JP4374460B2 - Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor - Google Patents

Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor Download PDF

Info

Publication number
JP4374460B2
JP4374460B2 JP2003346536A JP2003346536A JP4374460B2 JP 4374460 B2 JP4374460 B2 JP 4374460B2 JP 2003346536 A JP2003346536 A JP 2003346536A JP 2003346536 A JP2003346536 A JP 2003346536A JP 4374460 B2 JP4374460 B2 JP 4374460B2
Authority
JP
Japan
Prior art keywords
extractant
iii
nitric acid
solvent
dga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003346536A
Other languages
Japanese (ja)
Other versions
JP2005114448A (en
Inventor
祐二 佐々木
伸一 鈴木
貴海 木村
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2003346536A priority Critical patent/JP4374460B2/en
Publication of JP2005114448A publication Critical patent/JP2005114448A/en
Application granted granted Critical
Publication of JP4374460B2 publication Critical patent/JP4374460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

本発明は、硝酸−ドデカン両相を用いて溶媒抽出をする際に、長鎖アルキル基を結合させたジグリコールアミド化合物(DGA)により第三相の生成を抑制する方法、および効率的に3、4価のアクチノイドイオンを抽出する方法に関わる。   The present invention relates to a method for suppressing the formation of a third phase by a diglycolamide compound (DGA) to which a long-chain alkyl group is bonded when solvent extraction is performed using both phases of nitric acid and dodecane. The present invention relates to a method for extracting tetravalent actinoid ions.

硝酸水溶液から高濃度の金属元素を工業規模で分離する要請は、使用済み核燃料(SF)の再処理及び高レベル放射性廃液(HLLW)の処理において生じている。これらの溶解液は硝酸酸性溶液であり、高濃度のアクチノイド元素や核分裂生成元素を含んでいる。これらの元素を分離回収するためには、大量の試料取り扱いが可能であり、反応性が極めて早いという理由から、溶媒抽出法が広範に採用されている。しかしながら、酸性度、金属濃度が高い条件では溶媒抽出の過程で第三相が生成されてしまい、これがプロセス開発にとって大きな障害となっている。   The demand for separation of high concentrations of metallic elements from aqueous nitric acid solutions on an industrial scale has arisen in the reprocessing of spent nuclear fuel (SF) and in the treatment of high level radioactive liquid waste (HLLW). These solutions are acidic nitric acid solutions and contain high concentrations of actinide elements and fission products. In order to separate and recover these elements, a large amount of sample can be handled and the solvent extraction method has been widely adopted because of its extremely fast reactivity. However, under conditions where acidity and metal concentration are high, a third phase is generated in the process of solvent extraction, which is a major obstacle for process development.

第三相の生成を抑制するためには、抽出剤を溶解する希釈剤にモノアミドやリン酸トリブチル(TBP)を改質剤として添加する方法や、ニトロベンゼン、オクタノールなど極性の高い溶媒を用いる方法が検討されている。   In order to suppress the formation of the third phase, there are a method of adding monoamide or tributyl phosphate (TBP) as a modifier to a diluent that dissolves the extractant, and a method of using a highly polar solvent such as nitrobenzene or octanol. It is being considered.

上記のような混合溶媒や極性溶媒を用いる方法については、以下に述べる問題点がある。
すなわち、混合溶媒系では、複数の有機物が存在するようになることである。使用が検討されているモノアミド、TBPはいずれも金属イオンとの反応性が高いため、分配比の精密な評価が難しくなる。また、放射線分解した場合には、副生成物が多く存在するようになるため、それらの検討の必要性からプロセス設計はより複雑になり、モノアミド、TBPともに更に高い濃度(目的の抽出剤の5〜10倍)が要求され、分離抽出コストは増大する。加えて、有機相への硝酸の抽出量も増えるため、速やかに逆抽出できなくなる。特に、TBPはその構造にリンを含むため、これが2次廃棄物発生の要因となりうる。
The method using a mixed solvent or a polar solvent as described above has the following problems.
That is, in the mixed solvent system, a plurality of organic substances are present. Since monoamide and TBP that are being studied for use are both highly reactive with metal ions, it is difficult to accurately evaluate the distribution ratio. In addition, in the case of radiolysis, since many by-products are present, the process design becomes more complicated due to the necessity of studying them, and both monoamide and TBP have higher concentrations (5 of the target extractant). 10 times), and the cost of separation and extraction increases. In addition, since the amount of nitric acid extracted into the organic phase increases, it becomes impossible to back-extract quickly. In particular, since TBP contains phosphorus in its structure, this can be a factor in generating secondary waste.

一方、極性溶媒の使用について、上に示したニトロベンゼン、オクタノールなどの有機溶媒は毒性・危険性がドデカンに比べて高く、取り扱いに注意を要する。また、極性溶媒は水との親和性が高く、水相への分配を検討しなければならず、その場合に分配比が変動する恐れがある。n−ドデカンが放射線分解しても炭化水素が発生するだけであるが、オクタノールが分解すると、その生成物にはOHが存在し、これは水溶性で反応性の高いことから、第三相の生成に繋がってしまう。
シー・ビナス(C. Vinas)、外7名,「ジャーナル・オブ・ザ・ケミカル・ソサエティ ダルトン・トランザクションズ(Journal of the Chemical Society, Dalton Transaction)」,1998年,p.2849−2853 ジェイ・ディー・ロウ(J.D. Law)、外4名,「ウェイスト・マネジメント(Waste Management)」,1999年,p.27−37
On the other hand, regarding the use of polar solvents, the organic solvents such as nitrobenzene and octanol shown above are more toxic and dangerous than dodecane, and need to be handled with care. In addition, polar solvents have a high affinity with water, and partitioning into the aqueous phase must be considered, in which case the partition ratio may vary. Even if n-dodecane is radiolyzed, only hydrocarbons are generated. However, when octanol is decomposed, OH is present in the product, which is water-soluble and highly reactive. It will lead to generation.
C. Vinas, 7 others, “Journal of the Chemical Society, Dalton Transaction”, 1998, p. 2849-2853 JD Law, 4 others, “Waste Management”, 1999, p. 27-37

したがって、本発明は、使用済み燃料溶解液又は高レベル放射性廃液のような硝酸水溶液から硝酸−ドデカン両相を用いて金属イオンを溶媒抽出する際に、第三相の生成を抑制することを課題とするものである。   Therefore, the present invention has an object to suppress the generation of the third phase when solvent extraction of metal ions using nitric acid-dodecane both phases from an aqueous nitric acid solution such as spent fuel solution or high-level radioactive waste liquid. It is what.

上記課題を解決するため本発明者らは鋭意研究した結果、長いアルキル差を有するジグリコールアミド(DGA)をドデカンに添加した抽出剤を用いることにより第三相の生成が抑制されることを発見し、本発明を完成させた。   As a result of diligent research, the present inventors have found that the formation of the third phase is suppressed by using an extractant in which diglycolamide (DGA) having a long alkyl difference is added to dodecane. The present invention has been completed.

要するに、本発明は、使用済み燃料(SF)溶解液又は高レベル放射性廃液(HLLW)のような硝酸水溶液から金属イオンを溶媒抽出する方法において、高い親油性を示すN,N,N’,N’−テトラドデシル1,3−オキサペンタンジアミド(TDdDGA)をドデカンに希釈した溶媒を用いることにより、第三相の生成を抑制することを特徴とするものである。
In short, the present invention relates to N, N, N ′, N that exhibits high lipophilicity in a method of solvent extraction of metal ions from an aqueous nitric acid solution such as spent fuel (SF) solution or high-level radioactive liquid waste (HLLW). By using a solvent obtained by diluting ' -tetradodecyl 1,3-oxapentanediamide (TDdDGA) in dodecane, the formation of the third phase is suppressed.

また、本発明は、硝酸水溶液から3価若しくは4価のアクチノイドイオン又はランタノイドイオンを溶媒抽出分離するための、N,N,N’,N’−テトラドデシル1,3−オキサペンタンジアミド(TDdDGA)を含むドデカン抽出剤を課題解決手段とする。
The present invention also relates to N, N, N ′, N′- tetradodecyl 1,3-oxapentanediamide (TDdDGA) for solvent extraction and separation of trivalent or tetravalent actinoid ions or lanthanoid ions from an aqueous nitric acid solution. Dodecane extractant containing

本発明にしたがって、長いアルキル鎖を有するジグリコールアミドをドデカンに溶解した抽出剤を用いて溶媒抽出することにより、第三相が生成されることなく、硝酸酸性溶液中に高濃度で含まれる3価若しくは4価のランタノイドイオン、アクチノイドイオンを溶媒抽出分離することができる。   According to the present invention, a third phase is not generated by solvent extraction using an extractant in which diglycolamide having a long alkyl chain is dissolved in dodecane. Divalent or tetravalent lanthanoid ions and actinoid ions can be separated by solvent extraction.

本発明者らは、酸性度が高く、金属濃度が高い溶液から3価若しくは4価のランタノイドイオン又はアクチノイドイオンを効率よく抽出することができ、固体廃棄物の発生源となる金属やリンを含まない組成を有し、無極性溶媒にもよく溶けるジグリコールアミド(DGA)化合物を開発した。すなわち、三座配位子のDGA化合物のひとつである、TDDGA(N,N,N’,N’−テトラドデシル−1,3−オキサペンタンジアミド)を開発した。
The inventors of the present invention can efficiently extract trivalent or tetravalent lanthanoid ions or actinoid ions from a solution having high acidity and high metal concentration, and include metals and phosphorus that are sources of solid waste. Diglycolamide (DGA) compounds have been developed that have a low composition and are well soluble in nonpolar solvents. That is, TD d DGA (N, N, N ′, N′-tetradodecyl-1,3-oxapentanediamide), which is one of tridentate DGA compounds, was developed.

したがって本発明は、使用済み燃料溶解液又は高レベル放射性廃液のような硝酸水溶液から金属イオンを溶媒抽出する方法であって、高い親油性を示すTDdDGAをドデカンに希釈した溶媒を用いることにより、第三相の生成を抑制することを特徴とするものである。
Therefore, the present invention is a method for solvent extraction of metal ions from an aqueous nitric acid solution such as spent fuel solution or high-level radioactive liquid waste, and uses a solvent obtained by diluting TDdDGA showing high lipophilicity in dodecane. It is characterized by suppressing the formation of three phases.

本発明において、DGAの濃度は、抽出すべき金属イオンの濃度に依存して決定することができる。
本発明においてドデカン抽出剤に添加するDGA化合物は、長い炭化水素鎖を有し、極性が著しく低いため、無極性溶媒であるn−ドデカンと非常によく混ざり合う。また、DGA化合物の金属錯体はドデカン中で非常に安定であり、過剰金属濃度に由来する第三相が殆ど生成されないという特徴を有する。n−ドデカンにTDDGAを添加した本発明の抽出剤は、3価若しくは4価のランタノイドイオン又はアクチノイドイオンに対して高い抽出能を示す。
In the present invention, the concentration of DGA can be determined depending on the concentration of metal ions to be extracted.
In the present invention, the DGA compound added to the dodecane extractant has a long hydrocarbon chain and is extremely low in polarity, so it mixes very well with n-dodecane, which is a nonpolar solvent. In addition, the metal complex of the DGA compound is very stable in dodecane and has a feature that the third phase derived from the excess metal concentration is hardly generated. extractant of the present invention with the addition of TD d DGA in n- dodecane, exhibit high extraction capability with respect to trivalent or tetravalent lanthanide ions or actinide ions.

前述の従来の抽出剤使用に起因する欠点に関連して、本発明の抽出剤の利点をまとめると以下の通りである。
(1)その組成に炭素、水素、酸素、窒素しか含まず、完全焼却処理が可能であるため、固体廃棄物は殆ど発生しない。
The advantages of the extractant of the present invention are summarized as follows in relation to the above-mentioned drawbacks caused by the use of the extractant.
(1) Since the composition contains only carbon, hydrogen, oxygen, and nitrogen and can be completely incinerated, almost no solid waste is generated.

(2)本発明の抽出剤は既存プロセスで使用実績のあるドデカンのような無極性溶媒に非常によく溶ける。このことはいかなる溶媒でも対応可能であることを示す。
(3)本発明の抽出剤は、疎水性が非常に高く有機相中の金属イオンの増加による第三相の生成を抑制することができ、更により多くの金属イオンを有機相中に抽出可能である。
(2) The extractant of the present invention is very soluble in nonpolar solvents such as dodecane that have been used in existing processes. This indicates that any solvent can be used.
(3) The extractant of the present invention is very hydrophobic and can suppress the formation of the third phase due to the increase of metal ions in the organic phase, and more metal ions can be extracted into the organic phase. It is.

(4)本発明の抽出剤は、2種類の有機化合物を希釈剤に添加する従来の混合溶媒系抽出剤より、プロセス評価が容易であり、分解生成物の特定も容易でその影響が少ない。また、硝酸の抽出が少ないため、逆抽出を効率的に行うことができる。   (4) The extractant of the present invention is easier to evaluate than the conventional mixed solvent extractant in which two kinds of organic compounds are added to the diluent, and the decomposition product is easily identified and less affected. Moreover, since there is little extraction of nitric acid, back extraction can be performed efficiently.

(5)より毒性、危険性の高い希釈剤を使う必要がない。
(6)本発明の抽出剤は、水への溶解度が極めて低く、抽出剤の水相への分配を評価する必要がない。また、プロセスでの経済性評価などに重要な、相分離の迅速性も期待される。
(5) It is not necessary to use a more toxic and dangerous diluent.
(6) The extractant of the present invention has extremely low solubility in water, and it is not necessary to evaluate the distribution of the extractant into the aqueous phase. In addition, rapid phase separation, which is important for evaluating economics in processes, is also expected.

参考例1)
トレーサー量のAm(III)を含む0.94M硝酸溶液から、種々の濃度の3種のDGA化合物(TODGA:N,N’,N,N’−テトラオクチル−1,3−オキサペンタンアミド、TDDGA:N,N’,N,N’−テトラデシル−1,3−オキサペンタンジアミド、TDDGA:N,N’N,N’−テトラドデシル−1,3−オキサペンタンジアミド)をn−ドデカン溶媒に溶解した抽出剤を用いて上記金属を抽出した。平衡時のAm(III)の抽出分配比(D、25℃)のDGA化合物濃度依存性について図1に示す。
( Reference Example 1)
From 0.94M nitric acid solution containing tracer amounts of Am (III), 3 kinds of DGA compound at various concentrations (TODGA: N, N ', N, N'- tetra octyl - 1, 3-oxa-pentane diamide, TDDGA: N, N ', N , N'- tetradecyl - 1, 3-oxa-pentane diamide, TD d DGA: N, N'N , N'- tetra-dodecyl - 1, 3-oxa-pentane diamide) the n- dodecane The metal was extracted using an extractant dissolved in a solvent. FIG. 1 shows the DGA compound concentration dependence of the extraction distribution ratio (D, 25 ° C.) of Am (III) at equilibrium.

平衡時のAm(III)の抽出分配比は、水相の硝酸濃度0.94M、DGA化合物0.1Mの場合に15〜26の範囲であった。この結果から、金属とDGAとの抽出反応において、Am(III):TODGAのモル比が1:3の金属錯体ができると考えられる。   The extraction distribution ratio of Am (III) at the time of equilibration was in the range of 15 to 26 when the nitric acid concentration in the aqueous phase was 0.94 M and the DGA compound was 0.1 M. From this result, it is considered that a metal complex having an Am (III): TODGA molar ratio of 1: 3 can be formed in the extraction reaction between the metal and DGA.

(実施例2)
5〜45mM Nd(III)を含む3M HNO3から、0.1M DGA/n−ドデカン溶媒によって上記金属を抽出した。有機相中に抽出されたNd(III)濃度と初期(抽出前)水相中のNd(III)濃度との関係(25℃)を図2に示す。
(Example 2)
The metal was extracted from 3M HNO 3 containing 5-45 mM Nd (III) with 0.1M DGA / n-dodecane solvent. FIG. 2 shows the relationship (25 ° C.) between the Nd (III) concentration extracted in the organic phase and the Nd (III) concentration in the initial (before extraction) aqueous phase.

図2において、初期水相中のNd(III)濃度が増加すると有機相中に抽出されるNd(III)濃度も増加するが、TODGA、TDDGAを溶解した抽出剤では極大値を示した後、水相濃度増大とともに減少する傾向があった。これは第三相の生成のためと考えられる。一方、TDDGAを溶解した系では、実験した範囲において極大を示すことなく、有機相中Nd(III)濃度は徐々に増加することが観察された。このことはTDDGAを溶解した抽出剤系では第三相を生成することなく、初期水相中のNd(III)濃度の増加に伴い有機相への抽出量は理想的な抽出容量値に近づいていくことを示すものである。
In FIG. 2, as the Nd (III) concentration in the initial aqueous phase increases, the Nd (III) concentration extracted in the organic phase also increases. However, the extractant dissolved with TODGA and TDDGA shows a maximum value, There was a tendency to decrease with increasing aqueous phase concentration. This is thought to be due to the formation of the third phase. On the other hand, in the system in which TD d DGA was dissolved, it was observed that the Nd (III) concentration in the organic phase gradually increased without exhibiting a maximum in the experimental range. This means that in the extractant system in which TD d DGA is dissolved, the extraction amount into the organic phase becomes an ideal extraction capacity value as the Nd (III) concentration in the initial aqueous phase increases without generating a third phase. It shows that we are approaching.

図1よりDGA化合物による硝酸溶液からのAm(III)の抽出分配比はかなり高く、また図2ではTDDGAのような長いアルキル鎖を持つDGA化合物の場合、第三相を生成することがなく、有機相への金属抽出量が大きくなることなどが分かった。 From FIG. 1, the extraction partition ratio of Am (III) from the nitric acid solution by the DGA compound is quite high, and in FIG. 2, in the case of a DGA compound having a long alkyl chain such as TD d DGA, a third phase can be formed. It was found that the amount of metal extracted into the organic phase increased.

なお、DGA化合物はこれまでに、4価のアクチノイドイオンは3価イオンよりも高い選択性を示していることが確認されており、4価イオンについても3価イオンと同等以上の性質をもつとみなされる。   DGA compounds have been confirmed so far that tetravalent actinoid ions have higher selectivity than trivalent ions, and tetravalent ions have properties equal to or higher than trivalent ions. It is regarded.

SF溶解液又はHLLWより効率的に高濃度の3、4価アクチノイドイオンを溶媒抽出法により、第三相の生成無しに抽出剤の最大限分離除去できる。その結果、プロセス評価が容易になり、効率的な抽出剤の取り扱いができ、コスト削減に繋がる。   The extractant can be separated and removed to the maximum extent without the formation of the third phase by the solvent extraction method with a higher concentration of tri- and tetravalent actinoid ions than SF solution or HLLW. As a result, process evaluation is facilitated, the extractant can be handled efficiently, and costs are reduced.

図1は、DGA/n−ドデカン溶媒抽出剤によるAm(III)の抽出分配比D(25℃)とDGA濃度との関係を示す図である。FIG. 1 is a graph showing the relationship between the extraction distribution ratio D (25 ° C.) of Am (III) and the DGA concentration with a DGA / n-dodecane solvent extractant. 図2は、0.1M DGA/n−ドデカン溶媒を用いた時の初期水相中のNd(III)濃度と抽出後の有機相中のNd(III)濃度との関係(25℃)を示した図である。FIG. 2 shows the relationship (25 ° C.) between the Nd (III) concentration in the initial aqueous phase and the Nd (III) concentration in the organic phase after extraction when 0.1 M DGA / n-dodecane solvent was used. It is a figure.

Claims (2)

使用済み燃料(SF)溶解液又は高レベル放射性廃液(HLLW)である硝酸水溶液からNd(III)を溶媒抽出する方法において、
高い親油性を示すN,N,N’,N’−テトラドデシル1,3−オキサペンタンジアミド(TDdDGA)をドデカンに希釈した抽出用溶媒を用いることにより、第三相の生成を抑制することを特徴とする方法。
In a method for solvent extraction of Nd (III) from a nitric acid aqueous solution that is a spent fuel (SF) solution or a high-level radioactive waste liquid (HLLW),
By using an extraction solvent in which N, N, N ′, N′- tetradodecyl 1,3-oxapentanediamide (TDdDGA) showing high lipophilicity is diluted in dodecane, the formation of the third phase is suppressed. Feature method.
N,N,N’,N’−テトラドデシル1,3−オキサペンタンジアミド(TDdDGA)を含み、ドデカンを溶媒として使用する、使用済み燃料(SF)溶解液又は高レベル放射性廃液(HLLW)である硝酸水溶液からNd(III)を溶媒抽出分離するための抽出剤。
A spent fuel (SF) solution or high-level radioactive liquid waste (HLLW) containing N, N, N ′, N′-tetradodecyl 1,3-oxapentanediamide (TDdDGA) and using dodecane as a solvent. Extractant for solvent extraction separation of Nd (III) from nitric acid aqueous solution.
JP2003346536A 2003-10-06 2003-10-06 Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor Expired - Fee Related JP4374460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346536A JP4374460B2 (en) 2003-10-06 2003-10-06 Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346536A JP4374460B2 (en) 2003-10-06 2003-10-06 Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor

Publications (2)

Publication Number Publication Date
JP2005114448A JP2005114448A (en) 2005-04-28
JP4374460B2 true JP4374460B2 (en) 2009-12-02

Family

ID=34539427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346536A Expired - Fee Related JP4374460B2 (en) 2003-10-06 2003-10-06 Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor

Country Status (1)

Country Link
JP (1) JP4374460B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035788B2 (en) * 2006-06-06 2012-09-26 独立行政法人日本原子力研究開発機構 Rare earth metal extractant and extraction method
DE602006015068D1 (en) * 2006-10-17 2010-08-05 Ct Investig Energeticas Ciemat Bis-diglycolamides (BISDGA) as new extractants for lanthanoids ÄLa (III) Ü and actinide ÄAn (III) Ü in aqueous, highly radioactive waste
FR2948385B1 (en) * 2009-07-27 2011-09-23 Commissariat Energie Atomique PROCESS FOR SELECTIVE RECOVERY OF AMERICIUM FROM A NITRIC AQUEOUS PHASE
FR2948384B1 (en) 2009-07-27 2011-09-23 Commissariat Energie Atomique INCREASING THE SEPARATION FACTOR BETWEEN AMERICIUM AND CURIUM AND / OR BETWEEN LANTHANIDES IN A LIQUID-LIQUID EXTRACTION OPERATION
FR3015760B1 (en) * 2013-12-20 2016-01-29 Commissariat Energie Atomique PROCESS FOR TREATING A USE NUCLEAR FUEL COMPRISING A DECONTAMINATION STEP OF URANIUM (VI) IN AT LEAST ONE ACTINIDE (IV) BY COMPLEXATION OF THIS ACTINIDE (IV)

Also Published As

Publication number Publication date
JP2005114448A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
Panak et al. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands
Venkateswaran et al. Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution
Yoon et al. Extraction of lanthanide ions from aqueous solution by bis (2-ethylhexyl) phosphoric acid with room-temperature ionic liquids
Suzuki et al. Extraction and separation of Am (III) and Sr (II) by N, N, N, N-tetraoctyl-3-oxapentanediamide (TODGA)
Moyer Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19
Huang et al. Extraction of trivalent americium and europium from nitric acid solution with a calixarene-based diglycolamide
Turanov et al. Synergistic extraction of uranium (VI) with TODGA and hydrophobic ionic liquid mixtures into molecular diluent
Alyapyshev et al. Extraction of actinides with heterocyclic dicarboxamides
Zhao et al. Synergistic extraction of rare-earth metals and separation of scandium using 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide in an ionic liquid system
De Jesus et al. Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste
JP4524394B2 (en) Extraction method of americium and neodymium present in acidic solution
Weßling et al. Complexation and extraction studies of trivalent actinides and lanthanides with water-soluble and CHON-compatible ligands for the selective extraction of americium
Sepúlveda et al. Copper removal from aqueous solutions by means of ionic liquids containing a β‐diketone and the recovery of metal complexes by supercritical fluid extraction
Kajan et al. Effect of diluent on the extraction of europium (III) and americium (III) with N, N, N′, N′-tetraoctyl diglycolamide (TODGA)
Takeishi et al. Solvent extraction of uranium, neptunium, plutonium, americium, curium and californium ions by bis (1-phenyl-3-methyl-4-acylpyrazol-5-one) derivatives
JP4374460B2 (en) Method for solvent extraction of Nd (III) from aqueous nitric acid solution and extractant therefor
JP5526434B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide (DOODA) and TADGA (N, N, N ′, N′-tetraalkyl-diglycolamide) Mutual separation of Am, Cm and Sm, Eu, Gd used together
Alyapyshev et al. Various flowsheets of actinides recovery with diamides of heterocyclic dicarboxylic acids
Rout et al. Extraction and selective separation of ZrIV from LnIII/AnIII using an undiluted phosphonium ionic liquid
JP2007240370A (en) Method for separating plutonium into water phase by utilizing difference of nitric acid concentration from uranium and plutonium recovered in organic phase including branched n,n-dialkyl amide
Horwitz et al. Liquid extraction, the TRUEX process—experimental studies
JP5354586B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide
Paviet-Hartmann et al. Overview of reductants utilized in nuclear fuel reprocessing/recycling
JP4124133B2 (en) Method of extracting and separating Np (IV), Pu (III), Pu (IV), Am (III), and Cm (III) in a 1-6M nitric acid solution at once with an oxapentanediamine compound
Nomizu et al. Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees