間TRよりも短い期間TSとなるように、排気弁20の閉弁タイミングおよび吸気弁19の開弁タイミングが制御される。   On the other hand, in this embodiment, when the internal combustion engine is in a so-called transient operation state in which the load of the internal combustion engine increases and the engine torque increases, the following transient intake / exhaust valve control is performed. That is, in each of the cylinders # 1 to # 3 of the compressor side cylinder group 2R, the valve overlap period is set to a period TL longer than the reference valve overlap period TR as shown in FIG. Further, the valve closing timing of the exhaust valve 20 and the valve opening timing of the intake valve 19 are controlled, and the valve overlap period in each cylinder # 4 to # 6 of the exhaust turbine side cylinder group 2L is shown in FIG. ), The valve closing timing of the exhaust valve 20 and the valve opening timing of the intake valve 19 are controlled so that the period TS is shorter than the reference valve overlap period TR.

内燃機関が過度運転状態にあるときに、上述したように、各気筒における排気弁20の閉弁タイミングおよび吸気弁19の開弁タイミングが制御されると、以下のような効果が得られる。すなわち、内燃機関が過渡運転状態にあるときには、機関トルクを上昇させる必要がある。このとき、機関トルクを素早く上昇させるためには、過給機8の過給圧を素早く上昇させる必要がある。そして、このためには、コンプレッサ9が吸気を過給するときの抵抗が小さい、すなわち、コンプレッサ9下流の吸気管4R内の圧力が低いと、過給機8の回転数が上昇しやすく、したがって、過給機8の過給圧が上昇しやすくなる。また、排気タービン10を回転させる排気ガスの圧力が高い、すなわち、排気タービン10上流の排気管6L内の圧力が高いと、過給機8の回転数が上昇しやすく、したがって、過給機8の過給圧が上昇しやすくなる。すなわち、過給機8の過給圧を素早く上昇させるためには、コンプレッサ9下流の吸気管4R内の圧力を低くすると共に、排気タービン10上流の排気管6L内の圧力を高くすればよい。   When the internal combustion engine is in an overrun state, as described above, when the valve closing timing of the exhaust valve 20 and the valve opening timing of the intake valve 19 in each cylinder are controlled, the following effects are obtained. That is, when the internal combustion engine is in a transient operation state, it is necessary to increase the engine torque. At this time, in order to quickly increase the engine torque, it is necessary to quickly increase the supercharging pressure of the supercharger 8. For this purpose, if the resistance when the compressor 9 supercharges the intake air is small, that is, if the pressure in the intake pipe 4R downstream of the compressor 9 is low, the rotational speed of the supercharger 8 tends to increase, and accordingly The supercharging pressure of the supercharger 8 is likely to increase. Further, if the pressure of the exhaust gas for rotating the exhaust turbine 10 is high, that is, if the pressure in the exhaust pipe 6L upstream of the exhaust turbine 10 is high, the rotational speed of the supercharger 8 is likely to increase. The supercharging pressure increases easily. That is, in order to quickly increase the supercharging pressure of the supercharger 8, it is only necessary to lower the pressure in the intake pipe 4R downstream of the compressor 9 and increase the pressure in the exhaust pipe 6L upstream of the exhaust turbine 10.

ここで、コンプレッサ側気筒群2Rに関しては、そこに接続された吸気管4R内にコンプレッサ9が配置されているのに対し、そこに接続された排気管6R内に排気タービン10が配置されているわけではない。したがって、コンプレッサ側気筒群2Rに関しては、吸気管4R内の圧力が排気管6R内の圧力よりも非常に高くなっている。このため、バルブオーバラップ期間中に、吸気管4Rから吸気ポート3Rを介して気筒♯1〜♯3内に流入した空気が排気ポート5Rを介して排気管6Rに流出しやすい状態にあると言える。ここで、本実施形態では、内燃機関が過渡運転状態にあるとき、コンプレッサ側気筒群2Rに関しては、バルブオーバラップ期間が長くされるので、吸気管4Rから気筒♯1〜♯3内に流入し、該気筒から排気管6Rに流出する空気の量が多くなる。このため、コンプレッサ9下流の吸気管4R内の圧力が低くなり、過給機8の回転数が上昇しやすく、結果として、過給機8の過給圧が素早く上昇することになる。   Here, regarding the compressor side cylinder group 2R, the compressor 9 is disposed in the intake pipe 4R connected thereto, whereas the exhaust turbine 10 is disposed in the exhaust pipe 6R connected thereto. Do not mean. Therefore, for the compressor side cylinder group 2R, the pressure in the intake pipe 4R is much higher than the pressure in the exhaust pipe 6R. For this reason, it can be said that during the valve overlap period, the air flowing into the cylinders # 1 to # 3 from the intake pipe 4R through the intake port 3R is likely to flow out to the exhaust pipe 6R through the exhaust port 5R. . Here, in the present embodiment, when the internal combustion engine is in a transient operation state, the valve overlap period is increased for the compressor side cylinder group 2R, and therefore flows into the cylinders # 1 to # 3 from the intake pipe 4R. The amount of air flowing out from the cylinder to the exhaust pipe 6R increases. For this reason, the pressure in the intake pipe 4R downstream of the compressor 9 is reduced, and the rotational speed of the supercharger 8 is likely to increase. As a result, the supercharging pressure of the supercharger 8 is quickly increased.

一方、排気タービン側気筒群2Lに関しては、そこに接続された排気管6L内に排気タービン10が配置されているのに対し、そこに接続された吸気管4L内にコンプレッサ9が配置されているわけではない。したがって、排気タービン側気筒群2Lに関しては、排気管6L内の圧力が吸気管4L内の圧力よりも非常に高くなっている。このため、バルブオーバラップ期間中、気筒♯4〜♯6内の排気ガスは、排気管6Lへ流出するよりも、吸気管4Lへ流出しやすいと言える。このとき、排気ガスが吸気管4Lへ流出すると、その分、排気管6Lに流出する排気ガスが少なくなり、その結果、排気タービン10上流の排気管6L内の圧力が低くなってしまう。ここで、本実施形態では、内燃機関が過渡運転状態にあるとき、排気タービン側気筒群2Lに関しては、バルブオーバラップ期間が短くされるので、吸気管4Lに流出する排気ガスが少なくなり、その分、排気管6Lに流出する排気ガスが多くなる。このため、排気タービン10上流の排気管6R内の圧力が高くなり、結果として、過給機8の過給圧が素早く上昇することになる。   On the other hand, for the exhaust turbine side cylinder group 2L, the exhaust turbine 10 is disposed in the exhaust pipe 6L connected thereto, whereas the compressor 9 is disposed in the intake pipe 4L connected thereto. Do not mean. Therefore, for the exhaust turbine side cylinder group 2L, the pressure in the exhaust pipe 6L is much higher than the pressure in the intake pipe 4L. For this reason, it can be said that during the valve overlap period, the exhaust gas in the cylinders # 4 to # 6 tends to flow into the intake pipe 4L rather than into the exhaust pipe 6L. At this time, if the exhaust gas flows out to the intake pipe 4L, the exhaust gas flowing out to the exhaust pipe 6L decreases accordingly, and as a result, the pressure in the exhaust pipe 6L upstream of the exhaust turbine 10 decreases. Here, in the present embodiment, when the internal combustion engine is in a transient operation state, the valve overlap period is shortened for the exhaust turbine side cylinder group 2L, so that the amount of exhaust gas flowing out to the intake pipe 4L is reduced. The exhaust gas flowing out to the exhaust pipe 6L increases. For this reason, the pressure in the exhaust pipe 6R upstream of the exhaust turbine 10 is increased, and as a result, the supercharging pressure of the supercharger 8 is quickly increased.

なお、上述した実施形態において、内燃機関が過渡運転状態にあるとき、過渡時吸排気弁制御を行うのに加えて、コンプレッサ側気筒群2Rに関し、ポート燃料噴射弁17Rからは燃料を噴射せずに、筒内燃料噴射弁18Rからのみ燃料を噴射するコンプレッサ側燃料噴射制御を行うようにしてもよい。この場合、ポート燃料噴射弁17Rから燃料を噴射する場合に比べて燃費が向上すると共に排気エミッションの悪化が抑制される。すなわち、ポート燃料噴射弁17Rから燃料が噴射された場合、燃料を含んだ状態の空気が気筒♯1〜♯3内に流入することになる。ここで、上述したように、コンプレッサ側気筒群2Rでは、吸気管4Rから気筒♯1〜♯3に流入した空気が排気管6Rに流出しやすい状態にある。このため、気筒♯1〜♯3内に流入する空気中に燃料が含まれていると、排気管6Rに流出する空気と共に排気管6Rに流出する燃料が多くなる。しかしながら、筒内燃料噴射弁18Rのみから燃料を噴射するようにすれば、排気管6Rに流出する空気と共に排気管6Rに流出する燃料が少なくなる。したがって、ポート燃料噴射弁17Rから燃料が噴射する場合に比べて燃費が向上すると共に排気エミッションの悪化が抑制されるのである。   In the above-described embodiment, when the internal combustion engine is in a transient operation state, in addition to performing the transient intake / exhaust valve control, no fuel is injected from the port fuel injection valve 17R for the compressor side cylinder group 2R. In addition, compressor-side fuel injection control for injecting fuel only from the in-cylinder fuel injection valve 18R may be performed. In this case, fuel efficiency is improved and deterioration of exhaust emission is suppressed as compared with the case where fuel is injected from the port fuel injection valve 17R. That is, when fuel is injected from the port fuel injection valve 17R, air containing the fuel flows into the cylinders # 1 to # 3. Here, as described above, in the compressor side cylinder group 2R, the air that has flowed into the cylinders # 1 to # 3 from the intake pipe 4R tends to flow out to the exhaust pipe 6R. For this reason, if fuel is contained in the air flowing into the cylinders # 1 to # 3, the amount of fuel flowing out to the exhaust pipe 6R increases with the air flowing out to the exhaust pipe 6R. However, if the fuel is injected only from the in-cylinder fuel injection valve 18R, the fuel flowing out to the exhaust pipe 6R is reduced together with the air flowing out to the exhaust pipe 6R. Therefore, fuel efficiency is improved and deterioration of exhaust emission is suppressed as compared with the case where fuel is injected from the port fuel injection valve 17R.

特に、このコンプレッサ側燃料噴射制御を行う場合、筒内燃料噴射弁18Rから燃料を噴射するタイミングが排気弁20が閉弁した後に設定されると、より燃費が向上すると共に排気エミッションの悪化が抑制される。   In particular, when the compressor-side fuel injection control is performed, if the timing for injecting fuel from the in-cylinder fuel injection valve 18R is set after the exhaust valve 20 is closed, the fuel consumption is further improved and the deterioration of exhaust emission is suppressed. Is done.

さらに、上述した実施形態において、内燃機関が過渡運転状態にあるとき、過渡時吸排気弁制御を行うのに加えて、排気タービン側気筒群2Lに関し、ポート燃料噴射弁17Lからは燃料を噴射せずに、吸気弁19が開弁している間、特に、吸気弁19が開弁している間であって気筒♯4〜♯6内に流入する空気の流量が最も多いときに筒内燃料噴射弁18Rからのみ燃料を噴射する排気タービン側燃料噴射制御を行うようにしてもよい。この場合、筒内燃料噴射弁18Rから噴射された燃料の気化潜熱によって各気筒♯4〜♯6に吸入される空気が冷却され、その分、各気筒♯4〜♯6内に吸入される空気の量が多くなる。したがって、この場合、ポート燃料噴射弁17Lから燃料を噴射する場合に比べて機関トルクが大きくなる。   Further, in the above-described embodiment, when the internal combustion engine is in the transient operation state, in addition to performing the intake / exhaust valve control during the transient, fuel is injected from the port fuel injection valve 17L with respect to the exhaust turbine side cylinder group 2L. In-cylinder fuel when the intake valve 19 is open, particularly when the intake valve 19 is open and the flow rate of air flowing into the cylinders # 4 to # 6 is the highest. Exhaust turbine side fuel injection control in which fuel is injected only from the injection valve 18R may be performed. In this case, the air sucked into each cylinder # 4 to # 6 is cooled by the latent heat of vaporization of the fuel injected from the in-cylinder fuel injection valve 18R, and the air sucked into each cylinder # 4 to # 6 correspondingly. The amount of increases. Therefore, in this case, the engine torque becomes larger than when fuel is injected from the port fuel injection valve 17L.

また、上述した実施形態において、内燃機関が過渡運転状態にあるとき、過渡時吸排気弁制御を行うのに加えて、排気タービン側気筒群2Lに関し、気筒♯4〜♯6内の燃料に点火栓23によって点火するタイミング(以下「点火タイミング」という)を内燃機関が定常運転状態にあるときの点火タイミングよりも遅く(遅角)する排気タービン側点火タイミング制御を行うようにしてもよい。この場合、排気ガスの温度が高くなり、したがって、エネルギの高い排気ガスが排気タービン10に供給されることになる。したがって、この場合、点火タイミングを内燃機関が定常運転状態にあるときの点火タイミングとする場合に比べて過給機8の過給圧が素早く上昇することになる。   Further, in the above-described embodiment, when the internal combustion engine is in a transient operation state, in addition to performing transient intake / exhaust valve control, the fuel in the cylinders # 4 to # 6 is ignited with respect to the exhaust turbine side cylinder group 2L. Exhaust turbine side ignition timing control may be performed in which the timing of ignition by the plug 23 (hereinafter referred to as “ignition timing”) is delayed (retarded) from the ignition timing when the internal combustion engine is in a steady operation state. In this case, the temperature of the exhaust gas becomes high, and therefore, the exhaust gas having high energy is supplied to the exhaust turbine 10. Therefore, in this case, the supercharging pressure of the supercharger 8 rises more quickly than when the ignition timing is set to the ignition timing when the internal combustion engine is in a steady operation state.

なお、内燃機関が過渡運転状態にあるときのコンプレッサ側気筒群2Rにおける点火タイミングは、内燃機関が定常運転状態にあるときと同じに設定される。ここで、内燃機関が定常運転状態にあるときには、コンプレッサ側気筒群2Rにおける点火タイミングは、気筒♯1〜♯3内でノッキングが生じない範囲で燃料の燃焼効率が最も高くなるタイミングに設定される。もちろん、内燃機関が定常運転状態にあるときには、排気タービン側気筒群2Lにおける点火タイミングも、同様に、気筒♯4〜♯6内でノッキングが生じない範囲で燃料の燃焼効率が最も高くなるタイミングに設定される。   The ignition timing in the compressor side cylinder group 2R when the internal combustion engine is in the transient operation state is set to be the same as that when the internal combustion engine is in the steady operation state. Here, when the internal combustion engine is in a steady operation state, the ignition timing in the compressor side cylinder group 2R is set to a timing at which the fuel combustion efficiency is highest within a range in which knocking does not occur in the cylinders # 1 to # 3. . Of course, when the internal combustion engine is in a steady operation state, the ignition timing in the exhaust turbine side cylinder group 2L is similarly set to the timing at which the fuel combustion efficiency becomes the highest in the range where knocking does not occur in the cylinders # 4 to # 6. Is set.

また、上述した実施形態では、内燃機関が過渡運転状態にあるときに過渡時吸排気弁制御が行われるが、内燃機関が過渡運転状態にないときに上述した過渡時吸排気弁制御と同じ制御が行われてもよく、この場合にも、過給機の過給効率は、少なくとも、こうした制御が行われない場合に比べて高くなる。   In the above-described embodiment, the transient intake and exhaust valve control is performed when the internal combustion engine is in the transient operation state, but the same control as the transient intake and exhaust valve control described above when the internal combustion engine is not in the transient operation state. In this case, the supercharging efficiency of the supercharger is at least higher than that in the case where such control is not performed.

また、上述した実施形態では、過渡時吸排気弁制御においてバルブオーバラップ期間を変更する場合、コンプレッサ側の気筒では、バルブオーバラップ期間を基準バルブオーバラップ期間よりも長くし、排気タービン側では、バルブオーバラップ期間を基準バルブオーバラップ期間よりも短くしているが、単に、コンプレッサ側の気筒におけるバルブオーバラップ期間が排気タービン側の気筒におけるバルブオーバラップ期間よりも長くなるように各気筒の排気弁の閉弁タイミングおよび吸気弁の開弁タイミングの少なくとも一方を制御するようにしてもよく、この場合、過給機の過給効率は、少なくとも、こうした制御を行わない場合に比べて高くなる。   In the embodiment described above, when changing the valve overlap period in the transient intake / exhaust valve control, the cylinder on the compressor side makes the valve overlap period longer than the reference valve overlap period, and on the exhaust turbine side, Although the valve overlap period is shorter than the reference valve overlap period, the exhaust of each cylinder is simply set so that the valve overlap period in the cylinder on the compressor side is longer than the valve overlap period in the cylinder on the exhaust turbine side. At least one of the valve closing timing of the valve and the valve opening timing of the intake valve may be controlled. In this case, the supercharging efficiency of the supercharger is higher than at least when such control is not performed.

本発明の制御装置を備えた内燃機関を示した図である。It is the figure which showed the internal combustion engine provided with the control apparatus of this invention. 図1に示した内燃機関の1つの気筒に対応する断面図である。FIG. 2 is a cross-sectional view corresponding to one cylinder of the internal combustion engine shown in FIG. 1. 排気弁のリフト曲線と吸気弁のリフト曲線とを示した図である。It is the figure which showed the lift curve of the exhaust valve, and the lift curve of the intake valve.

符号の説明Explanation of symbols

2R、2L 気筒群
♯1〜♯6 気筒
4R、4L 吸気管
6R、6L 排気管
8 過給機
9 コンプレッサ
10 排気タービン
17R、17L ポート燃料噴射弁
18R、18L 筒内燃料噴射弁
19 吸気弁
20 排気弁
23 点火栓
2R, 2L cylinder group # 1 to # 6 cylinder 4R, 4L intake pipe 6R, 6L exhaust pipe 8 supercharger 9 compressor 10 exhaust turbine 17R, 17L port fuel injection valve 18R, 18L cylinder fuel injection valve 19 intake valve 20 exhaust Valve 23 Spark plug

Claims (8)

2つの気筒を備え、各気筒にそれぞれ独立した吸気通路が接続されると共にそれぞれ独立した排気通路が接続され、一方の気筒に接続された排気通路内にのみ過給機の排気タービンが配置されると共に他方の気筒に接続された吸気通路内にのみ過給機のコンプレッサが配置された内燃機関において、過給機のコンプレッサが配置された吸気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が、過給機の排気タービンが配置された排気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間よりも長くなるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方を制御する吸排気弁制御が行われることを特徴とする内燃機関の制御装置。   Two cylinders are provided, and an independent intake passage is connected to each cylinder and an independent exhaust passage is connected to each cylinder. The exhaust turbine of the supercharger is disposed only in the exhaust passage connected to one of the cylinders. In addition, in an internal combustion engine in which a supercharger compressor is disposed only in an intake passage connected to the other cylinder, an exhaust valve is opened in the cylinder to which the intake passage where the supercharger compressor is disposed is connected. The period when the intake valve is open and the period when the intake valve is open overlaps the period when the exhaust valve is open and the intake valve is open in the cylinder to which the exhaust passage where the exhaust turbine of the turbocharger is arranged is connected. The intake / exhaust valve control is performed to control at least one of the exhaust valve closing timing and the intake valve opening timing in each cylinder so that the valve period is longer than the overlapping period. Control apparatus for an internal combustion engine to be. 前記吸排気弁制御が内燃機関が過渡運転状態にあるときに行われることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein the intake / exhaust valve control is performed when the internal combustion engine is in a transient operation state. 2つの気筒を備え、各気筒にそれぞれ独立した吸気通路が接続されると共にそれぞれ独立した排気通路が接続され、一方の気筒に接続された排気通路内にのみ過給機の排気タービンが配置されると共に他方の気筒に接続された吸気通路内にのみ過給機のコンプレッサが配置され、各気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が予め定められた期間となるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方が制御される内燃機関において、該内燃機関が過渡運転状態にあるときには、過給機のコンプレッサが配置された吸気通路が配置された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が前記予め定められた期間よりも長くなると共に、過給機の排気タービンが配置された排気通路が接続された気筒において排気弁が開弁している期間と吸気弁が開弁している期間とが重なる期間が前記予め定められた期間よりも短くなるように各気筒における排気弁の閉弁タイミングと吸気弁の開弁タイミングとの少なくとも一方を制御する吸排気弁制御が行われることを特徴とする内燃機関の制御装置。   Two cylinders are provided, and an independent intake passage is connected to each cylinder and an independent exhaust passage is connected to each cylinder. The exhaust turbine of the supercharger is disposed only in the exhaust passage connected to one of the cylinders. In addition, the turbocharger compressor is disposed only in the intake passage connected to the other cylinder, and a period in which the period in which the exhaust valve is open and the period in which the intake valve is open in each cylinder overlaps in advance. In an internal combustion engine in which at least one of an exhaust valve closing timing and an intake valve opening timing in each cylinder is controlled so as to have a predetermined period, when the internal combustion engine is in a transient operation state, the supercharger The period in which the exhaust valve is open and the period in which the intake valve is open in the cylinder in which the intake passage where the compressor is disposed is overlapped is greater than the predetermined period. In addition, the period in which the period in which the exhaust valve is open and the period in which the intake valve is open in the cylinder to which the exhaust passage where the exhaust turbine of the supercharger is connected is connected overlaps the predetermined period. A control apparatus for an internal combustion engine, wherein intake / exhaust valve control is performed to control at least one of an exhaust valve closing timing and an intake valve opening timing in each cylinder so as to be shorter than a predetermined period. 内燃機関が吸気通路に燃料を噴射する吸気通路用燃料噴射弁と気筒内に燃料を噴射する気筒内用燃料噴射弁とを各気筒毎に有し、前記吸排気弁制御が行われるときに過給機のコンプレッサが配置された排気通路が接続された気筒において気筒内用燃料噴射弁からのみ燃料を噴射するコンプレッサ側燃料噴射制御が行われることを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の制御装置。   An internal combustion engine has an intake passage fuel injection valve for injecting fuel into the intake passage and an in-cylinder fuel injection valve for injecting fuel into the cylinder for each cylinder. The compressor-side fuel injection control for injecting fuel only from an in-cylinder fuel injection valve is performed in a cylinder connected to an exhaust passage in which a compressor of the feeder is disposed. A control apparatus for an internal combustion engine according to claim 1. 前記コンプレッサ側燃料噴射制御による気筒内用燃料噴射弁からの燃料噴射タイミングが対応する気筒において排気弁が閉弁した後のタイミングに設定されることを特徴とする請求項4に記載の内燃機関の制御装置。   5. The internal combustion engine according to claim 4, wherein the fuel injection timing from the cylinder fuel injection valve by the compressor side fuel injection control is set to a timing after the exhaust valve is closed in the corresponding cylinder. Control device. 前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒において気筒内用燃料噴射弁からのみ燃料を噴射する排気タービン側燃料噴射制御が行われ、該排気タービン側燃料噴射制御による気筒内用燃料噴射弁からの燃料噴射タイミングが対応する気筒において吸気弁が開弁している間のタイミングに設定されることを特徴とする請求項1〜5のいずれか1つに記載の内燃機関の制御装置。   When the intake / exhaust valve control is performed, exhaust turbine side fuel injection control for injecting fuel only from the in-cylinder fuel injection valve in the cylinder to which the exhaust passage where the exhaust turbine of the supercharger is arranged is connected, 6. The fuel injection timing from the cylinder fuel injection valve by the exhaust turbine side fuel injection control is set to a timing while the intake valve is open in the corresponding cylinder. The control apparatus for an internal combustion engine according to any one of the above. 内燃機関が気筒内の燃料に点火する点火栓を各気筒毎に有し、前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングを吸排気弁制御が行われていないときに該点火栓により燃料に点火するタイミングよりも遅くする点火タイミング制御が行われることを特徴とする請求項1〜6のいずれか1つに記載の内燃機関の制御装置。   The internal combustion engine has a spark plug for igniting the fuel in the cylinder for each cylinder, and corresponds to the cylinder to which the exhaust passage where the exhaust turbine of the supercharger is arranged is connected when the intake and exhaust valve control is performed. The ignition timing control is performed so that the timing at which the fuel is ignited by the spark plug is slower than the timing at which the fuel is ignited by the spark plug when the intake / exhaust valve control is not performed. The control apparatus for an internal combustion engine according to any one of the above. 内燃機関が気筒内の燃料に点火する点火栓を各気筒毎に有し、前記吸排気弁制御が行われるときに過給機の排気タービンが配置された排気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングを過給機のコンプレッサが配置された吸気通路が接続された気筒に対応した点火栓により燃料に点火するタイミングよりも遅くする点火タイミング制御が行われることを特徴とする請求項1〜6のいずれか1つに記載の内燃機関の制御装置。   The internal combustion engine has a spark plug for igniting the fuel in the cylinder for each cylinder, and corresponds to the cylinder to which the exhaust passage where the exhaust turbine of the supercharger is arranged is connected when the intake and exhaust valve control is performed. Ignition timing control is performed such that the timing at which fuel is ignited by the spark plug is slower than the timing at which fuel is ignited by the spark plug corresponding to the cylinder to which the intake passage where the compressor of the supercharger is disposed is connected. The control apparatus for an internal combustion engine according to any one of claims 1 to 6.
JP2006160863A 2006-06-09 2006-06-09 Control device of internal combustion engine Pending JP2007327466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160863A JP2007327466A (en) 2006-06-09 2006-06-09 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160863A JP2007327466A (en) 2006-06-09 2006-06-09 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007327466A true JP2007327466A (en) 2007-12-20

Family

ID=38928075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160863A Pending JP2007327466A (en) 2006-06-09 2006-06-09 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007327466A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297733A (en) * 1987-05-29 1988-12-05 Mazda Motor Corp Supercharging device for engine
JPS6412025A (en) * 1987-07-06 1989-01-17 Mazda Motor Sueprcharging device for engine
JPH02245407A (en) * 1989-03-17 1990-10-01 Mazda Motor Corp Valve timing control device for engine
JP2003227370A (en) * 2002-02-06 2003-08-15 Mazda Motor Corp Control device for engine with super charger
JP2003314318A (en) * 2002-04-19 2003-11-06 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004245104A (en) * 2003-02-13 2004-09-02 Mitsubishi Motors Corp Supercharging type engine
JP2005180285A (en) * 2003-12-18 2005-07-07 Fuji Heavy Ind Ltd Control device for engine with supercharger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297733A (en) * 1987-05-29 1988-12-05 Mazda Motor Corp Supercharging device for engine
JPS6412025A (en) * 1987-07-06 1989-01-17 Mazda Motor Sueprcharging device for engine
JPH02245407A (en) * 1989-03-17 1990-10-01 Mazda Motor Corp Valve timing control device for engine
JP2003227370A (en) * 2002-02-06 2003-08-15 Mazda Motor Corp Control device for engine with super charger
JP2003314318A (en) * 2002-04-19 2003-11-06 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004245104A (en) * 2003-02-13 2004-09-02 Mitsubishi Motors Corp Supercharging type engine
JP2005180285A (en) * 2003-12-18 2005-07-07 Fuji Heavy Ind Ltd Control device for engine with supercharger

Similar Documents

Publication Publication Date Title
JP5904290B2 (en) Turbocharged engine
JP4475221B2 (en) engine
JP5610873B2 (en) Internal combustion engine
JP5880258B2 (en) Multi-cylinder gasoline engine
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JP5880259B2 (en) Multi-cylinder gasoline engine
JP5998901B2 (en) Turbocharged engine
US10584649B2 (en) Control device for internal combustion engine
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
JP4797868B2 (en) Turbocharged engine
JP2002332877A (en) Four-stroke engine for car
JP5924254B2 (en) Turbocharged engine
JP2009293537A (en) Control device for internal combustion engine
JP2008274884A (en) Control device for internal combustion engine
JP2007327466A (en) Control device of internal combustion engine
US9885293B2 (en) Control apparatus of engine
JP2014214638A (en) Engine device with turbo supercharger
JP5998900B2 (en) Turbocharged engine
JP5983285B2 (en) Turbocharged engine
JP2009052505A (en) Internal combustion engine
JP5640955B2 (en) Control device for internal combustion engine
JP2009209780A (en) Control device of internal combustion engine
JP2006161691A (en) Internal combustion engine
JP6179811B2 (en) Inline four-cylinder engine
JP2009209848A (en) Internal combustion engine and control device for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405