JP2007324406A - Substrate treatment method and manufacturing method for semiconductor device - Google Patents

Substrate treatment method and manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2007324406A
JP2007324406A JP2006153618A JP2006153618A JP2007324406A JP 2007324406 A JP2007324406 A JP 2007324406A JP 2006153618 A JP2006153618 A JP 2006153618A JP 2006153618 A JP2006153618 A JP 2006153618A JP 2007324406 A JP2007324406 A JP 2007324406A
Authority
JP
Japan
Prior art keywords
substrate
support substrate
processed
bonding
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153618A
Other languages
Japanese (ja)
Other versions
JP5003023B2 (en
Inventor
Masaki Hatano
正喜 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006153618A priority Critical patent/JP5003023B2/en
Publication of JP2007324406A publication Critical patent/JP2007324406A/en
Application granted granted Critical
Publication of JP5003023B2 publication Critical patent/JP5003023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for supporting a substrate capable of properly supporting the substrate without using an adhesive requiring a temporary fixing property and peeling performance, and capable of properly removing even a support substrate and a manufacturing method for a semiconductor device. <P>SOLUTION: The support substrate 29 and a wafer (substrate to be treated) W are joined by solid-phase junction between metallic layers 28 (28A and 28B) formed on each joint surface, and the support substrate 29 is removed by polishing the support substrate 29. Accordingly, since an organic adhesive having the temporary fixing property and the peeling performance which have been required in a conventional device is not needed, and a machining process can be carried out to the wafer W without receiving the constraint of a heat-resistant temperature and the chemical resistance of the adhesive, the formation of an insulating film having excellent adhesion and the stable pattern processing of a terminal surface are enabled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば半導体基板等の被処理基板を支持基板で支持した状態で処理するための基板処理方法及びこの方法を用いた半導体装置の製造方法に関する。   The present invention relates to a substrate processing method for processing a substrate to be processed such as a semiconductor substrate supported by a support substrate, and a semiconductor device manufacturing method using this method.

近年、電子機器の高機能化や軽薄短小化の要求に伴って、電子部品の高密度集積化や高密度実装化が進み、フリップチップ実装を用いたMCM(マルチチップモジュール)又はSIP(システムインパッケージ)タイプの半導体装置が主流になりつつある。この種の半導体装置の中には、第1の半導体チップの上に第2の半導体チップをフリップチップ実装した構成を採用したものがある。   In recent years, along with demands for higher functionality and lighter and thinner electronic devices, electronic components have become more densely integrated and densely mounted, and MCM (multi-chip module) or SIP (system-in) using flip-chip mounting. Package) type semiconductor devices are becoming mainstream. Some semiconductor devices of this type employ a configuration in which a second semiconductor chip is flip-chip mounted on a first semiconductor chip.

図6はこの種の従来の半導体装置の概略構成を示す断面図である。図示した半導体装置は、第1の半導体チップ1と第2の半導体チップ2とによって構成されている。第2の半導体チップ2は第1の半導体チップ1の主面のほぼ中央部に複数のバンプ3を用いてフリップチップ実装されている。第1の半導体チップ1の周縁部には、第2の半導体チップ2が実装される領域を取り囲む状態で複数の電極パッド4が形成されている。また、第1の半導体チップ1の主面上であって、チップ実装領域と電極パッド4の形成領域との間にはダム5が設けられている。ダム5は、電極パッド4の形成領域よりも内側でチップ実装領域を取り囲むように平面視矩形状の枠型に形成されている。そして、ダム5の内側において、第1の半導体チップ1と第2の半導体チップ2との間には、アンダーフィル材6が充填されている。   FIG. 6 is a cross-sectional view showing a schematic configuration of this type of conventional semiconductor device. The illustrated semiconductor device includes a first semiconductor chip 1 and a second semiconductor chip 2. The second semiconductor chip 2 is flip-chip mounted using a plurality of bumps 3 at substantially the center of the main surface of the first semiconductor chip 1. A plurality of electrode pads 4 are formed on the periphery of the first semiconductor chip 1 so as to surround a region where the second semiconductor chip 2 is mounted. A dam 5 is provided on the main surface of the first semiconductor chip 1 and between the chip mounting area and the electrode pad 4 formation area. The dam 5 is formed in a rectangular frame shape in plan view so as to surround the chip mounting region inside the region where the electrode pad 4 is formed. An underfill material 6 is filled between the first semiconductor chip 1 and the second semiconductor chip 2 inside the dam 5.

以上のように構成される従来の半導体装置は、図6に示すように実装基板7上に接着材料層8を介して接着された後、第1の半導体チップ1上の電極パッド4と実装基板7上のランド9との間にボンディングワイヤ10を介して電気的接続が行われている。   The conventional semiconductor device configured as described above is bonded to the mounting substrate 7 via the adhesive material layer 8 as shown in FIG. 6, and then the electrode pad 4 on the first semiconductor chip 1 and the mounting substrate. 7 is electrically connected to the land 9 on the 7 through a bonding wire 10.

近年、この種のMCM又はSIPタイプの半導体装置においては、信号処理の高速化や実装面積の低減等が求められている。すなわち、図6に示したワイヤボンディング方式で実装される半導体装置は、ボンディングワイヤ10の配線長に起因する信号伝達の遅延やボンディングワイヤ10の引き回しに必要な実装面積の確保が問題となる。   In recent years, this type of MCM or SIP type semiconductor device has been required to increase the speed of signal processing and reduce the mounting area. That is, the semiconductor device mounted by the wire bonding method shown in FIG. 6 has a problem of securing a mounting area necessary for routing of the bonding wire 10 and a signal transmission delay due to the wiring length of the bonding wire 10.

そこで、図7に模式的に示すように、第1の半導体チップ1に対して、上層側の第2の半導体チップ2と接合されるバンプ3と、下層側の実装基板7と接合されるバンプ12との間を層間接続するビア(貫通電極)11を形成するようにすれば、信号速度の高速化と実装面積の低減とを同時に実現することができるので非常に有利である。   Therefore, as schematically shown in FIG. 7, the bump 3 bonded to the second semiconductor chip 2 on the upper layer side and the bump bonded to the mounting substrate 7 on the lower layer side with respect to the first semiconductor chip 1. By forming vias (through electrodes) 11 that connect the layers 12 to each other, it is very advantageous because an increase in signal speed and a reduction in mounting area can be realized at the same time.

貫通電極を形成するには、加工時間の短縮と狭ピッチ化を実現するため、ウェーハを薄厚化する必要がある。従来より、ウェーハの薄厚化には裏面研削(バックグラインディング)が実施されている。そこで、貫通電極の形成方法として、ウェーハ表面に貫通電極を埋め込み形成した後、ウェーハ裏面を研削して貫通電極の端子面を外部に露出させる方法が知られている(下記特許文献1参照)。   In order to form the through electrode, it is necessary to reduce the thickness of the wafer in order to reduce the processing time and reduce the pitch. Conventionally, back grinding has been performed to reduce the thickness of a wafer. Therefore, as a through electrode formation method, a method is known in which a through electrode is embedded and formed on the wafer surface, and then the back surface of the wafer is ground to expose the terminal surface of the through electrode to the outside (see Patent Document 1 below).

また、ウェーハの厚さが薄くなるとウェーハに反りが発生し易くなり、ハンドリングが困難となる。そこで、ウェーハの表面に支持基板(サポート基板)を接着し、ウェーハの支持性を高める一方で、被処理基板に対する処理が完了したときは、被処理基板から支持基板を適正に除去する必要がある。   Further, when the thickness of the wafer is reduced, the wafer is likely to be warped, and handling becomes difficult. Therefore, a support substrate (support substrate) is bonded to the surface of the wafer to enhance the supportability of the wafer. On the other hand, when processing on the substrate to be processed is completed, it is necessary to properly remove the support substrate from the substrate to be processed. .

上述ように、支持基板とウェーハとの間を接着する接着剤には、ウェーハ加工プロセスに耐えられる仮固定性と、ウェーハ加工プロセス完了後の剥離性が要求されている。そして、接着剤の剥離技術に関しては、接着剤を溶剤により溶解除去する方法、紫外線照射で接着性を低下させる方法等が提案されている(下記特許文献2,3参照)。   As described above, the adhesive that bonds the support substrate and the wafer is required to have a temporary fixability that can withstand the wafer processing process and a peelability after the completion of the wafer processing process. And regarding the peeling technique of an adhesive agent, a method of dissolving and removing the adhesive agent with a solvent, a method of reducing adhesiveness by ultraviolet irradiation, and the like have been proposed (see Patent Documents 2 and 3 below).

図8〜図10は第1の従来例としての半導体装置の製造方法を説明する工程断面図である。   8 to 10 are process cross-sectional views for explaining a semiconductor device manufacturing method as a first conventional example.

まず、図8Aに示すように、シリコンからなる基板本体(半導体基板)101の表面に、トランジスタ等の半導体素子や配線103、絶縁層104等からなる素子層102が形成されたウェーハ100を準備する。この素子層102の表面には配線層103の一部と導通する電極パッド105が形成されているとともに、基板本体101の表面には配線103の一部と導通する埋込導体層106Pが形成されている。   First, as shown in FIG. 8A, a wafer 100 is prepared in which a semiconductor element such as a transistor, an element layer 102 including a wiring 103, an insulating layer 104, and the like are formed on the surface of a substrate body (semiconductor substrate) 101 made of silicon. . An electrode pad 105 that is electrically connected to a part of the wiring layer 103 is formed on the surface of the element layer 102, and an embedded conductor layer 106P that is electrically connected to a part of the wiring 103 is formed on the surface of the substrate body 101. ing.

次に、図8Bに示すように、素子層102表面の電極パッド105上に、はんだバンプ107を形成する。続いて、図8Cに示すように、はんだバンプ107を含む素子層102の表面全域に接着剤を塗布して接着材料層108を形成するともに、この接着材料層108の上に支持基板109を接着する。支持基板109は、その面内に剥離液供給用の複数の貫通孔109aが形成されたガラス基板あるいはシリコン基板で構成されている。   Next, as shown in FIG. 8B, solder bumps 107 are formed on the electrode pads 105 on the surface of the element layer 102. Subsequently, as shown in FIG. 8C, an adhesive is applied to the entire surface of the element layer 102 including the solder bumps 107 to form an adhesive material layer 108, and a support substrate 109 is bonded onto the adhesive material layer 108. To do. The support substrate 109 is formed of a glass substrate or a silicon substrate in which a plurality of through holes 109a for supplying a stripping solution are formed in the surface.

続いて、図8Dに示すように、支持基板109でウェーハ100を支持した状態で、基板本体101の裏面を研削し、基板本体101を所定厚に薄厚化するとともに、薄厚化された基板本体101tの裏面から貫通電極(埋込導体層)106の先端部106aを露出させる。なお、図では簡易的に示しているが、薄厚化した基板本体101tは、実際は素子層102よりも厚く形成され、支持基板109は、実際は基板本体101tよりも厚く形成されている。また、図8D以降は、ウェーハ100の表裏を反転して示す。   Subsequently, as shown in FIG. 8D, while the wafer 100 is supported by the support substrate 109, the back surface of the substrate body 101 is ground to reduce the thickness of the substrate body 101 to a predetermined thickness and to reduce the thickness of the substrate body 101t. The front end portion 106a of the through electrode (embedded conductor layer) 106 is exposed from the back surface of the electrode. Although simply shown in the figure, the thinned substrate body 101t is actually formed thicker than the element layer 102, and the support substrate 109 is actually formed thicker than the substrate body 101t. In FIG. 8D and subsequent figures, the front and back of the wafer 100 are shown inverted.

その後、図9Eに示すように、基板本体101tの裏面に絶縁膜111を形成するとともに、貫通電極106の先端部106a上に外部接続端子112を形成する。そして図9Fに示すように、この外部接続端子112上に半導体チップ113をフリップチップ実装した後、図9Gに示すように、その実装部にアンダーフィル層114を形成する。   Thereafter, as shown in FIG. 9E, the insulating film 111 is formed on the back surface of the substrate body 101t, and the external connection terminal 112 is formed on the tip portion 106a of the through electrode 106. Then, as shown in FIG. 9F, after the semiconductor chip 113 is flip-chip mounted on the external connection terminal 112, an underfill layer 114 is formed on the mounting portion as shown in FIG. 9G.

次に、図10Hに示すように、接着材料層108から支持基板109を剥離する。支持基板109は、支持基板109の面内に形成された複数の貫通孔109aを介して剥離液(例えばアルコール)を供給し接着材料層108を溶解することで剥離される。そして、図10Iに示すように接着材料層108を溶解除去した後、ウェーハ100をチップ単位で個片化(ダイシング)することで、図10Jに示すように貫通電極106を備えたチップオンチップ構造の半導体装置100Aが作製される。   Next, as illustrated in FIG. 10H, the support substrate 109 is peeled from the adhesive material layer 108. The support substrate 109 is peeled off by supplying a peeling liquid (for example, alcohol) through a plurality of through holes 109 a formed in the surface of the support substrate 109 and dissolving the adhesive material layer 108. Then, after the adhesive material layer 108 is dissolved and removed as shown in FIG. 10I, the wafer 100 is separated into chips (dicing) in units of chips, thereby providing a chip-on-chip structure having through electrodes 106 as shown in FIG. 10J. The semiconductor device 100A is manufactured.

続いて、図11〜図13は第2の従来例としての半導体装置の製造方法を説明する工程断面図である。なお、図において上述の第1の従来例と対応する部分については同一の符号を付し、その詳細な説明は省略する。   11 to 13 are process cross-sectional views illustrating a method for manufacturing a semiconductor device as a second conventional example. In the figure, portions corresponding to those of the above-described first conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.

本従来例において、ウェーハ100の表面に、はんだバンプ107を形成した後、支持基板を接着する工程は第1の従来例と同様である(図11A〜図11C)。但し、本従来例において、支持基板119は、紫外線の照射によって接着性が劣化する接着剤からなる接着材料層118を介してウェーハ100の表面に接着されている点で、上述の第1の従来例と異なっている。支持基板119は、紫外線に対して透明なガラス基板で構成されている。   In this conventional example, after the solder bumps 107 are formed on the surface of the wafer 100, the process of bonding the support substrate is the same as that in the first conventional example (FIGS. 11A to 11C). However, in this conventional example, the support substrate 119 is bonded to the surface of the wafer 100 through an adhesive material layer 118 made of an adhesive whose adhesiveness deteriorates when irradiated with ultraviolet rays. It is different from the example. The support substrate 119 is made of a glass substrate that is transparent to ultraviolet rays.

その後、第1の従来例と同様に、基板本体101の薄厚化(図11D)、外部接続端子112の形成(図12E)、半導体チップ113の実装(図12F)、アンダーフィル層114の形成(図12G)が行われる。その後、支持基板119を通して接着材料層118に紫外線を照射することで、ウェーハ100から支持基板119の剥離工程が実施される(図13H)。そして、ウェーハ100をチップ単位で個片化(ダイシング)することで、図13Iに示すように貫通電極106を備えたチップオンチップ構造の半導体装置100Aが作製される。   Thereafter, as in the first conventional example, the substrate body 101 is thinned (FIG. 11D), the external connection terminal 112 is formed (FIG. 12E), the semiconductor chip 113 is mounted (FIG. 12F), and the underfill layer 114 is formed (FIG. FIG. 12G) is performed. Thereafter, the adhesive material layer 118 is irradiated with ultraviolet rays through the support substrate 119, whereby the support substrate 119 is peeled from the wafer 100 (FIG. 13H). Then, by dividing the wafer 100 into chips (dicing), a semiconductor device 100A having a chip-on-chip structure including the through electrode 106 as shown in FIG. 13I is manufactured.

特開2004−241479号公報JP 2004-241479 A 特開2003−171624号公報JP 2003-171624 A 特開2005−191550号公報JP 2005-191550 A

上述したように、ウェーハ100と支持基板109,119との間を接着する接着材料層108,118には、ウェーハ加工プロセスに耐えられる仮固定性と、ウェーハ加工プロセス完了後の剥離性が要求されており、上述の従来例においては、接着材料層108,118として、有機溶剤で溶解される接着剤あるいは紫外線の照射により接着力が低下する接着剤が用いられている。   As described above, the adhesive material layers 108 and 118 that bond between the wafer 100 and the support substrates 109 and 119 are required to have temporary fixing properties that can withstand the wafer processing process and peelability after the completion of the wafer processing process. In the above-described conventional example, as the adhesive material layers 108 and 118, an adhesive dissolved in an organic solvent or an adhesive whose adhesive strength is reduced by irradiation with ultraviolet rays is used.

しかしながら、これらの接着剤は概して耐熱性が低く、耐熱温度以上に加熱されると接着性が低下するか剥離性が損なわれてしまうので、ウェーハ加工プロセスに接着材料層108,118の耐熱温度以上の高温処理を施すことができないという問題がある。   However, these adhesives generally have low heat resistance, and when heated to a temperature higher than the heat resistant temperature, the adhesiveness is reduced or the peelability is impaired, so that the wafer processing process has a temperature higher than the heat resistant temperature of the adhesive material layers 108 and 118. There is a problem that high temperature treatment cannot be performed.

例えば、SiO2 膜等の絶縁膜では成膜温度が高温なほど膜質に優れシリコン基板との密着性が向上するが、上述したように支持基板に接着支持されている基板に対しては、このような高温処理を施すことができず、低温CVD法等の低温成膜法を用いざるを得ない。従って、基板本体101tの裏面に絶縁膜111を形成する工程(図9E,図12E)では、絶縁膜111の信頼性を確保するのが難しくなる。また、半導体チップ113の接合工程(図9F,図12F)では、接着材料層108,118の耐熱温度以下で溶融する低温はんだを用いる必要があり、材料選定上の制約が生じる。 For example, in the case of an insulating film such as a SiO 2 film, the higher the film formation temperature, the better the film quality and the better the adhesion with the silicon substrate. Such a high temperature treatment cannot be performed, and a low temperature film formation method such as a low temperature CVD method must be used. Therefore, it is difficult to ensure the reliability of the insulating film 111 in the step of forming the insulating film 111 on the back surface of the substrate body 101t (FIGS. 9E and 12E). Further, in the bonding step of the semiconductor chip 113 (FIGS. 9F and 12F), it is necessary to use a low-temperature solder that melts at a temperature lower than the heat resistant temperature of the adhesive material layers 108 and 118, and there is a restriction on material selection.

また、上述の接着材料層108,118は、耐熱性だけでなく耐薬品性も低く、溶解や変質劣化等のダメージを受けずに処理できる薬品や処理方法に制約が生じる等の問題がある。特に、接着材料層108は、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、ECA(エチルセロソルブアセテート)等の溶剤を含むレジスト剥離液に対して耐性が低い。このため、絶縁膜111のパターニング工程や外部接続端子112の形成工程(図9E)において、パターンレジストの処理方法に制約が生じる(ディップ処理が行えない)等の問題がある。   In addition, the above-described adhesive material layers 108 and 118 have not only heat resistance but also low chemical resistance, and there are problems such as restrictions on chemicals and processing methods that can be processed without being damaged by dissolution or deterioration. In particular, the adhesive material layer 108 has low resistance to a resist stripping solution containing a solvent such as PGMEA (propylene glycol monomethyl ether acetate) or ECA (ethyl cellosolve acetate). For this reason, in the patterning process of the insulating film 111 and the process of forming the external connection terminals 112 (FIG. 9E), there are problems such as restrictions on the pattern resist processing method (dipping cannot be performed).

本発明は上述の問題に鑑みてなされ、仮固定性及び剥離性が必要な接着材料層を用いることなく基板を適正に支持でき、かつ支持基板の除去も適正に行うことができる基板処理方法及び半導体装置の製造方法を提供することを課題とする。   The present invention has been made in view of the above-described problems, and a substrate processing method capable of properly supporting a substrate without using an adhesive material layer that requires temporary fixing properties and peelability, and capable of properly removing a supporting substrate, and It is an object to provide a method for manufacturing a semiconductor device.

以上の課題を解決するに当たり、本発明の基板処理方法は、被処理基板の一方の面を支持基板に接合する工程と、支持基板で被処理基板を支持した状態で当該被処理基板を処理する工程と、支持基板を被処理基板から除去する工程とを有し、被処理基板を支持基板に接合する工程では、被処理基板及び支持基板を各々の接合面に形成した金属層間の固相接合によって被処理基板を支持基板に接合し、支持基板を被処理基板から除去する工程では、支持基板を研磨加工して除去する。   In solving the above-described problems, the substrate processing method of the present invention processes a substrate to be processed in a state in which one surface of the substrate to be processed is bonded to a support substrate and the substrate to be processed is supported by the support substrate. And a step of removing the support substrate from the substrate to be processed. In the step of bonding the substrate to be processed to the support substrate, solid phase bonding between the metal layers formed on the bonding surfaces of the substrate to be processed and the support substrate is performed. In the step of bonding the substrate to be processed to the support substrate and removing the support substrate from the substrate to be processed, the support substrate is polished and removed.

本発明においては、支持基板と被処理基板との接合を各々の接合面に形成した金属層間の固相接合によって行うようにし、また、支持基板の除去を当該支持基板の研磨加工で行うようにしているので、従来必要とされていた仮固定性と剥離性をもつ有機系接着剤を不要とすることができる。これにより、接着剤の耐熱温度や耐薬品性の制約を受けることなく被処理基板に対する加工プロセスを実施できるので、例えば密着性に優れた絶縁膜の成膜や、端子面の安定したパターン加工が可能となる。   In the present invention, the support substrate and the substrate to be processed are bonded by solid phase bonding between metal layers formed on the respective bonding surfaces, and the support substrate is removed by polishing the support substrate. Therefore, an organic adhesive having temporary fixability and peelability, which has been conventionally required, can be eliminated. As a result, a processing process can be performed on the substrate to be processed without being restricted by the heat-resistant temperature and chemical resistance of the adhesive, so that, for example, an insulating film having excellent adhesion and a stable pattern processing of the terminal surface can be performed. It becomes possible.

特に、被処理基板を支持基板に接合する工程は、被処理基板及び支持基板の各々の接合面に同種材料からなる金属層を形成する工程と、これら金属層の表面を真空中で活性化処理した後、貼り合わせる工程とを有する。これにより、常温で所期の接合強度を備えた被処理基板と支持基板との接合体を得ることができる。なお、金属層の表面活性化処理方法としては、例えば、真空中でのアルゴンプラズマや粒子ビームの照射などが挙げられる。また、接合用の金属層は特に制限されないが、例えば銅や金等の良導体を用いることで、支持基板除去後において当該金属層を配線層として用いることが可能となる。   In particular, the step of bonding the substrate to be processed to the support substrate includes the step of forming a metal layer made of the same material on each bonding surface of the substrate to be processed and the support substrate, and the surface of these metal layers is activated in a vacuum. Then, a bonding step is included. Thereby, the bonded body of the to-be-processed substrate and the support substrate having the desired bonding strength at room temperature can be obtained. Examples of the surface activation treatment method for the metal layer include irradiation with argon plasma or particle beam in a vacuum. The metal layer for bonding is not particularly limited. For example, by using a good conductor such as copper or gold, the metal layer can be used as a wiring layer after the support substrate is removed.

また、上述した本発明に係る基板処理方法を用いることで、下層側の半導体チップに層間接続用の貫通電極が形成されたチップオンチップ構造の半導体装置を高精度かつ高い信頼性をもって製造することができる。   In addition, by using the substrate processing method according to the present invention described above, a semiconductor device having a chip-on-chip structure in which a through electrode for interlayer connection is formed in a lower semiconductor chip is manufactured with high accuracy and high reliability. Can do.

すなわち、本発明の半導体装置の製造方法は、一方の面に外部接続端子が形成された半導体ウェーハを準備する工程と、半導体ウェーハの一方の面の全域に第1金属層を形成する工程と、接合面の全域に第2金属層が形成された支持基板を準備する工程と、第1,第2金属層を介して、半導体ウェーハの一方の面を支持基板に接合する工程と、半導体ウェーハの他方の面を研磨して半導体ウェーハを薄厚化する工程と、半導体ウェーハの他方の面に、外部接続端子と電気的に接続される接続電極を形成する工程と、接続電極の上に半導体チップを実装する工程と、支持基板を研磨除去する工程と、第1,第2金属層をエッチング除去する工程と、半導体ウェーハをチップ単位で個片化する工程とを有する。   That is, in the method for manufacturing a semiconductor device of the present invention, a step of preparing a semiconductor wafer having an external connection terminal formed on one surface, a step of forming a first metal layer over the entire area of one surface of the semiconductor wafer, A step of preparing a support substrate having a second metal layer formed on the entire bonding surface; a step of bonding one surface of the semiconductor wafer to the support substrate via the first and second metal layers; Polishing the other surface and thinning the semiconductor wafer; forming a connection electrode electrically connected to the external connection terminal on the other surface of the semiconductor wafer; and a semiconductor chip on the connection electrode A step of mounting, a step of polishing and removing the supporting substrate, a step of removing the first and second metal layers by etching, and a step of dividing the semiconductor wafer into chips.

ここで、第1金属層を形成する工程の前に、外部接続端子の周囲に絶縁材料を充填して半導体ウェーハの一方の面を平坦化することで、支持基板との接合工程を適正かつ安定に行うことができる。   Here, before the step of forming the first metal layer, an insulating material is filled around the external connection terminals to flatten one surface of the semiconductor wafer so that the bonding step with the support substrate is performed properly and stably. Can be done.

半導体ウェーハに対する貫通電極の形成は、半導体ウェーハを支持基板で支持した状態での薄厚化工程の際に又は薄厚化工程を実施した後に、行うことができる。半導体ウェーハの薄厚化工程の最に貫通電極を形成する方法としては、あらかじめ、外部接続端子と電気的に接続された埋込導体層を形成しておき、薄厚化の際に当該埋込導体層の先端部をウェーハの研磨面から露出させる。そして、この端子面を処理して、上層側の半導体チップと接合される接続電極を形成する。   Formation of the through electrode on the semiconductor wafer can be performed during the thinning process in a state where the semiconductor wafer is supported by the support substrate or after the thinning process is performed. As a method for forming a through electrode at the time of the thinning process of a semiconductor wafer, an embedded conductor layer electrically connected to an external connection terminal is formed in advance, and the embedded conductor layer is formed at the time of thinning. Is exposed from the polished surface of the wafer. Then, this terminal surface is processed to form a connection electrode joined to the upper semiconductor chip.

支持基板の除去は、半導体ウェーハの上に半導体チップを実装した後に行われる。このとき、半導体ウェーハ上で半導体チップをモールドして擬似ウェーハ化することで、支持基板の研磨除去を安定して行うことができる。   The support substrate is removed after the semiconductor chip is mounted on the semiconductor wafer. At this time, by polishing the semiconductor chip on the semiconductor wafer to form a pseudo wafer, the support substrate can be stably polished and removed.

なお、支持基板の除去は、研磨加工を主体とし、金属層の露出手前で研磨加工を終了させ、残りをエッチングで溶解除去する工法が好ましい。この場合、金属層がエッチングストッパ層として機能し、支持基板の適切な除去が可能となる。また、その後の金属層の除去工程はエッチングによる溶解除去が可能であるが、金属層全体を除去する場合に限らず、当該金属層をパターンエッチングすることで配線の一部として用いてもよい。   The support substrate is preferably removed by a polishing method, in which the polishing process is terminated before the metal layer is exposed and the remainder is dissolved and removed by etching. In this case, the metal layer functions as an etching stopper layer, and the support substrate can be appropriately removed. Further, the subsequent removal process of the metal layer can be dissolved and removed by etching, but it is not limited to removing the entire metal layer, and the metal layer may be used as a part of the wiring by pattern etching.

以上のように、本発明の基板処理方法によれば、仮固定性及び剥離性が必要な接着剤を用いることなく、支持基板による被処理基板の支持、及び被処理基板からの支持基板の除去を適正に行うことができる。   As described above, according to the substrate processing method of the present invention, the substrate to be processed is supported by the support substrate and the support substrate is removed from the substrate to be processed without using an adhesive that requires temporary fixability and peelability. Can be performed properly.

また、本発明の半導体装置の製造方法によれば、層間接続用の貫通電極が形成されたチップオンチップ構造の半導体装置を、高精度かつ高い信頼性をもって製造することができる。   Further, according to the method for manufacturing a semiconductor device of the present invention, a semiconductor device having a chip-on-chip structure in which through electrodes for interlayer connection are formed can be manufactured with high accuracy and high reliability.

以下、本発明の実施形態について図面を参照して説明する。以下の実施形態では、チップオンチップ構造の半導体装置の製造方法に本発明を適用した例について説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, an example in which the present invention is applied to a method of manufacturing a semiconductor device having a chip-on-chip structure will be described.

図1〜図5は、本発明の実施形態によるチップオンチップ構造の半導体装置の製造方法を説明する工程断面図である。   1 to 5 are process cross-sectional views illustrating a method for manufacturing a semiconductor device having a chip-on-chip structure according to an embodiment of the present invention.

まず、図1Aに示すように、シリコンからなる基板本体(半導体基板)21の表面に、トランジスタ等の半導体素子や配線23、絶縁層24等からなる素子層22が形成された半導体ウェーハ(以下単に「ウェーハ」という。)Wを準備する。ウェーハWは、本発明に係る「被処理基板」に対応する。   First, as shown in FIG. 1A, a semiconductor wafer in which a semiconductor element such as a transistor, an element layer 22 including a wiring 23, an insulating layer 24, and the like are formed on the surface of a substrate body (semiconductor substrate) 21 made of silicon (hereinafter simply referred to as a semiconductor wafer). “Wafer”) W is prepared. The wafer W corresponds to a “substrate to be processed” according to the present invention.

素子層22の表面には、配線23の一部と電気的に接続される外部接続端子25が複数配置されている。外部接続端子25は、例えば、素子層22の表面に配列された電極パッドとその上に形成しためっきバンプとから構成され、素子層22の表面より突出形成されている。   A plurality of external connection terminals 25 that are electrically connected to a part of the wiring 23 are arranged on the surface of the element layer 22. The external connection terminal 25 includes, for example, electrode pads arranged on the surface of the element layer 22 and plating bumps formed thereon, and is formed to protrude from the surface of the element layer 22.

素子層22には、あらかじめ、例えば銅からなる埋込導体層26Pが形成されている。埋込導体層26Pは、基板本体21を貫通しない所定の深さ(例えば150μm以下)で形成されており、配線23の一部を介して外部接続端子25と電気的に接続されている。なお、埋込導体層26Pの周囲はSiO2 等の絶縁膜で被覆され、基板本体21と電気的に絶縁されている。 In the element layer 22, a buried conductor layer 26P made of, for example, copper is formed in advance. The buried conductor layer 26 </ b> P is formed with a predetermined depth (for example, 150 μm or less) that does not penetrate the substrate body 21, and is electrically connected to the external connection terminal 25 through a part of the wiring 23. The periphery of the buried conductor layer 26P is covered with an insulating film such as SiO 2 and is electrically insulated from the substrate body 21.

次に、図1Bに示すように、素子層22の表面に絶縁膜27を形成する。絶縁膜27は例えばCVD法で形成されたSiO2 膜などの絶縁材料からなり、外部接続端子25の厚み以上の厚みで形成されることで、外部接続端子25の周囲が絶縁膜27で充填されるとともに外部接続端子25の上面が絶縁膜27で被覆される。 Next, as shown in FIG. 1B, an insulating film 27 is formed on the surface of the element layer 22. The insulating film 27 is made of an insulating material such as a SiO 2 film formed by CVD, for example, and is formed with a thickness equal to or greater than the thickness of the external connection terminal 25, so that the periphery of the external connection terminal 25 is filled with the insulating film 27. In addition, the upper surface of the external connection terminal 25 is covered with an insulating film 27.

絶縁膜27の形成後、図1Cに示すように、素子層22の表面にCMP(化学的機械的研磨)法などの研磨やエッチバックプロセスを施して、絶縁膜27及び外部接続端子25を平坦化処理する。これにより、外部接続端子25及び絶縁膜27とが同一平面内に形成されて、ウェーハWの表面から外部接続端子25が露出される。   After the formation of the insulating film 27, as shown in FIG. 1C, the surface of the element layer 22 is subjected to polishing such as a CMP (Chemical Mechanical Polishing) method or an etch back process to flatten the insulating film 27 and the external connection terminal 25. Process. Thereby, the external connection terminals 25 and the insulating film 27 are formed in the same plane, and the external connection terminals 25 are exposed from the surface of the wafer W.

なお、このように同一平面内において外部接続端子25及び絶縁膜27を形成する他の方法として、ダマシン法を採用してもよい。また、外部接続端子25及び絶縁膜27は、その後の支持基板29との貼り合わせが可能なレベルの精度で平坦化されていればよい。   As another method for forming the external connection terminal 25 and the insulating film 27 in the same plane as described above, a damascene method may be employed. In addition, the external connection terminals 25 and the insulating film 27 may be flattened with a level of accuracy that allows subsequent bonding to the support substrate 29.

次に、図1Dに示すように、平坦化した外部接続端子25及び絶縁膜27の上に表面全域にわたって第1接合用金属層28Aを形成する。この第1接合用金属層28Aは、後述する支持基板29にウェーハWを接合するためのものである。形成された第1接合用金属層28Aは、外部接続端子25と電気的に接続される。第1接合用金属層28Aの構成材料は特に制限されないが、本実施形態では銅(Cu)が用いられ、例えば、0.5μm〜1.0μm程度の厚みに形成される。   Next, as shown in FIG. 1D, a first bonding metal layer 28 </ b> A is formed on the planarized external connection terminal 25 and insulating film 27 over the entire surface. The first bonding metal layer 28A is for bonding the wafer W to a support substrate 29 described later. The formed first joining metal layer 28 </ b> A is electrically connected to the external connection terminal 25. The constituent material of the first bonding metal layer 28A is not particularly limited, but copper (Cu) is used in the present embodiment, and the first bonding metal layer 28A is formed to have a thickness of about 0.5 μm to 1.0 μm, for example.

一方、図2Eに示すように、接合面の全域に第2接合用金属層28Bが形成された支持基板29を準備する。第2接合用金属層28Bは、ウェーハWの表面に形成された第1接合用金属層28Aと接合するためのものである。第2接合用金属層28Bの構成材料は特に制限されないが、本実施形態では第1接合用金属層28Aと同じ銅が用いられ、例えば0.5μm〜1.0μm程度の厚みに形成される。   On the other hand, as shown in FIG. 2E, a support substrate 29 having a second bonding metal layer 28B formed on the entire bonding surface is prepared. The second bonding metal layer 28 </ b> B is for bonding to the first bonding metal layer 28 </ b> A formed on the surface of the wafer W. The constituent material of the second bonding metal layer 28B is not particularly limited, but in the present embodiment, the same copper as that of the first bonding metal layer 28A is used, and is formed to have a thickness of about 0.5 μm to 1.0 μm, for example.

支持基板29は、ガラス基板やシリコン基板などの基板本体21と同等の熱膨張係数を有する材料で構成されている。支持基板29の厚さは特に制限されないが、後述するように基板本体21を薄厚化する際にハンドリングできる程度の剛性を確保できる程度の厚さで形成されるのが好ましく、例えば700μm以上の厚さとされる。   The support substrate 29 is made of a material having a thermal expansion coefficient equivalent to that of the substrate body 21 such as a glass substrate or a silicon substrate. Although the thickness of the support substrate 29 is not particularly limited, it is preferably formed with a thickness that can secure a rigidity that can be handled when the substrate body 21 is thinned, as will be described later. For example, the thickness is 700 μm or more. It is assumed.

そして、図2Fに示すようにウェーハW及び支持基板29を貼り合わせ、両基板に対して所定の接合荷重を印加する。これにより、接合面に形成した第1,第2接合用金属層28A,28Bの固相接合によってウェーハWの表面が支持基板29に接合される。ウェーハWと支持基板29との間の接合は、常温下、真空中における第1,第2接合用金属層28A,28B間の表面活性化接合によって行われる。第1,第2接合用金属層28A,28Bは、所定の接合荷重をもって一体接合されることで、ウェーハWと支持基板29との間を接合する金属層28として機能する。   Then, as shown in FIG. 2F, the wafer W and the support substrate 29 are bonded together, and a predetermined bonding load is applied to both the substrates. Thus, the surface of the wafer W is bonded to the support substrate 29 by solid phase bonding of the first and second bonding metal layers 28A and 28B formed on the bonding surfaces. Bonding between the wafer W and the support substrate 29 is performed by surface activated bonding between the first and second bonding metal layers 28A and 28B in a vacuum at room temperature. The first and second bonding metal layers 28 </ b> A and 28 </ b> B function as the metal layer 28 that bonds the wafer W and the support substrate 29 by being integrally bonded with a predetermined bonding load.

第1,第2接合用金属層28A,28Bは、ウェーハW及び支持基板29の各々の接合面にそれぞれ減圧雰囲気下におけるスパッタ法などによって形成される。第1,第2金属層28A,28Bをスパッタ法で成膜することによって、ウェーハW及び支持基板29に対して金属層28A,28Bを高い密着性で成膜することができる。   The first and second bonding metal layers 28 </ b> A and 28 </ b> B are formed on the bonding surfaces of the wafer W and the support substrate 29 by sputtering in a reduced-pressure atmosphere, respectively. By forming the first and second metal layers 28 </ b> A and 28 </ b> B by sputtering, the metal layers 28 </ b> A and 28 </ b> B can be formed with high adhesion to the wafer W and the support substrate 29.

このとき、第1,第2金属層28A,28Bは、大気に開放されることで表面が酸化されてしまい、そのままでは金属接合での貼り合わせができなくなる。そこで、真空中での貼り合わせの際に、金属層28A,28Bの表面を活性化処理することで、表面に形成されている酸化膜を除去して表面のリフレッシュ化を図り、金属層28A,28B間の安定した固相接合を確保することができる。表面活性化処理としては、例えば、アルゴンプラズマの照射やイオンビームの照射などによる酸化膜のエッチング除去が適用可能であり、同一チャンバ内で貼り合わせ工程の直前に実施することができる。   At this time, the surfaces of the first and second metal layers 28A and 28B are oxidized by being released to the atmosphere, and as such, bonding by metal bonding cannot be performed. Therefore, when bonding is performed in vacuum, the surfaces of the metal layers 28A and 28B are activated to remove the oxide film formed on the surfaces, thereby refreshing the surfaces. Stable solid-phase bonding between 28B can be ensured. As the surface activation treatment, for example, etching removal of an oxide film by argon plasma irradiation, ion beam irradiation, or the like is applicable, and can be performed immediately before the bonding step in the same chamber.

上記のように、ウェーハW及び支持基板29は、第1,第2接合用金属層28A,28B間の金属接合を用いて固定されているので、従来使用されていた有機系接着剤を使用することなくウェーハWと支持基板29との間を固定することができ、以降のプロセスで耐熱性や耐薬品性の制約を受けることなく加工が可能となる。   As described above, since the wafer W and the support substrate 29 are fixed using metal bonding between the first and second bonding metal layers 28A and 28B, an organic adhesive that has been conventionally used is used. It is possible to fix the wafer W and the support substrate 29 without any problems, and it is possible to process without being restricted by heat resistance and chemical resistance in the subsequent processes.

次に、図2Gに示すように、支持基板29に支持されたウェーハWの裏面を研磨して基板本体21を薄厚化するとともに、薄厚化した基板本体21tの裏面から貫通電極26(埋込導体層26P)の先端部26aを露出させる。   Next, as shown in FIG. 2G, the back surface of the wafer W supported by the support substrate 29 is polished to thin the substrate body 21, and the through electrode 26 (embedded conductor) is formed from the back surface of the thinned substrate body 21t. The tip 26a of the layer 26P) is exposed.

この工程では、例えば、貫通電極26の先端部26aが基板本体21の裏面(研磨面)から露出するまで基板本体21を研磨した後、基板本体21tの裏面に化学エッチングを施して貫通電極26の先端部26aを突出させる。なお、研磨方法としては、裏面研削(BGR)、化学的機械的研磨(CMP)などの公知のポリッシュ技術を単独又は組み合わせて使用することができる。   In this step, for example, the substrate body 21 is polished until the tip portion 26a of the through electrode 26 is exposed from the back surface (polished surface) of the substrate body 21, and then the back surface of the substrate body 21t is subjected to chemical etching to The distal end portion 26a is protruded. In addition, as a grinding | polishing method, well-known polish techniques, such as back surface grinding (BGR) and chemical mechanical polishing (CMP), can be used individually or in combination.

続いて、図3Hに示すように、基板本体21tの裏面にSiO2 等で絶縁膜30を形成する等の所定の絶縁処理を施すとともに、貫通電極26の先端部26aに接続電極31を形成する。この接続電極31は、貫通電極26、配線23を介して外部接続端子25と電気的に接続される。接続電極31の形成は、ウェーハレベルCSP用の再配線技術やバンプ形成技術、半導体プロセスの配線技術などを用いて行うことができる。 Subsequently, as shown in FIG. 3H, a predetermined insulating process such as forming an insulating film 30 with SiO 2 or the like is performed on the back surface of the substrate body 21t, and a connection electrode 31 is formed at the tip portion 26a of the through electrode 26. . The connection electrode 31 is electrically connected to the external connection terminal 25 through the through electrode 26 and the wiring 23. The connection electrode 31 can be formed using a wafer level CSP rewiring technique, a bump forming technique, a semiconductor process wiring technique, or the like.

次に、図3Iに示すように、ウェーハW上の接続電極31に対して半導体チップ32を複数実装する。半導体チップ32は、その実装面にあらかじめバンプ33が複数形成されており、これらのバンプ36を介して接続電極31上にフリップチップ接合される。その後、図3Iに示すように、ウェーハWと半導体チップ32との間にアンダーフィル層34を形成する工程が行われる。アンダーフィル層34を構成する樹脂材料としては、一般的なフリップチップ接合に使用されているエポキシ系等の熱硬化性樹脂を用いることができる。   Next, as shown in FIG. 3I, a plurality of semiconductor chips 32 are mounted on the connection electrodes 31 on the wafer W. The semiconductor chip 32 has a plurality of bumps 33 formed in advance on its mounting surface, and is flip-chip bonded onto the connection electrode 31 via these bumps 36. Thereafter, as shown in FIG. 3I, a step of forming an underfill layer 34 between the wafer W and the semiconductor chip 32 is performed. As the resin material constituting the underfill layer 34, an epoxy-based thermosetting resin used for general flip chip bonding can be used.

次に、図3Jに示すように、ウェーハWの上で半導体チップ32をモールドして擬似ウェーハ化する。この工程では、ウェーハWの上に封止層35を形成し、半導体チップ32の実装間隔を封止層35の構成樹脂で充填した後、平坦化する。封止層35は、例えば、ウェーハレベルCSPで用いられるウェーハモールド技術により形成可能である。なお、必要に応じて、封止層35に研磨加工を施して半導体チップ32の薄厚化を図るようにしてもよい。   Next, as shown in FIG. 3J, the semiconductor chip 32 is molded on the wafer W to form a pseudo wafer. In this step, the sealing layer 35 is formed on the wafer W, and the mounting interval of the semiconductor chips 32 is filled with the constituent resin of the sealing layer 35 and then flattened. The sealing layer 35 can be formed by, for example, a wafer mold technique used in a wafer level CSP. If necessary, the sealing layer 35 may be polished to reduce the thickness of the semiconductor chip 32.

上記のように半導体チップ32を封止層35を用いて擬似ウェーハ化することで、以降の加工プロセスがウェーハ状態でハンドリングできることから、既存の加工装置をそのまま使用することができる。また、ウェーハWと半導体チップ32間の段差を埋め平坦となるように封止層35を形成することで、次工程においてウェーハW及び半導体チップ32にダメージを与えることなく支持基板29の研削除去工程を実施することが可能となる。   By forming the semiconductor chip 32 into a pseudo wafer by using the sealing layer 35 as described above, the subsequent processing process can be handled in a wafer state, so that an existing processing apparatus can be used as it is. Further, the sealing layer 35 is formed so as to fill the level difference between the wafer W and the semiconductor chip 32 and become flat, so that the support substrate 29 is ground and removed without damaging the wafer W and the semiconductor chip 32 in the next process. Can be carried out.

続いて、図4K,Lに示すように、支持基板29の研磨除去工程が行われる。研磨方法としては、BGR、CMP又はこれらの組合せで行うことができる。ここで、支持基板29の全厚を研磨加工によって除去することも勿論可能であるが、本実施形態では、支持基板29の除去工程を、支持基板29を研磨加工により薄厚化する工程(図4K)と、この薄厚化した支持基板をエッチングにより溶解除去する工程(図4L)とを経て実施するようにしている。これにより、支持基板29の適切な除去と、金属層28の厚み均一化を図ることができる。   Subsequently, as shown in FIGS. 4K and 4L, a polishing removal process of the support substrate 29 is performed. As a polishing method, BGR, CMP, or a combination thereof can be used. Here, it is of course possible to remove the entire thickness of the support substrate 29 by polishing, but in this embodiment, the removal process of the support substrate 29 is a process of thinning the support substrate 29 by polishing (FIG. 4K). And the step of dissolving and removing the thinned support substrate by etching (FIG. 4L). Thereby, appropriate removal of the support substrate 29 and uniform thickness of the metal layer 28 can be achieved.

この場合、金属層28の露出手前(例えば残り厚み10μm程度)で支持基板29の研磨加工を終了させることで、溶解除去工程の作業時間の短縮を図られ、作業性の向上を図ることができる。支持基板29がシリコン基板で構成されている場合、溶解除去に用いられるエッチング液としてはフッ硝酸などが適用可能であり、金属層28はエッチングストッパ層として機能する。   In this case, by finishing the polishing of the support substrate 29 before the metal layer 28 is exposed (for example, the remaining thickness is about 10 μm), the working time of the dissolution and removal process can be shortened, and the workability can be improved. . In the case where the support substrate 29 is formed of a silicon substrate, hydrofluoric acid or the like is applicable as an etchant used for dissolution and removal, and the metal layer 28 functions as an etching stopper layer.

次に、支持基板29の除去によって外部に露出した接合用の金属層28を除去する工程が行われる。金属層28はその全部を除去する場合に限られない。本実施形態では、金属層28を配線材料として利用することで、図4Mに示すように外部接続端子25と連絡する所定の導体形状に金属層28をパターンエッチングするようにしている。特に、金属層28を銅で構成しているので、配線材料として好適に用いることができる。金属層28のパターンエッチング加工方法としては、ウェーハレベルCSP等の再配線形成に用いられるエッチング方法が適用可能である。   Next, a step of removing the bonding metal layer 28 exposed to the outside by removing the support substrate 29 is performed. The metal layer 28 is not limited to removing all of the metal layer 28. In the present embodiment, by using the metal layer 28 as a wiring material, the metal layer 28 is pattern-etched into a predetermined conductor shape communicating with the external connection terminal 25 as shown in FIG. 4M. In particular, since the metal layer 28 is made of copper, it can be suitably used as a wiring material. As a pattern etching processing method of the metal layer 28, an etching method used for rewiring formation such as a wafer level CSP can be applied.

金属層28のパターンエッチングの後、無電解めっき法によるNi(ニッケル)/Au(金)めっき層を形成することで、外部接続端子25と電気的に接続された外部接続電極36が形成される。そして、図4Nに示すように、外部接続電極36の上にはんだバンプ37を形成する。はんだバンプ37の形成方法としては、一般的なめっき法や印刷法で形成可能である。なお、はんだバンプ37の形成は任意であり、仕様に応じて、はんだバンプ37の形成を省略してもよい。   After pattern etching of the metal layer 28, an external connection electrode 36 electrically connected to the external connection terminal 25 is formed by forming a Ni (nickel) / Au (gold) plating layer by an electroless plating method. . Then, as shown in FIG. 4N, solder bumps 37 are formed on the external connection electrodes 36. As a method for forming the solder bump 37, it can be formed by a general plating method or printing method. The formation of the solder bumps 37 is arbitrary, and the formation of the solder bumps 37 may be omitted depending on the specifications.

最後に、図5に示すように、ウェーハWをチップ単位で個片化して、下層側の第1の半導体チップ38と上層側の第2の半導体チップ32との3次元構造からなる半導体装置20を作製する。   Finally, as shown in FIG. 5, the wafer W is divided into chips, and a semiconductor device 20 having a three-dimensional structure of a first semiconductor chip 38 on the lower layer side and a second semiconductor chip 32 on the upper layer side. Is made.

半導体装置20は、第1の半導体チップ38に形成された貫通電極26を介して、第2の半導体チップ32と第1の半導体チップ38との間、及び第2の半導体チップ32とはんだバンプ37との間が電気的に接続されている。また、第2の半導体チップ32の周囲を覆う封止層35により、外装パッケージが構成されている。   The semiconductor device 20 is provided between the second semiconductor chip 32 and the first semiconductor chip 38 and between the second semiconductor chip 32 and the solder bump 37 via the through electrode 26 formed in the first semiconductor chip 38. Is electrically connected. In addition, an exterior package is configured by the sealing layer 35 that covers the periphery of the second semiconductor chip 32.

以上のように、本実施形態によれば、ウェーハWと支持基板29との接合を各々の接合面に形成した金属層28A,28B間の固相接合によって行うようにし、また、支持基板29の除去を当該支持基板29の研磨加工を主体として行うようにしているので、従来必要とされていた仮固定性と剥離性をもつ有機系接着剤を不要とすることができる。これにより、接着剤の耐熱温度や耐薬品性の制約を受けることなくウェーハWに対する加工プロセスを実施できるので、例えば密着性に優れた絶縁膜30の成膜や、接続電極31の安定したパターン加工が可能となる。   As described above, according to the present embodiment, the bonding of the wafer W and the support substrate 29 is performed by solid-phase bonding between the metal layers 28A and 28B formed on each bonding surface. Since the removal is performed mainly by polishing the support substrate 29, it is possible to eliminate the need for an organic adhesive having temporary fixability and peelability, which has been conventionally required. Thereby, since the processing process for the wafer W can be performed without being restricted by the heat-resistant temperature and chemical resistance of the adhesive, for example, the formation of the insulating film 30 having excellent adhesion and the stable pattern processing of the connection electrode 31 are possible. Is possible.

以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の実施形態では、チップオンチップ構造の半導体装置20の製造に本発明を適用した例について説明したが、本発明はこれに限られず、ウェーハレベルの被処理基板の裏面研削による薄厚化工程、当該被処理基板への素子搭載工程等の際にも本発明は適用可能である。   For example, in the above embodiment, the example in which the present invention is applied to the manufacture of the semiconductor device 20 having the chip-on-chip structure has been described. However, the present invention is not limited to this, and the thinning process by the back surface grinding of the substrate to be processed at the wafer level. The present invention can also be applied to the element mounting process on the substrate to be processed.

また、以上の実施形態では、第1,第2の2つの半導体チップが積層された半導体装置の製造を例に挙げて説明したが、更に、半導体チップの積層数を増やしてもよい。   In the above embodiment, the manufacture of the semiconductor device in which the first and second semiconductor chips are stacked has been described as an example. However, the number of stacked semiconductor chips may be further increased.

本発明の実施形態による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by embodiment of this invention. 本発明の実施形態による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by embodiment of this invention. 本発明の実施形態による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by embodiment of this invention. 本発明の実施形態による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by embodiment of this invention. 本発明に実施形態による半導体装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the semiconductor device by embodiment to this invention. チップオンチップ構造の半導体装置の一構成例を模式的に示す断面図である。It is sectional drawing which shows typically the example of 1 structure of the semiconductor device of a chip-on-chip structure. チップオンチップ構造の半導体装置の他の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another structure of the semiconductor device of a chip on chip structure. 第1の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by a 1st prior art example. 第1の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by a 1st prior art example. 第1の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by a 1st prior art example. 第2の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by the 2nd prior art example. 第2の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by the 2nd prior art example. 第2の従来例による半導体装置の製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the semiconductor device by the 2nd prior art example.

符号の説明Explanation of symbols

20…半導体装置、32,38…半導体チップ、21,21t…基板本体、22…素子層、23…配線、24…絶縁層、25…外部接続端子、26…貫通電極、26P…埋込導体層、27…絶縁膜、28…金属層、28A…第1接合用金属層、28B…第2接合用金属層、29…支持基板、30…絶縁膜、31接続電極、35…封止層、36…外部接続電極、37…はんだバンプ、W…ウェーハ   DESCRIPTION OF SYMBOLS 20 ... Semiconductor device, 32, 38 ... Semiconductor chip, 21, 21t ... Substrate body, 22 ... Element layer, 23 ... Wiring, 24 ... Insulating layer, 25 ... External connection terminal, 26 ... Through electrode, 26P ... Embedded conductor layer 27 ... insulating film, 28 ... metal layer, 28A ... first bonding metal layer, 28B ... second bonding metal layer, 29 ... support substrate, 30 ... insulating film, 31 connection electrode, 35 ... sealing layer, 36 ... External connection electrode, 37 ... Solder bump, W ... Wafer

Claims (11)

被処理基板の一方の面を支持基板に接合する工程と、
前記支持基板で前記被処理基板を支持した状態で当該被処理基板を処理する工程と、
前記支持基板を前記被処理基板から除去する工程とを有する基板処理方法であって、
前記被処理基板を前記支持基板に接合する工程では、前記被処理基板及び前記支持基板を各々の接合面に形成した金属層間の固相接合によって前記被処理基板を前記支持基板に接合し、
前記支持基板を前記被処理基板から除去する工程では、前記支持基板を研磨加工して除去する
ことを特徴とする基板処理方法。
Bonding one surface of the substrate to be processed to a support substrate;
Processing the target substrate in a state where the target substrate is supported by the support substrate;
Removing the support substrate from the substrate to be processed.
In the step of bonding the substrate to be processed to the support substrate, the substrate to be processed and the support substrate are bonded to the support substrate by solid phase bonding between the metal layers formed on the bonding surfaces of the substrate to be processed and the support substrate,
In the step of removing the support substrate from the substrate to be processed, the support substrate is removed by polishing.
前記被処理基板を前記支持基板に接合する工程は、
前記被処理基板及び前記支持基板の各々の接合面に同種材料からなる金属層を形成する工程と、前記金属層の表面を真空中で活性化処理した後、貼り合わせる工程とを有する
ことを特徴とする請求項1に記載の基板処理方法。
The step of bonding the substrate to be processed to the support substrate includes:
The method includes a step of forming a metal layer made of the same material on each joint surface of the substrate to be processed and the support substrate, and a step of bonding the surface of the metal layer after activation processing in vacuum. The substrate processing method according to claim 1.
前記支持基板を前記被処理基板から除去する工程は、
前記支持基板を研磨加工により薄厚化する工程と、この薄厚化した支持基板を溶解除去する工程と、前記金属層の一部又は全体を除去する工程とを有する
ことを特徴とする請求項1に記載の基板処理方法。
The step of removing the support substrate from the substrate to be processed includes:
2. The method according to claim 1, comprising a step of thinning the support substrate by polishing, a step of dissolving and removing the thinned support substrate, and a step of removing part or all of the metal layer. The substrate processing method as described.
前記被処理基板を処理する工程は、前記被処理基板の他方の面を研磨により薄厚化する工程を含む
ことを特徴とする請求項1に記載の基板処理方法。
The substrate processing method according to claim 1, wherein the step of processing the substrate to be processed includes a step of thinning the other surface of the substrate to be processed by polishing.
前記被処理基板を処理する工程は、前記被処理基板の他方の面に素子を実装する工程を含む
ことを特徴とする請求項1に記載の基板処理方法。
The substrate processing method according to claim 1, wherein the step of processing the substrate to be processed includes a step of mounting an element on the other surface of the substrate to be processed.
一方の面に外部接続端子が形成された半導体ウェーハを準備する工程と、
前記半導体ウェーハの一方の面の全域に第1金属層を形成する工程と、
接合面の全域に第2金属層が形成された支持基板を準備する工程と、
前記第1,第2金属層を介して、前記半導体ウェーハの一方の面を前記支持基板に接合する工程と、
前記半導体ウェーハの他方の面を研磨して前記半導体ウェーハを薄厚化する工程と、
前記半導体ウェーハの他方の面に、前記外部接続端子と電気的に接続される接続電極を形成する工程と、
前記接続電極の上に半導体チップを実装する工程と、
前記支持基板を研磨除去する工程と、
前記第1,第2金属層をエッチング除去する工程と、
前記半導体ウェーハをチップ単位で個片化する工程とを有する
ことを特徴とする半導体装置の製造方法。
Preparing a semiconductor wafer having external connection terminals formed on one surface;
Forming a first metal layer over the entire area of one surface of the semiconductor wafer;
Preparing a support substrate having a second metal layer formed on the entire bonding surface;
Bonding one surface of the semiconductor wafer to the support substrate via the first and second metal layers;
Polishing the other surface of the semiconductor wafer to thin the semiconductor wafer;
Forming a connection electrode electrically connected to the external connection terminal on the other surface of the semiconductor wafer;
Mounting a semiconductor chip on the connection electrode;
Polishing and removing the support substrate;
Etching away the first and second metal layers;
And a step of dividing the semiconductor wafer into chips. A method for manufacturing a semiconductor device, comprising:
前記第1金属層を形成する工程の前に、前記外部接続端子の周囲に絶縁材料を充填して前記半導体ウェーハの一方の面を平坦化する工程を有する
ことを特徴とする請求項6に記載の半導体装置の製造方法。
The step of flattening one surface of the semiconductor wafer by filling the periphery of the external connection terminal with an insulating material before the step of forming the first metal layer. Semiconductor device manufacturing method.
前記半導体ウェーハの内部に、あらかじめ前記外部接続端子と電気的に接続された埋込導体層を形成しておき、前記半導体ウェーハを薄厚化すると同時に、前記埋込導体層の先端部を前記半導体ウェーハの他方の面から露出させて前記接続電極を形成する
ことを特徴とする請求項6に記載の半導体装置の製造方法。
An embedded conductor layer electrically connected to the external connection terminal is formed in the semiconductor wafer in advance, and at the same time as the semiconductor wafer is thinned, the tip of the embedded conductor layer is placed on the semiconductor wafer. The method for manufacturing a semiconductor device according to claim 6, wherein the connection electrode is formed so as to be exposed from the other surface of the semiconductor device.
前記半導体チップを実装した後、前記半導体ウェーハ上で前記半導体チップをモールドして擬似ウェーハ化する工程を有する
ことを特徴とする請求項6に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 6, further comprising a step of molding the semiconductor chip on the semiconductor wafer to form a pseudo wafer after the semiconductor chip is mounted.
前記第1,第2金属層をエッチング除去する工程では、前記外部接続端子と連絡する所定の導体形状に前記第1,第2金属層をパターンエッチングする
ことを特徴とする請求項6に記載の半導体装置の製造方法。
7. The step of etching and removing the first and second metal layers includes pattern etching the first and second metal layers into a predetermined conductor shape communicating with the external connection terminal. A method for manufacturing a semiconductor device.
パターンエッチングされた前記第1,第2金属層の上に、はんだバンプを形成する工程を有する
ことを特徴とする請求項10に記載の半導体装置の製造方法。

The method for manufacturing a semiconductor device according to claim 10, further comprising forming a solder bump on the first and second metal layers that have been subjected to pattern etching.

JP2006153618A 2006-06-01 2006-06-01 Substrate processing method and semiconductor device manufacturing method Expired - Fee Related JP5003023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153618A JP5003023B2 (en) 2006-06-01 2006-06-01 Substrate processing method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153618A JP5003023B2 (en) 2006-06-01 2006-06-01 Substrate processing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2007324406A true JP2007324406A (en) 2007-12-13
JP5003023B2 JP5003023B2 (en) 2012-08-15

Family

ID=38856924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153618A Expired - Fee Related JP5003023B2 (en) 2006-06-01 2006-06-01 Substrate processing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5003023B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023407A (en) * 2009-07-13 2011-02-03 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2011066383A (en) * 2009-09-18 2011-03-31 Choko Kaihatsu Kagi Kofun Yugenkoshi Method of polishing semiconductor wafer having silicon through-via structure, and polishing composition for use in the method
JP2011249589A (en) * 2010-05-27 2011-12-08 Disco Abrasive Syst Ltd Processing method of wafer
JP2011249499A (en) * 2010-05-26 2011-12-08 Disco Abrasive Syst Ltd Wafer processing method
JP2016136613A (en) * 2015-01-16 2016-07-28 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
JP2016171212A (en) * 2015-03-12 2016-09-23 株式会社東芝 Semiconductor device manufacturing method
KR101784507B1 (en) * 2011-12-14 2017-10-12 에스케이하이닉스 주식회사 Semiconductor stack package and manufacturing method for the same, and electronic system comprising the same
WO2021024768A1 (en) * 2019-08-08 2021-02-11 信越半導体株式会社 Method for provisionally bonding semiconductor substrate
WO2021210047A1 (en) 2020-04-13 2021-10-21 三菱電機株式会社 Method for manufacturing semiconductor element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222714A (en) * 1995-02-15 1996-08-30 Tdk Corp Soi substrate and manufacture thereof
JP2003257930A (en) * 2002-03-01 2003-09-12 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2005259984A (en) * 2004-03-11 2005-09-22 Seiko Epson Corp Transfer method, manufacturing method of semiconductor device, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222714A (en) * 1995-02-15 1996-08-30 Tdk Corp Soi substrate and manufacture thereof
JP2003257930A (en) * 2002-03-01 2003-09-12 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2005259984A (en) * 2004-03-11 2005-09-22 Seiko Epson Corp Transfer method, manufacturing method of semiconductor device, and electronic apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023407A (en) * 2009-07-13 2011-02-03 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2011066383A (en) * 2009-09-18 2011-03-31 Choko Kaihatsu Kagi Kofun Yugenkoshi Method of polishing semiconductor wafer having silicon through-via structure, and polishing composition for use in the method
JP2011249499A (en) * 2010-05-26 2011-12-08 Disco Abrasive Syst Ltd Wafer processing method
JP2011249589A (en) * 2010-05-27 2011-12-08 Disco Abrasive Syst Ltd Processing method of wafer
KR101784507B1 (en) * 2011-12-14 2017-10-12 에스케이하이닉스 주식회사 Semiconductor stack package and manufacturing method for the same, and electronic system comprising the same
JP2016136613A (en) * 2015-01-16 2016-07-28 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
JP2016171212A (en) * 2015-03-12 2016-09-23 株式会社東芝 Semiconductor device manufacturing method
WO2021024768A1 (en) * 2019-08-08 2021-02-11 信越半導体株式会社 Method for provisionally bonding semiconductor substrate
WO2021210047A1 (en) 2020-04-13 2021-10-21 三菱電機株式会社 Method for manufacturing semiconductor element
JPWO2021210047A1 (en) * 2020-04-13 2021-10-21
KR20220143741A (en) 2020-04-13 2022-10-25 미쓰비시덴키 가부시키가이샤 Method of manufacturing semiconductor device
JP7186921B2 (en) 2020-04-13 2022-12-09 三菱電機株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP5003023B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5003023B2 (en) Substrate processing method and semiconductor device manufacturing method
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
CN110957229B (en) Semiconductor device and method of forming a semiconductor device
US9837372B1 (en) Wafer-level die to package and die to die interconnects suspended over integrated heat sinks
JP4366510B2 (en) Chip and wafer integration method using vertical connection part
TWI397977B (en) Integrated circuit structures and method of forming the same
KR20200037051A (en) Integrated circuit package and method
US7863092B1 (en) Low cost bumping and bonding method for stacked die
JP4970593B2 (en) Ultra-thin chip packaging
US20120108055A1 (en) Manufacturing process of semiconductor device and semiconductor device
JP4100936B2 (en) Manufacturing method of semiconductor device
KR20160059738A (en) Pre-package and manufacturing method of semiconductor package using the same
JP2007311385A (en) Process for fabricating semiconductor device, and semiconductor device
TWI773216B (en) Semiconductor devices and methods of manufacture
JP2007188967A (en) Substrate support, substrate treatment method, and method of manufacturing semiconductor device
US20030122237A1 (en) Semiconductor device
JP2008130704A (en) Method of manufacturing semiconductor device
US8309403B2 (en) Method for encapsulating electronic components on a wafer
CN110854093A (en) Three-dimensional laminated packaging structure and manufacturing method thereof
WO2022121121A1 (en) Chip bonding method
JP2004343088A (en) Semiconductor device and its manufacturing method
JP4779924B2 (en) Manufacturing method of semiconductor device
WO2022052072A1 (en) Fan-out type packaging structure and production method therefor
JP4443549B2 (en) Manufacturing method of semiconductor device
TW202312374A (en) Stiffener frame for semiconductor device packages

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees