JP2007327094A - Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger - Google Patents
Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger Download PDFInfo
- Publication number
- JP2007327094A JP2007327094A JP2006158686A JP2006158686A JP2007327094A JP 2007327094 A JP2007327094 A JP 2007327094A JP 2006158686 A JP2006158686 A JP 2006158686A JP 2006158686 A JP2006158686 A JP 2006158686A JP 2007327094 A JP2007327094 A JP 2007327094A
- Authority
- JP
- Japan
- Prior art keywords
- sacrificial anode
- brazing
- aluminum alloy
- core material
- anode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
この発明は、不活性ガス雰囲気中でフッ化物フラックスやセシウム化合物を含むフラックスを用いたろう付けによってラジエータやヒータコアなどのアルミニウム製熱交換器を製造する場合、その構造部材であるチューブ材(クラッド材を曲成し、溶接またはろう付けによりチューブ形状としたものを含む)として好適なろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材に関する。 In the case of manufacturing an aluminum heat exchanger such as a radiator or a heater core by brazing using a fluoride flux or a flux containing a cesium compound in an inert gas atmosphere, this invention is a tube material (cladding material) that is a structural member of the heat exchanger. The present invention relates to a high-strength aluminum alloy clad material for heat exchangers that is excellent in brazing properties (including those that are bent and formed into a tube shape by welding or brazing).
自動車のラジエータやヒータコアなどのチューブ材には、JIS A3003 などのAl−Mn 系合金を心材とし、一方の面にAl−Si 系合金のろう材をクラッドし、場合によっては他方の面にAl−Zn 系合金やAl−Zn−Mg系合金からなる犠牲陽極材をクラッドした厚さ0.3mm程度の3層クラッド材が用いられている。 Tube materials such as radiators and heater cores for automobiles are made of an Al-Mn alloy such as JIS A3003 as a core material, clad with a brazing material of an Al-Si alloy on one side, and in some cases, Al-- A three-layer clad material having a thickness of about 0.3 mm in which a sacrificial anode material made of a Zn-based alloy or an Al-Zn-Mg-based alloy is clad is used.
Al−Si 系合金のろう材は、チューブとフィンとの接合、チューブとヘッダープレートとの接合のためのもので、ろう付けは、フッ化物フラックスやセシウム化合物を含むフラックスを用いて不活性ガス雰囲気ろう付け、あるいは真空ろう付けにより行われる。また、チューブ材内面の犠牲陽極材は、使用中に作動流体と接し、犠牲陽極効果を発揮して心材の孔食や隙間腐食を防止し、チューブ材外面の犠牲陽極材は、使用中に犠牲陽極効果を発揮して心材の孔食を防止する。 The brazing material of Al-Si alloy is for joining tubes and fins, and joining tubes and header plates. Brazing is performed using an inert gas atmosphere using a fluoride flux or a flux containing a cesium compound. It is performed by brazing or vacuum brazing. In addition, the sacrificial anode material on the inner surface of the tube material comes into contact with the working fluid during use and exhibits a sacrificial anode effect to prevent pitting corrosion and crevice corrosion of the core material. The sacrificial anode material on the outer surface of the tube material is sacrificed during use. Demonstrate pitting corrosion of core material by demonstrating anode effect.
ラジエータやヒータコアの製造は、従来、心材の片面にろう材、他の片面に犠牲陽極材をクラッドしたクラッド板材を曲成し、溶接することにより偏平チューブとし、ヘッダープレートに組み付けた後、一体にろう付けする(溶接型)ことにより行われていたが、近年、図1〜2に示すように、心材3の片面にろう材4、他の片面に犠牲陽極材5をクラッドしたクラッド板材を曲げ加工するだけで溶接することなくチューブ形状1、2とし、ヘッダープレートに組み付けて一体ろう付けする(ろう付け型)ことにより製造される手法が行われるようになっている。
Conventionally, radiators and heater cores have been manufactured by bending a welded clad plate with a brazing material on one side of the core material and a sacrificial anode material on the other side and welding to a flat tube. Although it was performed by brazing (welding die), in recent years, as shown in FIGS. 1 and 2, a clad plate material in which a
近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点からチューブ材を含む構成材料の薄肉化が要請され、そのために材料の高強度化が求められており、チューブ材の強度を高めるために、心材に多量のMn、Cu、Siなどを添加するとともに、これらの元素の含有により心材の耐食性が低下するため、犠牲陽極材に多量のZnを含有させて心材との電位差を確保し、確実に犠牲陽極効果が得られるようにした材料構成が提案されている(特許文献1参照)。 In recent years, with the demand for reducing the weight of automobiles, automotive heat exchangers are also required to reduce the thickness of structural materials, including tube materials, from the viewpoint of energy and resource savings. In order to increase the strength of the tube material, a large amount of Mn, Cu, Si, etc. is added to the core material, and the corrosion resistance of the core material is lowered due to the inclusion of these elements, so a large amount of Zn is added to the sacrificial anode material. Has been proposed (see Patent Document 1).
また、犠牲陽極材に多量のMgを添加して、犠牲陽極材と心材の界面にMg2Siを微細析出させたり、心材に微量のMgを添加して心材中にMg2Siを微細析出させ、さらに強度を高めた材料構成のものも提案されている(特許文献2参照)。しかしながら、犠牲陽極材にMgを添加する場合、前記溶接型のチューブ材に関しては有効であるが、図1〜2に示すろう付け型のチューブ材に関しては、犠牲陽極材とろうが直接接合される面があり、Mgがフラックスと反応してMgF2などの化合物を形成してフラックスの機能が損なわれ、ろう付け欠陥が生じる問題がある。心材にMgを添加する場合、心材からろう材へMgが拡散し、同様にMgがフラックスと反応してMgF2などの化合物を形成してフラックスの機能が損なわれ、ろう付け欠陥が生じる問題があるため、Mgの添加量は0.2%以下に限定されており、ろう付け型のチューブ材の場合には、Mg添加による高強度化には限界がある。 Also, a large amount of Mg is added to the sacrificial anode material, and Mg 2 Si is finely precipitated at the interface between the sacrificial anode material and the core material, or a very small amount of Mg is added to the core material to finely precipitate Mg 2 Si in the core material. In addition, a material structure having higher strength has been proposed (see Patent Document 2). However, when Mg is added to the sacrificial anode material, it is effective with respect to the welding type tube material, but with respect to the brazing type tube material shown in FIGS. There is a problem that Mg reacts with the flux to form a compound such as MgF 2 to impair the function of the flux and cause a brazing defect. When Mg is added to the core material, Mg diffuses from the core material to the brazing material. Similarly, Mg reacts with the flux to form a compound such as MgF 2 , thereby reducing the function of the flux and causing a brazing defect. For this reason, the amount of Mg added is limited to 0.2% or less, and in the case of a brazed tube material, there is a limit to increasing the strength by adding Mg.
