JP2007324372A - Nonlinear capacitor, its manufacturing method, and high-pressure metal vapor discharge lamp using it - Google Patents

Nonlinear capacitor, its manufacturing method, and high-pressure metal vapor discharge lamp using it Download PDF

Info

Publication number
JP2007324372A
JP2007324372A JP2006153037A JP2006153037A JP2007324372A JP 2007324372 A JP2007324372 A JP 2007324372A JP 2006153037 A JP2006153037 A JP 2006153037A JP 2006153037 A JP2006153037 A JP 2006153037A JP 2007324372 A JP2007324372 A JP 2007324372A
Authority
JP
Japan
Prior art keywords
ferroelectric
crystallized glass
ceramic capacitor
film
fec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153037A
Other languages
Japanese (ja)
Other versions
JP4682918B2 (en
Inventor
Yukio Negishi
幸夫 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2006153037A priority Critical patent/JP4682918B2/en
Publication of JP2007324372A publication Critical patent/JP2007324372A/en
Application granted granted Critical
Publication of JP4682918B2 publication Critical patent/JP4682918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress creeping discharge caused by the lowering of insulation performance of a ferroelectric crystallized glass film in a nonlinear ceramic capacitor used for a low start voltage high pressure vapor discharge lamp. <P>SOLUTION: The nonlinear ceramic capacitor is configured as follows: electrode films 2a, 2b are formed on both surfaces of a disk shaped ferroelectric ceramic substrate used for a low start voltage high pressure vapor discharge lamp. The surfaces of these electrode films are covered with ferroelectric crystallized glass except for power supplies 6a, 6b to the electrode films and a circumferential edge of the ferroelectric ceramic substrate, and a lead wire is connected to the power supply parts to the electrode films. In the nonlinear ceramic capacitor, the thickness of coating of the ferroelectric crystallized glass is made thicker at the neighborhood of the electrode film circumferential part than at a part covering a central part of the electrode films. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は主に低始動電圧形高圧金属蒸気放電灯を始動点灯させるのに用いられるパルス発生器の改良に関する。 The present invention mainly relates to an improvement of a pulse generator used for starting and lighting a low starting voltage type high pressure metal vapor discharge lamp.

一般照明用途に使用される高圧金属蒸気放電灯として低始動電圧形高圧金属蒸気放電灯が知られている。 A low starting voltage type high pressure metal vapor discharge lamp is known as a high pressure metal vapor discharge lamp used for general lighting applications.

高圧ナトリウムランプのような高圧金属蒸気放電灯は一般に始動電圧が高く、通常の商用電源電圧で始動させることは困難であるため、例えば、放電灯の内部にパルス発生器を組み込んで、該パルス発生器により電圧パルスを発生させ、これを電源電圧と共に放電灯に印加して始動点灯させることが行われている。 Since a high-pressure metal vapor discharge lamp such as a high-pressure sodium lamp generally has a high starting voltage and is difficult to start with a normal commercial power supply voltage, for example, a pulse generator is incorporated inside the discharge lamp to generate the pulse. A voltage pulse is generated by a generator, and this is applied to a discharge lamp together with a power supply voltage to start and light up.

このような用途に使用されるパルス発生器の一種として、非線形セラミックコンデンサ(以下「FEC」と記載する)が使用されている。一例として、図6に示すような構成のものが本件出願人によって開示されている(特許文献−1)。すなわち、強誘電体セラミック基板1の両面に電極膜2a、2bを形成し、これらの電極膜2a、2bの表面を該電極膜に対する通電部6a、6bを除いて強誘電性結晶化ガラス膜3a、3bで被覆すると共に、そのガラス膜3a、3bの外表面に、電極膜の通電部6a、6bを覆うように円形状導電膜7a、7bを前記セラミック基板1と同心状に形成し、前記通電部との接続部を避けた前記導電膜7a、7b上に導電性接着剤4a、4bでリード端子5a、5bを固着するものである。   A nonlinear ceramic capacitor (hereinafter referred to as “FEC”) is used as a kind of pulse generator used for such applications. As an example, the present applicant has disclosed a configuration as shown in FIG. 6 (Patent Document 1). That is, the electrode films 2a and 2b are formed on both surfaces of the ferroelectric ceramic substrate 1, and the surfaces of these electrode films 2a and 2b are removed from the ferroelectric crystallized glass film 3a except for the current-carrying portions 6a and 6b. 3b, and on the outer surfaces of the glass films 3a and 3b, circular conductive films 7a and 7b are formed concentrically with the ceramic substrate 1 so as to cover the current-carrying portions 6a and 6b of the electrode film, The lead terminals 5a and 5b are fixed by the conductive adhesives 4a and 4b on the conductive films 7a and 7b avoiding the connection portion with the energization portion.

ところで、先に提案したFECにおいては、強誘電性結晶化ガラス膜の膜厚がその外周部において薄くなり、より大きな始動パルスエネルギーを要求するランプにおいて始動パルス発生を繰り返すうちにFEC外縁部に沿面放電が生じ、FECの焼損が発生する場合があることが判明した。 By the way, in the previously proposed FEC, the film thickness of the ferroelectric crystallized glass film becomes thinner at the outer peripheral portion thereof, and creeps along the outer edge of the FEC as the start pulse is repeatedly generated in a lamp that requires a larger start pulse energy. It has been found that discharge may occur and FEC burnout may occur.

すなわち強誘電性結晶化ガラスを被覆する工程において、被覆材料を図4のように強誘電性結晶化ガラス塗布部8aが一定の膜厚になるように塗布するが、焼成時、外周境界部に材料の流動が起こり、焼成後に生成される強誘電性結晶化ガラス膜3aの外周部膜厚は、図5のように中央部よりも比較的薄く形成されていた。その結果、強誘電性結晶化ガラス皮膜外周部の一部でパルス電圧に対する絶縁性が低下し、強誘電性結晶化ガラス膜3a及び3bの絶縁破壊が生じて、電極膜2aの外縁部から強誘電体セラミック基板1の外縁部を通り電極膜2bの外縁部まで沿面放電が起こることが確認された。 That is, in the process of coating the ferroelectric crystallized glass, the coating material is applied so that the ferroelectric crystallized glass application part 8a has a constant film thickness as shown in FIG. The material flow occurred, and the film thickness of the outer peripheral portion of the ferroelectric crystallized glass film 3a produced after firing was relatively thinner than the central portion as shown in FIG. As a result, the insulation with respect to the pulse voltage is lowered at a part of the outer peripheral portion of the ferroelectric crystallized glass film, and the dielectric breakdown of the ferroelectric crystallized glass films 3a and 3b occurs, so that the strong resistance from the outer edge of the electrode film 2a occurs. It was confirmed that creeping discharge occurred through the outer edge of the dielectric ceramic substrate 1 to the outer edge of the electrode film 2b.

この種のFECを、例えば高圧ナトリウムランプ(HPS)などのように、外球内が高真空で絶縁(耐圧)が高い雰囲気中において使用する場合は問題が少ない。しかしメタルハライドランプでは、その外球内に窒素ガスが1/2気圧ほど封入されている品種が多い。このため、高圧ナトリウムランプ等の外球内が真空となっているランプよりも絶縁性が低くなり、窒素ガスを介してFECの表面放電が生じ易い。 When this type of FEC is used in an atmosphere with a high vacuum inside the outer sphere and high insulation (withstand voltage), such as a high pressure sodium lamp (HPS), there are few problems. However, there are many types of metal halide lamps in which nitrogen gas is sealed in the outer bulb at about 1/2 atm. For this reason, the insulating property is lower than that of a lamp in which an outer bulb such as a high pressure sodium lamp is evacuated, and surface discharge of FEC is likely to occur through nitrogen gas.

