JP2007326079A - Flue gas treatment system and method of coal burning boiler - Google Patents

Flue gas treatment system and method of coal burning boiler Download PDF

Info

Publication number
JP2007326079A
JP2007326079A JP2006161237A JP2006161237A JP2007326079A JP 2007326079 A JP2007326079 A JP 2007326079A JP 2006161237 A JP2006161237 A JP 2006161237A JP 2006161237 A JP2006161237 A JP 2006161237A JP 2007326079 A JP2007326079 A JP 2007326079A
Authority
JP
Japan
Prior art keywords
exhaust gas
relative humidity
fired boiler
coal fired
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006161237A
Other languages
Japanese (ja)
Inventor
Masayuki Nagata
真之 永田
Shoichi Onishi
召一 大西
Kazuaki Miyake
一明 三宅
Yasutoshi Ueda
泰稔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority to JP2006161237A priority Critical patent/JP2007326079A/en
Publication of JP2007326079A publication Critical patent/JP2007326079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flue gas treatment system and a method of a coal burning boiler having an electrostatic precipitator, wherein electrostatic precipitation efficiency is constantly stable without generating back discharge at all times. <P>SOLUTION: This flue gas treatment system of the coal burning boiler is provided with: a GGH heat recovery part 3a, a heat recovering device recovering heat of exhaust gas of the coal burning boiler 1; and the dry type electrostatic precipitator (dry type EP) 4 provided at the rear stream side of the GGH heat recovery part 3a and collecting soot and dust in the exhaust gas. A steam or water injection device 20, as a relative humidity increasing device for increasing relative humidity by injecting any one of or both of steam and water into exhaust gas G2, is provided on the upstream side of the GGH heat recovery part 3a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、石炭焚ボイラの排煙処理システム及び方法に関する。   The present invention relates to a flue gas treatment system and method for a coal fired boiler.

石炭焚ボイラからの排ガス中の廃熱を有効利用する技術として、ボイラ排ガスの熱を回収し、外部に排出する排ガスを加熱することの提案がなされている。図28に、石炭焚ボイラの排煙処理システムの一例を示す。図28に示すように、従来の排ガス処理設備では、石炭焚ボイラ1から出る未処理排ガスA1を、まずエアヒータ(AH)2の熱回収装置に導き、この未処理排ガスA1の熱でボイラ1に供給される空気Bを加熱する。ここで、未処理排ガスA1は120℃〜160℃に冷却される。   As a technique for effectively using waste heat in exhaust gas from a coal fired boiler, proposals have been made to recover the heat of the boiler exhaust gas and to heat the exhaust gas discharged to the outside. FIG. 28 shows an example of a coal fired boiler flue gas treatment system. As shown in FIG. 28, in the conventional exhaust gas treatment facility, the untreated exhaust gas A1 emitted from the coal fired boiler 1 is first led to the heat recovery device of the air heater (AH) 2, and the boiler 1 is heated by the heat of the untreated exhaust gas A1. The supplied air B is heated. Here, the untreated exhaust gas A1 is cooled to 120 ° C to 160 ° C.

次いで、未処理排ガスA1は、ガスガスヒータ(GGH)熱回収部3aに導入されて熱回収され、約80℃〜110℃に冷却された後に低低温の乾式電気集塵装置(乾式EP)4に導かれる。前記乾式EP4では、未処理排ガスA1中から相当量の煤塵が除去されて煤塵濃度が低減され、排ガスA2が排出される。   Next, the untreated exhaust gas A1 is introduced into a gas gas heater (GGH) heat recovery section 3a, recovered by heat, cooled to about 80 ° C. to 110 ° C., and then supplied to a low-temperature dry electrostatic precipitator (dry EP) 4. Led. In the dry EP4, a considerable amount of soot is removed from the untreated exhaust gas A1, the soot concentration is reduced, and the exhaust gas A2 is discharged.

前記乾式EP4を出た排ガスA2は、脱硫装置5に導入され、主に亜硫酸ガスを吸収除去されると共に、ここでも煤塵が捕集除去された後、処理後排ガスA3として排出される。   The exhaust gas A2 exiting the dry EP4 is introduced into the desulfurization apparatus 5 and mainly absorbs and removes sulfurous acid gas, and again, after collecting and removing soot dust, it is discharged as a treated exhaust gas A3.

そして、脱硫装置5を出た処理後排ガスA3は水分飽和温度(約50℃)であり、GGH再加熱部3bにおいて熱回収熱媒6により再加熱され、白煙防止のための大気放出に好ましい温度(約90℃〜100℃)とされて煙突7より大気放出される(特許文献1)。   The treated exhaust gas A3 exiting the desulfurization unit 5 has a water saturation temperature (about 50 ° C.), and is reheated by the heat recovery heat medium 6 in the GGH reheating unit 3b, which is preferable for release into the atmosphere to prevent white smoke. The temperature (about 90 ° C. to 100 ° C.) is released from the chimney 7 to the atmosphere (Patent Document 1).

特開平11−179147号公報Japanese Patent Laid-Open No. 11-179147

しかしながら、従来の排ガス処理システムに用いられる電気集塵装置において、捕集する煤塵の電気比抵抗が高くなると、同じコロナ電流が流れる場合に、ダスト層にかかる電圧(電界強度)は低抵抗の煤塵の場合よりも大きくなり、電気集塵装置内で形成されるダスト層が絶縁破壊し、荷電状態が不安定化し、この結果集塵性能が低下する、という逆電離といわれる問題がある。   However, in the electric dust collector used in the conventional exhaust gas treatment system, when the specific electrical resistance of the collected dust becomes high, the voltage (electric field strength) applied to the dust layer is low when the same corona current flows. There is a problem called reverse ionization in which the dust layer formed in the electrostatic precipitator breaks down, and the charged state becomes unstable, resulting in a decrease in dust collection performance.

図26−1は排ガス温度と煤塵電気比抵抗との関係図を示し、図26−2は、煤塵粒子10における表面伝導11及び体積伝導12の様子の模式図を示す。
これらの図面に示すように、煤塵粒子10の電気比抵抗は、表面伝導11と体積伝導12との並列回路で決定され、モデル化されている。高温領域では、体積伝導12が支配的であり、主に、灰中のアルカリ金属成分の影響を受け、一方、低温領域では表面伝導11が支配的であり、石炭中の硫黄成分に起因するSO3が水分と結合して煤塵表面に硫酸として凝集したものの影響を受ける。
FIG. 26A is a relationship diagram between the exhaust gas temperature and the dust electric resistivity, and FIG. 26B is a schematic diagram of the surface conduction 11 and the volume conduction 12 in the dust particles 10.
As shown in these drawings, the electrical resistivity of the dust particles 10 is determined and modeled by a parallel circuit of the surface conduction 11 and the volume conduction 12. In the high temperature region, the volume conduction 12 is dominant, mainly affected by the alkali metal component in the ash, while in the low temperature region, the surface conduction 11 is dominant, and the SO is caused by the sulfur component in the coal. 3 is affected by the fact that 3 binds to moisture and aggregates as sulfuric acid on the dust surface.

体積伝導12が低くこれに起因して高温領域の電気抵抗が高い灰においては、排ガス温度と灰の電気抵抗率との関係を示す図27に示すように、低温領域でも比較的高温の領域(95〜110℃)においては、灰の電気抵抗率が逆電離閾値を越えて、逆電離が発生し、電気集塵性能が低下する場合がある。   In ash having a low volume conduction 12 and a high electrical resistance in the high temperature region due to this, as shown in FIG. 27 showing the relationship between the exhaust gas temperature and the electrical resistivity of the ash, a relatively high temperature region ( (95-110 ° C.), the electrical resistivity of ash exceeds the reverse ionization threshold, and reverse ionization may occur, resulting in a decrease in electrostatic dust collection performance.

本発明は、前記問題に鑑み、電気集塵装置を有する石炭焚ボイラ排ガスの処理において、常に逆電離が発生せずに、電気集塵効率が常に安定した石炭焚ボイラの排煙処理システム及び方法を提供することを課題とする。   In view of the above problems, the present invention is directed to a coal flue boiler flue gas treatment system and method in which the electric dust collection efficiency is always stable without always causing reverse ionization in the treatment of the coal flue boiler exhaust gas having the electric dust collector. It is an issue to provide.

上述した課題を解決するための本発明の第1の発明は、ボイラの排ガスの熱回収を行なう熱回収装置と、該熱回収装置の後流側に設けられ、排ガス中の煤塵を捕集する乾式電気集塵装置とを具備する石炭焚ボイラの排煙処理システムであって、排ガス中に水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させる相対湿度増加装置を有してなることを特徴とする石炭焚ボイラの排煙処理システムにある。   The first invention of the present invention for solving the above-mentioned problems is a heat recovery device that recovers heat of exhaust gas from a boiler, and is provided on the downstream side of the heat recovery device to collect dust in the exhaust gas. A coal-fired boiler flue gas treatment system comprising a dry electrostatic precipitator, having a relative humidity increasing device for injecting either or both of water vapor and moisture into exhaust gas to improve relative humidity The present invention is in a flue gas treatment system for coal fired boilers.

第2の発明は、第1の発明において、前記相対湿度増加装置が、熱交換器の上流側の排ガスの煙道中に水蒸気又は水分を注入する水蒸気又は水分注入装置であることを特徴とする石炭焚ボイラの排煙処理システムにある。   A second invention is characterized in that, in the first invention, the relative humidity increasing device is a water vapor or water injection device for injecting water vapor or moisture into an exhaust gas flue upstream of a heat exchanger.に In boiler flue gas treatment system.

第3の発明は、第1又は2の発明において、前記相対湿度増加装置により、排ガスの相対湿度が、前期相対湿度増加装置を未使用である場合に比べて3%以上向上されることを特徴とする石炭焚ボイラの排煙処理システムにある。   A third invention is characterized in that, in the first or second invention, the relative humidity increasing device improves the relative humidity of the exhaust gas by 3% or more as compared with a case where the relative humidity increasing device in the previous period is not used. It is in the flue gas treatment system of a coal fired boiler.

第4の発明は、石炭焚ボイラの排ガスの熱回収を行なう熱回収装置と、該熱回収装置の後流側に設けられ、排ガス中の煤塵を補充する乾式電気集塵装置とを具備する石炭焚ボイラの排煙処理システムであって、排ガス中にSO3を注入して、SO3濃度を向上させるSO3供給装置を有してなることを特徴とする石炭焚ボイラの排煙処理システムにある。 A fourth invention is a coal comprising: a heat recovery device that recovers heat of exhaust gas from a coal fired boiler; and a dry electric dust collector that is provided on the downstream side of the heat recovery device and replenishes soot in the exhaust gas. A flue gas treatment system for a coal fired boiler, comprising an SO 3 supply device for improving SO 3 concentration by injecting SO 3 into exhaust gas. is there.

第5の発明は、第4の発明において、前記SO3の注入量が3ppm以上であることを特徴とする石炭焚ボイラの排煙処理システムにある。 A fifth invention is the flue gas treatment system for a coal fired boiler according to the fourth invention, wherein the injection amount of SO 3 is 3 ppm or more.

第6の発明は、ボイラの排ガスの熱回収を行なった後に、排ガス中の煤塵を乾式電気集塵装置により捕集する石炭焚ボイラの排煙処理方法であって、排ガス中に水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させることを特徴とする石炭焚ボイラの排煙処理方法にある。   A sixth invention is a flue gas treatment method for a coal fired boiler that collects the dust in the exhaust gas by a dry electrostatic precipitator after performing heat recovery of the exhaust gas of the boiler, and includes steam or moisture in the exhaust gas. One or both of them are injected to improve the relative humidity.

第7の発明は、第6の発明において、前記相対湿度増加装置により、排ガスの相対湿度が、前期相対湿度増加装置を未使用である場合に比べて3%以上向上されることを特徴とする石炭焚ボイラの排煙処理方法にある。   A seventh invention is characterized in that, in the sixth invention, the relative humidity increasing device improves the relative humidity of the exhaust gas by 3% or more compared to the case where the previous relative humidity increasing device is not used. It is in the flue gas treatment method of coal fired boiler.

第8の発明は、石炭焚ボイラの排ガスの熱回収を行なった後に、排ガス中の煤塵を乾式電気集塵装置により捕集する石炭焚ボイラの排煙処理方法であって、排ガス中にSO3を注入してSO3濃度を向上させることを特徴とする石炭焚ボイラの排煙処理方法にある。 An eighth aspect of the present invention, after performing the heat recovery of the exhaust gas coal fired boiler, a flue gas treating process of coal combustion boiler for collecting dust in exhaust gas by dry electrostatic precipitator, SO 3 in the exhaust gas In a flue gas treatment method for a coal fired boiler, characterized by improving the SO 3 concentration by injecting NO.

第9の発明は、第8の発明において、前記SO3の注入量が3ppm以上であることを特徴とする石炭焚ボイラの排煙処理方法にある。 According to a ninth aspect of the present invention, in the eighth aspect of the invention, there is provided a flue gas treatment method for a coal fired boiler, wherein the injection amount of SO 3 is 3 ppm or more.

本発明によれば、排ガス中の相対湿度またはSO3濃度を向上させることにより、低温領域での煤塵の表面伝導を十分に向上させ、電気集塵装置を有する石炭焚ボイラ排ガスの処理において、常に逆電離が発生せずに、電気集塵効率が常に安定した石炭焚ボイラの排煙処理が可能となる。 According to the present invention, by improving the relative humidity or SO 3 concentration in the exhaust gas, the surface conduction of the dust in the low temperature region is sufficiently improved, and in the treatment of the coal fired boiler exhaust gas having the electric dust collector, always It is possible to perform a flue gas treatment of a coal fired boiler that does not cause reverse ionization and the electric dust collection efficiency is always stable.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例に係る石炭焚ボイラの排煙処理システムについて、図面を参照して説明する。
図1は、実施例に係る石炭焚ボイラの排煙処理システムを示す概念図である。なお、前述した図27のシステムと同一部材には同一符号を付して重複した説明は省略する。
図1に示すように、本実施例に係る石炭焚ボイラの排煙処理システムは、石炭焚ボイラ1の排ガスの熱回収を行なう熱回収装置であるGGH熱回収部3aと、該GGH熱回収部3aの後流側に設けられ、排ガス中の煤塵を捕集する乾式電気集塵装置(乾式EP)4とを具備する石炭焚ボイラの排煙処理システムであって、排ガスG2中に水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させる相対湿度増加装置である水蒸気又は水分注入装置20を前記GGH熱回収部3aの上流側に有してなるものである。
A flue gas treatment system for a coal fired boiler according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram illustrating a flue gas treatment system for a coal fired boiler according to an embodiment. Note that the same members as those in the system of FIG. 27 described above are denoted by the same reference numerals, and redundant description is omitted.
As shown in FIG. 1, the flue gas treatment system for a coal fired boiler according to the present embodiment includes a GGH heat recovery unit 3a that is a heat recovery device that performs heat recovery of exhaust gas from the coal fired boiler 1, and the GGH heat recovery unit. 3a, a coal-fired boiler flue gas treatment system provided with a dry electrostatic precipitator (dry EP) 4 that collects the dust in the exhaust gas, provided on the downstream side of the exhaust gas G2, The water vapor or moisture injecting device 20 which is a relative humidity increasing device for injecting either or both of these to improve the relative humidity is provided upstream of the GGH heat recovery unit 3a.

本実施例のシステムでは、石炭焚ボイラ1から出る未処理排ガスG1を、まずエアヒータ(AH)2の熱回収装置に導き、この未処理排ガスG1の熱で石炭焚ボイラ1に供給される空気Bを加熱する。ここで、未処理排ガスG1は120℃〜160℃に冷却される。   In the system of the present embodiment, the untreated exhaust gas G1 emitted from the coal fired boiler 1 is first guided to the heat recovery device of the air heater (AH) 2 and the air B supplied to the coal fired boiler 1 with the heat of the untreated exhaust gas G1. Heat. Here, the untreated exhaust gas G1 is cooled to 120 ° C to 160 ° C.

次いで、熱交換された排ガスG2は、水蒸気又は水分注入装置20により、水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させる。   Next, the heat exchanged exhaust gas G2 is injected with either or both of water vapor and moisture by the water vapor or moisture injection device 20 to improve the relative humidity.

次いで、相対湿度が向上された排ガスG3がGGH熱回収部3aに導入されて熱回収され、約80℃〜110℃に冷却された排ガスG4とした後に乾式EP4に導かれる。乾式EP4では排ガスG4中から相当量の煤塵が除去されて煤塵濃度が低減され、排ガスG5が排出される。   Next, the exhaust gas G3 having an improved relative humidity is introduced into the GGH heat recovery section 3a and recovered, and the exhaust gas G4 cooled to about 80 ° C. to 110 ° C. is introduced into the dry EP4. In dry EP4, a considerable amount of soot is removed from the exhaust gas G4, the soot concentration is reduced, and the exhaust gas G5 is discharged.

乾式EP4を出た排ガスG5は、脱硫装置5に導入され、主に亜硫酸ガスを吸収除去されると共に、ここでも煤塵が捕集除去された後、処理後排ガスG6として排出される。   The exhaust gas G5 exiting the dry EP4 is introduced into the desulfurization unit 5 and mainly absorbs and removes sulfurous acid gas, and again, after collecting and removing soot dust, it is discharged as a treated exhaust gas G6.

そして、前記脱硫装置5を出た処理後排ガスG6は水分飽和温度(約50℃)であり、GGH再加熱部3bにおいて回収した熱媒6により再加熱され、白煙防止のための大気放出に好ましい温度(約90℃〜100℃)の排ガスG7とされて煙突7より大気放出される。   The treated exhaust gas G6 leaving the desulfurization unit 5 has a water saturation temperature (about 50 ° C.) and is reheated by the heat medium 6 collected in the GGH reheating unit 3b to release air to prevent white smoke. The exhaust gas G7 having a preferable temperature (about 90 ° C. to 100 ° C.) is discharged from the chimney 7 to the atmosphere.

また、図1に示すシステムにおいては、煙突7の前に白煙防止のGGH再加熱部3bを設置しているが、本発明はこれに限定されるものではなく、図2に示すように、GGH再加熱部3bを設置せずに、GGH熱回収部3aで熱回収された熱媒6をボイラ設備等に利用するものであってもよい。この場合には、GGH熱回収部3aでの回収熱容量を増大されるようにする場合には、大型化され、熱回収後の排ガスG4の温度をより低下する場合もある。   Moreover, in the system shown in FIG. 1, although the GGH reheating part 3b of white smoke prevention is installed before the chimney 7, this invention is not limited to this, As shown in FIG. Instead of installing the GGH reheating unit 3b, the heat medium 6 recovered by the GGH heat recovery unit 3a may be used for boiler equipment or the like. In this case, when the heat recovery capacity in the GGH heat recovery section 3a is increased, the heat generation capacity may be increased and the temperature of the exhaust gas G4 after heat recovery may be further decreased.

ここで、本発明で水蒸気又は水分注入装置20により注入した水蒸気又は水分により増加する相対湿度とは、増湿前の排ガスG2中の相対湿度から3〜6%向上した相対湿度の値をいう。すなわち、前記水分注入装置20を未使用である場合に比べて相対湿度が3〜6%向上されることをいう。
これは、相対湿度が3%未満ではその増湿の効果が発現されず、一方6%を超える場合にはそのさらなる添加効果が発現されないからである。
Here, the relative humidity increased by the water vapor or water injected by the water vapor or water injection device 20 in the present invention refers to the value of the relative humidity improved by 3 to 6% from the relative humidity in the exhaust gas G2 before the humidification. That is, it means that the relative humidity is improved by 3 to 6% compared to the case where the water injection device 20 is not used.
This is because when the relative humidity is less than 3%, the effect of increasing the humidity is not expressed, whereas when the relative humidity exceeds 6%, the additional effect is not expressed.

例えば700MWの石炭焚ボイラの場合では、水蒸気の供給は30〜50t/hとするのが好ましい。また、水分の供給の場合には、5〜7t/hの注入により、増湿効果と温度低下効果との相乗効果を発現させることができる。   For example, in the case of a 700 MW coal fired boiler, the supply of water vapor is preferably 30 to 50 t / h. In addition, in the case of supplying moisture, a synergistic effect between the humidity increasing effect and the temperature lowering effect can be expressed by injecting 5 to 7 t / h.

特に、排ガスに水分を供給することにより、その運転時における排ガス温度から温度を数度下げるようにすることで、排ガス温度の低下と共に相対湿度の向上を図るようにしてもよい。   In particular, by supplying moisture to the exhaust gas, the temperature may be lowered by several degrees from the exhaust gas temperature during the operation, so that the relative humidity may be improved as the exhaust gas temperature decreases.

また、熱交換装置の熱交換量を増大させて、運転温度を下げるようにしてもよい。一例として70℃にまで運転温度を下げれば、より高温において水または蒸気によって排ガス中の水分を向上させるのと同等の相対湿度の向上が可能である。図1の実施例においては、熱回収量は排ガスの再熱量によって決まるので、ガスガスヒータ(GGH)による排ガス温度の低減範囲に制約が存在するが、図2の実施例のような場合には特に制約なく、一例として70℃といった温度にまで運転温度を低減させることが可能である。   Further, the operating temperature may be lowered by increasing the heat exchange amount of the heat exchange device. As an example, if the operating temperature is lowered to 70 ° C., it is possible to improve the relative humidity equivalent to improving the moisture in the exhaust gas with water or steam at a higher temperature. In the embodiment of FIG. 1, since the heat recovery amount is determined by the amount of reheat of the exhaust gas, there is a limitation in the range of reduction of the exhaust gas temperature by the gas gas heater (GGH), but especially in the case of the embodiment of FIG. Without limitation, the operating temperature can be reduced to a temperature of 70 ° C. as an example.

また、本実施例では、AH(エアヒータ)2とGGH熱回収部3aとの間の排ガスG3中に水蒸気又は水分を注入しているが、本発明はこれに限定されるものではなく、AH2の上流側やボイラ内において、所定量の水蒸気又は水分を供給するようにしてもよく、例えば、ボイラ炉内の蒸発管の表面の付着物を除去する目的で設置されるスーツブロー装置を用いて炉内に上記を注入することによっても、同等の効果が得られる。   In this embodiment, water vapor or moisture is injected into the exhaust gas G3 between the AH (air heater) 2 and the GGH heat recovery unit 3a. However, the present invention is not limited to this, and the AH2 A predetermined amount of water vapor or moisture may be supplied on the upstream side or in the boiler. For example, a furnace using a suit blower installed for the purpose of removing deposits on the surface of the evaporation pipe in the boiler furnace. The same effect can be obtained by injecting the above.

特に、AH2の上流側で水蒸気等を供給する場合では、AH2の下流側で水蒸気等を供給する場合と異なり排ガス温度が高いので、供給した水蒸気又は水分の蒸発効率が高くなるのでより好ましいものとなる。   In particular, when water vapor or the like is supplied on the upstream side of AH2, the exhaust gas temperature is higher than when water vapor or the like is supplied on the downstream side of AH2, so that the efficiency of evaporation of the supplied water vapor or moisture is increased, which is more preferable. Become.

また、水蒸気又は水分注入装置20の代わりに、SO3供給装置(図示せず)を設けるようにしてもよい。
このSO3の供給量としては、逆電離の解消のためには3ppm以上10ppm程度までとするのがよい。
Further, an SO 3 supply device (not shown) may be provided instead of the water vapor or moisture injection device 20.
The supply amount of SO 3 is preferably 3 ppm or more and about 10 ppm in order to eliminate the reverse ionization.

これは、供給量が3ppm未満ではその添加の発現がなく、10ppm以上となるとさらなる添加効果が発現されないからである。なお、添加されたSO3は、大部分が排ガス中の水分と結合して煤塵表面に硫酸として凝集し、煤塵とともに乾式EPで捕集される。また、乾式EPをすり抜けるものがあっても、極微量であるので、亜硫酸ガスと合わせた全硫黄酸化物の量にはほとんど影響を与えない。 This is because when the supply amount is less than 3 ppm, the addition does not occur, and when the supply amount is 10 ppm or more, the further addition effect is not exhibited. Note that most of the added SO 3 is combined with moisture in the exhaust gas and aggregated as sulfuric acid on the surface of the dust, and is collected together with the dust by dry EP. Moreover, even if there is something that can pass through the dry EP, it is extremely small, so it hardly affects the amount of total sulfur oxide combined with sulfurous acid gas.

また、水蒸気又は水分注入装置20とSO3供給装置とを併用するようにしてもよい。 Further, the steam or moisture injection device 20 and the SO 3 supply device may be used in combination.

<試験例1〜3>
以下、相対湿度の増加効果を確認するための試験例について説明する。
試験はLPG焚のガス発生装置を用いて模擬ガスを発生させ、発生した模擬ガスに供試験灰を添加し、循環させて、所定の空塔速度とした。
この循環ラインの排ガス中に、水分注入装置から水分を注入して、排ガス中の相対湿度を増加させて試験を行なった。
なお、電気集塵機の電極のピッチの相違の有無についても測定するために、300mmピッチの場合(ガス量:2100m3N/h)を実線、400mmピッチの場合(ガス量:2800m3N/h)を破線で示した。
なお、供試灰の特性より、体温領域として逆電離が生じる条件として水分2%以下が必要(抵抗閾値:8×1012Ωcm)であった。
<Test Examples 1-3>
Hereinafter, test examples for confirming the effect of increasing the relative humidity will be described.
In the test, a simulated gas was generated using an LPG soot gas generator, and test ash was added to the generated simulated gas and circulated to obtain a predetermined superficial velocity.
A test was performed by injecting moisture into the exhaust gas of the circulation line from a water injection device to increase the relative humidity in the exhaust gas.
In addition, in order to measure whether or not there is a difference in the pitch of the electrodes of the electrostatic precipitator, the case of 300 mm pitch (gas amount: 2100 m 3 N / h) is a solid line, and the case of 400 mm pitch (gas amount: 2800 m 3 N / h) Is indicated by a broken line.
In addition, from the characteristics of the test ash, it was necessary that the water temperature was 2% or less (resistance threshold: 8 × 10 12 Ωcm) as a condition for causing reverse ionization in the body temperature region.

〔試験1−1〜1−4〕
試験1−1〜1−4は水分1.1%の一定として、排ガス温度を変化させ、ガス温度、水分、相対湿度を計測した。
試験の結果を図3〜図6に示す。図3〜図6は試験1−1〜試験1−4に係る印加電圧と電流密度との関係図である。
[Tests 1-1 to 1-4]
In Tests 1-1 to 1-4, the exhaust gas temperature was changed and the gas temperature, moisture, and relative humidity were measured, assuming that the moisture was 1.1%.
The test results are shown in FIGS. 3 to 6 are relationship diagrams between applied voltage and current density according to Test 1-1 to Test 1-4.

試験1−1の結果を示す図3は、温度が42℃で水分が1.1vol%で相対湿度が13.9%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合のいずれもほぼ同じプロットとなり、逆電離現象は確認されなかった。   In FIG. 3 showing the result of Test 1-1, the temperature was 42 ° C., the water content was 1.1 vol%, and the relative humidity was 13.9%. In this case, both the case where the applied voltage was gradually increased and the case where the applied voltage was gradually decreased became almost the same plot, and the reverse ionization phenomenon was not confirmed.

試験1−2の結果を示す図4は、温度が51℃で水分が1.1vol%で相対湿度が8.6%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合のわずかにプロットに開きがあり、逆電離現象の開始が確認された。   FIG. 4 showing the result of Test 1-2 was a temperature of 51 ° C., a water content of 1.1 vol%, and a relative humidity of 8.6%. In this case, there was a slight opening in the plot when the applied voltage was gradually increased and when it was gradually decreased, confirming the start of the reverse ionization phenomenon.

試験1−3の結果を示す図5は、温度が61℃で水分が1.1vol%で相対湿度が5.4%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 5 showing the results of Test 1-3, the temperature was 61 ° C., the water content was 1.1 vol%, and the relative humidity was 5.4%. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

試験1−4の結果を示す図6は、温度が71℃で水分が1.1vol%で相対湿度が3.5%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 6 showing the results of Test 1-4, the temperature was 71 ° C., the water content was 1.1 vol%, and the relative humidity was 3.5%. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

〔試験2−1〜2−4〕
試験2−1〜試験2−4は水分の割合を1.1vol%から2.0vol%に変更し、この水分濃度を一定として、排ガス温度を変化させ、ガス温度、水分、相対湿度を計測した。
試験の結果を図7〜図10に示す。
試験2−1の結果を示す図7は、温度が79℃で水分が2.0vol%で相対湿度が4.5%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合のいずれもほぼ同じプロットとなり、逆電離現象は確認されなかった。
[Tests 2-1 to 2-4]
In Tests 2-1 to 2-4, the water content was changed from 1.1 vol% to 2.0 vol%, the water concentration was constant, the exhaust gas temperature was changed, and the gas temperature, moisture, and relative humidity were measured. .
The test results are shown in FIGS.
In FIG. 7 showing the results of Test 2-1, the temperature was 79 ° C., the water content was 2.0 vol%, and the relative humidity was 4.5%. In this case, both the case where the applied voltage was gradually increased and the case where the applied voltage was gradually decreased became almost the same plot, and the reverse ionization phenomenon was not confirmed.

試験2−2の結果を示す図8は、温度が84℃で水分が2.0vol%で相対湿度が3.7%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合のわずかにプロットに開きがあり、逆電離現象の開始が確認された。   FIG. 8 showing the results of Test 2-2 shows that the temperature was 84 ° C., the water content was 2.0 vol%, and the relative humidity was 3.7%. In this case, there was a slight opening in the plot when the applied voltage was gradually increased and when it was gradually decreased, confirming the start of the reverse ionization phenomenon.

試験2−3の結果を示す図9は、温度が91℃で水分が2.0vol%で相対湿度が2.8%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 9 showing the results of Test 2-3, the temperature was 91 ° C., the water content was 2.0 vol%, and the relative humidity was 2.8%. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

試験2−4の結果を示す図10は、温度が97℃で水分が2.0vol%で相対湿度が2.3%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 10 showing the results of Test 2-4, the temperature was 97 ° C., the water content was 2.0 vol%, and the relative humidity was 2.3%. In this case, when the applied voltage was gradually increased and when it was gradually decreased, an opening was clearly confirmed in the plot, and the reverse ionization phenomenon was confirmed.

〔試験3−1〜3−4〕
試験3では、試験1及び試験2と異なり、ガス温度をほぼ90度に一定にして、水分を変化させ、ガス温度、水分、相対湿度を計測した。
試験の結果を図11〜図14に示す。
[Tests 3-1 to 3-4]
In Test 3, unlike Test 1 and Test 2, the gas temperature was kept constant at approximately 90 degrees, the moisture was changed, and the gas temperature, moisture, and relative humidity were measured.
The results of the test are shown in FIGS.

試験3−1の結果を示す図11は、温度が95℃で水分が1.3vol%で相対湿度が1.5%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 11 showing the results of Test 3-1, the temperature was 95 ° C., the water content was 1.3 vol%, and the relative humidity was 1.5%. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

試験3−2の結果を示す図12は、温度が91℃で水分が2.9vol%で相対湿度が4.0%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。   In FIG. 12 showing the results of Test 3-2, the temperature was 91 ° C., the water content was 2.9 vol%, and the relative humidity was 4.0%. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

試験3−3の結果を示す図13は、温度が91℃で水分が3.4vol%で相対湿度が4.8%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットの開きが僅かとなり、逆電離現象がほぼ解消された。   In FIG. 13 showing the results of Test 3-3, the temperature was 91 ° C., the water content was 3.4 vol%, and the relative humidity was 4.8%. In this case, when the applied voltage was gradually increased and gradually decreased, the plot was slightly opened, and the reverse ionization phenomenon was almost eliminated.

試験3−3の結果を示す図14は、温度が91℃で水分が4.4vol%で相対湿度が6.2%であった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットの開きがなく逆電離現象は完全に解消された。   In FIG. 14 showing the results of Test 3-3, the temperature was 91 ° C., the water content was 4.4 vol%, and the relative humidity was 6.2%. In this case, when the applied voltage was gradually increased and gradually decreased, the plot did not open and the reverse ionization phenomenon was completely eliminated.

試験1〜試験3の結果を図15〜図17に各々示す。図15〜17は相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。なお、図中黒丸は電極が300mmピッチの場合、白丸は400mmピッチの場合を示す。 The results of Test 1 to Test 3 are shown in FIGS. 15 to 17 are graphs showing the relationship between the relative humidity and the hysteresis (kV / cm) of the electric field strength at a current density of 0.2 mA / m 2 . In the drawing, black circles indicate the case where the electrodes are 300 mm pitch, and white circles indicate the case where the pitch is 400 mm.

図15〜17では、先に試験した電流密度0.2mA/m2における電界強度のヒステリシス(Vlの上昇と下降での電界強度の値の差)を逆電離の度合い(程度)の指標とした。また、電流密度0.2mA/m2における電界強度のヒステリシス=0.05kV/cmを逆電離発生の閾値と仮定した。 15 to 17, the hysteresis of the electric field strength (difference in electric field strength value when Vl increases and decreases) at the current density of 0.2 mA / m 2 previously tested is used as an index of the degree (degree) of reverse ionization. . Further, the hysteresis of the electric field strength at a current density of 0.2 mA / m 2 = 0.05 kV / cm was assumed as the threshold value for the occurrence of reverse ionization.

図15〜17に示すようにいずれにおいても逆電離の度合いは、相対湿度に対してリニアな関係にあることが判明し、相対湿度を向上させることで、逆電離現象が解消されることが確認された。また、電極間ピッチにおける差異はないことが確認された。   As shown in FIGS. 15 to 17, it is found that the degree of reverse ionization has a linear relationship with the relative humidity in any case, and it is confirmed that the reverse ionization phenomenon is eliminated by improving the relative humidity. It was done. Moreover, it was confirmed that there is no difference in the pitch between electrodes.

図18〜図20は、先の図15〜17の相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフにおいて、逆電離発生のヒステリシスを0.2kV/cmとし、この逆電離を解消する指標を0.05kV/cm以下とした場合、その起点と終点を矢印で示した。
その結果、相対湿度を約3〜5%向上させることにより逆電離が解消されることが確認された。
なお、実機ボイラにおいて、逆電離が発生した際のヒステリシスは0.19kV/cmであり、前記0.2kV/cmの範囲内の値であった。
18 to 20 are graphs showing the relationship between the relative humidity of FIGS. 15 to 17 and the hysteresis of the electric field strength (kV / cm) at a current density of 0.2 mA / m 2 . .2 kV / cm, and when the index for eliminating this reverse ionization is 0.05 kV / cm or less, the starting point and the ending point are indicated by arrows.
As a result, it was confirmed that the reverse ionization was eliminated by improving the relative humidity by about 3 to 5%.
In the actual boiler, the hysteresis when reverse ionization occurred was 0.19 kV / cm, which was a value within the range of 0.2 kV / cm.

なお、本試験例では、相対湿度を3〜5%増加させることが好ましいとしているが、実機ボイラにおいては、電界強度のヒステリシスの値が変動する場合があるので、相対湿度の上限をさらに1%程度増加した6%とするのが好ましい。   In this test example, it is preferable to increase the relative humidity by 3 to 5%. However, in an actual boiler, the value of the hysteresis of the electric field strength may vary, so the upper limit of the relative humidity is further increased by 1%. It is preferable to make it 6% which increased to some extent.

<試験4>
700MWの実機プラントにて、350MWでの運転において、水蒸気を注入した場合における煤塵濃度の低下を確認した。
その結果を図21に示す。
図21は横軸が時間であり、縦軸が上から平均電圧(kV)、水蒸気の投入の有無、乾式EP出口の煤塵濃度(mg/m3N)であり、排ガス中に14t/hの水蒸気を注入し、逆電離が解消されたことを確認した。逆電離の解消の有無は、電圧の上昇と煤塵濃度の急激な減少により確認した。
<Test 4>
In an actual plant of 700 MW, in operation at 350 MW, a decrease in the soot concentration when steam was injected was confirmed.
The result is shown in FIG.
In FIG. 21, the horizontal axis represents time, the vertical axis represents the average voltage (kV) from the top, the presence or absence of water vapor input, the dust concentration (mg / m 3 N) at the outlet of the dry EP, and 14 t / h in the exhaust gas. Steam was injected to confirm that reverse ionization was eliminated. The presence or absence of reverse ionization was confirmed by an increase in voltage and a rapid decrease in dust concentration.

<試験5>
試験1と同様な装置を用いて、SO3供給による逆電離現象の解消の効果を確認するための試験例について説明する。
試験は発生した模擬ガスにSO3を供給し、循環させて、所定の空塔速度とした。
<Test 5>
A test example for confirming the effect of eliminating the reverse ionization phenomenon by supplying SO 3 will be described using the same apparatus as in Test 1.
In the test, SO 3 was supplied to the generated simulated gas and circulated to obtain a predetermined superficial velocity.

試験5−1〜5−4の結果を図22〜図24に示す。
試験5−1の結果を示す図22は、温度が89℃で水分が1.2vol%でSO3濃度が1.82ppmであった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがはっきり確認され、逆電離現象が確認された。
The results of Tests 5-1 to 5-4 are shown in FIGS.
FIG. 22 showing the results of Test 5-1 shows that the temperature was 89 ° C., the water content was 1.2 vol%, and the SO 3 concentration was 1.82 ppm. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was clearly confirmed, and the reverse ionization phenomenon was confirmed.

試験5−2の結果を示す図23は、温度が90℃で水分が1.2vol%でSO3濃度が3.64ppmであった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きが縮小され、逆電離現象の解消傾向が確認された。 FIG. 23 showing the results of Test 5-2 shows that the temperature was 90 ° C., the water content was 1.2 vol%, and the SO 3 concentration was 3.64 ppm. In this case, when the applied voltage was gradually increased and gradually decreased, the opening in the plot was reduced, and the tendency to eliminate the reverse ionization phenomenon was confirmed.

試験5−3の結果を示す図24は、温度が90℃で水分が1.2vol%でSO3濃度が6.06ppmであった。この場合には、印加電圧を徐々に上昇した場合及び徐々に下降させた場合にプロットに開きがなく、逆電離現象が解消された。 In FIG. 24 showing the results of Test 5-3, the temperature was 90 ° C., the water content was 1.2 vol%, and the SO 3 concentration was 6.06 ppm. In this case, when the applied voltage was gradually increased and gradually decreased, the plot did not open and the reverse ionization phenomenon was eliminated.

試験5−1〜5−3の結果を図25に示す。図25はSO3濃度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。
図25では、先に試験した電流密度0.2mA/m2における電界強度のヒステリシス(Vlの上昇と下降での電界強度の値の差)を逆電離の度合い(程度)の指標とした。また、電流密度0.2mA/m2における電界強度のヒステリシス=0.05kV/cmを逆電離発生の閾値と仮定した。
The results of Tests 5-1 to 5-3 are shown in FIG. FIG. 25 is a graph showing the relationship between the SO 3 concentration and the hysteresis (kV / cm) of the electric field strength at a current density of 0.2 mA / m 2 .
In FIG. 25, the hysteresis of the electric field strength at the current density of 0.2 mA / m 2 (the difference between the electric field strength values when Vl increases and decreases) is used as an index of the degree (degree) of reverse ionization. Further, the hysteresis of the electric field strength at a current density of 0.2 mA / m 2 = 0.05 kV / cm was assumed as the threshold value for the occurrence of reverse ionization.

図25に示すように、逆電離の度合いは、SO3濃度に対して相関関係があることが判明し、SO3濃度を向上させることで、逆電離現象が解消されることが確認された。また、電極間ピッチにおける差異はないことが確認された。 As shown in FIG. 25, the degree of back corona is found that there is a correlation with the SO 3 concentration, to improve the SO 3 concentration, that back corona phenomenon is eliminated was confirmed. Moreover, it was confirmed that there is no difference in the pitch between electrodes.

図25のSO3濃度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフにおいて、逆電離発生のヒステリシスを0.2kV/cmとし、この逆電離を解消する指標と0.05kV/cm以下とした場合、その起点と終点を矢印で示した。
その結果、SO3濃度を約3%以上向上させることで逆電離現象が解消されることが確認された。
In the graph showing the relationship between the SO 3 concentration in FIG. 25 and the hysteresis (kV / cm) of the electric field strength at a current density of 0.2 mA / m 2 , the reverse ionization hysteresis is 0.2 kV / cm. When the index to be eliminated and 0.05 kV / cm or less, the starting point and the ending point are indicated by arrows.
As a result, it was confirmed that the reverse ionization phenomenon was eliminated by increasing the SO 3 concentration by about 3% or more.

なお、本試験例では、SO3濃度を3%以上増加させることが好ましいとしているが、実機ボイラにおいては、電界強度のヒステリシスの値が変動する場合があるので、SO3注入量の上限をさらに1%程度増加した3〜4%以上とするのが好ましい。 In this test example, it is preferable to increase the SO 3 concentration by 3% or more. However, in an actual boiler, the value of the hysteresis of the electric field strength may fluctuate, so the upper limit of the SO 3 injection amount is further increased. It is preferable to make it 3-4% or more increased by about 1%.

なお、本実施例では、ボイラとして石炭焚ボイラを例にして説明したが、本発明はこれに限定されるものではない。   In the present embodiment, a coal fired boiler has been described as an example of the boiler, but the present invention is not limited to this.

以上のように、本発明に係る、電気集塵装置を有する石炭焚ボイラ排ガスの処理において、逆電離が防止され、電気集塵効率が常に安定した石炭焚ボイラからの排ガス処理に用いて適している。   As described above, in the treatment of exhaust gas from a coal fired boiler having an electrostatic precipitator according to the present invention, it is suitable for use in exhaust gas treatment from a coal fired boiler in which reverse ionization is prevented and the electrostatic dust collection efficiency is always stable. Yes.

実施例に係る石炭焚ボイラの排煙処理システム図である。It is a flue gas processing system figure of a coal fired boiler concerning an example. 実施例に係る他の石炭焚ボイラの排煙処理システム図である。It is a flue gas processing system figure of the other coal fired boiler concerning an example. 試験1−1に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 1-1, and current density. 試験1−2に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 1-2, and current density. 試験1−3に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 1-3, and current density. 試験1−4に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 1-4, and current density. 試験2−1に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 2-1, and current density. 試験2−2に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 2-2, and current density. 試験2−3に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of the applied voltage at the time of changing the relative humidity which concerns on the test 2-3, and a current density. 試験2−4に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 2-4, and current density. 試験3−1に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 3-1, and current density. 試験3−2に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 3-2, and current density. 試験3−3に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 3-3, and current density. 試験3−4に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 3-4, and current density. 試験例1に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity which concerns on the test example 1, and the hysteresis (kV / cm) of the electric field strength in current density 0.2mA / m < 2 >. 試験例2に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity which concerns on Test Example 2, and the hysteresis (kV / cm) of the electric field strength in current density 0.2mA / m < 2 >. 試験例3に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity which concerns on the test example 3, and the hysteresis (kV / cm) of the electric field strength in the current density of 0.2 mA / m < 2 >. 試験例1に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフにおいて、逆電離が解消される範囲を示したグラフである。In the graph which shows the relationship between the relative humidity which concerns on the test example 1, and the hysteresis (kV / cm) of the electric field strength in the current density of 0.2 mA / m < 2 >, it is the graph which showed the range where reverse ionization is eliminated. 試験例2に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフにおいて、逆電離が解消される範囲を示したグラフである。In the graph which shows the relationship between the relative humidity which concerns on Test Example 2, and the hysteresis (kV / cm) of the electric field strength in the current density of 0.2 mA / m < 2 >, it is the graph which showed the range by which reverse ionization is eliminated. 試験例3に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフにおいて、逆電離が解消される範囲を示したグラフである。In the graph which shows the relationship between the relative humidity which concerns on the test example 3, and the hysteresis (kV / cm) of the electric field strength in the current density of 0.2 mA / m < 2 >, it is the graph which showed the range where reverse ionization is eliminated. 試験例4に係る実機プラントにおける逆電離現象の解消の効果を示すグラフである。6 is a graph showing the effect of eliminating the reverse ionization phenomenon in an actual plant according to Test Example 4. 試験5−1に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 5-1, and current density. 試験5−2に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 5-2, and current density. 試験5−3に係る相対湿度を変化させた場合の印加電圧と電流密度との関係図である。It is a related figure of an applied voltage at the time of changing relative humidity concerning test 5-3, and current density. 試験例5に係る相対湿度と電流密度0.2mA/m2における電界強度のヒステリシス(kV/cm)との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity which concerns on Test Example 5, and the hysteresis (kV / cm) of the electric field strength in the current density of 0.2 mA / m < 2 >. 排ガス温度と煤塵電気比抵抗との関係図である。It is a related figure of exhaust gas temperature and dust electrical resistivity. 煤塵粒子における表面伝導及び体積伝導の様子の模式図である。It is a schematic diagram of the state of surface conduction and volume conduction in dust particles. 排ガス温度と灰の電気抵抗率との関係図である。It is a related figure of exhaust gas temperature and the electrical resistivity of ash. 石炭焚ボイラの排煙処理システム図である。It is a flue gas processing system figure of a coal fired boiler.

符号の説明Explanation of symbols

1 石炭焚ボイラ
2 エアヒータ
3a GGH熱回収部
3b GGH再加熱部
4 乾式EP
5 脱硫装置
7 煙突
20 水蒸気又は水分注入装置
DESCRIPTION OF SYMBOLS 1 Coal fired boiler 2 Air heater 3a GGH heat recovery part 3b GGH reheating part 4 Dry EP
5 Desulfurizer 7 Chimney 20 Steam or water injection device

Claims (9)

ボイラの排ガスの熱回収を行なう熱回収装置と、該熱回収装置の後流側に設けられ、排ガス中の煤塵を捕集する乾式電気集塵装置とを具備する石炭焚ボイラの排煙処理システムであって、
排ガス中に水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させる相対湿度増加装置を有してなることを特徴とする石炭焚ボイラの排煙処理システム。
A coal-fired boiler flue gas treatment system comprising: a heat recovery device that recovers heat of exhaust gas from a boiler; and a dry electric dust collector that is provided on a downstream side of the heat recovery device and collects dust in the exhaust gas. Because
A coal flue boiler flue gas treatment system comprising a relative humidity increasing device that injects one or both of water vapor and moisture into exhaust gas to improve relative humidity.
請求項1において、
前記相対湿度増加装置が、熱交換器の上流側の排ガスの煙道中に水蒸気又は水分を注入する水蒸気又は水分注入装置であることを特徴とする石炭焚ボイラの排煙処理システム。
In claim 1,
A flue gas treatment system for a coal fired boiler, wherein the relative humidity increasing device is a water vapor or moisture injection device for injecting water vapor or moisture into an exhaust gas flue upstream of a heat exchanger.
請求項1又は2において、
前記相対湿度増加装置により、排ガスの相対湿度が、前期相対湿度増加装置を未使用である場合に比べて3%以上向上されることを特徴とする石炭焚ボイラの排煙処理システム。
In claim 1 or 2,
The flue gas treatment system for a coal fired boiler, wherein the relative humidity increasing device improves the relative humidity of the exhaust gas by 3% or more compared to the case where the relative humidity increasing device is not used in the previous period.
石炭焚ボイラの排ガスの熱回収を行なう熱回収装置と、該熱回収装置の後流側に設けられ、排ガス中の煤塵を補充する乾式電気集塵装置とを具備する石炭焚ボイラの排煙処理システムであって、
排ガス中にSO3を注入して、SO3濃度を向上させるSO3供給装置を有してなることを特徴とする石炭焚ボイラの排煙処理システム。
Smoke treatment of coal fired boiler comprising heat recovery device for recovering heat of exhaust gas from coal fired boiler, and dry electric dust collector provided on the downstream side of the heat recovery device to replenish dust in exhaust gas A system,
An exhaust gas treatment system for a coal fired boiler, comprising an SO 3 supply device for injecting SO 3 into exhaust gas to improve the SO 3 concentration.
請求項4において、
前記SO3の注入量が3ppm以上であることを特徴とする石炭焚ボイラの排煙処理システム。
In claim 4,
A flue gas treatment system for a coal fired boiler, wherein the injection amount of SO 3 is 3 ppm or more.
ボイラの排ガスの熱回収を行なった後に、排ガス中の煤塵を乾式電気集塵装置により捕集する石炭焚ボイラの排煙処理方法であって、
排ガス中に水蒸気又は水分のいずれか一方又は両方を注入して、相対湿度を向上させることを特徴とする石炭焚ボイラの排煙処理方法。
A method for exhausting smoke from a coal fired boiler that collects dust in the exhaust gas by a dry electrostatic precipitator after heat recovery of the exhaust gas from the boiler,
A method for flue gas treatment of a coal fired boiler, characterized by injecting either or both of water vapor and moisture into exhaust gas to improve relative humidity.
請求項6において、
前記相対湿度増加装置により、排ガスの相対湿度が、前期相対湿度増加装置を未使用である場合に比べて3%以上向上されることを特徴とする石炭焚ボイラの排煙処理方法。
In claim 6,
The flue gas treatment method for a coal fired boiler, wherein the relative humidity increasing device improves the relative humidity of the exhaust gas by 3% or more compared to the case where the relative humidity increasing device in the previous period is not used.
石炭焚ボイラの排ガスの熱回収を行なった後に、排ガス中の煤塵を乾式電気集塵装置により捕集する石炭焚ボイラの排煙処理方法であって、
排ガス中にSO3を注入してSO3濃度を向上させることを特徴とする石炭焚ボイラの排煙処理方法。
A flue gas treatment method for a coal fired boiler that collects dust in the exhaust gas by a dry electrostatic precipitator after heat recovery of the exhaust gas of the coal fired boiler,
A method for treating flue gas from a coal fired boiler, wherein SO 3 concentration is improved by injecting SO 3 into exhaust gas.
請求項8において、
前記SO3の注入量が3ppm以上であることを特徴とする石炭焚ボイラの排煙処理方法。
In claim 8,
A flue gas treatment method for a coal fired boiler, wherein the injection amount of SO 3 is 3 ppm or more.
JP2006161237A 2006-06-09 2006-06-09 Flue gas treatment system and method of coal burning boiler Pending JP2007326079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161237A JP2007326079A (en) 2006-06-09 2006-06-09 Flue gas treatment system and method of coal burning boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161237A JP2007326079A (en) 2006-06-09 2006-06-09 Flue gas treatment system and method of coal burning boiler

Publications (1)

Publication Number Publication Date
JP2007326079A true JP2007326079A (en) 2007-12-20

Family

ID=38926936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161237A Pending JP2007326079A (en) 2006-06-09 2006-06-09 Flue gas treatment system and method of coal burning boiler

Country Status (1)

Country Link
JP (1) JP2007326079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136782A1 (en) 2012-03-14 2013-09-19 株式会社Ihi Oxygen combustion boiler system
CN103363536A (en) * 2013-07-10 2013-10-23 浙江省电力设计院 Low temperature electric precipitation system in fuel electric plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637059A (en) * 1979-09-03 1981-04-10 Mitsubishi Kakoki Kaisha Ltd Treatment method of exhaust gas containing dust with high electric resistance
JPS5750560A (en) * 1980-09-09 1982-03-25 Sumitomo Heavy Ind Ltd Method for refining of waste gas for electrostatic dust precipitator
JPS62183859A (en) * 1986-02-07 1987-08-12 Kansai Electric Power Co Inc:The Method for treating flue gas from coal firing boiler
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH07308601A (en) * 1994-05-18 1995-11-28 Hitachi Plant Eng & Constr Co Ltd Reconditioning of dust contained in combustion exhaust gas
JP2000051651A (en) * 1999-08-09 2000-02-22 Babcock Hitachi Kk Apparatus and method for flue gas desulfurization
JP2002204925A (en) * 2001-01-15 2002-07-23 Electric Power Dev Co Ltd Exhaust gas treating system and its operating method
JP2002370012A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637059A (en) * 1979-09-03 1981-04-10 Mitsubishi Kakoki Kaisha Ltd Treatment method of exhaust gas containing dust with high electric resistance
JPS5750560A (en) * 1980-09-09 1982-03-25 Sumitomo Heavy Ind Ltd Method for refining of waste gas for electrostatic dust precipitator
JPS62183859A (en) * 1986-02-07 1987-08-12 Kansai Electric Power Co Inc:The Method for treating flue gas from coal firing boiler
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH07308601A (en) * 1994-05-18 1995-11-28 Hitachi Plant Eng & Constr Co Ltd Reconditioning of dust contained in combustion exhaust gas
JP2000051651A (en) * 1999-08-09 2000-02-22 Babcock Hitachi Kk Apparatus and method for flue gas desulfurization
JP2002204925A (en) * 2001-01-15 2002-07-23 Electric Power Dev Co Ltd Exhaust gas treating system and its operating method
JP2002370012A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136782A1 (en) 2012-03-14 2013-09-19 株式会社Ihi Oxygen combustion boiler system
KR20140138279A (en) 2012-03-14 2014-12-03 가부시키가이샤 아이에이치아이 Oxygen combustion boiler system
JPWO2013136782A1 (en) * 2012-03-14 2015-08-03 株式会社Ihi Oxy-combustion boiler system
US9945558B2 (en) 2012-03-14 2018-04-17 Ihi Corporation Oxyfuel combustion boiler system
CN103363536A (en) * 2013-07-10 2013-10-23 浙江省电力设计院 Low temperature electric precipitation system in fuel electric plant

Similar Documents

Publication Publication Date Title
US10955136B2 (en) Method and system for improving boiler effectiveness
JP4853737B2 (en) Exhaust gas treatment method and apparatus
JP5416679B2 (en) Exhaust gas treatment method and apparatus
CN104676620A (en) Flue gas processing system and flue gas processing method capable of enabling low-low temperature electrostatic precipitation to be combined with water pollination type GGH (Gas Gas Heater)
JP2006308269A (en) Heat recovery equipment
JP2005059005A (en) System for diminishing mercury in combustion flue gas using coal mixture and method thereof
CN103203154B (en) Water-cooled tube type condensate dust collector
JP2010172878A (en) Exhaust gas treatment device of coal-fired boiler of oxygen combustion type and method using this device
JP5537195B2 (en) Waste heat recovery system for stoker-type incinerator
JP5284251B2 (en) Oxy-combustion exhaust gas treatment device and method of operating the exhaust gas treatment device
CN104684627B (en) Flue gas treatment method and flue gas treatment device
RU2482905C2 (en) Method and device for control over electrostatic filter by tapping
JP2007326079A (en) Flue gas treatment system and method of coal burning boiler
JP2011094962A (en) Heat recovery equipment
JP2006292264A (en) Method and system for waste combustion treatment
TWI754316B (en) Exhaust gas treatment device and exhaust gas treatment method
CN105526578A (en) Energy-saving environment-friendly comprehensive treating device and technology for smoke in coking plant
JP2019100612A (en) Heat exchanger for boiler exhaust gas
CN105841175A (en) Smoke collaborative treatment method based on ultra-low temperature electric deduster
JPS60227845A (en) Treating apparatus of exhaust gas
JP4901920B2 (en) Exhaust gas treatment system and method
CN105498974B (en) Electric cleaner servicing unit and flue gas dust collecting system
JP2001000833A (en) Boiler flue gas treating device
JP2019155256A (en) Drying system, operation method thereof, and boiler system
JP5305327B2 (en) Coal gasification power generation system and mercury removal method in coal gasification power generation system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20081212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115