JP2007327085A5 - - Google Patents

Download PDF

Info

Publication number
JP2007327085A5
JP2007327085A5 JP2006157842A JP2006157842A JP2007327085A5 JP 2007327085 A5 JP2007327085 A5 JP 2007327085A5 JP 2006157842 A JP2006157842 A JP 2006157842A JP 2006157842 A JP2006157842 A JP 2006157842A JP 2007327085 A5 JP2007327085 A5 JP 2007327085A5
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
extractant
aqueous solution
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157842A
Other languages
Japanese (ja)
Other versions
JP5035788B2 (en
JP2007327085A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006157842A priority Critical patent/JP5035788B2/en
Priority claimed from JP2006157842A external-priority patent/JP5035788B2/en
Publication of JP2007327085A publication Critical patent/JP2007327085A/en
Publication of JP2007327085A5 publication Critical patent/JP2007327085A5/ja
Application granted granted Critical
Publication of JP5035788B2 publication Critical patent/JP5035788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明では、第一に、無極性アルカン系有機溶媒にDGAAの骨格を有する次式: In the present invention, first, the following formula having a DGAA skeleton in a nonpolar alkane-based organic solvent :

Figure 2007327085
(R1およびR2は、各々、同一または別異のアルキル基を示し、少なくともいずれか一方は炭素数6以上のアルキル基であることを示す。なお、アルキル基は直鎖でも分鎖でも良い。)
で表されるDGAAが溶解している溶液であることを特徴とする希土類金属の抽出剤を提供し、第二に、無極性アルカン系有機溶媒がヘキサンである前記の希土類金属の抽出剤を提供する。DGAA骨格にアルキル鎖を導入して、親油性を付与した化合物を無極性アルカン系有機溶媒に溶解した溶液を抽出剤として希土類金属の抽出に活用することができ、しかも、DGAA骨格にアルキル鎖を導入した化合物は、1段階の合成反応によって、容易かつ高収率で合成することができ、低コストでの生産が可能な抽出剤となる。この抽出剤によれば、第には、抽出すべき希土類金属を含む水溶液を、上記の抽出剤と適度な酸性条件下、すなわち従来のDGA骨格の化合物を用いる場合に比べてより低い酸濃度であるpHが1〜3程度、望ましくはpH4までの範囲の酸性条件下で接触させることで有機相である抽出剤に希土類金属を抽出し、分液した有機相を、前記水溶液よりも酸の濃度を高くした別の水溶液と接触させることで別の水溶液に希土類金属を逆抽出することを特徴とする希土類金属の抽出方法を提供する。
Figure 2007327085
(R 1 and R 2 each represent the same or different alkyl group, and at least one of them represents an alkyl group having 6 or more carbon atoms. The alkyl group may be linear or branched. .)
Providing extractant rare earth metals, wherein the solution der Rukoto THAT represented DGAA is dissolved, the second, the extractant of the rare earth metal nonpolar alkane-based organic solvent is hexane To provide . A solution in which an alkyl chain is introduced into a DGAA skeleton and a lipophilic compound is dissolved in a non-polar alkane organic solvent can be used for extraction of rare earth metals as an extractant, and an alkyl chain is added to the DGAA skeleton. The introduced compound can be synthesized easily and with high yield by a one-step synthesis reaction, and becomes an extractant that can be produced at low cost. According to this extractant, thirdly , the aqueous solution containing the rare earth metal to be extracted has a lower acid concentration as compared with the above extractant and moderately acidic conditions, that is, when a conventional DGA skeleton compound is used. The rare earth metal is extracted into the extractant that is an organic phase by contacting under acidic conditions with a pH of about 1 to 3, preferably up to pH 4, and the separated organic phase is more acidic than the aqueous solution . Provided is a method for extracting a rare earth metal, wherein the rare earth metal is back-extracted into another aqueous solution by contacting with another aqueous solution having a high concentration.

DGAAの骨格を有し、その窒素原子に二つの同一もしくは別異のアルキル基を導入した化合物(以下、これらを総じてRDGAAと省略する)を合成する際は、アミンとジグリコール酸の縮合反応を用い、活性化した酸成分として酸無水物の無水ジグリコール酸を用いる。また、対称酸無水物を用いれば、酸の半分はアミンと反応しない利点もある。つまり、次式: When synthesizing a compound having a DGAA skeleton and introducing two identical or different alkyl groups into the nitrogen atom (hereinafter collectively referred to as RDGAA), a condensation reaction of amine and diglycolic acid is performed. An acid anhydride diglycolic acid anhydride is used as the activated acid component. In addition, if a symmetric acid anhydride is used, there is an advantage that half of the acid does not react with the amine. That is, the following formula:

本願発明の抽出剤に含まれる前記の一般式で表されるジグリコールアミド酸においては、R1およびR2のアルキル基の少なくともいずれか一方は炭素数6以上のアルキル基であるが、一般的には炭素数は6〜18、より好ましくは7〜12が考慮される。炭素数が6未満の場合には親油性が十分でなく、水相への溶解が無視できなくなる。また、炭素数が過剰に大きい場合にはその製造がコスト高になるとともに抽出能そのものの向上には寄与しないことになる。なお、R1およびR2については親油性が確保される限り、一方が炭素数6以上であれば他方は6未満であってもよいが、製造上、そして安全性の観点からは、いずれも炭素数 6以上のもので、さらには同数であることが好適に考慮される。 In diglycol amic acid represented by the general formula that is part of the extracting agent of the present invention, although at least one of the alkyl groups R 1 and R 2 are alkyl group having 6 or more carbon atoms, generally Specifically, 6 to 18 carbon atoms, more preferably 7 to 12 carbon atoms are considered. When the number of carbon atoms is less than 6, the lipophilicity is not sufficient and dissolution in the aqueous phase cannot be ignored. Further, when the carbon number is excessively large, the production becomes expensive and does not contribute to the improvement of the extraction ability itself. As long as one of R 1 and R 2 is oleophilic, if one of them has 6 or more carbon atoms, the other may be less than 6, but from the viewpoint of production and safety, both It is preferably considered that the number of carbon atoms is 6 or more and the same number.

実施例
ジグリコールアミド酸骨格にアルキル基を導入した化合物の合成方法
ヘキサンなどのアルカン系無極性有機溶媒に可溶な化合物を調製するため、ジグリコールアミド酸(DGAA)の骨格(>N−CO−CH2−O−CH2−COOH)の窒素原子に親油性の高いアルキル基を導入する。これまでの研究から、少なくとも一方のアルキルが、炭素原子を6個以上有することによって、抽出剤として十分な親油性を付加できることがわかっている。ここでは、炭素数8のアルキル基を2つ持つジオクチルジグリコールアミド酸(DODGAA)の合成法を例として示す。反応式は以下に示す通りである。
( Example )
Method for synthesizing compounds in which alkyl group is introduced into diglycolamide acid skeleton Diglycolamide (DGAA) skeleton (> N-CO-CH 2- O—CH 2 —COOH) introduces a highly lipophilic alkyl group into the nitrogen atom. Previous studies have shown that at least one alkyl can have sufficient lipophilicity as an extractant by having 6 or more carbon atoms. Here, as examples synthesis of two lifting Tsuji octyl diglycol amic acid alkyl group having 8 carbon atoms (DODGAA). The reaction formula is as shown below.

このように、DODGAAは1つの化学反応のみで容易に合成でき、精製も容易なので、製造に要するコストが安価である。
DODGAAを用いた希土類金属の抽出・分離
合成したDODGAAを用いて希土類金属の抽出・分離実験を行った。具体的には、DODGAAをヘキサンに溶解して0.03M DODGAAヘキサン溶液を調製し、以下に示すような希土類金属に対する2つの抽出実験を行った。
Thus, DODGAA can be easily synthesized by only one chemical reaction and can be easily purified, so that the cost required for production is low.
Extraction and separation of rare earth metals using DODGAA
Rare earth metal extraction / separation experiments were conducted using synthesized DODGAA . Specifically, 0.03M DODGAA hexane solution was prepared by dissolving DODGAA in hexane, and two extraction experiments for rare earth metals as shown below were conducted.

(抽出実験1)DODGAAヘキサン溶液の抽出能
希土類金属としてユウロピウムを選び、分配比(有機相に抽出された金属の濃度を水相に残った金属の濃度で割った値)の水相中の酸濃度に対する依存を測定した。その要領は以下の通りである。
(Extraction experiment 1) Extraction ability of DODGAA hexane solution Select europium as the rare earth metal, and partition ratio (the concentration of the metal extracted into the organic phase divided by the concentration of the metal remaining in the aqueous phase) in the aqueous phase The dependence on concentration was measured. The procedure is as follows.

(抽出実験2)DODGAAヘキサン溶液の選択的分離能
14種の希土類金属(放射性のプロメチウムを除くすべての希土類金属)について、水相中の酸濃度を一定(pH=1.5)にして、(抽出実験1)と同じ0.03MのDODGAAを含む有機相を用いて抽出操作を行い、同様の要領でそれぞれの希土類金属の分配比を測定した。なお、選択的分離能を比較するため、一例として、軽ランタノイドからの分離という観点でランタンを代表として選び、ランタンからの分離係数(対象とする希土類金属(ランタノイド:Ln)の分配比(DLn(III))をランタンの分配比(DLa(III))で割った値)として結果をまとめた。
(Extraction experiment 2) Selective resolution of DODGAA hexane solution
For the 14 rare earth metals (all rare earth metals except radioactive promethium), the organic phase containing 0.03M DODGAA is the same as (Extraction Experiment 1) with the acid concentration in the aqueous phase kept constant (pH = 1.5). The extraction operation was performed, and the distribution ratio of each rare earth metal was measured in the same manner. In order to compare the selective resolution, as an example, lanthanum was selected as a representative from the viewpoint of separation from light lanthanoids, and the separation factor from lanthanum (target rare earth metal (lanthanoid: Ln) distribution ratio (D Ln The results are summarized as (III) ) divided by the lanthanum distribution ratio (D La (III) ).

この結果から、DODGAAヘキサン溶液の選択的分離能は、軽希土についてはPC88Aヘキサン溶液及びD2EHPAヘキサン溶液に勝り、重希土についてはPC88Aヘキサン溶液及びD2EHPAヘキサン溶液に劣ることがわかる。
DODGAAの水への溶解度の測定
合成したDODGAAの水への溶解度を測定した。過剰量のDODGAAを水(純水)に投入し、30分間振とう、さらに室温で1日以上放置した後、遠心分離を2回行ってから水溶液を分取し、水に溶解したDODGAAの濃度を紫外部の吸光度に基づいて決定した。
From this result, the selective separation capability of DODGAA hexane solution For the light rare earth better than PC88A hexane solution and D2EHPA hexane solution, for the heavy rare earths inferior to PC88A hexane solution and D2EHPA hexane.
Measuring the solubility of DODGAA in water
The solubility of synthesized DODGAA in water was measured. Add an excess amount of DODGAA to water (pure water), shake for 30 minutes, and leave it at room temperature for more than 1 day, then centrifuge twice and separate the aqueous solution. The concentration of DODGAA dissolved in water Was determined based on the absorbance in the ultraviolet region.

以上の実施例、比較例により、C、H、O、Nのみからなる完全焼却処分が可能である化合物(たとえばDODGAA)を用いて、希土類金属の抽出を行った結果、完全焼却処分が可能な既存のカルボン酸系化合物(Versatic 10)を大きく上回る抽出能・選択的分離能を示すとともに、完全焼却処分はできないが非常に高性能なリン系化合物(PC88A、D2EHPA)にも劣らないことが明らかになった。さらに、水に対する前記化合物の溶解度が、これら既存の化合物(PC88A、D2EHPA、Versatic 10)と比較して著しく小さいため、水環境への前記化合物の負荷を大幅に低減することが可能である。また、水への溶解度が著しく小さいことは、有機相の繰り返し利用に伴う前記化合物の損失も著しく小さくなり、前記化合物を頻繁に補充する必要がなくなるため、経済的である。なお、DODGAAの合成及び精製は非常に容易であるため、製造に要するコストも安価である。また、本願発明で提案する希土類金属の抽出法によって、pH を調節することで容易に有機相への抽出、水相への逆抽出を可能にし、そのpHの領域では、腐食が少なくリサイクル効率に優れた硝酸を用いることが可能であり、抽出工程が安価である。 As a result of extracting rare earth metals using a compound (for example, DODGAA) consisting of only C, H, O, and N according to the above examples and comparative examples, complete incineration is possible. It is clear that the extractability and selective separation ability greatly exceed the existing carboxylic acid compounds (Versatic 10), and it is not inferior to the very high performance phosphorus compounds (PC88A, D2EHPA) although it cannot be completely incinerated. Became. Furthermore, since the solubility of the compound in water is significantly smaller than these existing compounds (PC88A, D2EHPA, Versatic 10), it is possible to greatly reduce the load of the compound on the water environment. In addition, the extremely low solubility in water is economical because the loss of the compound due to repeated use of the organic phase is remarkably reduced, and it is not necessary to replenish the compound frequently. Since synthesis and purification of DODGAA is very easy, the cost required for production is also low. In addition, the rare earth metal extraction method proposed in the present invention allows easy extraction into the organic phase and back extraction into the aqueous phase by adjusting the pH. Excellent nitric acid can be used and the extraction process is inexpensive.

Claims (3)

無極性アルカン系有機溶媒に次式
Figure 2007327085
(R1およびR2は、各々、同一または別異のアルキル基を示し、少なくともいずれか一方は炭素数6以上のアルキル基であることを示す。なお、アルキル基は直鎖でも分鎖でも良い。)
で表されるジグリコールアミド酸が溶解している溶液であることを特徴とする希土類金属の抽出剤。
For nonpolar alkane organic solvents
Figure 2007327085
(R 1 and R 2 each represent the same or different alkyl group, and at least one of them represents an alkyl group having 6 or more carbon atoms. The alkyl group may be linear or branched. .)
Extractant rare earth metals, wherein the solution der Rukoto that diglycol amic acid is dissolved represented in.
無極性アルカン系有機溶媒が、ヘキサンであることを特徴とする請求項1に記載の希土類金属の抽出剤。2. The rare earth metal extractant according to claim 1, wherein the nonpolar alkane organic solvent is hexane. pH1〜3の範囲に調整した抽出すべき希土類金属を含む水溶液を請求項1または2記載の抽出剤に接触させて希土類金属を抽出剤に抽出した後、抽出剤を分液し、次いで分液した抽出剤を前記水溶液よりも酸濃度の高い水溶液に接触させて希土類金属を水溶液に逆抽出することを特徴とする希土類金属の抽出方法。The aqueous solution containing the rare earth metal to be extracted adjusted to a pH of 1 to 3 is contacted with the extractant according to claim 1 or 2 to extract the rare earth metal into the extractant, and then the extractant is separated, and then the liquid is separated. A method of extracting a rare earth metal, wherein the extracted agent is brought into contact with an aqueous solution having a higher acid concentration than the aqueous solution, and the rare earth metal is back-extracted into the aqueous solution.
JP2006157842A 2006-06-06 2006-06-06 Rare earth metal extractant and extraction method Active JP5035788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157842A JP5035788B2 (en) 2006-06-06 2006-06-06 Rare earth metal extractant and extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157842A JP5035788B2 (en) 2006-06-06 2006-06-06 Rare earth metal extractant and extraction method

Publications (3)

Publication Number Publication Date
JP2007327085A JP2007327085A (en) 2007-12-20
JP2007327085A5 true JP2007327085A5 (en) 2010-01-28
JP5035788B2 JP5035788B2 (en) 2012-09-26

Family

ID=38927743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157842A Active JP5035788B2 (en) 2006-06-06 2006-06-06 Rare earth metal extractant and extraction method

Country Status (1)

Country Link
JP (1) JP5035788B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299914B2 (en) * 2009-06-17 2013-09-25 信越化学工業株式会社 Extraction and separation method of rare earth elements
JP5392828B2 (en) * 2009-06-17 2014-01-22 信越化学工業株式会社 Extraction and separation method of rare earth elements
AU2010202408B2 (en) 2009-06-17 2014-12-18 Shin-Etsu Chemical Co., Ltd. Method for extracting and separating rare earth elements
AU2014256363B2 (en) * 2009-06-17 2015-11-19 Shin-Etsu Chemical Co., Ltd. Method for extracting and separating rare earth elements
JP5499353B2 (en) * 2009-06-17 2014-05-21 信越化学工業株式会社 Extraction and separation method of rare earth elements
JP5679159B2 (en) * 2010-07-05 2015-03-04 信越化学工業株式会社 Method for synthesizing rare earth metal extractant and organic phase for solvent extraction of rare earth metal
JP5569841B2 (en) * 2010-07-05 2014-08-13 信越化学工業株式会社 Method for synthesizing rare earth metal extractant
JP5487506B2 (en) 2010-07-05 2014-05-07 信越化学工業株式会社 Method for synthesizing rare earth metal extractant
JP5679158B2 (en) * 2010-07-05 2015-03-04 信越化学工業株式会社 Process for producing organic phase for solvent extraction of rare earth metals
MY164109A (en) 2011-06-27 2017-11-30 Shinetsu Chemical Co Method for extracting and separating light rare earth element
JP5279942B1 (en) * 2011-11-09 2013-09-04 国立大学法人九州大学 Cobalt extraction method
JP5279938B1 (en) * 2011-11-09 2013-09-04 国立大学法人九州大学 Valuable metal extractant and method for extracting valuable metal using the extractant
JP5367862B2 (en) 2012-03-13 2013-12-11 国立大学法人九州大学 Scandium extractant and method for extracting scandium using the extractant
JP6108376B2 (en) * 2012-03-27 2017-04-05 国立研究開発法人日本原子力研究開発機構 Lead ion extraction method and lead ion extractant
JP5398885B1 (en) 2012-08-20 2014-01-29 国立大学法人九州大学 Gallium extraction method
JP5420033B1 (en) * 2012-08-20 2014-02-19 国立大学法人九州大学 Indium extractant and method for extracting indium using the extractant
JP5734268B2 (en) 2012-12-12 2015-06-17 国立大学法人九州大学 Nickel extraction method
JP5595554B1 (en) * 2013-03-18 2014-09-24 国立大学法人九州大学 Method for separating impurities from an acidic solution containing nickel, cobalt and / or scandium
JP6103611B2 (en) 2013-03-25 2017-03-29 国立研究開発法人産業技術総合研究所 Rare earth element adsorbent and recovery method thereof
JP5619238B1 (en) 2013-08-22 2014-11-05 住友金属鉱山株式会社 Scandium recovery method
JP6053724B2 (en) 2014-06-26 2016-12-27 国立大学法人九州大学 Ion exchange resin and metal adsorption separation method
JP6493868B2 (en) * 2014-09-24 2019-04-03 日東電工株式会社 Vinyl monomer having diglycolamide acid type ligand
JP5940688B1 (en) 2015-01-20 2016-06-29 国立大学法人九州大学 Zirconium extractant and zirconium extraction method
JP6647060B2 (en) * 2015-02-20 2020-02-14 国立大学法人横浜国立大学 Method for separating and recovering Nd and Dy
JP6573115B2 (en) * 2015-11-25 2019-09-11 国立研究開発法人日本原子力研究開発機構 Amidated phosphate ester compound, extractant, and extraction method
WO2017096470A1 (en) * 2015-12-10 2017-06-15 Université de Montréal Ionic liquids and their use in the extraction of rare earth elements and/or gallium
JP6460973B2 (en) * 2015-12-21 2019-01-30 トヨタ自動車株式会社 Method for recovering rare earth elements from rare earth magnets
CN107417815B (en) * 2017-07-25 2020-02-18 江西省科学院应用化学研究所 Immobilized ionic liquid and preparation method thereof
FR3086302B1 (en) * 2018-09-26 2020-12-25 Commissariat Energie Atomique USE OF A SYNERGIC MIXTURE OF EXTRACTANTS TO EXTRACT RARE EARTHS FROM AN AQUEOUS MEDIUM CONTAINING PHOSPHORIC ACID
CN113444883B (en) * 2020-03-26 2022-12-23 福建省长汀金龙稀土有限公司 Mixed extracting agent and method for enriching rare earth by using same
CN114752783B (en) * 2022-04-22 2023-10-03 厦门稀土材料研究所 High-efficiency Sr separation 2+ And Cs + Is a method of (2)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524394B2 (en) * 2000-06-21 2010-08-18 独立行政法人 日本原子力研究開発機構 Extraction method of americium and neodymium present in acidic solution
JP4374460B2 (en) * 2003-10-06 2009-12-02 独立行政法人 日本原子力研究開発機構 Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor
JP4124133B2 (en) * 2004-02-09 2008-07-23 独立行政法人 日本原子力研究開発機構 Method of extracting and separating Np (IV), Pu (III), Pu (IV), Am (III), and Cm (III) in a 1-6M nitric acid solution at once with an oxapentanediamine compound

Similar Documents

Publication Publication Date Title
JP2007327085A5 (en)
JP5035788B2 (en) Rare earth metal extractant and extraction method
EP2712940B1 (en) Scandium extraction method
JP5299962B2 (en) Palladium extractant and rapid separation and recovery method using the same
AU2011275014B2 (en) Method for synthesizing rare earth metal extractant
JP5487506B2 (en) Method for synthesizing rare earth metal extractant
WO2017096470A1 (en) Ionic liquids and their use in the extraction of rare earth elements and/or gallium
JP6194867B2 (en) Extraction separation method
CA2745228C (en) Synthesis of rare earth metal extractant
JP2876152B2 (en) Separation and purification of rare earth metals
FI68425B (en) FOERFARANDE FOER SEPARERING AV KOBOLT OCH NICKEL FRAON EN DESSA METALLER INNEHAOLLANDE LOESNING
JP5317273B2 (en) Metal ion extractant and extraction method
JP2714712B2 (en) Novel ethylenediamine-N, N'-diacetate-N, N'-diacetate alkylamide, diethylenetriamine-N, N ', N "-triacetic acid-N, N" -diacetate alkylamide, and uses thereof
JP6948698B2 (en) Palladium / Platinum Extractor, Palladium / Platinum Separation Method
JP5837756B2 (en) Novel compounds, metal extractants and their applications
Cool et al. Separation of cobalt and nickel from ethylene glycol and glycerol feed solution in chloride media by non-aqueous solvent extraction with Cyphos IL 101
JP2007126716A (en) Extracting agent highly selective for zinc against cadmium, and recovery of zinc
MXPA02001433A (en) Method for separating copper from iron.
EP3246353B1 (en) Use of surfactants to extract a platinum group metal or gold from organic compositions
FI76594B (en) EXTRAKTIONSMEDEL FOER EXTRAKTIONSSEPARATION AV NICKEL OCH KOBOLT OCH DETTA UTNYTTJANDE PROCESS.
JPWO2018225738A1 (en) Palladium extractant, palladium extraction method, palladium recovery method, palladium extractant regeneration method, and repeated palladium recovery method
WO2024074783A1 (en) Use of lipophilic derivatives of aminopolycarboxylic acids for the extraction of rare earths from an acidic aqueous solution
JPH05271149A (en) New calyx arene derivative, extractant for metal of rare earth element comprising the same as active ingredient and method for separation and purifying metal of rare earth element
JPH05320092A (en) New calixarene derivative, extractant of rare earth metal containing the same as active ingredient and method for separating and purifying rare earth metal