上記のようにFECを易放電雰囲気下のランプ外球内部に収納する場合には、強誘電性セラミック基体の両面に電極膜を形成した上で、セラミック基体の外縁部を除いて強誘電性結晶化ガラス、絶縁強化層の順で被覆したものが使用される(特許文献−2)。 As described above, when the FEC is housed inside the lamp outer bulb in an easy discharge atmosphere, after forming electrode films on both surfaces of the ferroelectric ceramic substrate, the ferroelectric crystal is removed except for the outer edge portion of the ceramic substrate. What coat | covered in order of the vitrified glass and the insulation reinforcement | strengthening layer is used (patent document 2).

しかし最近になって、従来品よりコンパクトな発光管を有する高圧蒸気放電灯やセラミックメタルハライドランプなど、より高い始動パルス電圧及びより大きなパルスエネルギーを要求する仕様の新型ランプが登場し、前記段落番号0008の構成を有するFECであっても、外縁部の絶縁性能が充分でない場合も増えてきた。 Recently, however, new lamps with specifications that require higher starting pulse voltage and higher pulse energy, such as high-pressure steam discharge lamps and ceramic metal halide lamps having a more compact arc tube than conventional products, have appeared. Even in the case of the FEC having the configuration, the number of cases where the insulation performance of the outer edge portion is not sufficient has increased.

すなわちFECの性能を保証し、後工程に不良品を流さないため、製造後に性能確認のための全数検査を行なう必要がある。その検査の合格基準値が新型ランプの要求仕様にあわせて厳しくなった。そのため、前記特許文献2に開示されている構成でFECを設計した場合、「パルス不足」「沿面放電」「クラック」の3種の不良のどれかを改善すると他の不良が多くなり、製造歩留まりを向上させることが困難だった。
本発明は、特許文献2の改良に関するものである。
That is, in order to guarantee the performance of the FEC and prevent a defective product from flowing in the subsequent process, it is necessary to perform 100% inspection for confirming the performance after manufacturing. The acceptance standard value of the inspection became stricter according to the required specifications of the new lamp. For this reason, when the FEC is designed with the configuration disclosed in Patent Document 2, if any of the three types of defects, “insufficient pulse”, “surface creeping”, and “crack” is improved, other defects increase and the manufacturing yield increases. It was difficult to improve.
The present invention relates to the improvement of Patent Document 2.

特開平2−177412号公報Japanese Patent Laid-Open No. 2-177412 特開平4−62794号公報JP-A-4-62794

本発明は、先に提案したFECにおける上記問題点を解決するためになされたもので、強誘電性結晶化ガラス膜の外周部膜厚を絶縁破壊が起こらない程度の膜厚とすることにより、外周部における絶縁破壊を防止できるようにしたFECを提供することを目的とする。 The present invention was made in order to solve the above-mentioned problems in the FEC proposed previously, and by setting the outer peripheral film thickness of the ferroelectric crystallized glass film to a thickness that does not cause dielectric breakdown, An object of the present invention is to provide an FEC capable of preventing dielectric breakdown at the outer peripheral portion.

上記目的を達成するため、本発明は、円板状の強誘電性セラミック基体の両面に電極膜を形成し、これらの電極膜の表面を、該電極膜に対する通電部と前記強誘電性セラミック基体の外周縁の部分を除いて強誘電性結晶化ガラスで被覆し、前記電極膜に対する通電部にリード線を接続した、電界−電荷特性においてヒステリシスを示す非線形セラミックコンデンサにおいて、前記強誘電性結晶化ガラスによる被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成されているFECとする。   In order to achieve the above object, the present invention provides an electrode film formed on both surfaces of a disk-shaped ferroelectric ceramic substrate, and the surface of these electrode films is provided with a current-carrying portion for the electrode film and the ferroelectric ceramic substrate. In a non-linear ceramic capacitor having a hysteresis in electric field-charge characteristics, which is covered with a ferroelectric crystallized glass except for an outer peripheral portion of the electrode, and a lead wire is connected to a current-carrying portion for the electrode film, the ferroelectric crystallization It is assumed that the thickness of the coating with glass is FEC in which the portion covering the vicinity of the outer periphery of the electrode film is thicker than the portion covering the central portion of the electrode film.

並びに、前記強誘電性結晶化ガラスが被覆されているFECにおいて、前記被覆の上にさらに絶縁強化層を被覆したFECとする。 In addition, in the FEC in which the ferroelectric crystallized glass is coated, the FEC is formed by further coating an insulating reinforcing layer on the coating.

また、前記のFECを製造する方法としては、前記強誘電性結晶化ガラスを前記強誘電性セラミック基体と同じ寸法形状で均一の厚さに塗布した後、外周部近傍のみに前記強誘電性結晶化ガラスと同一材料の強誘電性結晶化ガラスを塗布し、その後焼成を行なうことによって被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成された皮膜を形成する工程を含むFECの製造方法とする。 In addition, as a method of manufacturing the FEC, the ferroelectric crystallized glass is applied to the same size and shape as the ferroelectric ceramic substrate in a uniform thickness, and then the ferroelectric crystal is applied only in the vicinity of the outer periphery. By applying a ferroelectric crystallized glass of the same material as the vitrified glass, followed by firing, the thickness of the coating is closer to the portion surrounding the electrode film outer peripheral portion than the portion covering the central portion of the electrode film It is set as the manufacturing method of FEC including the process of forming the film | membrane formed thickly.

さらに、低始動電圧形高圧金属蒸気放電灯に係る本発明は、前記のFECを使用した高圧金属蒸気放電灯とする。 Furthermore, the present invention relating to the low starting voltage type high-pressure metal vapor discharge lamp is a high-pressure metal vapor discharge lamp using the FEC.

強誘電性結晶化ガラスによる被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成されているFECとすることにより、FEC外周部から外縁部を通る沿面放電を抑止する。 By setting the thickness of the coating with the ferroelectric crystallized glass to be thicker at the portion covering the vicinity of the outer periphery of the electrode film than the portion covering the central portion of the electrode film, Suppresses creeping discharge through the outer edge.

なお、結晶化ガラスは高価な材料であり、それを外周部のみに追加塗布したFECとすることにより、材料費の上昇が軽減できる。 Note that crystallized glass is an expensive material, and an increase in material cost can be reduced by using FEC that is additionally applied only to the outer peripheral portion.

また、強誘電性結晶化ガラスが被覆されているFECにおいて、前記被覆の上にさらに絶縁強化層を被覆したFECとすることにより、易放電雰囲気下のメタルハライドランプ外球内にあっても、強誘電性結晶化ガラスの上に被覆された絶縁強化層により、前記沿面放電を含むFEC電極間の放電が防止され、FECの焼損を確実に排除することが可能となる。 Further, in an FEC coated with ferroelectric crystallized glass, an FEC in which an insulating reinforcing layer is further coated on the coating is used, so that it is strong even in an outer bulb of a metal halide lamp in an easy discharge atmosphere. The insulation strengthening layer coated on the dielectric crystallized glass prevents the discharge between the FEC electrodes including the creeping discharge and can surely eliminate the FEC burnout.

並びに、前記強誘電性結晶化ガラスを前記強誘電性セラミック基体と同じ寸法形状で均一の厚さに塗布した後、外周部近傍のみに同一材料の強誘電性結晶化ガラスを塗布し、その後焼成を行なうことによって被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成された皮膜を形成することにより、簡易な方法で本発明を適用した製品を製造することができる。 In addition, after applying the ferroelectric crystallized glass with the same size and shape as the ferroelectric ceramic substrate to a uniform thickness, the ferroelectric crystallized glass of the same material is applied only to the vicinity of the outer periphery, and then fired. By forming a film in which the coating thickness is thicker in the portion covering the vicinity of the outer periphery of the electrode film than in the portion covering the central portion of the electrode film, the present invention is achieved in a simple manner. The applied product can be manufactured.

さらに、上記の方法により製造されたFECを採用した高圧金属蒸気放電灯は、FECの焼損による短寿命の可能性を廃し、実用上長寿命となる。 Furthermore, the high-pressure metal vapor discharge lamp employing FEC manufactured by the above method eliminates the possibility of a short life due to FEC burnout and has a practically long life.

次に実施例について図1乃至図6について説明する。   Next, an embodiment will be described with reference to FIGS.

図1は本発明に係るFECの実施例を示す一部断面図である。
図6に示す従来例と基本的に同じ部材で構成されているが、強誘電性結晶化ガラス膜3a、3bの皮膜形状が異なっている。
FIG. 1 is a partial cross-sectional view showing an embodiment of an FEC according to the present invention.
Although it is comprised with the fundamentally same member as the prior art example shown in FIG. 6, the film | membrane shape of the ferroelectric crystallized glass films 3a and 3b differs.

すなわち、従来技術によるFECでは、図5に示すように強誘電性結晶化ガラス膜3aの膜厚がFEC外周部では薄くなってしまうのに対し、本発明に係るFECでは図1に示す強誘電性結晶化ガラス膜3aのようにFEC外周部において膜厚が中央部より厚くなっている。従って前記段落番号0005、段落番号0006にて説明したような電極膜2aの外縁部から強誘電体セラミック基板1の外縁部を通り電極膜2bの外縁部まで沿面放電は起こらない。 That is, in the FEC according to the prior art, as shown in FIG. 5, the thickness of the ferroelectric crystallized glass film 3a is reduced in the outer peripheral portion of the FEC, whereas in the FEC according to the present invention, the ferroelectric shown in FIG. Like the crystalline glass film 3a, the film thickness is thicker at the outer periphery of the FEC than at the center. Accordingly, creeping discharge does not occur from the outer edge portion of the electrode film 2a as described in the paragraph numbers 0005 and 0006 to the outer edge portion of the electrode film 2b through the outer edge portion of the ferroelectric ceramic substrate 1.

最外層の低融点ガラス皮膜8a、8bは絶縁強化層であり、前記段落番号0007、0008にて説明したことと同様の理由で、本発明を適用したFECをメタルハライドランプに使用する場合には必要となる。   The outermost low melting point glass films 8a and 8b are insulation reinforcing layers, and are necessary when the FEC to which the present invention is applied is used for a metal halide lamp for the same reason as described in the paragraphs 0007 and 0008. It becomes.

最外層に低融点ガラスを被覆したFECは、被覆無しの場合より、発生する電圧パルスのピーク値が低くなる傾向があるため、ランプ始動時に高いピーク電圧を必要とする高圧ナトリウムランプでは、低融点ガラス皮膜が無いFECを使用するのが適当である。 The FEC with the low melting point glass coated on the outermost layer tends to have a lower peak value of the generated voltage pulse than the case without the coating. Therefore, in a high pressure sodium lamp that requires a high peak voltage at the start of the lamp, It is appropriate to use FEC without a glass film.

本発明のような皮膜形状を得るための製造方法を説明する。
例えば、図2のように強誘電性結晶化ガラス膜の材料をスクリーン印刷等の技術を用いて一定膜厚に塗布すると、強誘電性結晶化ガラス塗布部9が電極膜2aの上に形成される。さらに外周部近傍のみに強誘電性結晶化ガラス膜材料が付加されるように、リング状に塗布することで強誘電性結晶化ガラス追加塗布部10が形成される。
A manufacturing method for obtaining a film shape as in the present invention will be described.
For example, as shown in FIG. 2, when a material of a ferroelectric crystallized glass film is applied to a constant film thickness using a technique such as screen printing, a ferroelectric crystallized glass application part 9 is formed on the electrode film 2a. The Further, the ferroelectric crystallized glass additional coating portion 10 is formed by coating in a ring shape so that the ferroelectric crystallized glass film material is added only in the vicinity of the outer peripheral portion.

なお、図2のように強誘電性結晶化ガラス膜の材料を一定膜厚に塗布する方法としては前記したスクリーン印刷による方法に限らず、ディップ法、吹き付け法、定量ディスペンサと数値制御テーブルとを連動させた塗布法なども利用できるが、絶縁膜の厚さが製造後のFEC特性に大きく影響するため、塗布量の誤差を極力小さくするような配慮が必要である。 As shown in FIG. 2, the method for applying the material of the ferroelectric crystallized glass film to a constant film thickness is not limited to the above-described screen printing method, but includes a dipping method, a spraying method, a quantitative dispenser, and a numerical control table. An interlocked coating method can also be used, but since the thickness of the insulating film greatly affects the FEC characteristics after manufacture, consideration must be given to minimize the coating amount error.

その後の焼成工程により強誘電性結晶化ガラスは流動し、図2に示す強誘電性結晶化ガラス塗布部9及び強誘電性結晶化ガラス追加塗布部10の形状が変化する。その結果、焼成後の強誘電性結晶化ガラス膜3a形状は図3のように外周部の絶縁層が中央部より確実に厚くなり、外縁部からの沿面放電を抑止することができる。 The ferroelectric crystallized glass flows by the subsequent baking process, and the shapes of the ferroelectric crystallized glass application part 9 and the ferroelectric crystallized glass additional application part 10 shown in FIG. 2 change. As a result, the shape of the ferroelectric crystallized glass film 3a after firing is such that the outer peripheral insulating layer is reliably thicker than the central portion as shown in FIG. 3, and creeping discharge from the outer edge portion can be suppressed.

実際には強誘電性結晶化ガラス膜3aの膜厚は比較的薄いものでよい。一例として、強誘電体セラミック基板1の板厚が1.0mmのFECに、本発明の製造方法を適用したところ、強誘電性結晶化ガラス膜3aの膜厚は外周部付近の最大膜厚が32μmでその他の部分の膜厚は25μmとなった。この仕様のFECはFEC単体の特性確認試験に合格したばかりでなく、メタルハライドランプに組み込んでのライフテスト結果も良好だった。 Actually, the film thickness of the ferroelectric crystallized glass film 3a may be relatively thin. As an example, when the manufacturing method of the present invention is applied to an FEC having a thickness of the ferroelectric ceramic substrate 1 of 1.0 mm, the ferroelectric crystallized glass film 3a has a maximum film thickness near the outer periphery. At 32 μm, the thickness of the other part was 25 μm. The FEC of this specification not only passed the characteristic confirmation test of the FEC alone, but also had a good life test result when incorporated in a metal halide lamp.

本発明の構成とすることで、FECの外縁部からの沿面放電が抑止されるため、前記段落番号0010に記載した「パルス不足」「沿面放電」「クラック」の3種の不良のうち、沿面放電に関する制限が緩和され、新型ランプ用に要求される以上のパルスを発生できてクラックしにくい仕様のFECを設計することが可能となった。そのため、前記段落番号0010と同じ基準値の全数検査において、不良率を大幅に減少させることができた。
By adopting the configuration of the present invention, creeping discharge from the outer edge of the FEC is suppressed, and therefore, among the three types of defects of “insufficient pulse”, “creeping discharge”, and “crack” described in paragraph 0010, creeping The restrictions on electric discharge have been relaxed, and it has become possible to design FECs that can generate more pulses than are required for new lamps and are less likely to crack. Therefore, in the 100% inspection with the same reference value as the paragraph number 0010, the defect rate can be greatly reduced.

本発明は、FECの外縁部沿面放電による焼損を防止し、従来以上に高い電圧または大きなエネルギーの始動パルスが必要な新型高圧金属蒸気放電灯に対してもFECを使用可能にする技術である。   The present invention is a technique that prevents the FEC from being burned out by creeping discharge at the outer edge of the FEC, and enables the FEC to be used even for a new high-pressure metal vapor discharge lamp that requires a higher voltage or higher energy starting pulse.

本発明に係る実施例を示す一部断面図。1 is a partial cross-sectional view showing an embodiment according to the present invention. 本発明に係る製造方法を説明するための一部断面図。The partial cross section figure for demonstrating the manufacturing method which concerns on this invention. 本発明に係る製造方法を説明するための一部断面図。The partial cross section figure for demonstrating the manufacturing method which concerns on this invention. 従来技術に係る製造方法を説明するための一部断面図。The partial cross section figure for demonstrating the manufacturing method which concerns on a prior art. 従来技術に係る製造方法を説明するための一部断面図。The partial cross section figure for demonstrating the manufacturing method which concerns on a prior art. 従来技術に係る実施例を示す一部断面図。The partial cross section figure which shows the Example which concerns on a prior art.

符号の説明Explanation of symbols

1 強誘電体セラミック基板
2a、2b 電極膜
3a、3b 強誘電性結晶化ガラス膜
4a、4b 導電性接着剤
5a、5b リード端子
6a、6b 電極膜の通電部
7a、7b 導電膜
8a、8b 低融点ガラス被膜
9 強誘電性結晶化ガラス塗布部
10 強誘電性結晶化ガラス追加塗布部
DESCRIPTION OF SYMBOLS 1 Ferroelectric ceramic substrate 2a, 2b Electrode film | membrane 3a, 3b Ferroelectric crystallized glass film | membrane 4a, 4b Conductive adhesive agent 5a, 5b Lead terminal 6a, 6b Current supply part 7a, 7b Electrode film | membrane 8a, 8b Low Melting point glass coating 9 Ferroelectric crystallized glass application part 10 Ferroelectric crystallized glass additional application part

Claims (4)

円板状の強誘電性セラミック基体の両面に電極膜を形成し、これらの電極膜の表面を、該電極膜に対する通電部と前記強誘電性セラミック基体の外周縁の部分を除いて強誘電性結晶化ガラスで被覆し、前記電極膜に対する通電部にリード線を接続した、電界−電荷特性においてヒステリシスを示す非線形セラミックコンデンサにおいて、前記強誘電性結晶化ガラスによる被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成されている非線形セラミックコンデンサ。
Electrode films are formed on both surfaces of a disk-shaped ferroelectric ceramic substrate, and the surfaces of these electrode films are ferroelectric except for the current-carrying portion for the electrode film and the outer peripheral edge of the ferroelectric ceramic substrate. In a non-linear ceramic capacitor that is covered with crystallized glass and has a lead wire connected to a current-carrying portion with respect to the electrode film and exhibits hysteresis in electric field-charge characteristics, the thickness of the coating with the ferroelectric crystallized glass is the center of the electrode film A nonlinear ceramic capacitor in which a portion covering the vicinity of the outer peripheral portion of the electrode film is formed thicker than a portion covering the portion.
請求項1記載の非線形セラミックコンデンサにおいて、前記強誘電性結晶化ガラスによる被覆の上にさらに絶縁強化層を被覆した非線形セラミックコンデンサ。
2. The non-linear ceramic capacitor according to claim 1, wherein an insulating reinforcing layer is further coated on the coating with the ferroelectric crystallized glass.
請求項1または請求項2記載の非線形セラミックコンデンサを製造する方法であって、前記強誘電性結晶化ガラスを前記強誘電性セラミック基体と同じ寸法形状で均一の厚さに塗布した後、外周部近傍のみに前記強誘電性結晶化ガラスと同一材料の強誘電性結晶化ガラスを塗布し、その後焼成を行なうことによって被覆の厚さが前記電極膜中央部を被覆する部分よりも前記電極膜外周部近傍を被覆する部分のほうが厚く形成された皮膜を形成する工程を含む非線形セラミックコンデンサの製造方法。
3. A method of manufacturing a nonlinear ceramic capacitor according to claim 1 or 2, wherein the ferroelectric crystallized glass is coated in a uniform thickness with the same size and shape as the ferroelectric ceramic substrate, and then an outer peripheral portion. By applying a ferroelectric crystallized glass of the same material as that of the ferroelectric crystallized glass only in the vicinity, and then firing, the thickness of the coating is greater than the part covering the central part of the electrode film. A method of manufacturing a non-linear ceramic capacitor including a step of forming a film in which a portion covering the vicinity of the portion is formed thicker.
請求項1または請求項2記載の非線形セラミックコンデンサを使用した高圧金属蒸気放電灯。
A high-pressure metal vapor discharge lamp using the nonlinear ceramic capacitor according to claim 1 or 2.
JP2006153037A 2006-06-01 2006-06-01 Nonlinear capacitor, manufacturing method thereof, and high-pressure metal vapor discharge lamp using the same Expired - Fee Related JP4682918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153037A JP4682918B2 (en) 2006-06-01 2006-06-01 Nonlinear capacitor, manufacturing method thereof, and high-pressure metal vapor discharge lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153037A JP4682918B2 (en) 2006-06-01 2006-06-01 Nonlinear capacitor, manufacturing method thereof, and high-pressure metal vapor discharge lamp using the same

Publications (2)

Publication Number Publication Date
JP2007324372A true JP2007324372A (en) 2007-12-13
JP4682918B2 JP4682918B2 (en) 2011-05-11

Family

ID=38856895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153037A Expired - Fee Related JP4682918B2 (en) 2006-06-01 2006-06-01 Nonlinear capacitor, manufacturing method thereof, and high-pressure metal vapor discharge lamp using the same

Country Status (1)

Country Link
JP (1) JP4682918B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888428U (en) * 1972-01-26 1973-10-25
JPS61212009A (en) * 1985-03-18 1986-09-20 岩崎電気株式会社 Capacitor for generating high voltage pulse
JPH0462794A (en) * 1990-06-29 1992-02-27 Iwasaki Electric Co Ltd Metal halide lamp
JPH1196966A (en) * 1997-09-22 1999-04-09 Iwasaki Electric Co Ltd High-pressure metal-vapor discharge lamp
JPH11274000A (en) * 1998-01-23 1999-10-08 Murata Mfg Co Ltd Non-linear dielectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888428U (en) * 1972-01-26 1973-10-25
JPS61212009A (en) * 1985-03-18 1986-09-20 岩崎電気株式会社 Capacitor for generating high voltage pulse
JPH0462794A (en) * 1990-06-29 1992-02-27 Iwasaki Electric Co Ltd Metal halide lamp
JPH1196966A (en) * 1997-09-22 1999-04-09 Iwasaki Electric Co Ltd High-pressure metal-vapor discharge lamp
JPH11274000A (en) * 1998-01-23 1999-10-08 Murata Mfg Co Ltd Non-linear dielectric element

Also Published As

Publication number Publication date
JP4682918B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US8456087B2 (en) High-pressure sodium vapor discharge lamp with hybrid antenna
TWI299177B (en) Outer electrode type discharge lamp with removal of outer electrode light leak
JP2002289139A (en) Cold cathode discharge lamp
JP2001216937A (en) Deposited foil and lamp therewith
JP5167955B2 (en) Xenon lamp
JP5379516B2 (en) Discharge lamp
JP4682918B2 (en) Nonlinear capacitor, manufacturing method thereof, and high-pressure metal vapor discharge lamp using the same
JP3591439B2 (en) Short arc discharge lamp
JP5400776B2 (en) Metal and oxide interface assemblies that maintain high operating temperatures and reduce shave
US7719194B2 (en) Inhibited oxidation foil connector for a lamp
EP2748833B1 (en) High-pressure gas discharge lamp
JP2007048759A (en) Surge absorber
JP2009193768A (en) Short arc high-pressure discharge lamp
US20070035252A1 (en) Current bushing system for a lamp
JP2007227388A (en) Electronic part-sealed body
JP4525305B2 (en) Fluorescent lamp, backlight unit and LCD TV
KR101078402B1 (en) Electrode of discharge lamp with glass thin film layer
JP3952901B2 (en) High pressure mercury lamp
JP2007188754A (en) Process of manufacturing surge absorber
JP2870136B2 (en) Metal halide lamp
CN101981648B (en) Apparatus and methods for use of refractory abhesives in protection of metallic foils and leads
JPH08264159A (en) Ceramic discharge lamp, its lighting device and lighting system using it
KR20020023158A (en) Short arc discharge lamp
CN117153663A (en) Excimer light source structure, manufacturing method thereof and excimer lamp
JPH05242951A (en) Sealed electrode and surge absorber therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees