JP2006161691A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2006161691A
JP2006161691A JP2004354604A JP2004354604A JP2006161691A JP 2006161691 A JP2006161691 A JP 2006161691A JP 2004354604 A JP2004354604 A JP 2004354604A JP 2004354604 A JP2004354604 A JP 2004354604A JP 2006161691 A JP2006161691 A JP 2006161691A
Authority
JP
Japan
Prior art keywords
cylinder
combustion
cylinders
exhaust
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004354604A
Other languages
Japanese (ja)
Inventor
Keisuke Komori
啓介 小森
Hiroshi Nomura
啓 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004354604A priority Critical patent/JP2006161691A/en
Publication of JP2006161691A publication Critical patent/JP2006161691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress combustion differences between cylinders by uniformizing recirculation amount of exhaust gas in the respective cylinders, in an internal combustion engine. <P>SOLUTION: In the V 8 engine, cavity shapes of respective cylinders are changed such that a compression ratio in the first cylinder #1, third cylinder #3, second cylinder #2 and sixth cylinder #6 in which an overlap period overlaps an exhaust stroke of the specific cylinder is set larger than that in the forth cylinder #4, fifth cylinder #5, seventh cylinder #7 and eighth cylinder #8 in which the overlap period does not overlap the exhaust stroke. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の気筒が左右のバンクに分けて配列されて各バンクの気筒が不等間隔で点火・爆発する不等間隔点火式のV型多気筒内燃機関に関するものである。   The present invention relates to an unequal interval ignition type V-type multi-cylinder internal combustion engine in which a plurality of cylinders are divided into left and right banks and the cylinders of each bank are ignited and exploded at unequal intervals.

一般的なV型多気筒エンジンにおいて、シリンダブロックは上部に所定角度で傾斜した2つのバンクを有しており、各バンクに設けられた各シリンダにピストンが移動自在に嵌合し、各ピストンは下部に回転自在に支持されたクランクシャフトに連結されている。また、シリンダブロックの各バンクの上部にはシリンダヘッドが締結されることで各燃焼室が構成されており、各燃焼室には吸気ポート及び排気ポートが形成され、吸気弁及び排気弁により開閉可能となっている。そして、吸気管の下流部が2つに分岐して各バンクの吸気ポートに連結される一方、排気管の上流部が2つに分岐して各バンクの排気ポートに連結され、この排気管の下流部に触媒装置が装着されている。   In a general V-type multi-cylinder engine, the cylinder block has two banks inclined at a predetermined angle at the top, and a piston is movably fitted to each cylinder provided in each bank. It is connected to a crankshaft rotatably supported at the bottom. In addition, each combustion chamber is configured by fastening a cylinder head to the upper part of each bank of the cylinder block, and each combustion chamber is formed with an intake port and an exhaust port, and can be opened and closed by an intake valve and an exhaust valve. It has become. The downstream part of the intake pipe is branched into two and connected to the intake port of each bank, while the upstream part of the exhaust pipe is branched into two and connected to the exhaust port of each bank. A catalytic device is mounted in the downstream portion.

例えば、V型8気筒エンジンにて、左バンクには第1気筒、第3気筒、第5気筒、第7気筒が設けられ、右バンクには第2気筒、第4気筒、第6気筒、第8気筒が設けられ、各バングに排気マニホールドを介して排気管が連結されている。そして、動弁系の動バランスを最適化するために各気筒の点火順序は、第1気筒、第8気筒、第7気筒、第3気筒、第6気筒、第5気筒、第4気筒、第2気筒となっている。また、V型8気筒エンジンでは、ピストンによるポンピングロスの低減や発生するNOxの低減などの目的で、排気弁の閉止時期を遅角すると共に吸気弁の開弁時期を進角することで、排気弁の開放期間後期と吸気弁の開放期間前期とをオーバーラップさせるようにしている。   For example, in a V-type 8-cylinder engine, the left bank is provided with a first cylinder, a third cylinder, a fifth cylinder, and a seventh cylinder, and the right bank is provided with a second cylinder, a fourth cylinder, a sixth cylinder, Eight cylinders are provided, and an exhaust pipe is connected to each bang through an exhaust manifold. In order to optimize the dynamic balance of the valve train, the firing order of each cylinder is as follows: first cylinder, eighth cylinder, seventh cylinder, third cylinder, sixth cylinder, fifth cylinder, fourth cylinder, It has 2 cylinders. Further, in the V-type 8-cylinder engine, the exhaust valve closing timing is retarded and the intake valve opening timing is advanced for the purpose of reducing the pumping loss due to the piston and reducing the generated NOx. The latter half of the valve opening period overlaps the first half of the intake valve opening period.

特開平3−070810号公報Japanese Patent Laid-Open No. 3-070810 特表2003−515025号公報Special table 2003-515025 gazette

ところが、上述したV型8気筒エンジンにあっては、点火順序が気筒番号順でないため、左バンクでは第1気筒、第7気筒、第3気筒、第5気筒の順に不等間隔で点火され、右バンクでは第8気筒、第6気筒、第4気筒、第2気筒の順に点火されることとなり、各バンクにおける点火(爆発)間隔が不等となっている。そのため、左バンクでは、第1気筒のオーバーラップ期間と第7気筒の排気行程が重なると共に、第3気筒のオーバーラップ期間と第5気筒の排気行程が重なってしまう。また、右バンクでは、第2気筒のオーバーラップ期間と第8気筒の排気行程が重なると共に、第6気筒のオーバーラップ期間と第4気筒の排気行程が重なってしまう。   However, in the V-type 8-cylinder engine described above, since the ignition order is not the cylinder number order, the left bank is ignited at unequal intervals in the order of the first cylinder, the seventh cylinder, the third cylinder, and the fifth cylinder. In the right bank, the eighth cylinder, the sixth cylinder, the fourth cylinder, and the second cylinder are ignited in this order, and the ignition (explosion) intervals in each bank are unequal. Therefore, in the left bank, the overlap period of the first cylinder and the exhaust stroke of the seventh cylinder overlap, and the overlap period of the third cylinder and the exhaust stroke of the fifth cylinder overlap. In the right bank, the overlap period of the second cylinder and the exhaust stroke of the eighth cylinder overlap, and the overlap period of the sixth cylinder and the exhaust stroke of the fourth cylinder overlap.

そして、一方の気筒のオーバーラップ期間と他方の気筒の排気行程が重なると、一方の気筒の吸気弁及び排気弁の開放状態で、他方の気筒の排気弁が開放することとなり、この他方の気筒の排気ポートから排出された排気ガスが排気マニホールドを通って一方の気筒に排気脈動として悪影響を与える。即ち、一方の気筒に他方の気筒の排気脈動が作用することで、この一方の気筒では、排気マニホールドから排気ポートを通ってシリンダ(燃焼室)内に戻る排気ガス循環量、つまり、内部EGR量が増加してしまう。すると、各気筒間で内部EGR量が相違することで吸入空気量も相違し、燃焼がばらついて不安定となり、出力トルクが変動してしまうと共に、オーバーラップによる燃費の改善や排気ガス性能の向上などの効果を得ることができない。   When the overlap period of one cylinder overlaps with the exhaust stroke of the other cylinder, the exhaust valve of the other cylinder opens while the intake valve and the exhaust valve of one cylinder are open, and this other cylinder Exhaust gas discharged from the exhaust port of the engine passes through the exhaust manifold and adversely affects one cylinder as exhaust pulsation. That is, the exhaust pulsation of the other cylinder acts on one cylinder, and in this one cylinder, the exhaust gas circulation amount that returns from the exhaust manifold to the cylinder (combustion chamber) through the exhaust port, that is, the internal EGR amount. Will increase. As a result, the amount of intake air also varies due to the difference in the internal EGR amount among the cylinders, the combustion varies and becomes unstable, the output torque fluctuates, the fuel consumption is improved by the overlap, and the exhaust gas performance is improved. The effects such as cannot be obtained.

なお、不等間隔点火を行うエンジンにて、特定気筒における排気干渉による充填効率やノック特性のばらつきを抑制するものとして、例えば、上記特許文献1、2に記載された技術がある。ところが、特許文献1の内燃機関の排気装置は、点火順序で先行する気筒との点火間隔が小さい気筒の排気マニホールドの集合部をエゼクタ形状としたものであり、排気マニホールドの排気脈動による特定気筒における内部EGR量の増加で発生する燃焼変動を抑制することはできない。また、特許文献2の多気筒型内燃機関は、オーバーラップ期間を減少することで排気衝撃を減少したものであり、排気脈動による特定気筒の内部EGR量の増加を十分に抑制することはできず、且つ、オーバーラップによる燃費の改善や排気ガス性能の向上を図ることができない。   In addition, in the engine which performs non-uniform interval ignition, there exist the technique described in the said patent document 1, 2 as what suppresses the dispersion | variation in the filling efficiency and knock characteristic by exhaust interference in a specific cylinder, for example. However, the exhaust system of the internal combustion engine disclosed in Patent Document 1 has an ejector shape in which a collection portion of the exhaust manifold of the cylinder having a small ignition interval with the preceding cylinder in the ignition order is used. It is not possible to suppress the combustion fluctuation that occurs due to the increase in the internal EGR amount. Further, the multi-cylinder internal combustion engine of Patent Document 2 has a reduced exhaust impact by reducing the overlap period, and cannot sufficiently suppress an increase in the internal EGR amount of a specific cylinder due to exhaust pulsation. In addition, it is impossible to improve fuel consumption and exhaust gas performance due to overlap.

本発明は、このような問題を解決するためのものであって、各気筒における燃焼状態を均一化することで気筒間の燃焼のばらつきを抑制した内燃機関を提供することを目的とする。   An object of the present invention is to solve such a problem, and an object of the present invention is to provide an internal combustion engine in which the combustion state in each cylinder is made uniform to suppress variation in combustion among the cylinders.

上述した課題を解決し、目的を達成するために、本発明の内燃機関は、複数の気筒が左右のバンクに分けて配列されて該各バンクの気筒が不等間隔で点火されると共に、各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関において、前記各バンクにて、特定の気筒の排気行程に前記オーバーラップ期間が重なる第1の気筒と、特定の気筒の排気行程に前記オーバーラップ期間が重ならない第2の気筒との燃焼状態に起因する燃焼パラメータを変更する燃焼パラメータ変更手段を設けたことを特徴とするものである。   In order to solve the above-described problems and achieve the object, the internal combustion engine of the present invention has a plurality of cylinders divided into left and right banks, and the cylinders of each bank are ignited at unequal intervals, In the internal combustion engine having a period in which the opening period of the exhaust valve and the opening period of the intake valve overlap in the cylinder, in each bank, a first cylinder in which the overlapping period overlaps an exhaust stroke of a specific cylinder; Combustion parameter changing means is provided for changing a combustion parameter caused by a combustion state with the second cylinder in which the overlap period does not overlap the exhaust stroke of a specific cylinder.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒の圧縮比を変更することを特徴としている。   In the internal combustion engine of the present invention, the combustion parameter changing means changes the compression ratio of the first cylinder or the second cylinder as the combustion parameter.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒のスキッシュ率を変更することを特徴としている。   In the internal combustion engine of the present invention, the combustion parameter changing means changes a squish rate of the first cylinder or the second cylinder as the combustion parameter.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒のタンブル比を変更することを特徴としている。   In the internal combustion engine of the present invention, the combustion parameter changing means changes a tumble ratio of the first cylinder or the second cylinder as the combustion parameter.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒の点火エネルギーを変更することを特徴としている。   In the internal combustion engine of the present invention, the combustion parameter changing means changes the ignition energy of the first cylinder or the second cylinder as the combustion parameter.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、内燃機関のアイドル状態では、前記点火エネルギーを変更しないことを特徴としている。   In the internal combustion engine of the present invention, the combustion parameter changing means does not change the ignition energy in an idle state of the internal combustion engine.

本発明の内燃機関では、前記燃焼パラメータ変更手段は、前記オーバーラップ期間に応じて前記圧縮比または前記スキッシュ率または前記タンブル比または点火エネルギーを変更するとしている。   In the internal combustion engine of the present invention, the combustion parameter changing means changes the compression ratio, the squish rate, the tumble ratio, or the ignition energy in accordance with the overlap period.

本発明の内燃機関によれば、複数の気筒が左右のバンクに分けて配列され、各バンクの気筒が不等間隔で点火されると共に、各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関にて、特定の気筒の排気行程にオーバーラップ期間が重なる第1の気筒と、特定の気筒の排気行程にオーバーラップ期間が重ならない第2の気筒との燃焼状態に起因する燃焼パラメータを変更する燃焼パラメータ変更手段を設けたので、オーバーラップ期間が重なる第1の気筒では、オーバーラップ期間が重ならない第2の気筒よりも、排気脈動により内部排気ガス再循環量が増加するが、燃焼パラメータ変更手段により、第1の気筒または第2の気筒の燃焼パラメータを変更することで、この第1の気筒または第2の気筒の燃焼状態が均一化され、気筒間の燃焼のばらつきを抑制することができる。   According to the internal combustion engine of the present invention, a plurality of cylinders are divided into left and right banks, the cylinders in each bank are ignited at unequal intervals, and the exhaust valve opening period and the intake valve opening period in each cylinder In the internal combustion engine having a period in which the engine overlaps with each other, a first cylinder in which the overlap period overlaps with an exhaust stroke of the specific cylinder, and a second cylinder in which the overlap period does not overlap with the exhaust stroke of the specific cylinder Since the combustion parameter changing means for changing the combustion parameter caused by the combustion state is provided, in the first cylinder where the overlap period overlaps, the internal exhaust gas is regenerated by the exhaust pulsation compared to the second cylinder where the overlap period does not overlap. Although the circulation amount increases, the combustion parameter changing means changes the combustion parameter of the first cylinder or the second cylinder to thereby change the first cylinder or the second cylinder. Combustion state of the cylinder is made uniform, it is possible to suppress variations in combustion between the cylinders.

以下に、本発明にかかる内燃機関の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an internal combustion engine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施例1に係る内燃機関を表すV型8気筒エンジンの概略平面図、図2は、実施例1のV型8気筒エンジンの概略構成図、図3−1は、実施例1のV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の断面図、図3−2は、実施例1のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の断面図、図4は、実施例1のV型8気筒エンジンにおける吸気弁及び排気弁の開放時期を表すタイムチャートである。   FIG. 1 is a schematic plan view of a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 1 of the present invention, FIG. 2 is a schematic configuration diagram of the V-type 8-cylinder engine of Embodiment 1, and FIG. FIG. 3-2 is a cross-sectional view of a combustion chamber of a cylinder with a large internal EGR in the V-type 8-cylinder engine of Embodiment 1, and FIG. 3-2 is a cross-sectional view of a combustion chamber of a cylinder with a low internal EGR in the V-type 8-cylinder engine of Embodiment 1. FIG. 4 is a time chart showing the opening timing of the intake valve and the exhaust valve in the V-type 8-cylinder engine of the first embodiment.

実施例1では、内燃機関としてV型8気筒エンジンを適用している。このV型8気筒エンジンにおいて、図1及び図2に示すように、シリンダブロック11は上部に所定角度で傾斜した左右のバンク12,13を有しており、各バンク12,13にそれぞれ4つのシリンダボア14,15が形成され、各シリンダボア14,15にピストン16,17がそれぞれ上下移動自在に嵌合している。そして、シリンダブロック11の下部に図示しないクランクシャフトが回転自在に支持されており、各ピストン16,17はコネクティングロッド18,19を介してこのクランクシャフトにそれぞれ連結されている。   In the first embodiment, a V-type 8-cylinder engine is applied as the internal combustion engine. In this V-type 8-cylinder engine, as shown in FIGS. 1 and 2, the cylinder block 11 has left and right banks 12 and 13 inclined at a predetermined angle at the upper portion, and each bank 12 and 13 has four banks 12 and 13 respectively. Cylinder bores 14 and 15 are formed, and pistons 16 and 17 are fitted to the respective cylinder bores 14 and 15 so as to be vertically movable. A crankshaft (not shown) is rotatably supported at the lower part of the cylinder block 11, and the pistons 16 and 17 are connected to the crankshaft via connecting rods 18 and 19, respectively.

一方、シリンダブロック11の各バンク12,13の上部にはシリンダヘッド20,21が締結されており、シリンダブロック11とピストン16,17とシリンダヘッド20,21により各燃焼室22,23が構成されている。そして、この燃焼室22,23の上部、つまり、シリンダヘッド20,21の下面に吸気ポート24,25及び排気ポート26,27が対向して形成され、この吸気ポート24,25及び排気ポート26,27に対して吸気弁28,29及び排気弁30,31の下端部が位置している。この吸気弁28,29及び排気弁30,31は、シリンダヘッド20,21に軸方向に沿って移動自在に支持されると共に、吸気ポート24,25及び排気ポート26,27を閉止する方向に付勢支持されている。また、シリンダヘッド20,21には、吸気カムシャフト32,33及び排気カムシャフト34,35が回転自在に支持されており、吸気カム36,37及び排気カム38,39が図示しないローラロッカアームを介して吸気弁28,29及び排気弁30,31の上端部に接触している。   On the other hand, cylinder heads 20 and 21 are fastened to the upper portions of the banks 12 and 13 of the cylinder block 11, and the combustion chambers 22 and 23 are constituted by the cylinder block 11, the pistons 16 and 17, and the cylinder heads 20 and 21. ing. The intake ports 24 and 25 and the exhaust ports 26 and 27 are formed on the upper portions of the combustion chambers 22 and 23, that is, the lower surfaces of the cylinder heads 20 and 21 so as to face each other. 27, the lower end portions of the intake valves 28 and 29 and the exhaust valves 30 and 31 are located. The intake valves 28 and 29 and the exhaust valves 30 and 31 are supported by the cylinder heads 20 and 21 so as to be movable in the axial direction, and are attached in a direction to close the intake ports 24 and 25 and the exhaust ports 26 and 27. It is supported. Further, intake camshafts 32 and 33 and exhaust camshafts 34 and 35 are rotatably supported on the cylinder heads 20 and 21, and the intake cams 36 and 37 and the exhaust cams 38 and 39 are interposed via a roller rocker arm (not shown). Are in contact with the upper ends of the intake valves 28 and 29 and the exhaust valves 30 and 31.

従って、エンジンに同期して吸気カムシャフト32,33及び排気カムシャフト34,35が回転すると、吸気カム36,37及び排気カム38,39がローラロッカアームを作動させ、吸気弁28,29及び排気弁30,31が所定のタイミングで上下移動することで、吸気ポート24,25及び排気ポート26,27を開閉し、吸気ポート24,25と燃焼室22,23、燃焼室22,23と排気ポート26,27とをそれぞれ連通することができる。   Accordingly, when the intake camshafts 32 and 33 and the exhaust camshafts 34 and 35 rotate in synchronization with the engine, the intake cams 36 and 37 and the exhaust cams 38 and 39 operate the roller rocker arm, and the intake valves 28 and 29 and the exhaust valve 30 and 31 move up and down at a predetermined timing to open and close intake ports 24 and 25 and exhaust ports 26 and 27, intake ports 24 and 25 and combustion chambers 22 and 23, combustion chambers 22 and 23, and exhaust port 26. , 27 can communicate with each other.

また、このエンジンの動弁機構は、運転状態に応じて吸気弁28,29及び排気弁30,31を最適な開閉タイミングに制御する吸気可変動弁機構(VVT:Variable Valve Timing-intelligent)40,41と排気可変動弁機構42,43により構成されている。この吸気可変動弁機構40,41及び排気可変動弁機構42,43は、例えば、吸気カムシャフト32,33及び排気カムシャフト34,35の軸端部にVVTコントローラが設けられて構成され、油圧ポンプ(または電動モータ)によりカムスプロケットに対する各カムシャフト32,33,34,35の位相を変更することで、吸気弁28,29及び排気弁30,31の開閉時期を進角または遅角することができるものである。この場合、各可変動弁機構40,41,42,43は、吸気弁28,29及び排気弁30,31の作用角(開放期間)を一定としてその開閉時期を進角または遅角する。また、吸気カムシャフト32,33及び排気カムシャフト34,35には、その回転位相を検出するカムポジションセンサ44,45,46,47が設けられている。   In addition, the valve mechanism of this engine is a variable intake valve timing mechanism (VVT) 40 that controls the intake valves 28 and 29 and the exhaust valves 30 and 31 at an optimal opening / closing timing according to the operating state. 41 and an exhaust variable valve mechanism 42, 43. The intake variable valve operating mechanisms 40 and 41 and the exhaust variable valve operating mechanisms 42 and 43 are configured, for example, by providing VVT controllers at the shaft end portions of the intake camshafts 32 and 33 and the exhaust camshafts 34 and 35. The opening / closing timing of the intake valves 28, 29 and the exhaust valves 30, 31 is advanced or retarded by changing the phase of each camshaft 32, 33, 34, 35 with respect to the cam sprocket by a pump (or electric motor). It is something that can be done. In this case, each variable valve mechanism 40, 41, 42, 43 advances or retards the opening / closing timing with the operating angle (opening period) of intake valves 28, 29 and exhaust valves 30, 31 being constant. The intake camshafts 32, 33 and the exhaust camshafts 34, 35 are provided with cam position sensors 44, 45, 46, 47 for detecting their rotational phases.

各シリンダヘッド20,21の吸気ポート24,25には吸気マニホールド48,49を介してサージタンク50が連結され、このサージタンク50には吸気管51が連結されており、この吸気管51の空気取入口にはエアクリーナ52が取付けられている。また、吸気管51には、エアクリーナ52の下流側に位置してスロットル弁を有する電子スロットル装置53が設けられている。一方、排気ポート26,27には、排気マニホールド54,55及び触媒装置56,57を介して連結管58が連結され、この連結管58には排気管59が連結され、この排気管59には触媒装置60が装着されている。   A surge tank 50 is connected to the intake ports 24 and 25 of the cylinder heads 20 and 21 via intake manifolds 48 and 49, and an intake pipe 51 is connected to the surge tank 50. An air cleaner 52 is attached to the intake port. The intake pipe 51 is provided with an electronic throttle device 53 having a throttle valve located on the downstream side of the air cleaner 52. On the other hand, a connecting pipe 58 is connected to the exhaust ports 26 and 27 via exhaust manifolds 54 and 55 and catalyst devices 56 and 57, and an exhaust pipe 59 is connected to the connecting pipe 58. A catalyst device 60 is mounted.

また、各シリンダヘッド20,21には、各燃焼室22,23に直接燃料(ガソリン)を噴射するインジェクタ61,62が装着されており、各インジェクタ61,62にはデリバリパイプ63,64が連結され、この各デリバリパイプ63,64には高圧燃料ポンプ65から所定圧の燃料を供給可能となっている。また、シリンダヘッド20,21には、燃焼室22,23の上方に位置して混合気に着火する点火プラグ66,67が装着されている。   The cylinder heads 20 and 21 are respectively provided with injectors 61 and 62 for injecting fuel (gasoline) directly into the combustion chambers 22 and 23. Delivery pipes 63 and 64 are connected to the injectors 61 and 62, respectively. The delivery pipes 63 and 64 can be supplied with fuel at a predetermined pressure from the high-pressure fuel pump 65. The cylinder heads 20 and 21 are equipped with spark plugs 66 and 67 that are located above the combustion chambers 22 and 23 and ignite the air-fuel mixture.

ところで、車両には電子制御ユニット(ECU)68が搭載されており、このECU68は、インジェクタ61,62の燃料噴射タイミングや点火プラグ66,67の点火時期などを制御可能となっており、検出した吸入空気量、吸気温度、スロットル開度、アクセル開度、エンジン回転数、冷却水温などのエンジン運転状態に基づいて燃料噴射量、噴射時期、点火時期などを決定している。即ち、吸気管51の上流側にはエアフローセンサ69及び吸気温センサ70が装着され、計測した吸入空気量及び吸気温度をECU68に出力している。また、電子スロットル装置53にはスロットルポジションセンサ71が設けられ、アクセルペダルにはアクセルポジションセンサ72が設けられており、現在のスロットル開度及びアクセル開度をECU68に出力している。更に、クランクシャフトにはクランク角センサ73が設けられ、検出したクランク角度をECU68に出力し、ECU68はクランク角度に基づいてエンジン回転数を算出する。また、シリンダブロック11には水温センサ74が設けられており、検出したエンジン冷却水温をECU68に出力している。   By the way, an electronic control unit (ECU) 68 is mounted on the vehicle, and this ECU 68 can control and detect the fuel injection timing of the injectors 61 and 62, the ignition timing of the spark plugs 66 and 67, and the like. The fuel injection amount, the injection timing, the ignition timing, and the like are determined based on the engine operating state such as the intake air amount, the intake air temperature, the throttle opening, the accelerator opening, the engine speed, and the cooling water temperature. That is, an air flow sensor 69 and an intake air temperature sensor 70 are mounted on the upstream side of the intake pipe 51, and the measured intake air amount and intake air temperature are output to the ECU 68. The electronic throttle device 53 is provided with a throttle position sensor 71, and the accelerator pedal is provided with an accelerator position sensor 72, which outputs the current throttle opening and accelerator opening to the ECU 68. Further, a crank angle sensor 73 is provided on the crankshaft, and the detected crank angle is output to the ECU 68. The ECU 68 calculates the engine speed based on the crank angle. Further, the cylinder block 11 is provided with a water temperature sensor 74 and outputs the detected engine cooling water temperature to the ECU 68.

また、ECU68は、エンジン運転状態に基づいて吸気可変動弁機構40,41及び排気可変動弁機構42,43を制御可能となっている。即ち、低温時、エンジン始動時、アイドル運転時や軽負荷時には、排気弁30,31の開放時期と吸気弁28,29の開放時期とのオーバーラップをなくすことで、排気ガスが吸気ポート24,25または燃焼室22,23に吹き返す量を少なくし、燃焼安定及び燃費向上を可能とする。また、中負荷時には、このオーバーラップを大きくすることで、内部EGR率を高めて排ガス浄化効率を向上させると共に、ポンピングロスを低減して燃費向上を可能とする。更に、高負荷低中回転時には、吸気弁28,29の閉止時期を進角することで、吸気が吸気ポート24,25に吹き返す量を少なくして体積効率を向上させる。そして、高負荷高回転時には、吸気弁28,29の閉止時期を回転数にあわせて遅角することで、吸入空気の慣性力に合わせたタイミングとして体積効率を向上させる。   Further, the ECU 68 can control the intake variable valve mechanisms 40 and 41 and the exhaust variable valve mechanisms 42 and 43 based on the engine operating state. That is, when the temperature is low, the engine is started, the engine is idling, or the load is light, the exhaust gas is discharged from the intake port 24, 25 or the amount of air blown back to the combustion chambers 22 and 23 is reduced, and combustion stability and fuel efficiency can be improved. Further, at the time of medium load, by increasing the overlap, the internal EGR rate is increased to improve the exhaust gas purification efficiency, and the pumping loss is reduced to improve the fuel consumption. Further, at the time of high-load low-medium rotation, the closing timing of the intake valves 28 and 29 is advanced to reduce the amount of intake air that blows back to the intake ports 24 and 25, thereby improving volumetric efficiency. At the time of high load and high rotation, the closing timing of the intake valves 28 and 29 is retarded according to the rotational speed, thereby improving the volume efficiency as the timing according to the inertial force of the intake air.

ところで、本実施例のV型8気筒エンジンにおいて、図1に示すように、左バンク12には第1気筒#1、第3気筒#3、第5気筒#5、第7気筒#7が直列に設けられ、右バンク13には第2気筒#2、第4気筒#4、第6気筒#6、第8気筒#8が直列に設けられ、各バング12,13に排気マニホールド54,55を介して連結管58及び排気管59が連結されている。そして、動弁系の動バランスを最適化するために、各気筒の点火順序は、第1気筒#1、第8気筒#8、第7気筒#7、第3気筒#3、第6気筒#6、第5気筒#5、第4気筒#4、第2気筒#2となっている。   Incidentally, in the V-type 8-cylinder engine of this embodiment, as shown in FIG. 1, the first bank # 1, the third cylinder # 3, the fifth cylinder # 5, and the seventh cylinder # 7 are connected in series to the left bank 12. In the right bank 13, the second cylinder # 2, the fourth cylinder # 4, the sixth cylinder # 6, and the eighth cylinder # 8 are provided in series, and the exhaust manifolds 54 and 55 are provided in the bangs 12 and 13, respectively. The connecting pipe 58 and the exhaust pipe 59 are connected to each other. In order to optimize the dynamic balance of the valve train, the firing order of each cylinder is as follows: first cylinder # 1, eighth cylinder # 8, seventh cylinder # 7, third cylinder # 3, sixth cylinder # 6, fifth cylinder # 5, fourth cylinder # 4, and second cylinder # 2.

そのため、このV型8気筒エンジンでは、点火順序が気筒番号順でないため、左バンクでは第1気筒#1−(180°CA)−第7気筒#7−(90°CA)−第3気筒−(180°CA)−第5気筒#5−(270°CA)−第1気筒#1の順に不等間隔で点火され、また、右バンクでは第8気筒#8−(270°CA)−第6気筒#6−(180°CA)−第4気筒#4−(90°CA)−第2気筒#2−(180°CA)−第8気筒#8の順に点火されることとなり、各バンクにおける点火(爆発)間隔が不等間隔となっている。そのため、左バンク12では、特定の気筒のオーバーラップ期間と他の気筒の排気行程が重なってしまい、排気行程にある気筒から排出された排気ガスが排気マニホールドを通ってオーバーラップ期間にある気筒に排気脈動として作用し、この気筒の内部EGR量だけが増加してしまう。   Therefore, in this V-type 8-cylinder engine, since the ignition order is not the order of the cylinder number, in the left bank, the first cylinder # 1- (180 ° CA) —the seventh cylinder # 7— (90 ° CA) —the third cylinder— (180 ° CA) -Fifth cylinder # 5- (270 ° CA) -First cylinder # 1 are ignited at unequal intervals, and in the right bank, the eighth cylinder # 8- (270 ° CA) -No. The six cylinders # 6- (180 ° CA) -fourth cylinder # 4- (90 ° CA) -second cylinder # 2- (180 ° CA) -eighth cylinder # 8 will be ignited in this order. Ignition (explosion) intervals in are uneven. Therefore, in the left bank 12, the overlap period of a specific cylinder overlaps with the exhaust stroke of another cylinder, and the exhaust gas discharged from the cylinder in the exhaust stroke passes through the exhaust manifold to the cylinder in the overlap period. Acting as exhaust pulsation, only the internal EGR amount of this cylinder increases.

即ち、図4に示すように、左バンク12では、第1気筒#1にて、クランク角度360°CAの近傍で吸気可変動弁機構40により吸気弁28による吸気タイミングが進角されると共に、排気可変動弁機構42により排気弁30による排気タイミングが遅角されることで、ここにオーバーラップ期間OLが設けられる。一方、第7気筒#7にて、クランク角度360°CAの近傍で排気弁30が開き始めることで排気行程が開始される。そのため、このクランク角度360°CAの近傍で、第1気筒#1のオーバーラップ期間と第7気筒#7の排気行程初期が重なってしまう。   That is, as shown in FIG. 4, in the left bank 12, in the first cylinder # 1, the intake timing by the intake valve 28 is advanced by the intake variable valve mechanism 40 in the vicinity of the crank angle 360 ° CA, The exhaust timing by the exhaust valve 30 is retarded by the exhaust variable valve mechanism 42, so that an overlap period OL is provided here. On the other hand, in the seventh cylinder # 7, the exhaust stroke starts when the exhaust valve 30 starts to open near the crank angle of 360 ° CA. Therefore, in the vicinity of the crank angle 360 ° CA, the overlap period of the first cylinder # 1 overlaps the initial exhaust stroke of the seventh cylinder # 7.

すると、第1気筒#1の吸気弁28及び排気弁30の開放状態で、第7気筒#7の排気弁30が開放することとなり、第7気筒#7の排気ポート26から排出された排気ガスが排気マニホールド54を通って第1気筒#1に排気脈動として作用する。即ち、第7気筒#7から第1気筒#1に排気脈動が作用すると、この第1気筒#1では、この排気脈動により排気マニホールド54から排気ポート26を通って燃焼室22内に戻る内部EGR量が増加し、吸気ポート24から吸入される空気量が減少してしまう。   Then, when the intake valve 28 and the exhaust valve 30 of the first cylinder # 1 are opened, the exhaust valve 30 of the seventh cylinder # 7 is opened, and the exhaust gas discharged from the exhaust port 26 of the seventh cylinder # 7. Acts as exhaust pulsation on the first cylinder # 1 through the exhaust manifold 54. That is, when exhaust pulsation acts on the first cylinder # 1 from the seventh cylinder # 7, in this first cylinder # 1, the internal EGR that returns from the exhaust manifold 54 to the combustion chamber 22 through the exhaust port 26 by this exhaust pulsation. The amount increases, and the amount of air drawn from the intake port 24 decreases.

この現象は、第1気筒#1に限らず、第5気筒#5の排気行程にオーバーラップ期間OLが重なる第3気筒#3、また、右バンク13にて、第8気筒#8の排気行程にオーバーラップ期間OLが重なる第2気筒#2、第4気筒#4の排気行程にオーバーラップ期間OLが重なる第6気筒#6で発生するものである。そして、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6で内部EGR量が増加すると、この現象が発生しない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の内部EGR量及び空気量と相違することとなり、燃焼がばらついて不安定となり、出力トルクが変動してしまう。   This phenomenon is not limited to the first cylinder # 1, but the exhaust stroke of the eighth cylinder # 8 in the third cylinder # 3 in which the overlap period OL overlaps with the exhaust stroke of the fifth cylinder # 5 or in the right bank 13. This occurs in the sixth cylinder # 6 where the overlap period OL overlaps the exhaust stroke of the second cylinder # 2 and the fourth cylinder # 4 where the overlap period OL overlaps. When the internal EGR amount increases in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the fourth cylinder # 4, the fifth cylinder # 5, This is different from the internal EGR amount and the air amount of the seventh cylinder # 7 and the eighth cylinder # 8, the combustion varies and becomes unstable, and the output torque fluctuates.

そこで、実施例1では、図3−1及び図3−2に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の圧縮比(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例1では、燃焼パラメータ変更手段として、各バンク12,13のピストン16,17にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の圧縮比が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比よりも高くなるように、各気筒のキャビティ形状を変更している。   Therefore, in the first embodiment, as shown in FIGS. 3A and 3B, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, and the fifth cylinder # as specific cylinders. 5. Compression ratios of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinder in which the overlap period overlaps with the exhaust stroke of the fourth cylinder # 4 ( Combustion parameters) and the compression ratios of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinders in which the overlap period does not overlap the exhaust stroke. Changes (combustion parameter changing means) can be made to be different. In the first embodiment, as the combustion parameter changing means, the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are provided by the pistons 16 and 17 of the banks 12 and 13, respectively. The cavity shape of each cylinder is changed so that the compression ratio becomes higher than the compression ratio of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8.

具体的に説明すると、例えば、右バンク13にて、オーバーラップ期間が重なることで内部EGR量が多い第2気筒#2では、図3−1に示すように、ピストン17のキャビティ80aを小さく設定し、オーバーラップ期間が重ならずに内部EGR量が少ない第4気筒#4では、図3−2に示すように、ピストン17のキャビティ80bを小さく設定している。そのため、圧縮比は、下記数式で算出されるため、オーバーラップ期間が重なる第2気筒#2の圧縮比が、オーバーラップ期間が重ならない第4気筒#4の圧縮比に比べて高いものに設定されることとなる。
圧縮比=(圧縮行程容積+燃焼室容積)/燃焼室容積
なお、圧縮行程容積+燃焼室容積は、ピストン17が下死点に位置するときの容積であり、燃焼室容積は、ピストン17が上死点に位置するときの容積である。
More specifically, for example, in the second bank # 2 having a large internal EGR amount due to overlapping overlap periods in the right bank 13, the cavity 80a of the piston 17 is set small as shown in FIG. In the fourth cylinder # 4 where the overlap period does not overlap and the internal EGR amount is small, the cavity 80b of the piston 17 is set small as shown in FIG. 3-2. Therefore, since the compression ratio is calculated by the following equation, the compression ratio of the second cylinder # 2 where the overlap period overlaps is set higher than the compression ratio of the fourth cylinder # 4 where the overlap period does not overlap. Will be.
Compression ratio = (compression stroke volume + combustion chamber volume) / combustion chamber volume The compression stroke volume + combustion chamber volume is the volume when the piston 17 is located at the bottom dead center, and the combustion chamber volume This is the volume at the top dead center.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第5気筒#5及び第7気筒#7では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1及び第3気筒#3のキャビティ80aと第5気筒#5及び第7気筒#7のキャビティ80bとの大きさが異なることで、第1気筒#1及び第3気筒#3の圧縮比が第5気筒#5及び第7気筒#7の圧縮比よりも高く設定されているため、内部EGR量の多い第1気筒#1及び第3気筒#3が高圧縮比となり、この気筒#1、#3の燃焼速度が内部EGR量の少ない第5気筒#5及び第7気筒#7の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第1気筒#1及び第3気筒#3の燃焼状態と、内部EGR量の少ない第5気筒#5及び第7気筒#7との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Therefore, in the first bank # 1 and the third cylinder # 3 in the left bank 12, the internal EGR amount is affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period. To increase. On the other hand, in the fifth cylinder # 5 and the seventh cylinder # 7, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, the first cylinder # 1 and the third cylinder # 3 have different sizes from the cavities 80a of the first cylinder # 1 and the third cylinder # 3 and the cavities 80b of the fifth cylinder # 5 and the seventh cylinder # 7. 3 is set higher than the compression ratio of the fifth cylinder # 5 and the seventh cylinder # 7, so the first cylinder # 1 and the third cylinder # 3 having a large internal EGR amount have a high compression ratio. The combustion speeds of the cylinders # 1 and # 3 are increased to the same level as the combustion speeds of the fifth cylinder # 5 and the seventh cylinder # 7 having a small internal EGR amount. As a result, the combustion states of the first cylinder # 1 and the third cylinder # 3 having a large internal EGR amount and the combustion states of the fifth cylinder # 5 and the seventh cylinder # 7 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4及び第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第2気筒#2及び第6気筒#6のキャビティ80aと第4気筒#4及び第8気筒#8のキャビティ80bとの大きさが異なることで、第2気筒#2及び第6気筒#6の圧縮比が第4気筒#4及び第8気筒#8の圧縮比よりも高く設定されているため、内部EGR量の多い第2気筒#2及び第6気筒#6が高圧縮比となり、この気筒#2、#6の燃焼速度が内部EGR量の少ない第4気筒#4及び第8気筒#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6の燃焼状態と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Similarly, in the right bank 13, in the second cylinder # 2 and the sixth cylinder # 6, the internal EGR amount is affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Quantitative increase. On the other hand, in the fourth cylinder # 4 and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, the second cylinder # 2 and the sixth cylinder # 6 are different in size from the cavity 80a of the second cylinder # 2 and the sixth cylinder # 6 and the size of the cavity 80b of the fourth cylinder # 4 and the eighth cylinder # 8. 6 is set to be higher than the compression ratio of the fourth cylinder # 4 and the eighth cylinder # 8, the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount have a high compression ratio. The combustion speeds of the cylinders # 2 and # 6 are increased to the same level as the combustion speeds of the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the combustion states of the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

このように実施例1の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6における圧縮比を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比よりも高くなるように設定している。   Thus, in the internal combustion engine of the first embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. The compression ratio in the sixth cylinder # 6 is higher than the compression ratio of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set to be.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6のキャビティ80aのキャビティ80aを、気筒#4,#5,#7,#8のキャビティ80bよりも小さくすることで、気筒#1,#2,#3,#6の圧縮比を、気筒#4,#5,#7,#8の圧縮比よりも高く設定しており、内部EGR量の多い気筒#1,#2,#3,#6が高圧縮比となり、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 where the cylinders do not overlap, the internal EGR amount does not increase during this period without being affected by exhaust pulsation, but the cavities of cylinders # 1, # 2, # 3, and # 6 By making the cavity 80a of 80a smaller than the cavity 80b of cylinders # 4, # 5, # 7, and # 8, the compression ratio of cylinders # 1, # 2, # 3, and # 6 is changed to cylinders # 4 and # 4. The cylinders # 1, # 2, # 3, # 6 with a large internal EGR amount are set to a high compression ratio and the combustion speed is small with a low internal EGR amount. It can be increased to the same level as the combustion speeds of # 4, # 5, # 7, and # 8. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

図5は、本発明の実施例2に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の平面図、図6−1は、図5のVI−VI断面であって圧縮比可変機構を表す断面図、図6−2は、圧縮比可変機構の作動状態を表す断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 5 is a plan view of a combustion chamber in a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 2 of the present invention, and FIG. 6-1 is a VI-VI cross section of FIG. FIG. 6B is a cross-sectional view illustrating an operating state of the compression ratio variable mechanism. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例2のV型8気筒エンジンにおいて、図5及び図6−1に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の圧縮比(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例2では、燃焼パラメータ変更手段として、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6に圧縮比可変機構81を設け、この気筒#1、#2、#3、#6の圧縮比が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比よりも高くなるように変更可能とし、且つ、その変更量をオーバーラップ期間の長さに応じ設定している。   In the V-type 8-cylinder engine of the second embodiment, as shown in FIGS. 5 and 6-1, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, the fifth cylinder as specific cylinders. Compression of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinder in which the overlap period overlaps with the exhaust strokes of the cylinder # 5 and the fourth cylinder # 4 Ratio (combustion parameter) and the compression ratio of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinder in which the overlap period does not overlap the exhaust stroke Can be changed (combustion parameter changing means). In the second embodiment, as the combustion parameter changing means, the compression ratio variable mechanism 81 is provided in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6. , # 2, # 3, # 6 can be changed to be higher than the compression ratios of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, the eighth cylinder # 8, And the amount of change is set according to the length of the overlap period.

具体的に説明すると、本実施例では、特定の気筒の排気行程にオーバーラップ期間が重なる気筒#1、#2、#3、#6に圧縮比可変機構81が設けられている。例えば、右バンク13の第2気筒#2に設けられた圧縮比可変機構81において、図5及び図6−1、図6−2に示すように、燃焼室23を構成するシリンダヘッド21の下面中央部には、点火プラグ67の周囲に位置してリング形状をなすスライドリング82が上下移動自在に支持されている。そして、このスライドリング82に対して上方から切換弁83付の移動用油路84が設けられており、この切換弁83を開放することで移動用油路84の油圧がスライドリング82に作用することで、このスライドリング82を下方に移動することができる一方、切換弁83を閉止することで筒内圧がスライドリング82に作用することで、このスライドリング82を上方に移動することができる。また、スライドリング82の側方から制御用油路85が設けられており、この制御用油路85は切換弁86を介して2つの分岐路85a,85bに分岐し、スライドリング82のストッパ部82aまたは移動用油路84の先端部84aに連通可能となっている。   More specifically, in this embodiment, the compression ratio variable mechanism 81 is provided in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps with the exhaust stroke of a specific cylinder. For example, in the compression ratio variable mechanism 81 provided in the second cylinder # 2 of the right bank 13, as shown in FIGS. 5, 6-1, and 6-2, the lower surface of the cylinder head 21 that constitutes the combustion chamber 23. A slide ring 82 having a ring shape located around the spark plug 67 is supported at the center so as to be movable up and down. A moving oil passage 84 with a switching valve 83 is provided from above on the slide ring 82, and the hydraulic pressure of the moving oil passage 84 acts on the slide ring 82 by opening the switching valve 83. Thus, while the slide ring 82 can be moved downward, the in-cylinder pressure acts on the slide ring 82 by closing the switching valve 83, so that the slide ring 82 can be moved upward. Further, a control oil passage 85 is provided from the side of the slide ring 82, and this control oil passage 85 branches into two branch passages 85 a and 85 b via a switching valve 86, and a stopper portion of the slide ring 82. 82a or the leading end portion 84a of the moving oil passage 84 can be communicated.

従って、図6−2に示すように、スライドリング82が上方位置に停止した状態から、切換弁83を開放すると共に切換弁86を分岐路85a側に切り換えると、移動用油路84の油圧がスライドリング82に作用すると共に、制御用油路85の油圧がストッパ部82aに作用し、ストッパ部82aが分岐路85aから外れ、スライドリング82を、図6−2に示すように、下方位置に移動することができ、このとき、ストッパ部82aが分岐路85bに嵌合すると共に、分岐路85aが移動用油路84の先端部84aに連結する。一方、スライドリング82がこの下方位置に停止した状態から、切換弁83を閉止すると共に切換弁86を分岐路85b側に切り換えると、筒内圧がスライドリング82に作用すると共に、制御用油路85の油圧がストッパ部82aに作用し、ストッパ部82aが分岐路85bから外れ、スライドリング82は、図6−1に示すように、上方位置に移動することができ、このとき、ストッパ部82aが分岐路85aに嵌合すると共に、分岐路85bが移動用油路84の先端部84aに連結する。   Accordingly, as shown in FIG. 6B, when the switching valve 83 is opened and the switching valve 86 is switched to the branch path 85a from the state where the slide ring 82 is stopped at the upper position, the hydraulic pressure of the moving oil path 84 is increased. While acting on the slide ring 82, the hydraulic pressure of the control oil passage 85 acts on the stopper portion 82a, the stopper portion 82a comes off from the branch passage 85a, and the slide ring 82 is moved to the lower position as shown in FIG. At this time, the stopper portion 82a is fitted into the branch passage 85b, and the branch passage 85a is connected to the distal end portion 84a of the moving oil passage 84. On the other hand, when the switching valve 83 is closed and the switching valve 86 is switched to the branch path 85b from the state where the slide ring 82 is stopped at the lower position, the in-cylinder pressure acts on the slide ring 82 and the control oil path 85. Acts on the stopper portion 82a, the stopper portion 82a is disengaged from the branch path 85b, and the slide ring 82 can move to the upper position as shown in FIG. 6-1, and at this time, the stopper portion 82a The branch path 85 b is connected to the distal end portion 84 a of the moving oil path 84 while being fitted to the branch path 85 a.

そして、右バンク13の第2気筒#2にて、吸気可変動弁機構41及び排気可変動弁機構43により運転状態に応じてオーバーラップ期間を設定するが、オーバーラップ期間がほとんどないときには、圧縮比可変機構81によりスライドリング82を上方位置に移動し、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2の圧縮比を、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8の圧縮比と同じにする。また、吸気可変動弁機構41及び排気可変動弁機構43により運転状態に応じてオーバーラップ期間が設定されたときには、圧縮比可変機構81によりスライドリング82を下方位置に移動し、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2の圧縮比を、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8の圧縮比より高く設定する。   Then, in the second cylinder # 2 of the right bank 13, the overlap period is set according to the operating state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 43. When there is almost no overlap period, the compression is performed. The ratio ring mechanism 81 moves the slide ring 82 to the upper position, and the compression ratio of the second cylinder # 2 in which the overlap period overlaps with the exhaust stroke of the specific cylinder does not overlap the overlap period with the exhaust stroke of the specific cylinder. The compression ratio is the same as that of cylinders # 4, # 5, # 7, and # 8. Further, when the overlap period is set according to the operating state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 43, the slide ring 82 is moved to the lower position by the compression ratio variable mechanism 81, so that The compression ratio of the second cylinder # 2 where the overlap period overlaps with the exhaust stroke is set higher than the compression ratio of the cylinders # 4, # 5, # 7, and # 8 where the overlap period does not overlap with the exhaust stroke of the specific cylinder. .

従って、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、オーバーラップ期間に第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にオーバーラップ期間が生じたときには、圧縮比可変機構81によりスライドリング82を下方位置に移動することで、燃焼室23の容積を減少して圧縮比が高くなるため、内部EGR量の多い気筒#1、#2、#3、#6が高圧縮比となり、この気筒#1、#2、#3、#6の燃焼速度が内部EGR量の少ない気筒#4、#5、#7、#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い気筒#1、#2、#3、#6の燃焼状態と、内部EGR量の少ない気筒#4、#5、#7、#8との燃焼状態が近似し、各バンク12,13の各気筒における燃焼状態がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the seventh cylinder # 7 and the eighth cylinder # 8 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation of the fifth cylinder # 5 and the fourth cylinder # 4. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, when the overlap period occurs in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the compression ring variable mechanism 81 moves the slide ring 82 to the lower position. Since the compression ratio is increased by reducing the volume of the combustion chamber 23, the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount have a high compression ratio, and the cylinders # 1, # 2, and # 6 have a high compression ratio. The combustion speeds of # 3 and # 6 are increased to the same level as the combustion speeds of cylinders # 4, # 5, # 7 and # 8 having a small internal EGR amount. As a result, the combustion states of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount and the combustion states of cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount are approximated, The combustion state in each cylinder of each bank 12 and 13 is almost uniform.

このように実施例2の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6に圧縮比可変機構81を設け、吸気可変動弁機構40,41及び排気可変動弁機構42,43によりオーバーラップ期間が設定されると、この気筒#1、#2、#3、#6における圧縮比を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の圧縮比よりも高くなるように設定している。   Thus, in the internal combustion engine of the second embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. When the compression ratio variable mechanism 81 is provided in the sixth cylinder # 6 and the overlap period is set by the variable intake valve mechanisms 40, 41 and the variable exhaust valve mechanisms 42, 43, the cylinders # 1, # 2 , # 3, # 6, the compression ratio becomes higher than the compression ratio of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set as follows.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6にオーバーラップ期間が生じたときには、圧縮比可変機構81によりスライドリング82を下方位置に移動して燃焼室23の容積を減少することで、気筒#1,#2,#3,#6の圧縮比を、気筒#4,#5,#7,#8の圧縮比よりも高くしており、内部EGR量の多い気筒#1,#2,#3,#6が高圧縮比となり、燃焼速度が内部EGR量の少ない気筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period and is not affected by exhaust pulsation, but overshoots cylinders # 1, # 2, # 3, and # 6. When the lap period occurs, the compression ratio variable mechanism 81 moves the slide ring 82 to the lower position to reduce the volume of the combustion chamber 23, thereby reducing the compression ratio of the cylinders # 1, # 2, # 3, and # 6. The cylinders # 4, # 5, # 7, and # 8 have a higher compression ratio, and the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount have a high compression ratio, and the combustion speed is internal. The same as the combustion speed of cylinders # 4, # 5, # 7, and # 8 with a small EGR amount It can be increased. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例2では、圧縮比可変機構81を油圧や筒内圧により上方位置と下方位置との2つの位置に移動可能としたが、電動モータなどを利用することで、吸気可変動弁機構40,41及び排気可変動弁機構42,43が設定したオーバーラップ期間に応じて無段開に調整するようにしても良い。   In the second embodiment, the variable compression ratio mechanism 81 can be moved to two positions, an upper position and a lower position, by hydraulic pressure or in-cylinder pressure. However, by using an electric motor or the like, an intake variable valve mechanism can be used. 40 and 41 and the variable exhaust valve mechanisms 42 and 43 may be adjusted to be continuously open according to the overlap period set.

図7−1は、本発明の実施例3に係る内燃機関を表すV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の平面図、図7−2は、実施例3のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の平面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 7-1 is a plan view of a combustion chamber of a cylinder having a large internal EGR in a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 3 of the present invention, and FIG. 7-2 is a V-type 8-cylinder of Embodiment 3. It is a top view of the combustion chamber of a cylinder with few internal EGR in an engine. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例3のV型8気筒エンジンにおいて、図7−1及び図7−2に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のスキッシュ率(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例1では、燃焼パラメータ変更手段として、各バンク12,13のピストン16,17にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6のスキッシュ率が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率よりも高くなるように、各気筒のキャビティ形状を変更している。   In the V-type 8-cylinder engine of the third embodiment, as shown in FIGS. 7A and 7B, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8 as specific cylinders, 1st cylinder # 1, 3rd cylinder # 3, 2nd cylinder # 2, 6th cylinder # 6 as the 1st cylinder where the overlap period overlaps with the exhaust stroke of 5th cylinder # 5 and 4th cylinder # 4 Of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 as the second cylinder in which the overlap period does not overlap with this exhaust stroke (combustion parameter). It can be changed (combustion parameter changing means) so that the squish rate is different. In the first embodiment, as the combustion parameter changing means, the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are provided by the pistons 16 and 17 of the banks 12 and 13, respectively. The cavity shape of each cylinder is changed so that the squish rate is higher than the squish rate of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8.

具体的に説明すると、例えば、右バンク13にて、オーバーラップ期間が重なることで内部EGR量が多い第2気筒#2では、図7−1に示すように、ピストン17の頂面のほぼ中央にキャビティ91aを所定の大きさで設定し、その周囲の一方側に2つの吸気側バルブリセス92aを形成し、他方側に排気側バルブリセス93aを形成し、このキャビティ91aと吸気側バルブリセス92aと排気側バルブリセス93aとを連結面94a,95aで連結することで、その周囲に燃焼室23の天井面(シリンダヘッド21)に沿って傾斜したスキッシュ部96aが設定されている。一方、オーバーラップ期間が重ならずに内部EGR量が少ない第4気筒#4では、図7−2に示すように、ピストン17の頂面のほぼ中央にキャビティ91bを所定の大きさで設定し、その周囲の一方側に2つの吸気側バルブリセス92bを形成し、他方側に排気側バルブリセス93bを形成し、このキャビティ91bと吸気側バルブリセス92bと排気側バルブリセス93bとを連結面94b,95bで連結することで、その周囲に燃焼室23の天井面(シリンダヘッド21)に沿って傾斜したスキッシュ部96bが設定されている。   More specifically, for example, in the second bank # 2 having a large internal EGR amount due to overlapping overlap periods in the right bank 13, as shown in FIG. A cavity 91a is set to a predetermined size, two intake side valve recesses 92a are formed on one side of the cavity 91a, and an exhaust side valve recess 93a is formed on the other side. The cavity 91a, the intake side valve recess 92a, and the exhaust side By connecting the valve recess 93a with connecting surfaces 94a and 95a, a squish portion 96a inclined along the ceiling surface (cylinder head 21) of the combustion chamber 23 is set around the valve recess 93a. On the other hand, in the fourth cylinder # 4 in which the overlap period does not overlap and the amount of internal EGR is small, as shown in FIG. 7-2, the cavity 91b is set to a predetermined size at the approximate center of the top surface of the piston 17. Two intake side valve recesses 92b are formed on one side of the periphery, and an exhaust side valve recess 93b is formed on the other side. The cavity 91b, the intake side valve recess 92b, and the exhaust side valve recess 93b are connected by connecting surfaces 94b and 95b. Thus, a squish portion 96b that is inclined along the ceiling surface (cylinder head 21) of the combustion chamber 23 is set around the squish portion 96b.

この場合、第2気筒#2における吸気側バルブリセス92a、排気側バルブリセス93a、連結面94a,95aが、第4気筒#4における吸気側バルブリセス92b、排気側バルブリセス93b、連結面94b,95bより小さく設定されることで、第2気筒#2のスキッシュ部96aが第4気筒#4のスキッシュ部96bより大きく形成される。そのため、スキッシュ率は、下記数式で算出されるため、オーバーラップ期間が重なる第2気筒#2のスキッシュ率が、オーバーラップ期間が重ならない第4気筒#4のスキッシュ率に比べて高いものに設定されることとなる。
スキッシュ率=スキッシュ部の表面積/ピストン頂面の表面積
なお、スキッシュ部96a,96bは、ピストン17が上死点に位置するときに、ピストン17の頂面とシリンダヘッド21の下面とのクリアランスが著しく小さい(例えば、1mm程度)領域であり、図示しないが、シリンダヘッド21側にもスキッシュ部96a,96bに対向して傾斜したスキッシュ部が設けられている。また、バルブリセスは、ピストンが上死点に位置するときに、バルブと接触しないようにえぐられているくぼみ部分である。
In this case, the intake side valve recess 92a, the exhaust side valve recess 93a, and the connection surfaces 94a, 95a in the second cylinder # 2 are set smaller than the intake side valve recess 92b, the exhaust side valve recess 93b, and the connection surfaces 94b, 95b in the fourth cylinder # 4. Thus, the squish part 96a of the second cylinder # 2 is formed larger than the squish part 96b of the fourth cylinder # 4. Therefore, since the squish rate is calculated by the following formula, the squish rate of the second cylinder # 2 where the overlap period overlaps is set higher than that of the fourth cylinder # 4 where the overlap period does not overlap. Will be.
Squish ratio = surface area of squish portion / surface area of piston top surface In the squish portions 96a and 96b, when the piston 17 is located at the top dead center, the clearance between the top surface of the piston 17 and the bottom surface of the cylinder head 21 is remarkably large. Although it is a small region (for example, about 1 mm), although not shown, a squish portion inclined to face the squish portions 96a and 96b is also provided on the cylinder head 21 side. Further, the valve recess is a recessed portion that is punched out so as not to contact the valve when the piston is located at the top dead center.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第5気筒#5及び第7気筒#7では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1及び第3気筒#3のスキッシュ率が、第5気筒#5及び第7気筒#7のスキッシュ率よりも高く設定されているため、内部EGR量の多い第1気筒#1及び第3気筒#3では、スキッシュにより燃焼室23内での混合気の乱れが増進されることとなり、この気筒#1、#3の燃焼速度が内部EGR量の少ない第5気筒#5及び第7気筒#7の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第1気筒#1及び第3気筒#3の燃焼状態と、内部EGR量の少ない第5気筒#5及び第7気筒#7との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Therefore, in the first bank # 1 and the third cylinder # 3 in the left bank 12, the internal EGR amount is affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period. To increase. On the other hand, in the fifth cylinder # 5 and the seventh cylinder # 7, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, since the squish rates of the first cylinder # 1 and the third cylinder # 3 are set higher than the squish rates of the fifth cylinder # 5 and the seventh cylinder # 7, the first cylinder # having a large internal EGR amount. In the first and third cylinders # 3, the turbulence of the air-fuel mixture in the combustion chamber 23 is increased by the squish, and the combustion speeds of the cylinders # 1 and # 3 are the fifth cylinder # 5 and the small internal EGR amount The combustion speed increases to the same level as the combustion speed of the seventh cylinder # 7. As a result, the combustion states of the first cylinder # 1 and the third cylinder # 3 having a large internal EGR amount and the combustion states of the fifth cylinder # 5 and the seventh cylinder # 7 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4及び第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第2気筒#2及び第6気筒#6のスキッシュ率が、第4気筒#4及び第8気筒#8のスキッシュ率よりも高く設定されているため、内部EGR量の多い第2気筒#2及び第6気筒#6では、スキッシュにより燃焼室23内での混合気の乱れが増進されることとなり、この気筒#2、#6の燃焼速度が内部EGR量の少ない第4気筒#4及び第8気筒#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6の燃焼状態と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Similarly, in the right bank 13, in the second cylinder # 2 and the sixth cylinder # 6, the internal EGR amount is affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Quantitative increase. On the other hand, in the fourth cylinder # 4 and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, since the squish rates of the second cylinder # 2 and the sixth cylinder # 6 are set higher than the squish rates of the fourth cylinder # 4 and the eighth cylinder # 8, the second cylinder # having a large internal EGR amount. In the second and sixth cylinders # 6, the turbulence of the air-fuel mixture in the combustion chamber 23 is increased by the squish, and the combustion speeds of the cylinders # 2 and # 6 have a small internal EGR amount and the fourth cylinder # 4 and The combustion speed increases to the same level as the combustion speed of the eighth cylinder # 8. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the combustion states of the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

このように実施例3の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6におけるスキッシュ率を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率よりも高くなるように設定している。   Thus, in the internal combustion engine of the third embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. The squish rate in the sixth cylinder # 6 is higher than the squish rate in the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set to be.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6のスキッシュ率を、気筒#4,#5,#7,#8のスキッシュ率よりも高く設定しており、内部EGR量の多い気筒#1,#2,#3,#6の燃焼室23での混合気の乱れが増進され、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period without being affected by exhaust pulsation, but the squish of cylinders # 1, # 2, # 3, and # 6 The ratio is set to be higher than the squish ratio of cylinders # 4, # 5, # 7, and # 8, and mixing in the combustion chamber 23 of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount is performed. The turbulence is enhanced, and the combustion speed can be increased to the same level as that of the cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

図8は、本発明の実施例4に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の平面図、図9は、図8のIX−IX断面であってスキッシュ率可変機構を表す断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 8 is a plan view of a combustion chamber in a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 4 of the present invention, and FIG. 9 is a cross-sectional view showing a squish rate variable mechanism taken along the line IX-IX in FIG. It is. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例4のV型8気筒エンジンにおいて、図8及び図9に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のスキッシュ率(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例4では、燃焼パラメータ変更手段として、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にスキッシュ率可変機構101を設け、この気筒#1、#2、#3、#6のスキッシュ率が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率よりも高くなるように変更可能とし、且つ、その変更量をオーバーラップ期間の長さに応じ設定している。   In the V-type 8-cylinder engine of the fourth embodiment, as shown in FIGS. 8 and 9, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, and the fifth cylinder # as specific cylinders. 5. The squish rate of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinders whose overlap period overlaps with the exhaust stroke of the fourth cylinder # 4 ( Combustion parameters) and squish ratios of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinders in which the overlap period does not overlap with the exhaust stroke. Changes (combustion parameter changing means) can be made to be different. In the fourth embodiment, as the combustion parameter changing means, the squish rate variable mechanism 101 is provided in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6. , # 2, # 3, # 6 can be changed to be higher than the squish ratio of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, eighth cylinder # 8, And the amount of change is set according to the length of the overlap period.

具体的に説明すると、本実施例では、特定の気筒の排気行程にオーバーラップ期間が重なる気筒#1、#2、#3、#6にスキッシュ率可変機構101が設けられている。例えば、右バンク13の第2気筒#2に設けられたスキッシュ率可変機構101において、燃焼室23の天井部を構成するシリンダヘッド21の下面外周部には、周方向に沿ってスキッシュ部102が形成されている。そして、このシリンダヘッド21の下面には、スキッシュ部102の内側に位置してリング形状をなすスライドリング103が上下移動自在に支持されており、駆動装置104により上下移動可能となっている。また、ピストン17の頂面外周部には、スキッシュ部102及びスライドリング103に対向してスキッシュ部105が形成されている。   Specifically, in this embodiment, the squish rate variable mechanism 101 is provided in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps with the exhaust stroke of a specific cylinder. For example, in the squish rate variable mechanism 101 provided in the second cylinder # 2 of the right bank 13, the squish portion 102 is provided along the circumferential direction on the outer peripheral portion of the lower surface of the cylinder head 21 that constitutes the ceiling portion of the combustion chamber 23. Is formed. A slide ring 103 having a ring shape located inside the squish portion 102 is supported on the lower surface of the cylinder head 21 so as to be movable up and down, and can be moved up and down by a driving device 104. A squish portion 105 is formed on the outer peripheral portion of the top surface of the piston 17 so as to face the squish portion 102 and the slide ring 103.

この場合、右バンク13の第2気筒#2にて、吸気可変動弁機構41及び排気可変動弁機構43により運転状態に応じてオーバーラップ期間を設定するが、オーバーラップ期間がほとんどないときには、スキッシュ率可変機構101の駆動装置104によりスライドリング103を上方に移動してスキッシュ部105と離間させ、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2のスキッシュ率を、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8のスキッシュ率と同じにする。また、吸気可変動弁機構41及び排気可変動弁機構42により運転状態に応じてオーバーラップ期間が設定されたときには、スキッシュ率可変機構101の駆動装置104によりスライドリング103を下方に移動してスキッシュ部105に接近させ、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2のスキッシュ率を、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8のスキッシュ率より高く設定する。   In this case, in the second cylinder # 2 of the right bank 13, the overlap period is set according to the operation state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 43, but when there is almost no overlap period, The slide ring 103 is moved upward by the driving device 104 of the squish rate variable mechanism 101 to move away from the squish portion 105, and the squish rate of the second cylinder # 2 in which the overlap period overlaps with the exhaust stroke of the specific cylinder is The squish rate is the same as that of cylinders # 4, # 5, # 7, and # 8 where the overlap period does not overlap with the exhaust stroke of the cylinder. Further, when the overlap period is set according to the operating state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 42, the slide ring 103 is moved downward by the drive device 104 of the squish rate variable mechanism 101 and squished. The squish rate of the second cylinder # 2, which overlaps with the exhaust stroke of the specific cylinder and overlaps with the exhaust stroke of the specific cylinder, is set to the cylinder # 4, # 5, # 7 where the overlap period does not overlap with the exhaust stroke of the specific cylinder. , Set higher than the squish rate of # 8.

従って、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、オーバーラップ期間に第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にオーバーラップ期間が生じたときには、スキッシュ率可変機構101によりスライドリング103を下方に移動してスキッシュ部105に接近させることで、スキッシュエリアを拡大してスキッシュ率が高くなる。そのため、内部EGR量の多い気筒#1、#2、#3、#6では、燃焼室22,23での混合気の乱れが増進することとなり、この気筒#1、#2、#3、#6の燃焼速度が内部EGR量の少ない気筒#4、#5、#7、#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い気筒#1、#2、#3、#6の燃焼状態と、内部EGR量の少ない気筒#4、#5、#7、#8との燃焼状態が近似し、各バンク12,13の各気筒における燃焼状態がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the seventh cylinder # 7 and the eighth cylinder # 8 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation of the fifth cylinder # 5 and the fourth cylinder # 4. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, when the overlap period occurs in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the slide ring 103 is moved downward by the squish rate variable mechanism 101 and squished. By making it approach the part 105, a squish area is expanded and a squish rate becomes high. For this reason, in the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount, the disturbance of the air-fuel mixture in the combustion chambers 22 and 23 is promoted, and the cylinders # 1, # 2, # 3, and # 6 are increased. The combustion speed of No. 6 increases to the same level as the combustion speed of cylinders # 4, # 5, # 7, and # 8 with a small amount of internal EGR. As a result, the combustion states of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount and the combustion states of cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount are approximated, The combustion state in each cylinder of each bank 12 and 13 is almost uniform.

このように実施例4の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にスキッシュ率可変機構101を設け、吸気可変動弁機構40,41及び排気可変動弁機構42,43によりオーバーラップ期間が設定されると、この気筒#1、#2、#3、#4におけるスキッシュ率を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のスキッシュ率よりも高くなるように設定している。   Thus, in the internal combustion engine of the fourth embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. When the squish rate variable mechanism 101 is provided in the sixth cylinder # 6 and the overlap period is set by the variable intake valve mechanisms 40, 41 and the variable exhaust valve mechanisms 42, 43, the cylinders # 1, # 2 , # 3 and # 4 are higher than the squish rates of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7 and the eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set as follows.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6にオーバーラップ期間が生じたときには、スキッシュ率可変機構101によりスライドリング103を下方位置に移動してスキッシュエリアを拡大することで、気筒#1,#2,#3,#6のスキッシュ率を、気筒#4,#5,#7,#8のスキッシュ率よりも高くしており、内部EGR量の多い気筒#1,#2,#3,#6では、燃焼室22,23での混合気の乱れが増進することとなり、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period and is not affected by exhaust pulsation, but overshoots cylinders # 1, # 2, # 3, and # 6. When the lap period occurs, the squish rate variable mechanism 101 moves the slide ring 103 to the lower position to enlarge the squish area, thereby changing the squish rate of the cylinders # 1, # 2, # 3, and # 6 to the cylinder #. In cylinders # 1, # 2, # 3, and # 6, which have higher squish ratios of 4, # 5, # 7, and # 8 and have a large internal EGR amount, turbulence of the air-fuel mixture in the combustion chambers 22 and 23 The combustion speed is EGR amount less cylinder # 4, # 5, # 7, can be increased to the same extent as the burn rate of the # 8. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例4では、スキッシュ率可変機構101を駆動装置104により上下移動可能としたが、前述の実施例2における圧縮比可変機構81と同様に、油圧や筒内圧により上下移動可能としても良い。また、スキッシュ率可変機構101の駆動装置104として電動モータなどを利用することで、吸気可変動弁機構40,41及び排気可変動弁機構42,43が設定したオーバーラップ期間に応じて無段開に調整するようにしても良い。   In the fourth embodiment, the squish rate variable mechanism 101 can be moved up and down by the drive device 104. However, like the compression ratio variable mechanism 81 in the second embodiment, the squish rate variable mechanism 101 can be moved up and down by hydraulic pressure or in-cylinder pressure. good. In addition, by using an electric motor or the like as the driving device 104 of the squish rate variable mechanism 101, it is continuously opened according to the overlap period set by the variable intake valve mechanisms 40, 41 and the variable exhaust valve mechanisms 42, 43. You may make it adjust to.

更に、実施例3では、ピストン16、17側のスキッシュ部を変更し、実施例4では、シリンダヘッド20,21側のスキッシュ部を変更するようにしたが、いずれのスキッシュ部を変更してもよく、また、両方変更するようにしても良い。   Furthermore, in the third embodiment, the squish portion on the pistons 16 and 17 side is changed, and in the fourth embodiment, the squish portion on the cylinder heads 20 and 21 side is changed. Both may be changed.

図10−1は、本発明の実施例5に係る内燃機関を表すV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の断面図、図10−2は、実施例3のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   10-1 is a cross-sectional view of a combustion chamber of a cylinder having a large internal EGR in a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 5 of the present invention, and FIG. 10-2 is a V-type 8-cylinder of Embodiment 3. It is sectional drawing of the combustion chamber of a cylinder with few internal EGR in an engine. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例5のV型8気筒エンジンにおいて、図10−1及び図10−2に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のタンブル比(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例1では、燃焼パラメータ変更手段として、各バンク12,13のピストン16,17にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6のタンブル比が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比よりも高くなるように、各気筒の吸気ポート形状を変更している。   In the V-type 8-cylinder engine of the fifth embodiment, as shown in FIGS. 10-1 and 10-2, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8 as specific cylinders, 1st cylinder # 1, 3rd cylinder # 3, 2nd cylinder # 2, 6th cylinder # 6 as the 1st cylinder where the overlap period overlaps with the exhaust stroke of 5th cylinder # 5 and 4th cylinder # 4 Of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinder in which the overlap period does not overlap the exhaust stroke. It can be changed (combustion parameter changing means) so that the tumble ratio is different. In the first embodiment, as the combustion parameter changing means, the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are provided by the pistons 16 and 17 of the banks 12 and 13, respectively. The intake port shape of each cylinder is changed so that the tumble ratio becomes higher than the tumble ratios of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8.

具体的に説明すると、例えば、右バンク13にて、オーバーラップ期間が重なることで内部EGR量が多い第2気筒#2では、図10−1に示すように、吸気ポート25の位置を低く設定し、オーバーラップ期間が重ならずに内部EGR量が少ない第4気筒#4では、図10−2に示すように、吸気ポート25の位置を高く設定している。そのため、第2気筒#2では、吸気ポート25から燃焼室23への吸気経路が緩やかなほぼ直線状となり、燃焼室23へ導入される吸気の傾斜角度は小さくなる一方、第4気筒#4では、吸気ポート25から燃焼室23への吸気経路が緩やかな屈曲状となり、燃焼室23へ導入される吸気の傾斜角度は大きく、ほぼ直立したものとなる。従って、タンブル比は、下記数式で算出されるため、オーバーラップ期間が重なる第2気筒#2のタンブル比が、オーバーラップ期間が重ならない第4気筒#4のタンブル比に比べて高いものに設定されることとなる。
タンブル比=燃焼室での気流の旋回回数/クランク1回転
なお、タンブルは、吸気行程及び圧縮行程で、吸気ポート25から燃焼室23に吸入される空気流によりこの燃焼室23内で発生する縦の旋回流である。
More specifically, for example, in the second bank # 2 having a large internal EGR amount due to overlapping overlap periods in the right bank 13, as shown in FIG. 10-1, the position of the intake port 25 is set low. In the fourth cylinder # 4 where the overlap period does not overlap and the amount of internal EGR is small, the position of the intake port 25 is set high as shown in FIG. 10-2. Therefore, in the second cylinder # 2, the intake path from the intake port 25 to the combustion chamber 23 is a gentle straight line, and the inclination angle of the intake air introduced into the combustion chamber 23 is small, while in the fourth cylinder # 4 The intake path from the intake port 25 to the combustion chamber 23 is gently bent, and the inclination angle of the intake air introduced into the combustion chamber 23 is large and almost upright. Therefore, since the tumble ratio is calculated by the following formula, the tumble ratio of the second cylinder # 2 where the overlap period overlaps is set higher than the tumble ratio of the fourth cylinder # 4 where the overlap period does not overlap. Will be.
Tumble ratio = Number of swirling of airflow in combustion chamber / one rotation of crank Note that the tumble is generated in the combustion chamber 23 by the air flow sucked into the combustion chamber 23 from the intake port 25 in the intake stroke and the compression stroke. Is a swirl flow.

従って、左バンク12にて、第1気筒#1及び第3気筒#3では、オーバーラップ期間に第7気筒#7及び第5気筒#5の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第5気筒#5及び第7気筒#7では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1及び第3気筒#3のタンブル比が、第5気筒#5及び第7気筒#7のタンブル比よりも高く設定されているため、内部EGR量の多い第1気筒#1及び第3気筒#3では、タンブルにより燃焼室23内での混合気の乱れが増進されることとなり、この気筒#1、#3の燃焼速度が内部EGR量の少ない第5気筒#5及び第7気筒#7の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第1気筒#1及び第3気筒#3の燃焼状態と、内部EGR量の少ない第5気筒#5及び第7気筒#7との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Therefore, in the first bank # 1 and the third cylinder # 3 in the left bank 12, the internal EGR amount is affected by the exhaust pulsation of the seventh cylinder # 7 and the fifth cylinder # 5 during the overlap period. To increase. On the other hand, in the fifth cylinder # 5 and the seventh cylinder # 7, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, since the tumble ratio of the first cylinder # 1 and the third cylinder # 3 is set higher than the tumble ratio of the fifth cylinder # 5 and the seventh cylinder # 7, the first cylinder # having a large internal EGR amount is set. In the first and third cylinders # 3, the turbulence of the air-fuel mixture in the combustion chamber 23 is promoted by tumble, and the combustion speeds of the cylinders # 1 and # 3 are the fifth cylinder # 5 and the smaller internal EGR amount. The combustion speed increases to the same level as the combustion speed of the seventh cylinder # 7. As a result, the combustion states of the first cylinder # 1 and the third cylinder # 3 having a large internal EGR amount and the combustion states of the fifth cylinder # 5 and the seventh cylinder # 7 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

同様に、右バンク13にて、第2気筒#2及び第6気筒#6では、オーバーラップ期間に第8気筒#8及び第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4及び第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第2気筒#2及び第6気筒#6のタンブル比が、第4気筒#4及び第8気筒#8のタンブル比よりも高く設定されているため、内部EGR量の多い第2気筒#2及び第6気筒#6では、タンブルにより燃焼室23内での混合気の乱れが増進されることとなり、この気筒#2、#6の燃焼速度が内部EGR量の少ない第4気筒#4及び第8気筒#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6の燃焼状態と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態が近似し、左バンク12の各気筒における燃焼状態がほぼ均一状態となる。   Similarly, in the right bank 13, in the second cylinder # 2 and the sixth cylinder # 6, the internal EGR amount is affected by the exhaust pulsation of the eighth cylinder # 8 and the fourth cylinder # 4 during the overlap period. Quantitative increase. On the other hand, in the fourth cylinder # 4 and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, since the tumble ratio of the second cylinder # 2 and the sixth cylinder # 6 is set higher than the tumble ratio of the fourth cylinder # 4 and the eighth cylinder # 8, the second cylinder # having a large internal EGR amount. In the second and sixth cylinders # 6, the turbulence of the air-fuel mixture in the combustion chamber 23 is promoted by tumble, and the combustion speeds of the cylinders # 2 and # 6 have a small internal EGR amount. The combustion speed increases to the same level as the combustion speed of the eighth cylinder # 8. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the combustion states of the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated. The combustion state in each of the 12 cylinders is almost uniform.

このように実施例5の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6におけるタンブル比を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比よりも高くなるように設定している。   Thus, in the internal combustion engine of the fifth embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. The tumble ratio in the sixth cylinder # 6 is higher than the tumble ratio in the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set to be.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6のタンブル比を、気筒#4,#5,#7,#8のタンブル比よりも高く設定しており、内部EGR量の多い気筒#1,#2,#3,#6の燃焼室23での混合気の乱れが増進され、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 where the cylinders do not overlap, the internal EGR amount does not increase during this period without being affected by exhaust pulsation, but the cylinders # 1, # 2, # 3, and # 6 are tumbled The ratio is set higher than the tumble ratio of the cylinders # 4, # 5, # 7, and # 8, and the mixing in the combustion chamber 23 of the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount is set. The turbulence is enhanced, and the combustion speed can be increased to the same level as that of the cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

図11は、本発明の実施例6に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の断面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 11 is a cross-sectional view of a combustion chamber in a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 6 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例6のV型8気筒エンジンにおいて、図11に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6のタンブル比(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比とが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例5では、燃焼パラメータ変更手段として、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にタンブル比可変機構111を設け、この気筒#1、#2、#3、#6のタンブル比が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比よりも高くなるように変更可能とし、且つ、その変更量をオーバーラップ期間の長さに応じ設定している。   In the V-type 8-cylinder engine of the sixth embodiment, as shown in FIG. 11, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, the fifth cylinder # 5, Tumble ratio (combustion parameter) of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinder in which the overlap period overlaps with the exhaust stroke of the four cylinder # 4 And the tumble ratio of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinders whose overlap periods do not overlap with each other in the exhaust stroke. (Combustion parameter changing means) is possible. In the fifth embodiment, as the combustion parameter changing means, the tumble ratio variable mechanism 111 is provided in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6. , # 2, # 3, # 6 can be changed so that the tumble ratio of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, eighth cylinder # 8 is higher than the tumble ratio, And the amount of change is set according to the length of the overlap period.

具体的に説明すると、本実施例では、特定の気筒の排気行程にオーバーラップ期間が重なる気筒#1、#2、#3、#6にタンブル比可変機構111が設けられている。例えば、右バンク13の第2気筒#2に設けられたタンブル比可変機構111において、吸気ポート25内にはその長手方向に沿って仕切り壁113が設けられ、内部が上側流路112aと下側流路112bに仕切られており、上側流路112aの流路面積に対して、下側流路112bの流路面積が大きくなるようにする。また、吸気ポート25における仕切り壁113の上流側には、制御プレート114のほぼ中心部が支持軸115により回動自在に支持され、図示しない駆動装置により回動可能となっている。この制御プレート114は、上側流路112aを開閉可能とするように、下側流路112bに対応して開口部116が形成されている。   Specifically, in the present embodiment, the tumble ratio variable mechanism 111 is provided in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps with the exhaust stroke of a specific cylinder. For example, in the tumble ratio variable mechanism 111 provided in the second cylinder # 2 of the right bank 13, a partition wall 113 is provided in the intake port 25 along the longitudinal direction, and the inside is provided with the upper flow path 112a and the lower side. The flow path 112b is partitioned so that the flow area of the lower flow path 112b is larger than the flow area of the upper flow path 112a. Further, on the upstream side of the partition wall 113 in the intake port 25, a substantially central portion of the control plate 114 is rotatably supported by a support shaft 115, and can be rotated by a driving device (not shown). The control plate 114 has an opening 116 corresponding to the lower flow path 112b so that the upper flow path 112a can be opened and closed.

この場合、右バンク13の第2気筒#2にて、吸気可変動弁機構41及び排気可変動弁機構43により運転状態に応じてオーバーラップ期間を設定するが、オーバーラップ期間がほとんどないときには、タンブル比可変機構111により制御プレート114を、図11に実線で表す位置に回動して上流側流路112aだけを閉じ、吸気を開口部116から下流側流路112bを通して燃焼室23に導入する。そのため、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2のタンブル比を低くし、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8のタンブル比と同じにする。また、吸気可変動弁機構41及び排気可変動弁機構42により運転状態に応じてオーバーラップ期間が設定されたときには、タンブル比可変機構111により制御プレート114を、図11に二点差線で表す位置に回動して上流側流路112a及び下流側流路112bを開け、吸気を開口部116から各側流路112a,112bを通して燃焼室23に導入する。そのため、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2のタンブル比を高くし、特定の気筒の排気行程にオーバーラップ期間が重なる第2気筒#2のタンブル比を、特定の気筒の排気行程にオーバーラップ期間が重ならない気筒#4、#5、#7、#8のタンブル比より高く設定する。   In this case, in the second cylinder # 2 of the right bank 13, the overlap period is set according to the operation state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 43, but when there is almost no overlap period, The control plate 114 is rotated by the tumble ratio variable mechanism 111 to the position shown by the solid line in FIG. 11 to close only the upstream flow path 112a, and the intake air is introduced from the opening 116 into the combustion chamber 23 through the downstream flow path 112b. . Therefore, the cylinder # 4, # 5, # 7, # in which the overlap period does not overlap the exhaust stroke of the specific cylinder is lowered by lowering the tumble ratio of the second cylinder # 2 where the overlap period overlaps the exhaust stroke of the specific cylinder. Same as tumble ratio of 8. When the overlap period is set according to the operating state by the intake variable valve mechanism 41 and the exhaust variable valve mechanism 42, the control plate 114 is moved by the tumble ratio variable mechanism 111 to the position indicated by a two-dotted line in FIG. And the upstream flow path 112a and the downstream flow path 112b are opened, and the intake air is introduced from the opening 116 into the combustion chamber 23 through the respective side flow paths 112a and 112b. Therefore, the tumble ratio of the second cylinder # 2 in which the overlap period overlaps with the exhaust stroke of the specific cylinder is increased, and the tumble ratio of the second cylinder # 2 in which the overlap period overlaps with the exhaust stroke of the specific cylinder is specified It is set higher than the tumble ratio of cylinders # 4, # 5, # 7, and # 8 where the overlap period does not overlap with the exhaust stroke of the cylinder.

従って、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、オーバーラップ期間に第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にオーバーラップ期間が生じたときには、タンブル比可変機構111により制御プレート114を回動して下流側流路112bのみを開放することで、燃焼室22,23でのタンブルが生成されやすくなってタンブル比が高くなる。そのため、内部EGR量の多い気筒#1、#2、#3、#6では、タンブルにより燃焼室22,23での混合気の乱れが増進することとなり、この気筒#1、#2、#3、#6の燃焼速度が内部EGR量の少ない気筒#4、#5、#7、#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い気筒#1、#2、#3、#6の燃焼状態と、内部EGR量の少ない気筒#4、#5、#7、#8との燃焼状態が近似し、各バンク12,13の各気筒における燃焼状態がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the seventh cylinder # 7 and the eighth cylinder # 8 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation of the fifth cylinder # 5 and the fourth cylinder # 4. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, when an overlap period occurs in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the control plate 114 is rotated by the tumble ratio variable mechanism 111 to the downstream side. By opening only the flow path 112b, the tumble in the combustion chambers 22 and 23 is easily generated, and the tumble ratio is increased. Therefore, in the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount, the turbulence of the air-fuel mixture in the combustion chambers 22 and 23 is increased by tumble, and the cylinders # 1, # 2, and # 3 The combustion speed of # 6 increases to the same level as the combustion speed of cylinders # 4, # 5, # 7, and # 8 with a small internal EGR amount. As a result, the combustion states of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount and the combustion states of cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount are approximated, The combustion state in each cylinder of each bank 12 and 13 is almost uniform.

このように実施例6の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6にタンブル比可変機構111を設け、吸気可変動弁機構40,41及び排気可変動弁機構42,43によりオーバーラップ期間が設定されると、この気筒#1、#2、#3、#4におけるタンブル比を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8のタンブル比よりも高くなるように設定している。   As described above, in the internal combustion engine of the sixth embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. When the tumble ratio variable mechanism 111 is provided in the sixth cylinder # 6 and the overlap period is set by the variable intake valve mechanisms 40, 41 and the variable exhaust valve mechanisms 42, 43, the cylinders # 1, # 2 , # 3 and # 4, the tumble ratio is higher than the tumble ratio of the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set as follows.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6にオーバーラップ期間が生じたときには、タンブル比可変機構111により制御プレート114を回動して下流側流路112bのみを開放することで、気筒#1,#2,#3,#6のタンブル比を、気筒#4,#5,#7,#8のタンブル比よりも高くしており、内部EGR量の多い気筒#1,#2,#3,#6では、燃焼室22,23での混合気の乱れが増進することとなり、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period and is not affected by exhaust pulsation, but overshoots cylinders # 1, # 2, # 3, and # 6. When the lap period occurs, the control plate 114 is rotated by the tumble ratio variable mechanism 111 to open only the downstream flow path 112b. In the cylinders # 1, # 2, # 3, and # 6, which are higher than the tumble ratios of the cylinders # 4, # 5, # 7, and # 8 and have a large internal EGR amount, the air-fuel mixture in the combustion chambers 22 and 23 Turbulence increases, and the combustion speed is the amount of internal EGR. No cylinder # 4, # 5, # 7, it can be increased to the same extent as the burn rate of the # 8. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、実施例5、6では、吸気ポート24,25の形状によりタンブル比を変更するようにしたが、この構造に限らず、例えば、吸気ポートとは別にタンブル流の導入ポートを設け、これを開閉可能としたりしても良い。また、制御プレート114の駆動装置として電動モータなどを利用することで、吸気可変動弁機構40,41及び排気可変動弁機構42,43が設定したオーバーラップ期間に応じて無段開に調整するようにしても良い。   In the fifth and sixth embodiments, the tumble ratio is changed depending on the shape of the intake ports 24 and 25. However, the present invention is not limited to this structure. For example, a tumble flow introduction port is provided separately from the intake port. It may be possible to open and close. In addition, by using an electric motor or the like as a drive device for the control plate 114, the variable intake valve mechanisms 40, 41 and the variable exhaust valve mechanisms 42, 43 are adjusted to be continuously open according to the overlap period set. You may do it.

図12は、本発明の実施例7に係る内燃機関を表すV型8気筒エンジンにおける点火プラグの正面図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 12 is a front view of a spark plug in a V-type 8-cylinder engine that represents an internal combustion engine according to a seventh embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例7のV型8気筒エンジンの全体構成は、上述した実施例1と同様であるため、図1及び図2を用いて説明する。実施例7のV型8気筒エンジンにおいて、図1及び図2に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の点火エネルギー(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーとが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例1では、燃焼パラメータ変更手段として、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6における点火プラグの点火エネルギーが、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8における点火プラグの点火エネルギーよりも高くなるように変更している。   Since the overall configuration of the V-type 8-cylinder engine of Embodiment 7 is the same as that of Embodiment 1 described above, it will be described with reference to FIGS. 1 and 2. In the V-type 8-cylinder engine of the seventh embodiment, as shown in FIGS. 1 and 2, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, and the fifth cylinder # as specific cylinders. 5. Ignition energy of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinder in which the overlap period overlaps the exhaust stroke of the fourth cylinder # 4 ( Combustion parameters) and ignition energy of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinder in which the overlap period does not overlap with the exhaust stroke. Changes (combustion parameter changing means) can be made to be different. In the first embodiment, ignition plug ignition in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 is performed in each of the banks 12 and 13 as the combustion parameter changing means. The energy is changed to be higher than the ignition energy of the spark plugs in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8.

具体的に説明すると、図12に示すように、点火プラグ66,67は、先端部の貫通穴に装着された中心電極121と、先端部にこの中心電極121と絶縁体(図示略)を介して対向する位置に装着された接地電極122とを有しており、中心電極121と接地電極122との間には放電ギャップP(Pa,Pb)が設けられている。従って、点火装置により中心電極121と接地電極122との間に火花放電を発生させることで、燃焼室22,23を流動する混合気に着火することができる。本実施例では、オーバーラップ期間が重なることで内部EGR量が多い第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、中心電極121と接地電極122との放電ギャップPaを大きく設定し、オーバーラップ期間が重ならずに内部EGR量が少ない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、中心電極121と接地電極122との放電ギャップPbを小さく設定している。そのため、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、放電ギャップPaが大きいために点火エリアが拡大して火炎温度が上昇することとなり、点火エネルギーが、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーに比べて高いものに設定されることとなる。   More specifically, as shown in FIG. 12, the spark plugs 66 and 67 have a center electrode 121 mounted in the through hole at the tip, and the center electrode 121 and an insulator (not shown) at the tip. The ground electrode 122 is mounted at the opposite position, and a discharge gap P (Pa, Pb) is provided between the center electrode 121 and the ground electrode 122. Accordingly, by generating a spark discharge between the center electrode 121 and the ground electrode 122 by the ignition device, the air-fuel mixture flowing in the combustion chambers 22 and 23 can be ignited. In the present embodiment, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 that have a large internal EGR amount due to overlapping overlap periods, the center electrode 121 and the ground electrode 122 In the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 in which the discharge gap Pa is set large and the overlap period is not overlapped and the internal EGR amount is small, the center electrode 121 is used. The discharge gap Pb between the ground electrode 122 and the ground electrode 122 is set small. Therefore, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, since the discharge gap Pa is large, the ignition area is expanded and the flame temperature is increased. However, it is set higher than the ignition energy of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 where the overlap periods do not overlap.

従って、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、オーバーラップ期間に第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6の点火エネルギーが第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーよりも高く設定されているため、内部EGR量の多い気筒#1、#2、#3、#6では、大きな火炎エネルギーにより燃焼室22,23での火炎温度及び伝播速度が上昇することとなり、この気筒#1、#2、#3、#6の燃焼速度が内部EGR量の少ない気筒#4、#5、#7、#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い気筒#1、#2、#3、#6の燃焼状態と、内部EGR量の少ない気筒#4、#5、#7、#8との燃焼状態が近似し、各バンク12,13の各気筒における燃焼状態がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the seventh cylinder # 7 and the eighth cylinder # 8 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation of the fifth cylinder # 5 and the fourth cylinder # 4. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, the ignition energy of the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 is the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder. Since it is set higher than the ignition energy of # 8, in the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount, the flame temperature and propagation speed in the combustion chambers 22 and 23 are increased by the large flame energy. As a result, the combustion speed of the cylinders # 1, # 2, # 3, and # 6 increases to the same level as the combustion speeds of the cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount. As a result, the combustion states of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount and the combustion states of cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount are approximated, The combustion state in each cylinder of each bank 12 and 13 is almost uniform.

このように実施例7の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6における点火エネルギーを、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーよりも高くなるように設定している。   Thus, in the internal combustion engine of the seventh embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. The ignition energy in the sixth cylinder # 6 is higher than the ignition energy in the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. It is set to be.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6の点火エネルギーを、気筒#4,#5,#7,#8の点火エネルギーよりも高く設定しており、内部EGR量の多い気筒#1,#2,#3,#6の燃焼室23での火炎温度や伝播速度が上昇し、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period without being affected by exhaust pulsation, but ignition of cylinders # 1, # 2, # 3, and # 6 The energy is set higher than the ignition energy of the cylinders # 4, # 5, # 7, and # 8, and the flames in the combustion chambers 23 of the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount The temperature and propagation speed are increased, and the combustion speed can be increased to the same level as the combustion speeds of cylinders # 4, # 5, # 7, and # 8 with a small amount of internal EGR. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、この実施例7では、気筒の点火エネルギーを変更するものとして、点火プラグ66,67の放電ギャップPの大きさを変更するようにしたが、点火コイルを異なるものに変更するようにしても良い。   In the seventh embodiment, the magnitude of the discharge gap P of the spark plugs 66 and 67 is changed as the one that changes the ignition energy of the cylinder. However, the ignition coil may be changed to a different one. good.

図13は、本発明の実施例8に係る内燃機関を表すV型8気筒エンジンの概略平面図、図14は、実施例8のV型8気筒エンジンにおける点火制御のフローチャートである。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 13 is a schematic plan view of a V-type 8-cylinder engine representing an internal combustion engine according to Embodiment 8 of the present invention, and FIG. 14 is a flowchart of ignition control in the V-type 8-cylinder engine of Embodiment 8. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例8のV型8気筒エンジンにおいて、図13に示すように、各バンク12,13にて、特定の気筒としての第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気行程に、オーバーラップ期間が重なる第1の気筒としての第1気筒#1、第3気筒#3、第2気筒#2、第6気筒#6の点火エネルギー(燃焼パラメータ)と、この排気行程に、オーバーラップ期間が重ならない第2の気筒としての第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーとが相違するように変更(燃焼パラメータ変更手段)可能としている。そして、この実施例8では、燃焼パラメータ変更手段として、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6における点火プラグの個数が、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火プラグの個数よりも多くなるように変更している。   In the V-type 8-cylinder engine of the eighth embodiment, as shown in FIG. 13, in each of the banks 12 and 13, the seventh cylinder # 7, the eighth cylinder # 8, the fifth cylinder # 5, Ignition energy (combustion parameter) of the first cylinder # 1, the third cylinder # 3, the second cylinder # 2, and the sixth cylinder # 6 as the first cylinder in which the overlap period overlaps with the exhaust stroke of the four cylinder # 4 And the ignition energy of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 as the second cylinders whose overlap periods do not overlap with each other in this exhaust stroke. (Combustion parameter changing means) is possible. In the eighth embodiment, the number of spark plugs in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 is set in each bank 12 and 13 as the combustion parameter changing means. However, the number of spark plugs is changed to be larger than the number of spark plugs of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8.

具体的に説明すると、各バンク12,13にて、オーバーラップ期間が重なることで内部EGR量が多い第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、2つの点火プラグ66,67を装着し、オーバーラップ期間が重ならずに内部EGR量が少ない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、1つの点火プラグ66,67を装着している。そのため、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、点火部(点火プラグ66,67)が2つあるために点火エリアが拡大して火炎温度が上昇することとなり、点火エネルギーが、オーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーに比べて高いものに設定されることとなる。   More specifically, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 that have a large internal EGR amount due to overlapping overlap periods. In the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, in which the two spark plugs 66 and 67 are mounted and the overlap period is not overlapped and the internal EGR amount is small. One spark plug 66, 67 is attached. Therefore, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, since there are two ignition parts (ignition plugs 66 and 67), the ignition area is expanded and the flame temperature is increased. The ignition energy is set higher than the ignition energy of the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 where the overlap periods do not overlap. The Rukoto.

従って、各バンク12,13にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、オーバーラップ期間に第7気筒#7、第8気筒#8、第5気筒#5、第4気筒#4の排気脈動の影響を受けて内部EGR量が所定量増加する。一方、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、オーバーラップ期間に他の気筒の排気脈動の影響を受けずに内部EGR量は増加しない。ところが、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、2つの点火プラグ66,67により着火されることで、点火エネルギーが第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火エネルギーよりも高く設定されているため、内部EGR量の多い気筒#1、#2、#3、#6では、大きな火炎エネルギーにより燃焼室22,23での火炎温度及び伝播速度が上昇することとなり、この気筒#1、#2、#3、#6の燃焼速度が内部EGR量の少ない気筒#4、#5、#7、#8の燃焼速度と同程度まで上がる。その結果、内部EGR量の多い気筒#1、#2、#3、#6の燃焼状態と、内部EGR量の少ない気筒#4、#5、#7、#8との燃焼状態が近似し、各バンク12,13の各気筒における燃焼状態がほぼ均一状態となる。   Accordingly, in each of the banks 12 and 13, in the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6, the seventh cylinder # 7 and the eighth cylinder # 8 in the overlap period. The internal EGR amount increases by a predetermined amount under the influence of the exhaust pulsation of the fifth cylinder # 5 and the fourth cylinder # 4. On the other hand, in the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8, the internal EGR amount does not increase without being affected by the exhaust pulsation of other cylinders during the overlap period. However, the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are ignited by the two spark plugs 66 and 67, so that the ignition energy is the fourth cylinder # 4, Since the ignition energy of the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8 is set higher than that of the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount, a large flame is generated. The energy increases the flame temperature and the propagation speed in the combustion chambers 22 and 23, and the combustion speeds of the cylinders # 1, # 2, # 3, and # 6 are the cylinders # 4, # 5, # having a small internal EGR amount. 7. Increases to the same rate as # 8. As a result, the combustion states of cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount and the combustion states of cylinders # 4, # 5, # 7, and # 8 having a small internal EGR amount are approximated, The combustion state in each cylinder of each bank 12 and 13 is almost uniform.

ここで、本実施例のV型8気筒エンジンにおける点火制御について説明する。図14に示すように、ステップS1では、エンジンの運転状態がアイドル運転状態かどうかを、例えば、エンジン回転数に基づいて判定する。このステップS1にて、エンジンがアイドル運転状態でなければ、ステップS2にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6では、2本の点火プラグ66,67で点火を実行し、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8では、1本の点火プラグ66,67で点火を実行する。一方、ステップS1にて、エンジンがアイドル運転状態であれば、ステップS3にて、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6でも、1本の点火プラグ66,67で点火を実行する。   Here, ignition control in the V-type 8-cylinder engine of this embodiment will be described. As shown in FIG. 14, in step S <b> 1, it is determined based on the engine speed, for example, whether the engine operating state is an idle operating state. In step S1, if the engine is not in an idling state, two spark plugs are provided in first cylinder # 1, second cylinder # 2, third cylinder # 3, and sixth cylinder # 6 in step S2. Ignition is performed by 66 and 67, and ignition is performed by one spark plug 66 and 67 in the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8. On the other hand, if the engine is in an idle operation state in step S1, one ignition is performed in first cylinder # 1, second cylinder # 2, third cylinder # 3, and sixth cylinder # 6 in step S3. Ignition is performed by the plugs 66 and 67.

即ち、エンジンのアイドル運転では、吸気可変動弁機構40,41及び排気可変動弁機構42,43によりオーバーラップ期間をなくすことで、排気ガスが吸気ポート24,25または燃焼室22,23に吹き返す量を少なくし、燃焼安定及び燃費向上させており、第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6は、他の気筒の排気脈動の影響を受けない。そのため、このときは、第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8と同様に、1本の点火プラグ66,67で点火を実行する。   That is, in idle operation of the engine, exhaust gas is blown back to the intake ports 24 and 25 or the combustion chambers 22 and 23 by eliminating the overlap period by the variable intake valve mechanisms 40 and 41 and the variable exhaust valve mechanisms 42 and 43. The amount is reduced, combustion stability and fuel efficiency are improved, and the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the sixth cylinder # 6 are not affected by the exhaust pulsation of other cylinders. . Therefore, at this time, ignition is performed with one spark plug 66, 67, similarly to the fourth cylinder # 4, the fifth cylinder # 5, the seventh cylinder # 7, and the eighth cylinder # 8.

このように実施例8の内燃機関にあっては、V型8気筒エンジンにて、特定の気筒の排気行程にオーバーラップ期間が重なる第1気筒#1、第2気筒#2、第3気筒#3、第6気筒#6における点火プラグ66,67の個数を、排気行程にオーバーラップ期間が重ならない第4気筒#4、第5気筒#5、第7気筒#7、第8気筒#8の点火プラグ66,67の個数よりも多くなるように設定している。   As described above, in the internal combustion engine of the eighth embodiment, in the V-type 8-cylinder engine, the first cylinder # 1, the second cylinder # 2, and the third cylinder # in which the overlap period overlaps with the exhaust stroke of a specific cylinder. 3. The number of spark plugs 66, 67 in the sixth cylinder # 6 is the same as that in the fourth cylinder # 4, fifth cylinder # 5, seventh cylinder # 7, and eighth cylinder # 8 where the overlap period does not overlap the exhaust stroke. The number is set to be larger than the number of spark plugs 66 and 67.

従って、排気行程にオーバーラップ期間が重なる気筒#1,#2,#3,#6では、この期間に排気脈動の影響を受けて内部EGR量が所定量増加する一方、排気行程にオーバーラップ期間が重ならない気筒#4,#5,#7,#8では、この期間に排気脈動の影響を受けずに内部EGR量は増加しないが、気筒#1,#2,#3,#6の点火エネルギーを、気筒#4,#5,#7,#8の点火エネルギーよりも高く設定しており、内部EGR量の多い気筒#1,#2,#3,#6の燃焼室23での火炎温度や伝播速度が上昇し、燃焼速度が内部EGR量の少ない筒#4,#5,#7,#8の燃焼速度と同程度まで上げることができる。その結果、内部EGR量の多い第2気筒#2及び第6気筒#6と、内部EGR量の少ない第4気筒#4及び第8気筒#8との燃焼状態を近似し、気筒間の燃焼のばらつきを抑制することができると共に、出力トルクの変動を抑制することができ、また、オーバーラップによる燃費の改善や排気ガス性能の向上を適正に図ることができる。   Therefore, in the cylinders # 1, # 2, # 3, and # 6 where the overlap period overlaps the exhaust stroke, the internal EGR amount increases by a predetermined amount due to the influence of exhaust pulsation during this period, while the overlap period overlaps the exhaust stroke. In cylinders # 4, # 5, # 7, and # 8 that do not overlap, the internal EGR amount does not increase during this period without being affected by exhaust pulsation, but ignition of cylinders # 1, # 2, # 3, and # 6 The energy is set higher than the ignition energy of the cylinders # 4, # 5, # 7, and # 8, and the flames in the combustion chambers 23 of the cylinders # 1, # 2, # 3, and # 6 having a large internal EGR amount The temperature and propagation speed are increased, and the combustion speed can be increased to the same level as the combustion speeds of cylinders # 4, # 5, # 7, and # 8 with a small amount of internal EGR. As a result, the combustion states of the second cylinder # 2 and the sixth cylinder # 6 having a large internal EGR amount and the fourth cylinder # 4 and the eighth cylinder # 8 having a small internal EGR amount are approximated, and combustion between the cylinders is approximated. Variations can be suppressed, fluctuations in output torque can be suppressed, and fuel consumption improvement and exhaust gas performance improvement due to overlap can be appropriately achieved.

なお、上述した各実施例では、各気筒の点火順序を、第1気筒#1、第8気筒#8、第7気筒#7、第3気筒#3、第6気筒#6、第5気筒#5、第4気筒#4、第2気筒#2としたが、この順序に限るものではなく、各バンク12,13の気筒がそれぞれ不等間隔で点火・爆発するようになっていればよいものである。また、上述の各実施例にて、燃料を燃焼室内に直接噴射する筒内噴射式内燃機関としたが、燃料を吸気系に噴射するポート噴射式内燃機関であっても良い。更に、本発明の機関をV型8気筒エンジンとして説明したが、気筒数はこれに限るものではない。   In each of the above-described embodiments, the firing order of each cylinder is changed to the first cylinder # 1, the eighth cylinder # 8, the seventh cylinder # 7, the third cylinder # 3, the sixth cylinder # 6, and the fifth cylinder #. 5. The fourth cylinder # 4 and the second cylinder # 2 are not limited to this order. The cylinders in the banks 12 and 13 may ignite and explode at unequal intervals. It is. In each of the above-described embodiments, the cylinder injection internal combustion engine that directly injects fuel into the combustion chamber is used. However, a port injection internal combustion engine that injects fuel into the intake system may be used. Furthermore, although the engine of the present invention has been described as a V-type 8-cylinder engine, the number of cylinders is not limited to this.

以上のように、本発明にかかる内燃機関は、排気脈動が作用する気筒の燃焼状態と、排気脈動が作用しない気筒の燃焼状態とが同様となるように、燃焼状態に起因する燃焼パラメータを変更するようにしたものであり、不等間隔点火・爆発式の内燃機関に有用である。   As described above, the internal combustion engine according to the present invention changes the combustion parameter resulting from the combustion state so that the combustion state of the cylinder where the exhaust pulsation acts is the same as the combustion state of the cylinder where the exhaust pulsation does not act. This is useful for unequal-interval ignition / explosion type internal combustion engines.

本発明の実施例1に係る内燃機関を表すV型8気筒エンジンの概略平面図である。1 is a schematic plan view of a V-type 8-cylinder engine that represents an internal combustion engine according to Embodiment 1 of the present invention. 実施例1のV型8気筒エンジンの概略構成図である。1 is a schematic configuration diagram of a V-type 8-cylinder engine according to Embodiment 1. FIG. 実施例1のV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の断面図である。2 is a cross-sectional view of a combustion chamber of a cylinder having a large internal EGR in the V-type 8-cylinder engine of Embodiment 1. FIG. 実施例1のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の断面図である。FIG. 3 is a cross-sectional view of a combustion chamber of a cylinder having a small internal EGR in the V-type 8-cylinder engine of the first embodiment. 実施例1のV型8気筒エンジンにおける吸気弁及び排気弁の開放時期を表すタイムチャートである。3 is a time chart showing the opening timing of the intake valve and the exhaust valve in the V-type 8-cylinder engine of the first embodiment. 本発明の実施例2に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の平面図である。It is a top view of the combustion chamber in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 2 of this invention. 図5のVI−VI断面であって圧縮比可変機構を表す断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5 and illustrating a variable compression ratio mechanism. 圧縮比可変機構の作動状態を表す断面図である。It is sectional drawing showing the operation state of a compression ratio variable mechanism. 本発明の実施例3に係る内燃機関を表すV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の平面図である。It is a top view of the combustion chamber of a cylinder with much internal EGR in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 3 of this invention. 実施例3のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の平面図である。FIG. 6 is a plan view of a combustion chamber of a cylinder having a small internal EGR in the V-type 8-cylinder engine of Example 3. 本発明の実施例4に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の平面図である。It is a top view of the combustion chamber in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 4 of this invention. 図8のIX−IX断面であってスキッシュ率可変機構を表す断面図である。It is IX-IX section of Drawing 8, and is a sectional view showing a squish rate variable mechanism. 本発明の実施例5に係る内燃機関を表すV型8気筒エンジンにおける内部EGRの多い気筒の燃焼室の断面図である。It is sectional drawing of the combustion chamber of a cylinder with much internal EGR in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 5 of this invention. 実施例3のV型8気筒エンジンにおける内部EGRの少ない気筒の燃焼室の断面図である。FIG. 6 is a cross-sectional view of a combustion chamber of a cylinder having a low internal EGR in the V-type 8-cylinder engine of Example 3. 本発明の実施例6に係る内燃機関を表すV型8気筒エンジンにおける燃焼室の断面図である。It is sectional drawing of the combustion chamber in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 6 of this invention. 本発明の実施例7に係る内燃機関を表すV型8気筒エンジンにおける点火プラグの正面図である。It is a front view of the spark plug in the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 7 of this invention. 本発明の実施例8に係る内燃機関を表すV型8気筒エンジンの概略平面図である。It is a schematic plan view of the V type 8 cylinder engine showing the internal combustion engine which concerns on Example 8 of this invention. 実施例8のV型8気筒エンジンにおける点火制御のフローチャートである。10 is a flowchart of ignition control in a V-type 8-cylinder engine according to an eighth embodiment.

符号の説明Explanation of symbols

12,13 バンク
16,17 ピストン
22,23 燃焼室
24,25 吸気ポート
26,27 排気ポート(燃焼パラメータ変更手段)
28,29 吸気弁
30,31 排気弁
36,37 吸気カム
38,39 排気カム
40,41 吸気可変動弁機構
42,43 排気可変動弁機構
54,55 排気マニホールド
61,62 インジェクタ
66,67 点火プラグ(燃焼パラメータ変更手段)
68 電子制御ユニット、ECU
80a,80b キャビティ(燃焼パラメータ変更手段)
81 圧縮比可変機構(燃焼パラメータ変更手段)
82 スライドリング
96a,96b スキッシュ部(燃焼パラメータ変更手段)
101 スキッシュ率可変機構(燃焼パラメータ変更手段)
103 スライドリング
111 タンブル比可変機構(燃焼パラメータ変更手段)
113 仕切り壁
114 制御プレート
121 中心電極
122 接地電極
Pa,Pb 放電ギャップ(燃焼パラメータ変更手段)
#1,#2,#3,#6 気筒(第1の気筒)
#4,#5,#7,#8 気筒(第2の気筒)
12, 13 Bank 16, 17 Piston 22, 23 Combustion chamber 24, 25 Intake port 26, 27 Exhaust port (combustion parameter changing means)
28, 29 Intake valve 30, 31 Exhaust valve 36, 37 Intake cam 38, 39 Exhaust cam 40, 41 Intake variable valve mechanism 42, 43 Exhaust variable valve mechanism 54, 55 Exhaust manifold 61, 62 Injector 66, 67 Ignition plug (Combustion parameter changing means)
68 Electronic control unit, ECU
80a, 80b cavity (combustion parameter changing means)
81 Compression ratio variable mechanism (combustion parameter changing means)
82 Slide ring 96a, 96b Squish part (combustion parameter changing means)
101 Squish rate variable mechanism (combustion parameter changing means)
103 Slide ring 111 Tumble ratio variable mechanism (combustion parameter changing means)
113 Partition wall 114 Control plate 121 Center electrode 122 Ground electrode Pa, Pb Discharge gap (combustion parameter changing means)
# 1, # 2, # 3, # 6 cylinder (first cylinder)
# 4, # 5, # 7, # 8 cylinder (second cylinder)

Claims (7)

複数の気筒が左右のバンクに分けて配列されて該各バンクの気筒が不等間隔で点火されると共に、各気筒における排気弁の開放期間と吸気弁の開放期間とがオーバーラップする期間を有する内燃機関において、前記各バンクにて、特定の気筒の排気行程に前記オーバーラップ期間が重なる第1の気筒と、特定の気筒の排気行程に前記オーバーラップ期間が重ならない第2の気筒との燃焼状態に起因する燃焼パラメータを変更する燃焼パラメータ変更手段を設けたことを特徴とする内燃機関。   A plurality of cylinders are divided into left and right banks, and the cylinders in each bank are ignited at unequal intervals, and the exhaust valve opening period and the intake valve opening period in each cylinder overlap each other. In the internal combustion engine, in each bank, combustion between a first cylinder in which the overlap period overlaps with an exhaust stroke of a specific cylinder and a second cylinder in which the overlap period does not overlap with an exhaust stroke of the specific cylinder An internal combustion engine comprising combustion parameter changing means for changing a combustion parameter caused by a state. 請求項1に記載の内燃機関において、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒の圧縮比を変更することを特徴とする内燃機関。   2. The internal combustion engine according to claim 1, wherein the combustion parameter changing means changes a compression ratio of the first cylinder or the second cylinder as the combustion parameter. 請求項1に記載の内燃機関において、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒のスキッシュ率を変更することを特徴とする内燃機関。   2. The internal combustion engine according to claim 1, wherein the combustion parameter changing means changes a squish rate of the first cylinder or the second cylinder as the combustion parameter. 請求項1に記載の内燃機関において、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒のタンブル比を変更することを特徴とする内燃機関。   2. The internal combustion engine according to claim 1, wherein the combustion parameter changing means changes a tumble ratio of the first cylinder or the second cylinder as the combustion parameter. 請求項1に記載の内燃機関において、前記燃焼パラメータ変更手段は、前記燃焼パラメータとして前記第1の気筒または前記第2の気筒の点火エネルギーを変更することを特徴とする内燃機関。   2. The internal combustion engine according to claim 1, wherein the combustion parameter changing means changes ignition energy of the first cylinder or the second cylinder as the combustion parameter. 請求項5に記載の内燃機関において、前記燃焼パラメータ変更手段は、内燃機関のアイドル状態では、前記点火エネルギーを変更しないことを特徴とする内燃機関。   6. The internal combustion engine according to claim 5, wherein the combustion parameter changing means does not change the ignition energy in an idle state of the internal combustion engine. 請求項1から5のいずれか一つに記載の内燃機関において、前記燃焼パラメータ変更手段は、前記オーバーラップ期間に応じて前記圧縮比または前記スキッシュ率または前記タンブル比または点火エネルギーを変更することを特徴とする内燃機関。   6. The internal combustion engine according to claim 1, wherein the combustion parameter changing unit changes the compression ratio, the squish rate, the tumble ratio, or ignition energy in accordance with the overlap period. A characteristic internal combustion engine.
JP2004354604A 2004-12-07 2004-12-07 Internal combustion engine Pending JP2006161691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354604A JP2006161691A (en) 2004-12-07 2004-12-07 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354604A JP2006161691A (en) 2004-12-07 2004-12-07 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006161691A true JP2006161691A (en) 2006-06-22

Family

ID=36663981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354604A Pending JP2006161691A (en) 2004-12-07 2004-12-07 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006161691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241697A (en) * 2011-05-24 2012-12-10 Yamaha Motor Co Ltd Four-stroke engine and outboard motor
WO2016063639A1 (en) * 2014-10-24 2016-04-28 日立オートモティブシステムズ株式会社 Engine control device
JPWO2021171405A1 (en) * 2020-02-26 2021-09-02

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241697A (en) * 2011-05-24 2012-12-10 Yamaha Motor Co Ltd Four-stroke engine and outboard motor
WO2016063639A1 (en) * 2014-10-24 2016-04-28 日立オートモティブシステムズ株式会社 Engine control device
JP2016084732A (en) * 2014-10-24 2016-05-19 日立オートモティブシステムズ株式会社 Control device of engine
CN107076097A (en) * 2014-10-24 2017-08-18 日立汽车系统株式会社 The control device of engine
US10697383B2 (en) 2014-10-24 2020-06-30 Hitachi Automotive Systems, Ltd. Engine control device
JPWO2021171405A1 (en) * 2020-02-26 2021-09-02
WO2021171405A1 (en) * 2020-02-26 2021-09-02 本田技研工業株式会社 V8 engine
JP7339424B2 (en) 2020-02-26 2023-09-05 本田技研工業株式会社 V8 engine
US11821359B2 (en) 2020-02-26 2023-11-21 Honda Motor Co., Ltd. V8 engine

Similar Documents

Publication Publication Date Title
US10247156B2 (en) Internal combustion engine
US9932883B2 (en) Spark-ignition direct-injection engine
US8985086B2 (en) Method and device for controlling spark-ignition direct injection engine
JP4172340B2 (en) Control device for spark ignition engine
JP2006283754A (en) Engine
JP5272611B2 (en) Spark ignition internal combustion engine
JP4706618B2 (en) Internal combustion engine
JP6213175B2 (en) Control device for compression ignition engine
JP2013245602A (en) Compression self-ignition gasoline engine
JP5998503B2 (en) Intake and exhaust system for multi-cylinder engine
JPWO2007066565A1 (en) engine
JP2006161691A (en) Internal combustion engine
JP4274112B2 (en) Internal combustion engine
JP4803225B2 (en) Internal combustion engine
JP4415840B2 (en) Internal combustion engine
JP2012047145A (en) Fuel injection control device for internal combustion engine
JP4297044B2 (en) Internal combustion engine
JP2006257999A (en) Internal combustion engine
JP5049226B2 (en) Intake control device for internal combustion engine
JP2018178719A (en) Cylinder stop controller for auxiliary chamber engine
JP2014156852A (en) Compression ignition engine
JP2010024971A (en) Internal combustion engine
JP5206274B2 (en) Design method of spark ignition internal combustion engine
JP2009097339A (en) Spark ignition internal combustion engine
JP6131873B2 (en) Engine blow-by gas recirculation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428