そのため、図1〜2に示すように、犠牲陽極材とろうが直接接合する面を有するろう付け型のチューブ材の高強度化に関しては、心材に多量のMn、Cu、Siなどを添加するとともに、犠牲陽極材にもMn、Fe、Siを添加する手法が提案されている(特許文献3参照)が、この場合、MnとFeは、犠牲陽極材面に表層拡散してきたろう材のSiと反応し、Al−Mn−Si系やAl−Fe−Si系の金属間化合物を多数形成するため、これらの元素の添加によって犠牲陽極材面のろうの濡れ広がり性が低下し、ろう付け欠陥が生じるという問題がある。
発明者らは、ろう付け型ラジエーター用チューブ材について、上記従来のチューブ材よりさらに高強度を達成し、犠牲陽極材面のろうの濡れ広がり性を高めて向上したろう付け性を得るために、クラッド材の強度およびろう付け性と、クラッド材における心材と犠牲陽極材の組成とその組み合わせ、心材および犠牲陽極材の組織などとの関係について試験、検討を行った結果、つぎのことを見出した。 In order to obtain a brazing property that the brazing-type radiator tube material achieves higher strength than the above-described conventional tube material, and improves the brazing wettability of the sacrificial anode material surface. As a result of testing and investigating the relationship between the strength and brazeability of the clad material, the composition of the core material and sacrificial anode material in the clad material and their combination, and the structure of the core material and sacrificial anode material, the following was found. .
心材の強度を高めるためにはCu、Si、Mnの添加が有効であるが、Cu、Siを多量に添加すると、心材の融点が低下し、ろう付け加熱中に心材の一部が溶融するという問題がある。これは、ろう付け加熱中にろう材のSiが心材中に多量に拡散して、ろう材と心材の境界近傍の心材が局部溶融するためであり、従って、心材へのSiとCuの添加量は制限されなければならない。 Addition of Cu, Si and Mn is effective to increase the strength of the core material. However, if a large amount of Cu and Si is added, the melting point of the core material decreases, and part of the core material melts during brazing heating. There's a problem. This is because a large amount of Si in the brazing material diffuses into the core material during brazing heating, and the core material in the vicinity of the boundary between the brazing material and the core material melts locally. Therefore, the amount of Si and Cu added to the core material Must be restricted.
犠牲陽極材については、チューブ材の強度を高めるために、Mn、Fe、Siなどの元素を含有させるのが有効であるが、前記のように、これらの元素の添加により犠牲陽極面のろうの濡れ性が低下して、ろう付け性が害される。犠牲陽極面の強度を高めることによりチューブ材の強度を向上させたとしても、熱交換器は使用中に犠牲陽極材が優先腐食して消失するため、犠牲陽極材そのものの強度向上は、熱交換器の使用中の強度耐久性向上に寄与せず、使用中に強度耐久性が急激に低下することとなる。 As for the sacrificial anode material, it is effective to contain elements such as Mn, Fe, Si, etc. in order to increase the strength of the tube material. The wettability decreases and the brazing property is impaired. Even if the strength of the tube material is improved by increasing the strength of the sacrificial anode surface, the sacrificial anode material disappears due to preferential corrosion during use of the heat exchanger. It does not contribute to the improvement of strength durability during use of the vessel, and the strength durability is drastically lowered during use.
犠牲陽極材に、ろう付け性に影響しないSiを添加し、犠牲陽極材へのSiの添加量を心材のSi濃度以上とした場合、ろう付け加熱中にSiが犠牲陽極材から心材に拡散し、犠牲陽極材と心材との境界近傍の心材側でAl−Mn−Si化合物の微細析出が生じ、チューブ材の強度が向上し、この場合、犠牲陽極材が消失しても、心材側で強度が向上しているため、熱交換器の使用中の強度耐久性の低下は少なく、犠牲陽極材にMn、Fe、Siを合わせて添加した場合より強度耐久性が向上する。 If Si is added to the sacrificial anode material and the amount of Si added to the sacrificial anode material exceeds the Si concentration of the core material, Si diffuses from the sacrificial anode material to the core material during brazing heating. The Al-Mn-Si compound is finely precipitated near the boundary between the sacrificial anode material and the core material, and the strength of the tube material is improved. In this case, even if the sacrificial anode material disappears, the strength is increased on the core material side. Therefore, the strength durability during use of the heat exchanger is less decreased, and the strength durability is improved as compared with the case where Mn, Fe, and Si are added to the sacrificial anode material.
但し、犠牲陽極材にSiを多量に添加した場合には、ろう材からの多量のSiの拡散によりろう材と心材の境界近傍の心材が溶融するように、犠牲陽極材と心材の境界近傍の心材が局部溶融するため、犠牲陽極材へのSiの添加量も限定されなければならない。なお、犠牲陽極材にMn、Fe、Siを合わせて添加した場合には、犠牲陽極材中のSiはAl−Mn−Si系やAl−Fe−Si系の化合物を形成するため、ろう付け加熱中に犠牲陽極材から心材へ拡散するSi量が少なく、心材の強度を高める効果はほとんどない。 However, when a large amount of Si is added to the sacrificial anode material, a large amount of Si diffuses from the brazing material so that the core material near the boundary between the brazing material and the core material melts. Because the core material melts locally, the amount of Si added to the sacrificial anode material must also be limited. When Mn, Fe, and Si are added to the sacrificial anode material, Si in the sacrificial anode material forms an Al—Mn—Si-based or Al—Fe—Si-based compound. The amount of Si diffusing from the sacrificial anode material into the core material is small, and there is almost no effect of increasing the strength of the core material.
本発明は、上記の知見に基づいてなされたものであり、その目的は、優れた強度耐久性とろう付け性をそなえ、熱交換器、とくに自動車用熱交換器のチューブ材として好適に使用することができる熱交換器用アルミニウム合金クラッド材を提供することにある。 The present invention has been made on the basis of the above findings, and the object thereof is to provide excellent strength and durability and brazing, and is suitably used as a tube material for heat exchangers, particularly automotive heat exchangers. An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger.
上記目的を達成するための請求項1によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、少なくとも心材の一方の面に犠牲陽極材をクラッドしてなるアルミニウム合金クラッド材であって、心材が、Si:0.3〜1.2 %、Cu:0.2%を超え1.0%以下、Mn:1.0〜1.8 %、Ti:0.05〜0.35%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材が、Si:1.0〜1.5 %、Zn:1.0〜7.0%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材のSi含有量が心材のSi含有量以上であることを特徴とする。
The high-strength aluminum alloy clad material for heat exchanger excellent in brazing performance according to
請求項2によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1において、前記心材の一方の面に犠牲陽極材がクラッドされ、他方の面にAl−Si系ろう材がクラッドされていることを特徴とする。
A high-strength aluminum alloy clad material for a heat exchanger excellent in brazeability according to
請求項3によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1において、前記心材の両面に犠牲陽極材がクラッドされていることを特徴とする。
The high strength aluminum alloy clad material for heat exchangers excellent in brazing property according to
請求項4によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1〜3のいずれかにおいて、前記心材がさらに、Cr:0.02〜0.3 %、Zr:0.02〜0.3%のうちの1種または2種を含有することを特徴とする。
The high-strength aluminum alloy clad material for a heat exchanger excellent in brazing property according to
請求項5によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、前記心材がさらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。
The high-strength aluminum alloy clad material for a heat exchanger excellent in brazing property according to
請求項6によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1〜5のいずれかにおいて、前記犠牲陽極材がさらに、In:0.05%以下、Sn:0.05以下のうちの1種または2種を含有することを特徴とする。
The high-strength aluminum alloy clad material for heat exchangers excellent in brazing property according to claim 6 is characterized in that in any one of
請求項7によるろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1〜6のいずれかにおいて、400℃までの昇温速度を50℃/分とし、595℃までの到達時間を30分以内とする条件で加熱した場合において、犠牲陽極材表面の平均結晶粒度が0.13mm以下であることを特徴とする。
The high-strength aluminum alloy clad material for a heat exchanger excellent in brazeability according to claim 7 has a temperature increase rate of up to 400 ° C at 50 ° C / min in any one of
本発明によれば、優れた強度耐久性とろう付け性をそなえ、熱交換器、とくに自動車用熱交換器のチューブ材として好適に使用することができる熱交換器用アルミニウム合金クラッド材が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy clad material for heat exchangers which has the outstanding intensity | strength durability and brazing property and can be used suitably as a tube material of a heat exchanger, especially an automotive heat exchanger is provided. .
本発明に係るろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材における合金成分の意義およびそれらの限定理由について説明する。
(心材)
Si:Siは、固溶硬化とAl−Mn−Si系の化合物の微細析出硬化により、心材の強度を向上させる機能を有する。好ましい含有範囲は0.3〜1.2%であり、0.3%未満ではその効果が十分でなく、1.2%を超えて含有すると耐食性を低下させるとともに、心材の融点を下げ、ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.7〜1.2%である。
The significance of the alloy components in the high strength aluminum alloy clad material for heat exchangers with excellent brazing properties according to the present invention and the reasons for their limitation will be described.
(Heartwood)
Si: Si has a function of improving the strength of the core material by solid solution hardening and fine precipitation hardening of an Al—Mn—Si based compound. The preferable content range is 0.3 to 1.2%, and if it is less than 0.3%, the effect is not sufficient. If it exceeds 1.2%, the corrosion resistance is lowered and the melting point of the core material is lowered. Local melting tends to occur during application. The more preferable content range of Si is 0.7 to 1.2%.
Cu:Cuは、心材の強度を向上させるとともに、心材の電位を貴にし、犠牲陽極材との電位差を大きくして、防食効果を向上させるよう機能する。さらに心材中のCuはろう付け加熱時に犠牲陽極材中に拡散して、なだらかな濃度勾配を形成させる結果、心材側の電位が貴となり、犠牲陽極材の表面側の電位が卑となって犠牲陽極材中になだらかな電位分布が形成され、腐食形態を全面腐食型にする。Cuの好ましい含有量は0.2〜1.0%の範囲であり、0.2%未満ではその効果が小さく、1.0%を超えると心材の融点が低下して、ろう付け時に局部的な溶融を生じ易くなる。Cuのさらに好ましい含有範囲は0.4〜0.7%である。 Cu: Cu functions to improve the anticorrosion effect by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference from the sacrificial anode material. Furthermore, Cu in the core material diffuses into the sacrificial anode material during brazing heating and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble and the potential on the surface side of the sacrificial anode material becomes base and sacrificed. A gentle potential distribution is formed in the anode material, and the corrosion form is changed to the full corrosion type. The preferable content of Cu is in the range of 0.2 to 1.0%. When the content is less than 0.2%, the effect is small, and when the content exceeds 1.0%, the melting point of the core material is lowered, so that it is localized during brazing. Easy melting occurs. The more preferable content range of Cu is 0.4 to 0.7%.
Mn:Mnは、心材の強度を向上させるとともに、心材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。好ましい含有範囲は1.0%〜1.8%であり、1.0%未満ではその効果が小さく、1.8%を超えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果健全な板材が得難い。Mnのさらに好ましい含有範囲は1.2〜1.7%である。 Mn: Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. A preferable content range is 1.0% to 1.8%, and if the content is less than 1.0%, the effect is small. If the content exceeds 1.8%, a coarse compound is generated at the time of casting, and the rollability is low. As a result of harm, it is difficult to obtain a healthy plate. A more preferable content range of Mn is 1.2 to 1.7%.
Ti:Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではこの効果が少なく0.35%を超えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2である。 Ti: Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed. Corrosion occurs by preferentially corroding the low-Ti concentration region over the high-concentration region. It has the effect of layering the form, thereby preventing the progress of corrosion in the thickness direction and improving the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, this effect is small, and if it exceeds 0.35%, casting becomes difficult, and workability deteriorates and is healthy. Production of the material becomes difficult. A more preferable content range of Ti is 0.1 to 0.2.
CrとZr:CrとZrは、ろう付け加熱中の再結晶温度を高め、心材の結晶粒度を粗大化させ、ろう材中のSiの粒界拡散を抑制して、エロージョンを抑制し、その結果、ろう付け性を向上させるよう機能する。CrとZrの好ましい含有範囲はそれぞれ0.02〜0.3%であり、0.3%を超えて含有しても効果が飽和する。CrとZrのさらに好ましい含有範囲はそれぞれ0.05〜0.2%である。 Cr and Zr: Cr and Zr increase the recrystallization temperature during brazing heating, coarsen the grain size of the core material, suppress the grain boundary diffusion of Si in the brazing material, and suppress erosion. , Function to improve brazing. The preferable content ranges of Cr and Zr are 0.02 to 0.3%, respectively, and even if the content exceeds 0.3%, the effect is saturated. The more preferable content ranges of Cr and Zr are each 0.05 to 0.2%.
VとB:VとBは、心材の結晶粒度を粗大化しろう付け加熱中のMgの粒界拡散を抑制する。好ましい含有範囲はそれぞれ0.01〜0.3%であり、0.3%を超えて含有しても効果が飽和する。 V and B: V and B coarsen the grain size of the core material and suppress Mg grain boundary diffusion during brazing heating. A preferable content range is 0.01 to 0.3%, respectively, and even if it exceeds 0.3%, the effect is saturated.
(犠牲陽極材)
Si:Siは、犠牲陽極材の強度を向上させる。さらに、ろう付け加熱中に心材に拡散し、心材中にAl−Si−Mn系化合物の微細析出が生成して心材の強度を向上させる。好ましい含有範囲は1.0〜1.5%の範囲であり、1.0%未満ではその効果が小さく、1.5%を超えて含有すると、ろう付け加熱中の心材への拡散量が多くなり、心材に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は1.1〜1.4%である。
(Sacrificial anode material)
Si: Si improves the strength of the sacrificial anode material. Furthermore, it diffuses into the core material during brazing heating, and fine precipitates of Al-Si-Mn compounds are generated in the core material, thereby improving the strength of the core material. A preferable content range is 1.0 to 1.5%, and if the content is less than 1.0%, the effect is small. Therefore, local melting is likely to occur in the core material. The more preferable content range of Si is 1.1 to 1.4%.
Zn:Znは犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を保持させる。その結果、心材の孔食やすき間腐食を防止する。Znの好ましい範囲は1.0〜7.0%であり、1.0%未満ではその効果が小さく、7.0%を超えて含有すると犠牲陽極材の自己腐食性が増大する。Znのさらに好ましい含有範囲は2.0〜5.0である。 Zn: Zn lowers the potential of the sacrificial anode material and maintains the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. The preferable range of Zn is 1.0 to 7.0%. When the content is less than 1.0%, the effect is small, and when the content exceeds 7.0%, the self-corrosion property of the sacrificial anode material increases. A more preferable content range of Zn is 2.0 to 5.0.
In、Sn:InとSnは、微量の添加により犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を確実にし、心材の孔食やすき間腐食を防止する。InとSnの好ましい範囲はそれぞれ0.05%以下(0%を含まず)であり、0.05%を超えて含有すると犠牲陽極材の自己腐食性が増大する。InとSnのさらに好ましい含有範囲はそれぞれ0.01〜0.03%である。 In, Sn: In and Sn lower the potential of the sacrificial anode material by adding a small amount, ensure the sacrificial anode effect on the core material, and prevent pitting corrosion and crevice corrosion of the core material. The preferable ranges of In and Sn are 0.05% or less (not including 0%), respectively. If the content exceeds 0.05%, the self-corrosion property of the sacrificial anode material increases. More preferable content ranges of In and Sn are 0.01 to 0.03%, respectively.
(ろう材)
Si:ろう材としてはAl−Si系合金が適用され、通常7〜13%のSiを含む合金が用いられる。含有量が7%未満では流動性が低下しろうとして有効に作用せず、13%を超えると健全な材料の製造が難しくなる。心材にMgを含む材料のろう付けをより確実にするためには、Siの含有範囲を9.5〜12.0%とするのが好ましい。Siが9.5%未満ではろう材量が不足する場合があり、12.0%を超えるとろう材中にSiの粗大な晶出物が生じて、ろうの溶融が不均一になり、ろう付け欠陥が生じ易くなる。
(Brazing material)
Si: An Al—Si based alloy is used as the brazing material, and an alloy containing 7 to 13% Si is usually used. If the content is less than 7%, the fluidity tends to decrease and does not act effectively, and if it exceeds 13%, it is difficult to produce a sound material. In order to ensure brazing of the material containing Mg in the core material, the Si content range is preferably 9.5 to 12.0%. If the Si content is less than 9.5%, the amount of brazing material may be insufficient. If the Si content exceeds 12.0%, coarse crystallized products of Si are generated in the brazing material, resulting in non-uniform melting of the brazing. A flaw is likely to occur.
なお、ろう材中には、Fe:0.15〜2.0%、Zn:0.5〜5.0%、In:0.05%以下、Sn:0.05%以下、Cu:0.5〜5.0%、Sr:0.005〜0.1%、Na:1〜100ppm、Sb:0.001〜0.5%の範囲で含有されていても本発明の効果が損なわれることはない。 In the brazing material, Fe: 0.15 to 2.0%, Zn: 0.5 to 5.0%, In: 0.05% or less, Sn: 0.05% or less, Cu: 0. Even if it is contained in the range of 5 to 5.0%, Sr: 0.005 to 0.1%, Na: 1 to 100 ppm, Sb: 0.001 to 0.5%, the effect of the present invention is impaired. There is no.
本発明によるアルミニウム合金クラッド材は、上記の組成を有し、400℃までの昇温速度を50℃/分とし、595℃までの到達時間を30分以内とする条件で加熱した場合において、犠牲陽極材の表面の結晶粒度が0.13mm以下(130μm以下)であることを特徴とする。上記の加熱条件、すなわち、ろう付け加熱において、犠牲陽極材の表面の結晶粒径が0.13mm以下の性状をそなえることによって、犠牲陽極材面のろうの濡れ広がり性が高められ、向上したろう付け性が得られる。 The aluminum alloy clad material according to the present invention has the above composition and is sacrificed when heated under the condition that the rate of temperature increase to 400 ° C. is 50 ° C./min and the time to reach 595 ° C. is within 30 minutes. The crystal grain size of the surface of the anode material is 0.13 mm or less (130 μm or less). Under the above heating conditions, that is, brazing heating, the sacrificial anode material surface has a crystal grain size of 0.13 mm or less, so that the wetting and spreading property of the sacrificial anode material surface is improved and improved. Easy to get.
犠牲陽極材表面へろうが濡れ広がる場合、結晶粒界が優先的にろうの濡れ広がる経路になり、その後、ろうは結晶粒界から粒内方向へ濡れ広がる。従って、結晶粒度が小さい場合、濡れ広がる経路が多くなり、ろうは均一に濡れ広がる。一方、結晶粒度が大きい場合、濡れ広がる経路が少なく、ろうの濡れ広がりは不均一になり、濡れ性が低下する。ろうの犠牲陽極材表面の濡れ性が良好である犠牲陽極材の結晶粒度は、犠牲陽極材の表面からみて0.13mm以下の範囲であり、0.13mmを超えると濡れ広がり性は低下する。 When the wax spreads to the surface of the sacrificial anode material, the grain boundary preferentially becomes a path for spreading the wax, and then the wax spreads wet from the grain boundary in the grain direction. Therefore, when the crystal grain size is small, the number of wet spreading paths increases, and the wax spreads uniformly. On the other hand, when the crystal grain size is large, there are few paths for spreading the wetting, the wetting spread of the wax becomes non-uniform, and the wettability decreases. The crystal grain size of the sacrificial anode material having good wettability on the surface of the sacrificial anode material of brazing is in the range of 0.13 mm or less as viewed from the surface of the sacrificial anode material, and when it exceeds 0.13 mm, the wettability spreads.
本発明によるアルミニウム合金クラッド材は、連続鋳造により心材用合金、犠牲陽極材用合金およびろう材用合金を造塊し、例えば、得られた鋳塊のうち、心材用合金と犠牲陽極材用合金については均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊とを組み合わせて熱間圧延してクラッド材とする。 The aluminum alloy clad material according to the present invention ingots a core material alloy, a sacrificial anode material alloy and a brazing material alloy by continuous casting. For example, among the obtained ingots, the core material alloy and the sacrificial anode material alloy Is subjected to a homogenization treatment, and hot rolled the sacrificial anode material alloy and brazing material alloy to a predetermined thickness, and these are combined with the ingot of the core material alloy and hot rolled to obtain a clad material. .
その後、クラッド材を冷間圧延、中間焼鈍、冷間圧延して所定厚さのアルミニウム合金クラッド材とする。この場合、中間焼鈍後の冷間圧延の加工度は、ろう付け加熱後の犠牲陽極材の平均結晶粒度を0.13mm以下に微細化するために、20%以上にするのが望ましい。 Thereafter, the clad material is cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material having a predetermined thickness. In this case, the degree of cold rolling after intermediate annealing is desirably 20% or more in order to refine the average grain size of the sacrificial anode material after brazing heating to 0.13 mm or less.
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
実施例
連続鋳造により表1に示す組成を有する心材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、心材用合金と犠牲陽極材用合金については均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊とを組み合わせて熱間圧延してクラッド材を得た。
Example An alloy for a core material having a composition shown in Table 1, an alloy for a sacrificial anode material having a composition shown in Table 2, and an alloy for a brazing material having a composition shown in Table 3 were obtained by ingot casting. Among the ingots, the alloy for the core material and the alloy for the sacrificial anode material are homogenized, and the alloy for the sacrificial anode material and the alloy for the brazing material are hot-rolled to a predetermined thickness. Were combined and hot rolled to obtain a clad material.
ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmのアルミニウム合金クラッド材(H14)とした。クラッドの構成は、犠牲陽極材を0.040mm、ろう材を0.030mm、残りを心材とした。中間焼鈍温度は350℃、保持時間は3時間とした。中間焼鈍後の冷間圧延の加工度は30%とした。 Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material (H14) having a thickness of 0.20 mm. The structure of the clad was 0.040 mm for the sacrificial anode material, 0.030 mm for the brazing material, and the remaining core material. The intermediate annealing temperature was 350 ° C. and the holding time was 3 hours. The degree of cold rolling work after intermediate annealing was 30%.
得られたアルミニウム合金クラッド材を試験材として、以下の方法によって、ろう付け加熱後の局部溶融の有無を観察し、ろう付け加熱後の犠牲陽極材表面の平均結晶粒度を測定し、犠牲陽極材表面のろうの濡れ広がり性を評価した。また、ろう付け加熱後の強度特性(引張強さ)を評価した。結果を表4〜5に示す。 Using the obtained aluminum alloy clad material as a test material, the following method was used to observe the presence or absence of local melting after brazing heating, to measure the average crystal grain size of the sacrificial anode material surface after brazing heating, and to the sacrificial anode material The wettability of the surface wax was evaluated. Moreover, the strength characteristic (tensile strength) after brazing heating was evaluated. The results are shown in Tables 4-5.
局部溶融の有無の観察:クラッド材のろう材面だけにフッ化物フラックスを塗布し、窒素ガス中、595℃(材料温度)で3分間加熱した。昇温は50℃/分、595℃(材料温度)までの到達時間を30分以内とする条件で加熱した。加熱後の試験材について、常法に従って樹脂埋め研磨し、圧延方向に対し直角方向の断面をケラー氏液でエッチングした後、光学顕微鏡を用いて400倍で局部溶融の有(○)無(×)を観察した。 Observation of the presence or absence of local melting: A fluoride flux was applied only to the brazing filler metal surface of the clad material and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. The temperature was raised under the conditions that the time required to reach 50 ° C./min and 595 ° C. (material temperature) was within 30 minutes. About the test material after heating, resin-filled and polished according to a conventional method, and after etching a cross section in a direction perpendicular to the rolling direction with Keller's solution, using an optical microscope, local melting is possible at a magnification of 400 (○) No (× ) Was observed.
犠牲陽極材の平均結晶粒度測定:クラッド板材のろう材面だけにフッ化物フラックスを塗布し、窒素ガス中、595℃(材料温度)で3分間加熱した。昇温は50℃/分、595(材料温度)までの到達時間を30分以内とする加熱条件で行い、加熱後の試験材について、犠牲陽極材面(L−LT方向)をエメリー紙(1000〜2400)で数μm研磨して、バフ研磨で鏡面に仕上げた。さらに、純水500ml、フッ酸27ml(46%)、ホウ酸11gを混合した溶液中で、電圧25〜30Vで45〜60秒電解した。その後、光学顕微鏡を用いて犠牲陽極材表面の偏光ミクロ組織を撮影し、比較法により結晶粒度を測定した。比較にはASTM(E112−61)の標準結晶粒度組織図を用い、標準結晶粒度組織図に示されているグレインサイズを平均結晶粒度の指標とした。 Measurement of average grain size of sacrificial anode material: Fluoride flux was applied only to the brazing material surface of the clad plate material, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. The heating is performed under heating conditions in which the time required to reach 595 (material temperature) within 50 minutes is 50 ° C./min, and the sacrificial anode material surface (L-LT direction) of the test material after heating is emery paper (1000 ˜2400) and polished to a mirror surface by buffing. Furthermore, electrolysis was performed at a voltage of 25 to 30 V for 45 to 60 seconds in a mixed solution of 500 ml of pure water, 27 ml (46%) of hydrofluoric acid, and 11 g of boric acid. Thereafter, the polarization microstructure on the surface of the sacrificial anode material was photographed using an optical microscope, and the crystal grain size was measured by a comparative method. For comparison, the standard grain size structure chart of ASTM (E112-61) was used, and the grain size shown in the standard grain size structure chart was used as an index of the average grain size.
犠牲陽極材表面のろうの濡れ広がり性の評価:得られたアルミニウム合金クラッド材を用いて、20mm×60mmの板を切り出し、シェーパ加工により端面(4面全て)を切削して15mm×55mmのサイズに仕上げた。この板をフラックスを塗布することなく、犠牲陽極材面を上にして炉内に水平に設置し、窒素ガス中、595℃(材料温度)で3分間加熱した。加熱後の犠牲陽極材面を光学顕微鏡を用いて16倍で撮影した写真(ネガポジ反転撮影)(図3)上からろう周り長さの平均値L(例えば、図3においては、L=(L1+L2)/2)を測定した。ろうの濡れ広がり性の評価は、ろう周り長さの平均値Lが1.5mm以上を良好(○)、1.5mm未満を不良(×)と評価した。 Evaluation of brazing wettability on the surface of the sacrificial anode material: Using the obtained aluminum alloy clad material, a 20 mm × 60 mm plate was cut out, and the end surfaces (all four surfaces) were cut by shaper processing to obtain a size of 15 mm × 55 mm Finished. This plate was placed horizontally in the furnace with the sacrificial anode material face up without applying flux, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. A photograph of the sacrificial anode material surface after heating taken at a magnification of 16 using an optical microscope (negative-positive reversal photography) (FIG. 3) The average value L of the wax circumference from the top (for example, L = (L1 + L2 in FIG. 3) ) / 2) was measured. In the evaluation of the wetting and spreading property of the wax, the average value L of the wax circumference length was evaluated as good (◯) when the average value L was 1.5 mm or more, and as poor (×) when less than 1.5 mm.
強度特性(引張強さ)の評価:得られたアルミニウム合金クラッド材のろう材面だけにフッ化物系フラックスを3g/m2塗布した後、窒素ガス中、595℃(材料温度)で3分間加熱し、その後、引張試験(JIS Z2241に準拠)を行った。 Evaluation of strength characteristics (tensile strength): 3 g / m 2 of fluoride-based flux was applied only to the brazing filler metal surface of the obtained aluminum alloy clad material, and then heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. Thereafter, a tensile test (based on JIS Z2241) was performed.
表4〜5にみられるように、本発明に従う試験材No.1〜39はいずれも、ろう付け加熱時の局部溶融は観察されず、犠牲陽極材面のろうの濡れ広がり性に優れ、ろう付け加熱後十分な強度を有していることが認められた。 As can be seen in Tables 4-5, the test material No. In all of Nos. 1 to 39, local melting during brazing heating was not observed, and the brazing wettability of the sacrificial anode material surface was excellent, and it was confirmed that the brazing heating had sufficient strength.
比較例1
連続鋳造により表6に示す組成を有する心材用合金、表7に示す組成を有する犠牲陽極材用合金を造塊した後、均質化処理を行い、犠牲陽極材用合金を熱間圧延して所定の厚さとし、前記心材用合金の鋳塊と実施例1で造塊後所定厚さまで熱間圧延した犠牲陽極用合金B1、前記犠牲陽極用合金と実施例1で造塊した心材用合金A1の鋳塊とを組み合わせ、さらに実施例1で造塊後所定厚さまで熱間圧延したろう材用合金C1を組み合わせて熱間圧延しクラッド材を得た。また、実施例1で造塊した心材用合金A1の鋳塊と実施例1で造塊後所定厚さまで熱間圧延した犠牲陽極用合金B1と実施例1で造塊後所定厚さまで熱間圧延したろう材用合金C1とを組み合わせて熱間圧延してクラッド材を得た。
Comparative Example 1
A core alloy having the composition shown in Table 6 and a sacrificial anode material alloy having the composition shown in Table 7 are ingoted by continuous casting, and then homogenized, and the sacrificial anode material alloy is hot-rolled to a predetermined value. The ingot of the core material alloy, the sacrificial anode alloy B1 hot rolled to a predetermined thickness after ingot formation in Example 1, and the sacrificial anode alloy and core material alloy A1 ingot in Example 1. In combination with the ingot, the alloy C1 for brazing material that was hot rolled to a predetermined thickness after ingot forming in Example 1 was combined and hot rolled to obtain a clad material. Also, the ingot of the core material alloy A1 ingoted in Example 1, the sacrificial anode alloy B1 ingot hot rolled to a predetermined thickness after ingotging in Example 1, and hot rolled to the predetermined thickness after ingot in Example 1. The clad material was obtained by combining with the brazing material alloy C1 and hot rolling.
ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmのアルミニウム合金クラッド材(H14)(試験材No.101〜105)とした。クラッドの構成は、犠牲陽極材を0.040mm、ろう材を0.030mm、残りを心材とした。中間焼鈍温度は350℃、保持時間は3時間とした。中間焼鈍後の冷間圧延の加工度は30%とした。なお、試験材No.105については、中間焼鈍後の冷間圧延の加工度を15%とした。 Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material (H14) (test materials No. 101 to 105) having a thickness of 0.20 mm. The structure of the clad was 0.040 mm for the sacrificial anode material, 0.030 mm for the brazing material, and the remaining core material. The intermediate annealing temperature was 350 ° C. and the holding time was 3 hours. The degree of cold rolling work after intermediate annealing was 30%. The test material No. For No. 105, the degree of cold rolling after intermediate annealing was 15%.
得られたアルミニウム合金クラッド材を試験材として、実施例1と同じ方法によって、ろう付け加熱後の局部溶融の有無を観察し、ろう付け加熱後の犠牲陽極材表面の平均結晶粒度を測定し、犠牲陽極材表面のろうの濡れ広がり性を評価した。また、ろう付け加熱後の強度特性(引張強さ)を評価した。結果を表8に示す。 Using the obtained aluminum alloy clad material as a test material, by the same method as in Example 1, observe the presence or absence of local melting after brazing heating, measure the average grain size of the sacrificial anode material surface after brazing heating, The wettability of the sacrificial anode material surface was evaluated. Moreover, the strength characteristic (tensile strength) after brazing heating was evaluated. The results are shown in Table 8.
表8に示すように、試験材No.101および102は、それぞれ心材のCu量および心材のSi量が多いため、心材とろう材との境界に局部溶融と激しいエロージョンが生じた。試験材No.103は犠牲陽極材のSi量が多いため、犠牲陽極材と心材との境界近傍に局部溶融が発生した。試験材No.104は犠牲陽極材のSi量が少ないため、十分な強度が得られなかった。試験材No.105は、鋳塊焼鈍後の加工度が低いため、ろう付け加熱後の犠牲陽極材表面の平均結晶粒径が粗大化して犠牲陽極材表面のろうの濡れ広がり性が低下した。 As shown in Table 8, the test material No. Since 101 and 102 had a large amount of Cu in the core material and a large amount of Si in the core material, local melting and severe erosion occurred at the boundary between the core material and the brazing material. Test material No. Since 103 had a large amount of Si in the sacrificial anode material, local melting occurred near the boundary between the sacrificial anode material and the core material. Test material No. Since 104 had a small amount of Si in the sacrificial anode material, sufficient strength could not be obtained. Test material No. In No. 105, since the degree of work after ingot annealing was low, the average crystal grain size of the sacrificial anode material surface after brazing heating was coarsened, and the wetting spreadability of the sacrificial anode material surface was reduced.
1 チューブ形状
2 チューブ形状
3 心材
4 ろう材
5 犠牲陽極材
1
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158686A JP4993440B2 (en) | 2006-06-07 | 2006-06-07 | High strength aluminum alloy clad material for heat exchangers with excellent brazeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158686A JP4993440B2 (en) | 2006-06-07 | 2006-06-07 | High strength aluminum alloy clad material for heat exchangers with excellent brazeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007327094A true JP2007327094A (en) | 2007-12-20 |
JP4993440B2 JP4993440B2 (en) | 2012-08-08 |
Family
ID=38927751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006158686A Active JP4993440B2 (en) | 2006-06-07 | 2006-06-07 | High strength aluminum alloy clad material for heat exchangers with excellent brazeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4993440B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167509A (en) * | 2008-01-21 | 2009-07-30 | Furukawa-Sky Aluminum Corp | Aluminum alloy clad material |
JP2011162823A (en) * | 2010-02-08 | 2011-08-25 | Kobe Steel Ltd | Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same |
JP2011241448A (en) * | 2010-05-18 | 2011-12-01 | Furukawa-Sky Aluminum Corp | Aluminum alloy clad material excellent in alkali resistance |
WO2013111904A1 (en) * | 2012-01-29 | 2013-08-01 | 株式会社デンソー | Highly corrosion-resistant aluminium alloy brazing sheet, and flow channel forming component which is for vehicle heat exchanger and which uses said brazing sheet |
JP2014101584A (en) * | 2014-02-20 | 2014-06-05 | Kobe Steel Ltd | Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor |
WO2015104760A1 (en) * | 2014-01-07 | 2015-07-16 | 株式会社Uacj | Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor |
WO2015104761A1 (en) * | 2014-01-10 | 2015-07-16 | 株式会社Uacj | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor |
JP6006421B2 (en) * | 2013-07-29 | 2016-10-12 | 株式会社Uacj | Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material |
JP2016186096A (en) * | 2015-03-27 | 2016-10-27 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
CN106319291A (en) * | 2009-05-27 | 2017-01-11 | 株式会社神户制钢所 | Aluminum alloy brazng sheet for heat exchangers and aluminum alloy brazed article for heat exchangers |
JP2018076548A (en) * | 2016-11-08 | 2018-05-17 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for heat exchanger and manufacturing method therefor, and manufacturing method of aluminum alloy tube for heat exchanger |
CN112725661A (en) * | 2020-12-24 | 2021-04-30 | 亚太轻合金(南通)科技有限公司 | Aluminum alloy with strong corrosion resistance and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188822A (en) * | 1993-12-24 | 1995-07-25 | Mitsubishi Alum Co Ltd | Al alloy clad material for structural member of automotive heat exchanger excellent in pitting corrosion resistance |
JP2000202680A (en) * | 1999-01-11 | 2000-07-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance |
JP2002285271A (en) * | 2001-03-23 | 2002-10-03 | Kobe Steel Ltd | Aluminum alloy clad plate |
-
2006
- 2006-06-07 JP JP2006158686A patent/JP4993440B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188822A (en) * | 1993-12-24 | 1995-07-25 | Mitsubishi Alum Co Ltd | Al alloy clad material for structural member of automotive heat exchanger excellent in pitting corrosion resistance |
JP2000202680A (en) * | 1999-01-11 | 2000-07-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance |
JP2002285271A (en) * | 2001-03-23 | 2002-10-03 | Kobe Steel Ltd | Aluminum alloy clad plate |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167509A (en) * | 2008-01-21 | 2009-07-30 | Furukawa-Sky Aluminum Corp | Aluminum alloy clad material |
CN106319291A (en) * | 2009-05-27 | 2017-01-11 | 株式会社神户制钢所 | Aluminum alloy brazng sheet for heat exchangers and aluminum alloy brazed article for heat exchangers |
JP2011162823A (en) * | 2010-02-08 | 2011-08-25 | Kobe Steel Ltd | Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same |
US8802243B2 (en) | 2010-02-08 | 2014-08-12 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy clad member adopted to heat exchanger, and core material for the same |
JP2011241448A (en) * | 2010-05-18 | 2011-12-01 | Furukawa-Sky Aluminum Corp | Aluminum alloy clad material excellent in alkali resistance |
US10099320B2 (en) | 2012-01-29 | 2018-10-16 | Denso Corporation | High corrosion-resistant aluminum alloy brazing sheet and channel forming component for vehicular heat exchanger using same |
JP2013155404A (en) * | 2012-01-29 | 2013-08-15 | Denso Corp | High corrosion resistant aluminum alloy brazing sheet, and flow path forming component for automotive heat exchanger using the same |
US20150004428A1 (en) * | 2012-01-29 | 2015-01-01 | Denso Corporation | High Corrosion-Resistant Aluminum Alloy Brazing Sheet And Channel Forming Component For Vehicular Heat Exchanger Using Same |
WO2013111904A1 (en) * | 2012-01-29 | 2013-08-01 | 株式会社デンソー | Highly corrosion-resistant aluminium alloy brazing sheet, and flow channel forming component which is for vehicle heat exchanger and which uses said brazing sheet |
JP6006421B2 (en) * | 2013-07-29 | 2016-10-12 | 株式会社Uacj | Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material |
WO2015104760A1 (en) * | 2014-01-07 | 2015-07-16 | 株式会社Uacj | Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor |
US9976201B2 (en) | 2014-01-07 | 2018-05-22 | Uacj Corporation | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor |
JPWO2015104760A1 (en) * | 2014-01-07 | 2017-03-23 | 株式会社Uacj | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same |
WO2015104761A1 (en) * | 2014-01-10 | 2015-07-16 | 株式会社Uacj | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor |
CN105814219A (en) * | 2014-01-10 | 2016-07-27 | 株式会社Uacj | Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor |
CN105814219B (en) * | 2014-01-10 | 2018-09-11 | 株式会社Uacj | Aluminium, Al alloy clad material and its manufacturing method and the heat exchanger and its manufacturing method for using the aluminium, Al alloy clad material |
US9976200B2 (en) | 2014-01-10 | 2018-05-22 | Uacj Corporation | Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor |
JP2014101584A (en) * | 2014-02-20 | 2014-06-05 | Kobe Steel Ltd | Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor |
JP2016186096A (en) * | 2015-03-27 | 2016-10-27 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
JP2018076548A (en) * | 2016-11-08 | 2018-05-17 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for heat exchanger and manufacturing method therefor, and manufacturing method of aluminum alloy tube for heat exchanger |
JP7053140B2 (en) | 2016-11-08 | 2022-04-12 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for heat exchanger and its manufacturing method and manufacturing method of aluminum alloy tube for heat exchanger |
CN112725661A (en) * | 2020-12-24 | 2021-04-30 | 亚太轻合金(南通)科技有限公司 | Aluminum alloy with strong corrosion resistance and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4993440B2 (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4993440B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP4702797B2 (en) | Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface | |
JP5057439B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4111456B1 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP4832354B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4623729B2 (en) | Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface | |
JP4916334B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JP4916333B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JPWO2015015767A1 (en) | Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material | |
JP4807826B2 (en) | Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material | |
JP4993439B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP5836695B2 (en) | Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing | |
JP2005232506A (en) | Aluminum alloy clad material for heat exchanger | |
JP4030006B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP2005232507A (en) | Aluminum alloy clad material for heat exchanger | |
JP2017179548A (en) | Aluminum alloy brazing sheet | |
JP5599131B2 (en) | Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet | |
JP4954551B2 (en) | Aluminum brazing alloy in which erosion during brazing is suppressed, brazing sheet using the same, header pipe for heat exchanger, and heat exchanger | |
JP5498214B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP2012082459A (en) | Aluminum alloy clad material | |
JP2011195892A (en) | High-strength aluminum alloy clad material for heat exchanger having excellent brazability, and heat exchanger | |
JP4263160B2 (en) | Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same | |
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JP2023045751A (en) | Brazing sheet and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120501 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120501 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4993440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |