JP2007322289A - Conveyer - Google Patents

Conveyer Download PDF

Info

Publication number
JP2007322289A
JP2007322289A JP2006153921A JP2006153921A JP2007322289A JP 2007322289 A JP2007322289 A JP 2007322289A JP 2006153921 A JP2006153921 A JP 2006153921A JP 2006153921 A JP2006153921 A JP 2006153921A JP 2007322289 A JP2007322289 A JP 2007322289A
Authority
JP
Japan
Prior art keywords
sample rack
sample
transport
rack
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006153921A
Other languages
Japanese (ja)
Inventor
Takashi Amamiya
隆 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006153921A priority Critical patent/JP2007322289A/en
Publication of JP2007322289A publication Critical patent/JP2007322289A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conveyer capable of detecting a stepping position of a sample rack by simple and inexpensive structure, capable of smoothing stepping of the sample rack, and capable of miniaturization. <P>SOLUTION: This conveyer 41 makes the sample rack 10 holding a plurality of sample containers 11 with a prescribed array pitch step along an arrayed direction of the plurality of sample containers in every desired pitch. This conveyer 41 includes a single position detecting sensor 44 for noncontactly detecting the stepping position of the sample rack, and a controller for controlling the conveyer 41 to make the sample rack 10 step in the desired pitch, based on a position signal from the position detecting sensor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数のサンプル容器を所定の配列ピッチで保持したサンプルラックを搬送する搬送装置に関するものである。   The present invention relates to a transport apparatus that transports a sample rack that holds a plurality of sample containers at a predetermined arrangement pitch.

分析装置、例えば、血液等の生体試料を分析する分析装置は、検体を収容した複数のサンプル容器をサンプルラックに保持させて分注位置に搬送し、各サンプル容器から検体を検査容器に分注して分析を行っている。サンプルラックの搬送に際し、搬送装置は、サンプルラックの歩進位置を正確に検知しないと、検体ズレが生じ、検査結果の誤報告という不具合が発生してしまう。このため、分析装置は、前記サンプルラックをサンプルの分注位置まで搬送すると共に、サンプルラックを複数のサンプル容器の配列ピッチの1ピッチ毎に歩進させる種々の搬送装置を使用している。   An analyzer, for example, an analyzer that analyzes a biological sample such as blood, holds a plurality of sample containers containing specimens in a sample rack and transports them to a dispensing position, and dispenses specimens from each sample container into test containers. And analyze it. If the transport device does not accurately detect the step position of the sample rack when transporting the sample rack, the sample will be misaligned and a test report will be reported incorrectly. For this reason, the analyzer uses various transport devices that transport the sample rack to the sample dispensing position and advance the sample rack every pitch of the arrangement pitch of the plurality of sample containers.

例えば、図7に示す第1の搬送装置は、サンプルラックRsをアームAによって把持して搬送路Wに沿って搬送すると共に、サンプル容器を収容する複数の収容凹部Pcの配列ピッチの1ピッチ毎に歩進させている。このとき、図7に示す搬送装置は、サンプルラックRs側面の各収容凹部Pcと対応する位置に設けた突起Mを位置検知センサSによって検知することでサンプルラックRsの歩進位置を求め、複数の収容凹部Pcを検体吸引位置Pvに順次停止させている。   For example, the first transport device shown in FIG. 7 grips the sample rack Rs by the arm A and transports the sample rack Rs along the transport path W, and for each pitch of the arrangement pitch of the plurality of storage recesses Pc that store the sample containers. Have stepped on. At this time, the transport apparatus shown in FIG. 7 obtains the step position of the sample rack Rs by detecting the protrusion M provided at the position corresponding to each receiving recess Pc on the side surface of the sample rack Rs by the position detection sensor S. Are sequentially stopped at the specimen suction position Pv.

また、図8に示す第2の搬送装置は、サンプルラックRsを搬送する搬送ベルト等の搬送経路Wpに並行させて位置検知用の複数のスイッチレバーLを有するレバーアレイAlを設けている。そして、第2の搬送装置は、サンプルラックRsの歩進に従って複数の検知レバーLが順次押されてスイッチがオンとなる。第2の搬送装置は、複数の検知レバーLによるスイッチのオンによってサンプルラックRsの歩進位置を検知し、複数の収容凹部Pcを検体吸引位置Pvに順次停止させている。   The second transport apparatus shown in FIG. 8 is provided with a lever array Al having a plurality of switch levers L for position detection in parallel with a transport path Wp such as a transport belt that transports the sample rack Rs. In the second transport device, the plurality of detection levers L are sequentially pressed according to the progress of the sample rack Rs, and the switch is turned on. The second transport device detects the advance position of the sample rack Rs by turning on the switches by the plurality of detection levers L, and sequentially stops the plurality of storage recesses Pc at the sample suction position Pv.

一方、図9に示す第3の搬送装置は、収容凹部Pcの配列ピッチと対応した配列ピッチでLED等の複数の発光素子Leを配列した発光素子アレイAeと同一の配列ピッチでフォトダイオード等の複数の受光素子Lsを有する受光素子アレイAsとをサンプルラックRsの搬送経路Wpを挟んで対向配置している。そして、第3の搬送装置は、サンプルラックRsの歩進位置に応じて発光素子Leから受光素子Lsへの光路が遮断されることを利用してサンプルラックRsの歩進位置を検知し、複数の収容凹部Pcを検体吸引位置Pvに順次停止させている。   On the other hand, the third transport device shown in FIG. 9 is configured such that a photodiode or the like is arranged at the same arrangement pitch as the light emitting element array Ae in which a plurality of light emitting elements Le such as LEDs are arranged at an arrangement pitch corresponding to the arrangement pitch of the accommodating recesses Pc. A light receiving element array As having a plurality of light receiving elements Ls is disposed so as to face the sample rack Rs with the transport path Wp interposed therebetween. The third transport device detects the step position of the sample rack Rs using the fact that the optical path from the light emitting element Le to the light receiving element Ls is blocked according to the step position of the sample rack Rs, Are sequentially stopped at the specimen suction position Pv.

更に、図10に示す第4の搬送装置は、サンプルラックRsを搬送する搬送経路Wpの一側に収容凹部Pcの配列ピッチと対応した配列ピッチで複数の反射式光学センサSopを有する光素子アレイAopを配置している。そして、第4の搬送装置は、サンプルラックRsの歩進位置に応じてサンプルラックRsから反射式光学センサSopに反射してくる光からサンプルラックRsの歩進位置を検知し、複数の収容凹部Pcを検体吸引位置Pvに順次停止させている(例えば、特許文献1参照)。   Furthermore, the fourth transport apparatus shown in FIG. 10 has an optical element array having a plurality of reflective optical sensors Sop at an array pitch corresponding to the array pitch of the accommodating recesses Pc on one side of the transport path Wp for transporting the sample rack Rs. Aop is arranged. The fourth transport device detects the step position of the sample rack Rs from the light reflected from the sample rack Rs to the reflective optical sensor Sop according to the step position of the sample rack Rs, and has a plurality of receiving recesses. Pc is sequentially stopped at the sample suction position Pv (see, for example, Patent Document 1).

特開2003−83995号公報Japanese Patent Laid-Open No. 2003-83995

ところで、第1の搬送装置は、アームでサンプルラックを把持して搬送し、位置検知センサSによって歩進位置を検知しているため、サンプルラックの歩進位置を正確に検知することができる。しかし、第1の搬送装置は、サンプルラックを把持して搬送するアームの構造が複雑化し、サンプルラックの搬送不良に繋がる等の問題がある。   By the way, since the 1st conveyance apparatus hold | grips and conveys a sample rack with an arm, and detects the advance position with the position detection sensor S, it can detect the advance position of a sample rack correctly. However, the first transport device has a problem that the structure of the arm for gripping and transporting the sample rack is complicated, leading to poor transport of the sample rack.

また、第2の搬送装置は、サンプルラックとスイッチレバーが接触することから、サンプルラックの磨耗や、接触抵抗によるサンプルラックの歩進に乱れが発生したりすることがある。しかも、第2の搬送装置は、サンプル容器の数だけセンサとなるスイッチレバーを必要とし、構造が複雑化すると共に、搬送装置の価格が高くなるという問題がある。   In addition, since the sample rack and the switch lever are in contact with each other in the second transport device, the sample rack may be worn out or the sample rack may be disturbed due to contact resistance. In addition, the second transport device requires switch levers that serve as sensors as many as the number of sample containers, which complicates the structure and raises the cost of the transport device.

第3の搬送装置は、光を用いることによって非接触でサンプルラックの歩進位置を検知していることから、サンプルラックの磨耗や歩進の不具合が発生することはない。しかし、第3の搬送装置は、サンプル容器の数に対応した数の光素子を有する発光素子アレイと受光素子アレイとを搬送経路の両側に対向配置することから、搬送装置が大型化してしまうという問題がある。   Since the third transport device detects the step position of the sample rack in a non-contact manner by using light, the sample rack is not worn or has a step defect. However, in the third transport device, since the light emitting element array having the number of optical elements corresponding to the number of sample containers and the light receiving element array are disposed opposite to each other on both sides of the transport path, the transport device is increased in size. There's a problem.

また、第4の搬送装置は、発光素子と受光素子が一体化された反射式光学センサを使用していることから、小型化の点では問題はない。但し、第4の搬送装置は、サンプル容器の数だけセンサが必要であり、低価格化の面で問題がある。   Moreover, since the 4th conveying apparatus uses the reflective optical sensor with which the light emitting element and the light receiving element were integrated, there is no problem in the point of size reduction. However, the fourth transport device requires sensors as many as the number of sample containers, which is problematic in terms of cost reduction.

本発明は、上記に鑑みてなされたものであって、サンプルラックの歩進位置を簡単、且つ、安価な構造で検知することができ、サンプルラックの歩進が円滑であり、小型化が可能な搬送装置を提供することを目的とする。   The present invention has been made in view of the above, and the step position of the sample rack can be detected with a simple and inexpensive structure, the step of the sample rack can be smoothly performed, and the size can be reduced. An object of the present invention is to provide a simple transfer device.

上述した課題を解決し、目的を達成するために、請求項1に係る搬送装置は、複数のサンプル容器を所定の配列ピッチで保持したサンプルラックを前記複数のサンプル容器の配列方向に沿って所望ピッチ毎に歩進させる搬送装置であって、前記サンプルラックの歩進位置を非接触で検知する単一の位置検知センサと、前記位置検知センサからの位置信号に基づいて、前記サンプルラックが所望ピッチ毎に歩進するように前記搬送装置を制御する制御手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the transport apparatus according to claim 1 is desired to provide a sample rack holding a plurality of sample containers at a predetermined arrangement pitch along the arrangement direction of the plurality of sample containers. A transport device that advances at each pitch, and the sample rack is desired based on a single position detection sensor that detects a step position of the sample rack in a non-contact manner and a position signal from the position detection sensor. And a control means for controlling the transport device so as to advance at every pitch.

また、請求項2に係る搬送装置は、上記の発明において、前記サンプルラックは、前記複数のサンプル容器の1ピッチ毎の歩進位置に対応した複数の位置決め部が設けられ、前記搬送装置は、前記複数の位置決め部のいずれか一つと係合する位置決め部材を有し、前記制御手段によって作動が制御される位置決め手段を備え、前記位置決め部材を歩進位置に対応した位置決め部と係合させて前記サンプルラックを当該歩進位置に位置決めすることを特徴とする。   In the transport device according to claim 2, in the invention described above, the sample rack is provided with a plurality of positioning portions corresponding to stepping positions for each pitch of the plurality of sample containers. A positioning member that engages with any one of the plurality of positioning portions; a positioning unit that is controlled by the control unit; and the positioning member is engaged with a positioning unit corresponding to a step position. The sample rack is positioned at the step position.

本発明にかかる搬送装置は、サンプルラックの歩進位置を単一の位置検知センサによって非接触で検知し、位置検知センサが検知した位置信号に基づいて、サンプルラックが所望ピッチ毎に歩進するように制御手段によって搬送装置を制御するので、サンプルラックの歩進位置を簡単、且つ、安価な構造で検知することができ、サンプルラックの歩進が円滑であり、搬送装置に沿って単一の位置検知センサを配置するだけであるので、搬送装置を小型化することができるという効果を奏する。   The transport device according to the present invention detects the step position of the sample rack in a non-contact manner by a single position detection sensor, and the sample rack advances at every desired pitch based on the position signal detected by the position detection sensor. Thus, the transport device is controlled by the control means, so that the step position of the sample rack can be detected with a simple and inexpensive structure, the step of the sample rack is smooth, and a single step along the transport device is possible. Since only the position detection sensor is arranged, there is an effect that the transport device can be reduced in size.

また、請求項2の搬送装置は、サンプルラックに設けた複数の位置決め部のいずれか一つと係合してサンプルラックを各歩進位置に位置決めする位置決め部材を有する位置決め手段を設けたので、サンプルラックを各歩進位置に位置決めすることができるという効果を奏する。   In addition, since the transport apparatus according to the second aspect of the present invention is provided with positioning means having a positioning member that engages with any one of the plurality of positioning portions provided in the sample rack and positions the sample rack at each step position. There is an effect that the rack can be positioned at each step position.

以下、本発明の搬送装置にかかる実施の形態について、図面を参照しつつ詳細に説明する。図1は、本発明の搬送装置を使用した自動分析装置の概略構成を示す平面図である。図2は、搬送装置の構成を示すブロック図である。図3は、図1の自動分析装置で使用するサンプルラックの斜視図である。図4は、図1の自動分析装置で使用する搬送装置における位置検知センサによるサンプルラックの歩進位置の検知を説明する平面図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment according to a transfer device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of an automatic analyzer using the transport device of the present invention. FIG. 2 is a block diagram illustrating a configuration of the transport device. FIG. 3 is a perspective view of a sample rack used in the automatic analyzer of FIG. FIG. 4 is a plan view for explaining detection of the step position of the sample rack by the position detection sensor in the transport device used in the automatic analyzer of FIG.

自動分析装置1は、図1に示すように、分析部2、収納部3、搬送部4及び制御部5を備え、制御部5による制御の下にサンプルラック10に保持された複数のサンプル容器11から検体を分析部2の図示しない反応容器に分注し、分析部2において検体を分析する。図1において、矢印はサンプルラック10の移動方向を示している。   As shown in FIG. 1, the automatic analyzer 1 includes an analysis unit 2, a storage unit 3, a transport unit 4, and a control unit 5, and a plurality of sample containers held in a sample rack 10 under the control of the control unit 5. The sample is dispensed from 11 to a reaction container (not shown) of the analysis unit 2, and the analysis unit 2 analyzes the sample. In FIG. 1, the arrow indicates the moving direction of the sample rack 10.

分析部2は、複数の試薬瓶が収納された試薬部21と複数の反応容器が周方向に配置された反応部22並びに分注アーム23を有している。分注アーム23は、図示しない分注ノズルを有し、図中点線で示す範囲を回動し、サンプル容器11の検体や前記試薬瓶の試薬を反応部22の前記反応容器へ分注する。前記分注ノズルは、検体や試薬を分注する都度、図示しない洗浄部で洗浄される。   The analysis unit 2 includes a reagent unit 21 in which a plurality of reagent bottles are stored, a reaction unit 22 in which a plurality of reaction containers are arranged in the circumferential direction, and a dispensing arm 23. The dispensing arm 23 has a dispensing nozzle (not shown), rotates in a range indicated by a dotted line in the drawing, and dispenses the sample in the sample container 11 and the reagent in the reagent bottle to the reaction container in the reaction unit 22. The dispensing nozzle is cleaned by a cleaning unit (not shown) every time a sample or reagent is dispensed.

収納部3は、サンプルラック10を搬送部4に移動させるセットレーン31と、搬送部4から戻ってきたサンプルラック10をセットレーン31に移動させる戻しレーン32とを有している。また、収納部3は、セットレーン31と戻しレーン32との間にサンプル容器11のIDラベル11aを読み取るサンプルIDリーダ33とサンプルラック10のIDラベル10bを読み取るラックIDリーダ34が設けられている。   The storage unit 3 includes a set lane 31 that moves the sample rack 10 to the transport unit 4 and a return lane 32 that moves the sample rack 10 returned from the transport unit 4 to the set lane 31. The storage unit 3 is provided with a sample ID reader 33 that reads the ID label 11 a of the sample container 11 and a rack ID reader 34 that reads the ID label 10 b of the sample rack 10 between the set lane 31 and the return lane 32. .

搬送部4は、搬送レーン41及び戻しレーン42を有している。搬送レーン41は、サンプルラック10を連続的に搬送すると共に、略中間の分注位置で歩進させる搬送装置であり、図2に示すように、ステッピングモータ43、位置検知センサ44、位置決め手段45及び制御手段46を備えている。   The transport unit 4 includes a transport lane 41 and a return lane 42. The transport lane 41 is a transport device that transports the sample rack 10 continuously and advances it at a substantially intermediate dispensing position. As shown in FIG. 2, a stepping motor 43, a position detection sensor 44, and positioning means 45 are provided. And a control means 46.

ステッピングモータ43は、図示しない搬送ベルトを駆動することによりサンプルラック10を搬送し、歩進させる。位置検知センサ44及び位置決め手段45は、図1に示すように、搬送レーン41一側のサンプルアーム23近傍に設けられている。位置検知センサ44は、サンプルラック10の歩進位置を非接触で検知するセンサであり、少なくともサンプルラック10のサンプル容器配列方向における長さ分の感度を有している。位置検知センサ44は、赤外線やレーザ光を用いた光学式センサ,超音波センサ或いは静電容量式センサが使用される。位置決め手段45は、本体45aから出没自在な位置決め部材45bを有している(図6−1〜図6−3参照)。位置決め部材45bは、本体45aから突出させて互いに隣接した2つの位置決め部10c間に配置され、位置決め部10cのいずれか一方と係合してサンプルラック10を各歩進位置に位置決めする。制御手段46は、サンプルラック10が所望ピッチ毎に歩進するように位置検知センサ44からの位置信号に基づいてステッピングモータ43を制御するもので、制御部5が兼用される。   The stepping motor 43 conveys the sample rack 10 by driving a conveyance belt (not shown) and advances the sample rack 10. The position detection sensor 44 and the positioning means 45 are provided in the vicinity of the sample arm 23 on one side of the transport lane 41 as shown in FIG. The position detection sensor 44 is a sensor that detects the step position of the sample rack 10 in a non-contact manner, and has at least sensitivity corresponding to the length of the sample rack 10 in the sample container arrangement direction. As the position detection sensor 44, an optical sensor using an infrared ray or a laser beam, an ultrasonic sensor, or a capacitive sensor is used. The positioning means 45 includes a positioning member 45b that can be moved in and out of the main body 45a (see FIGS. 6-1 to 6-3). The positioning member 45b protrudes from the main body 45a and is disposed between two positioning portions 10c adjacent to each other, and engages one of the positioning portions 10c to position the sample rack 10 at each step position. The control means 46 controls the stepping motor 43 based on the position signal from the position detection sensor 44 so that the sample rack 10 advances at every desired pitch, and the control unit 5 is also used.

戻しレーン42は、搬送レーン41と同様に構成されるが、分注位置で歩進させることなくサンプルラック10を搬送する。   The return lane 42 is configured in the same manner as the transport lane 41, but transports the sample rack 10 without advancing at the dispensing position.

制御部5は、自動分析装置1を構成する分析部2、収納部3及び搬送部4の作動を制御するもので、例えば、CPU等の制御装置が使用される。   The control unit 5 controls the operation of the analysis unit 2, the storage unit 3, and the transport unit 4 that constitute the automatic analyzer 1, and a control device such as a CPU is used, for example.

ここで、サンプルラック10は、図3に示すように、サンプル容器11を収容する収容凹部10aが所定配列ピッチで複数形成され、搬送方向前部に傾斜面が形成されている。サンプルラック10は、一方の外側面に複数のサンプルラック10を識別するバーコードを印字したIDラベル10bが貼付され、他方の外側面には複数の位置決め部10c(図4参照)が設けられている。位置決め部10cは、複数のサンプル容器11の1ピッチ毎の歩進位置に対応して上下方向に形成された複数の突条からなる。なお、サンプル容器11は、複数のサンプル容器を識別するためのIDラベル11aが貼付されている。   Here, as shown in FIG. 3, the sample rack 10 has a plurality of receiving recesses 10a for receiving the sample containers 11 at a predetermined arrangement pitch, and an inclined surface is formed at the front in the transport direction. The sample rack 10 has an ID label 10b printed with a barcode identifying the plurality of sample racks 10 on one outer surface, and a plurality of positioning portions 10c (see FIG. 4) provided on the other outer surface. Yes. The positioning portion 10c is composed of a plurality of protrusions formed in the vertical direction corresponding to the stepping positions for each pitch of the plurality of sample containers 11. The sample container 11 is attached with an ID label 11a for identifying a plurality of sample containers.

自動分析装置1は、複数のサンプル容器11を保持したサンプルラック10をセットレーン31から搬送部4に移動させ、1つ分の間隔を置いてサンプルラック10を搬送レーン41によって搬送する。搬送レーン41の略中間までサンプルラック10が搬送され、サンプルラック10が位置検知センサ44の感度領域に達すると、位置検知センサ44によるサンプルラック10の位置検知が開始される。   The automatic analyzer 1 moves the sample rack 10 holding a plurality of sample containers 11 from the set lane 31 to the transport unit 4 and transports the sample rack 10 by the transport lane 41 with an interval of one. When the sample rack 10 is transported to substantially the middle of the transport lane 41 and the sample rack 10 reaches the sensitivity region of the position detection sensor 44, position detection of the sample rack 10 by the position detection sensor 44 is started.

そして、図4に示すように、サンプルラック10の1番目のサンプル容器11が検体吸引位置Pvに到達すると、位置検知センサ44は、サンプルラック10先端との距離L1に基づいてサンプルラック10の位置を検知する。このようにしてサンプルラック10の位置を検知すると、位置検知センサ44は、位置信号を制御手段46に出力する。制御手段46は、入力された位置信号に基づいてステッピングモータ43を停止し、距離L1を保持してサンプルラック10を検体吸引位置Pvに予め設定時間だけ停止させる。このとき、制御手段46は、1番目のサンプル容器11が検体吸引位置Pvに到達した位置信号に基づいてステッピングモータ43の制御を変更し、搬送レーン41の搬送形態を連続的な搬送から歩進に変更する。この搬送形態の変更により、以後、サンプルラック10は、複数のサンプル容器11の1ピッチ毎に歩進されてゆく。   Then, as shown in FIG. 4, when the first sample container 11 of the sample rack 10 reaches the sample suction position Pv, the position detection sensor 44 determines the position of the sample rack 10 based on the distance L1 from the tip of the sample rack 10. Is detected. When the position of the sample rack 10 is detected in this manner, the position detection sensor 44 outputs a position signal to the control means 46. The control means 46 stops the stepping motor 43 based on the input position signal, holds the distance L1, and stops the sample rack 10 at the sample suction position Pv for a preset time. At this time, the control means 46 changes the control of the stepping motor 43 based on the position signal at which the first sample container 11 has reached the sample suction position Pv, and advances the transport mode of the transport lane 41 from continuous transport. Change to As a result of this change in the transport mode, the sample rack 10 is incremented for each pitch of the plurality of sample containers 11 thereafter.

サンプルラック10が検体吸引位置Pvに停止すると、自動分析装置1は、分注アーム23の図示しない分注ノズルによって1番目のサンプル容器11から検体を吸引し、反応部22の前記反応容器に検体を吐出すると共に、試薬部21の試薬瓶から吸引した試薬を前記反応容器に吐出する。反応部22は、試薬と検体とを前記反応容器内で所定時間反応させた後、反応生成物によって検体を分析する。   When the sample rack 10 stops at the sample suction position Pv, the automatic analyzer 1 sucks the sample from the first sample container 11 by a dispensing nozzle (not shown) of the dispensing arm 23 and puts the sample in the reaction container of the reaction unit 22. And the reagent sucked from the reagent bottle of the reagent part 21 is discharged into the reaction container. The reaction unit 22 causes the reagent and the sample to react in the reaction container for a predetermined time, and then analyzes the sample using the reaction product.

自動分析装置1は、サンプルラック10を複数のサンプル容器11の1ピッチ毎に歩進させた後、サンプルラック10を停止させて反応容器へ検体と試薬とを分注する作業を順次繰り返しながら検体を分析してゆく。そして、図5に示すように、サンプルラック10の10番目のサンプル容器11が検体吸引位置Pvに到達すると、位置検知センサ44は、サンプルラック10先端との距離L10に基づいてサンプルラック10の歩進位置を検知し、位置信号を制御手段46に出力する。制御手段46は、入力された位置信号に基づいてステッピングモータ43を停止し、距離L10を保持してサンプルラック10を停止させる。サンプルラック10が停止すると、自動分析装置1は、分注アーム23が駆動して反応容器へ検体と試薬とを分注し、検体を分析する。   The automatic analyzer 1 advances the sample rack 10 for each pitch of the plurality of sample containers 11, then stops the sample rack 10 and sequentially dispenses the specimen and the reagent into the reaction container while sequentially repeating the specimen. Analyzing. Then, as shown in FIG. 5, when the tenth sample container 11 of the sample rack 10 reaches the sample suction position Pv, the position detection sensor 44 determines the step of the sample rack 10 based on the distance L10 from the tip of the sample rack 10. The advance position is detected and a position signal is output to the control means 46. The control means 46 stops the stepping motor 43 based on the input position signal, holds the distance L10, and stops the sample rack 10. When the sample rack 10 is stopped, the automatic analyzer 1 drives the dispensing arm 23 to dispense the sample and the reagent into the reaction container and analyze the sample.

サンプルラック10が停止後、制御手段46は、ステッピングモータ43の制御を変更し、停止時間終了後における搬送レーン41の搬送形態を歩進から連続的な搬送に変更する。このため、10番目のサンプル容器11からの分注が終了すると、搬送レーン41は次のサンプルラック10が位置検知センサ44の感度領域に達するまで連続的にサンプルラック10を搬送する。そして、位置検知センサ44が、次のサンプルラック10先端との間の距離が距離L1になったことを検知すると、制御手段46は、ステッピングモータ43を停止し、搬送レーン41の搬送形態を連続的な搬送から歩進に変更する。これにより、自動分析装置1は、制御部5による制御の下に、次のサンプルラック10に保持された新たなサンプル容器11の検体を分注し、分析を開始する。   After the sample rack 10 is stopped, the control unit 46 changes the control of the stepping motor 43 and changes the transfer mode of the transfer lane 41 after the stop time is changed from stepping to continuous transfer. For this reason, when dispensing from the 10th sample container 11 is completed, the transport lane 41 continuously transports the sample rack 10 until the next sample rack 10 reaches the sensitivity region of the position detection sensor 44. Then, when the position detection sensor 44 detects that the distance from the tip of the next sample rack 10 has become the distance L1, the control means 46 stops the stepping motor 43 and continues the transport mode of the transport lane 41. Change from basic transport to stepping. Thereby, the automatic analyzer 1 dispenses the specimen in the new sample container 11 held in the next sample rack 10 under the control of the control unit 5 and starts the analysis.

このようにして、総ての検体の分注が終了したサンプルラック10は、搬送レーン41に沿って送り出され、戻しレーン42を通って戻しレーン32へと移動される。これと共に、新たなサンプルラック10がセットレーン31から搬送レーン41に送り込まれ、検体を分析する作業が繰り返される。   In this way, the sample rack 10 in which all of the specimens have been dispensed is sent out along the transport lane 41 and moved to the return lane 32 through the return lane 42. At the same time, a new sample rack 10 is sent from the set lane 31 to the transport lane 41, and the work of analyzing the sample is repeated.

以上のように、サンプルラック10の搬送装置である搬送レーン41は、単一の位置検知センサ44を搬送レーン41に沿って配置するだけであるので、搬送装置を小型化することができる。また、搬送レーン41は、ステッピングモータ43で駆動される図示しない搬送ベルトによってサンプルラック10をサンプル容器11の1ピッチ毎に移動させる。このため、搬送レーン41は、サンプルラック10を高精度に歩進させることができる。一方、位置検知センサ44は、少なくともサンプルラック10のサンプル容器配列方向における長さ分の感度を有しているので、サンプルラック10の長さ方向に沿った総ての歩進位置を検知して、サンプルラック10を分注位置に精度よく停止させることができる。但し、サンプルラック10の歩進位置をより高精度に位置決めするときには、位置決め手段45を使用する。   As described above, since the transport lane 41 that is the transport device of the sample rack 10 only has the single position detection sensor 44 arranged along the transport lane 41, the transport device can be downsized. Further, the transport lane 41 moves the sample rack 10 for each pitch of the sample container 11 by a transport belt (not shown) driven by a stepping motor 43. Therefore, the transport lane 41 can advance the sample rack 10 with high accuracy. On the other hand, since the position detection sensor 44 has at least sensitivity corresponding to the length of the sample rack 10 in the sample container arrangement direction, it detects all the advance positions along the length direction of the sample rack 10. The sample rack 10 can be accurately stopped at the dispensing position. However, when the step position of the sample rack 10 is positioned with higher accuracy, the positioning means 45 is used.

即ち、例えば、サンプルラック10の1番目のサンプル容器11が検体吸引位置Pvに到達したとき、位置決め手段45は、図6−1に示すように、本体44aから位置決め部材44bを突出して最前部の位置決め部10cと係合させ、サンプルラック10を1番目の歩進位置に位置決めする。   That is, for example, when the first sample container 11 of the sample rack 10 reaches the specimen suction position Pv, the positioning means 45 projects the positioning member 44b from the main body 44a as shown in FIG. The sample rack 10 is positioned at the first step position by engaging with the positioning portion 10c.

そして、位置決めしたサンプルラック10を搬送レーン41に沿って歩進させるときは、図6−2に示すように、位置決め部材44bを矢印で示すように本体44aに引き込んだ後、サンプルラック10の長さ方向に沿った矢印で示すように、サンプルラック10を前進させる。   When the positioned sample rack 10 is advanced along the transport lane 41, as shown in FIG. 6B, after the positioning member 44b is pulled into the main body 44a as indicated by the arrow, the length of the sample rack 10 is increased. As indicated by the arrows along the direction, the sample rack 10 is advanced.

このようにしてサンプルラック10を複数のサンプル容器11の1ピッチ分歩進させたら、図6−3に示すように、位置決め部材44bを再度本体44aから突出させて1番目と2番目の位置決め部10c間に配置し、サンプルラック10を2番目の歩進位置に位置決めする。このとき、位置決め部材44bは、1番目又は2番目の位置決め部10cと係合している。位置決め手段45は、以下同様にして、各歩進位置においてサンプルラック10を適切に位置決めする。このとき、位置決め手段45は、制御手段46によって上記した各作動が制御される。   When the sample rack 10 is stepped by one pitch of the plurality of sample containers 11 in this way, as shown in FIG. 6-3, the positioning member 44b is again projected from the main body 44a, and the first and second positioning portions 10c, and the sample rack 10 is positioned at the second step position. At this time, the positioning member 44b is engaged with the first or second positioning portion 10c. The positioning means 45 appropriately positions the sample rack 10 at each step position in the same manner. At this time, each operation of the positioning means 45 is controlled by the control means 46.

以上のように、サンプルラック10の搬送装置である搬送レーン41は、サンプルラック10の長さ分の感度を有する単一の位置検知センサ44によってサンプルラック10の歩進位置を非接触で検知し、サンプルラック10が所望ピッチ毎に歩進するように制御手段46によって制御されるので、サンプルラック10の歩進位置を簡単、且つ、安価な構造で検知することができ、サンプルラック10が円滑に歩進され、小型化することが可能である。   As described above, the transport lane 41 serving as the transport device for the sample rack 10 detects the advance position of the sample rack 10 in a non-contact manner by the single position detection sensor 44 having sensitivity corresponding to the length of the sample rack 10. Since the sample rack 10 is controlled by the control means 46 so as to advance at every desired pitch, the advance position of the sample rack 10 can be detected with a simple and inexpensive structure, and the sample rack 10 can be smoothly moved. Therefore, it is possible to reduce the size.

また、サンプルラック10は、ステッピングモータ43で駆動される図示しない搬送ベルトによってサンプル容器11の1ピッチ毎に移動されるので、高精度に歩進される。さらに、サンプルラック10は、予め設定しておけば、サンプル容器11の1ピッチ毎ではなく所望ピッチ毎に歩進させることも可能である。   Further, since the sample rack 10 is moved for each pitch of the sample container 11 by a conveyance belt (not shown) driven by the stepping motor 43, the sample rack 10 is advanced with high accuracy. Furthermore, if the sample rack 10 is set in advance, the sample rack 10 can be stepped at a desired pitch instead of every pitch of the sample container 11.

尚、上記実施の形態においては、搬送レーン41は、1つ分の間隔を置いてサンプルラック10を搬送した。しかし、最後のサンプル容器11を検体吸引位置Pvに停止させてサンプルラック10の位置検知が終了したとき、位置検知センサ44が、引き続く次のサンプルラック10の位置を検知することができれば、2つのサンプルラック10の間隔は1つ分より狭くてもよく、サンプルラック10の後部に次のサンプルラック10の前部が当接していてもよい。   In the above embodiment, the transport lane 41 transports the sample rack 10 with an interval of one. However, if the position of the last sample container 11 is stopped at the specimen aspirating position Pv and the position detection of the sample rack 10 is completed, the position detection sensor 44 can detect the position of the next sample rack 10 to be continued. The interval between the sample racks 10 may be narrower than one, and the front part of the next sample rack 10 may be in contact with the rear part of the sample rack 10.

以上のように、本発明にかかる搬送装置は、サンプルラックの歩進位置を簡単、且つ、安価な構造で検知することができ、サンプルラックの歩進が円滑なうえ、搬送装置の小型化に有用であり、特に、自動分析装置で使用するのに適している。   As described above, the transport apparatus according to the present invention can detect the step position of the sample rack with a simple and inexpensive structure, and the step of the sample rack can be smoothly performed, and the transport apparatus can be downsized. Useful, especially suitable for use with automated analyzers.

本発明の搬送装置を使用した自動分析装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the automatic analyzer which uses the conveying apparatus of this invention. 搬送装置の構成を示すブロック図である。It is a block diagram which shows the structure of a conveying apparatus. 図1の自動分析装置で使用するサンプルラックの斜視図である。It is a perspective view of the sample rack used with the automatic analyzer of FIG. 図1の自動分析装置で使用する搬送装置における位置検知センサによるサンプルラックの歩進位置の検知を説明する平面図である。It is a top view explaining the detection of the step position of the sample rack by the position detection sensor in the conveyance apparatus used with the automatic analyzer of FIG. サンプルラックが10ピッチ歩進したときの歩進位置の検知を説明する平面図である。It is a top view explaining the detection of the step position when a sample rack advances 10 pitches. 位置決め部と位置決め手段とによってサンプルラックが1番目の歩進位置に位置決めされる説明図である。It is explanatory drawing by which a sample rack is positioned in the 1st step position by a positioning part and a positioning means. 図6−1に示すサンプルラックを1ピッチ歩進させるときの説明図である。FIG. 6 is an explanatory diagram when the sample rack illustrated in FIG. 6-1 is advanced by one pitch. 位置決め部と位置決め手段とによってサンプルラックが2番目の歩進位置に位置決めされる説明図である。It is explanatory drawing by which a sample rack is positioned in the 2nd step position by a positioning part and a positioning means. 従来の第1の搬送装置を示す模式図である。It is a schematic diagram which shows the conventional 1st conveying apparatus. 従来の第2の搬送装置を示す模式図である。It is a schematic diagram which shows the conventional 2nd conveying apparatus. 従来の第3の搬送装置を示す模式図である。It is a schematic diagram which shows the conventional 3rd conveying apparatus. 従来の第4の搬送装置を示す模式図である。It is a schematic diagram which shows the conventional 4th conveying apparatus.

符号の説明Explanation of symbols

1 自動分析装置
2 分析部
21 収納部
22 反応部
23 分注アーム
3 収納部
31 セットレーン
32 戻しレーン
33 サンプルIDリーダ
34 ラックIDリーダ
4 搬送部
41 搬送レーン
42 戻しレーン
43 ステッピングモータ
44 位置検知センサ
45 位置決め手段
45a 本体
45b 位置決め部材
5 制御部
10 サンプルラック
10a 収容凹部
10b IDラベル
10c 位置決め部
11 サンプル容器
11a IDラベル
Pv 検体吸引位置
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Analyzing part 21 Storage part 22 Reaction part 23 Dispensing arm 3 Storage part 31 Set lane 32 Return lane 33 Sample ID reader 34 Rack ID reader 4 Transport part 41 Transport lane 42 Return lane 43 Stepping motor 44 Position detection sensor 45 Positioning means 45a Main body 45b Positioning member 5 Control unit 10 Sample rack 10a Receiving recess 10b ID label 10c Positioning unit 11 Sample container 11a ID label Pv Sample suction position

Claims (2)

複数のサンプル容器を所定の配列ピッチで保持したサンプルラックを前記複数のサンプル容器の配列方向に沿って所望ピッチ毎に歩進させる搬送装置であって、
前記サンプルラックの歩進位置を非接触で検知する単一の位置検知センサと、
前記位置検知センサからの位置信号に基づいて、前記サンプルラックが所望ピッチ毎に歩進するように前記搬送装置を制御する制御手段と、
を備えたことを特徴とする搬送装置。
A transport device that advances a sample rack holding a plurality of sample containers at a predetermined arrangement pitch for each desired pitch along the arrangement direction of the plurality of sample containers,
A single position detection sensor for detecting the step position of the sample rack in a non-contact manner;
Control means for controlling the transport device so that the sample rack advances at every desired pitch based on a position signal from the position detection sensor;
A conveying apparatus comprising:
前記サンプルラックは、前記複数のサンプル容器の1ピッチ毎の歩進位置に対応した複数の位置決め部が設けられ、
前記搬送装置は、前記複数の位置決め部のいずれか一つと係合する位置決め部材を有し、前記制御手段によって作動が制御される位置決め手段を備え、
前記位置決め部材を歩進位置に対応した位置決め部と係合させて前記サンプルラックを当該歩進位置に位置決めすることを特徴とする請求項1に記載の搬送装置。
The sample rack is provided with a plurality of positioning portions corresponding to stepping positions for each pitch of the plurality of sample containers,
The transport device includes a positioning member that engages with any one of the plurality of positioning portions, and includes a positioning unit whose operation is controlled by the control unit,
The transport apparatus according to claim 1, wherein the positioning member is engaged with a positioning portion corresponding to a step position to position the sample rack at the step position.
JP2006153921A 2006-06-01 2006-06-01 Conveyer Withdrawn JP2007322289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153921A JP2007322289A (en) 2006-06-01 2006-06-01 Conveyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153921A JP2007322289A (en) 2006-06-01 2006-06-01 Conveyer

Publications (1)

Publication Number Publication Date
JP2007322289A true JP2007322289A (en) 2007-12-13

Family

ID=38855242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153921A Withdrawn JP2007322289A (en) 2006-06-01 2006-06-01 Conveyer

Country Status (1)

Country Link
JP (1) JP2007322289A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180607A (en) * 2008-01-30 2009-08-13 Olympus Corp Automatic analyzer
WO2011122557A1 (en) * 2010-03-30 2011-10-06 アークレイ株式会社 Conveyance device, method of conveyance, conveyance program and conveyance system
JP2011237190A (en) * 2010-05-06 2011-11-24 Toshiba Corp Automatic analyzer
JP2015197437A (en) * 2014-03-31 2015-11-09 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Sample distribution system and laboratory automation system
WO2015198764A1 (en) * 2014-06-26 2015-12-30 株式会社日立ハイテクノロジーズ Automatic analytical apparatus
US9423410B2 (en) 2014-02-17 2016-08-23 Roche Diagnostics Operations, Inc. Transport device, sample distribution system, and laboratory automation system
US9423411B2 (en) 2014-02-17 2016-08-23 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9567167B2 (en) 2014-06-17 2017-02-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9575086B2 (en) 2011-11-04 2017-02-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9593970B2 (en) 2014-09-09 2017-03-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US9598243B2 (en) 2011-11-04 2017-03-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9618525B2 (en) 2014-10-07 2017-04-11 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US9664703B2 (en) 2011-11-04 2017-05-30 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US9772342B2 (en) 2014-03-31 2017-09-26 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US9791468B2 (en) 2014-03-31 2017-10-17 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9810706B2 (en) 2014-03-31 2017-11-07 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US9902572B2 (en) 2015-10-06 2018-02-27 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US9939455B2 (en) 2014-11-03 2018-04-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9969570B2 (en) 2010-05-07 2018-05-15 Roche Diagnostics Operations, Inc. System for transporting containers between different stations and a container carrier
US9989547B2 (en) 2014-07-24 2018-06-05 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10006927B2 (en) 2015-05-22 2018-06-26 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US10012666B2 (en) 2014-03-31 2018-07-03 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US10094843B2 (en) 2015-03-23 2018-10-09 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10119982B2 (en) 2015-03-16 2018-11-06 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US10160609B2 (en) 2015-10-13 2018-12-25 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10175259B2 (en) 2015-09-01 2019-01-08 Roche Diagnostics Operations, Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US10197555B2 (en) 2016-06-21 2019-02-05 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system
US10197586B2 (en) 2015-10-06 2019-02-05 Roche Diagnostics Operations, Inc. Method of determining a handover position and laboratory automation system
US10228384B2 (en) 2015-10-14 2019-03-12 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
US10239708B2 (en) 2014-09-09 2019-03-26 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
US10416183B2 (en) 2016-12-01 2019-09-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10436808B2 (en) 2016-12-29 2019-10-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10495657B2 (en) 2017-01-31 2019-12-03 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10509049B2 (en) 2014-09-15 2019-12-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10520520B2 (en) 2016-02-26 2019-12-31 Roche Diagnostics Operations, Inc. Transport device with base plate modules
US10564170B2 (en) 2015-07-22 2020-02-18 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US10578632B2 (en) 2016-02-26 2020-03-03 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10605819B2 (en) 2016-02-26 2020-03-31 Roche Diagnostics Operations, Inc. Transport device having a tiled driving surface
US10962557B2 (en) 2017-07-13 2021-03-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US10989725B2 (en) 2017-06-02 2021-04-27 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system
US10996233B2 (en) 2016-06-03 2021-05-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
JP2021089194A (en) * 2019-12-04 2021-06-10 富士レビオ株式会社 Specimen rack conveying device
US11092613B2 (en) 2015-05-22 2021-08-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11110464B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11110463B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11204361B2 (en) 2017-02-03 2021-12-21 Roche Diagnostics Operations, Inc. Laboratory automation system
US11226348B2 (en) 2015-07-02 2022-01-18 Roche Diagnostics Operations, Inc. Storage module, method of operating a laboratory automation system and laboratory automation system
CN114324928A (en) * 2021-12-31 2022-04-12 迈克医疗电子有限公司 Sample rack identification method, sample conveying system and storage medium
US11709171B2 (en) 2018-03-16 2023-07-25 Roche Diagnostics Operations, Inc. Laboratory system, laboratory sample distribution system and laboratory automation system
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
US11971420B2 (en) 2018-03-07 2024-04-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US12000850B2 (en) 2020-06-19 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US12000851B2 (en) 2020-07-15 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for operating the same

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180607A (en) * 2008-01-30 2009-08-13 Olympus Corp Automatic analyzer
JP5930957B2 (en) * 2010-03-30 2016-06-08 アークレイ株式会社 Conveying device, conveying method, conveying program, and conveying system
WO2011122557A1 (en) * 2010-03-30 2011-10-06 アークレイ株式会社 Conveyance device, method of conveyance, conveyance program and conveyance system
US9075032B2 (en) 2010-03-30 2015-07-07 Arkray, Inc. Transport apparatus, transport method, transport program, and transport system
JP2011237190A (en) * 2010-05-06 2011-11-24 Toshiba Corp Automatic analyzer
US9969570B2 (en) 2010-05-07 2018-05-15 Roche Diagnostics Operations, Inc. System for transporting containers between different stations and a container carrier
US9575086B2 (en) 2011-11-04 2017-02-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9664703B2 (en) 2011-11-04 2017-05-30 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US10450151B2 (en) 2011-11-04 2019-10-22 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US10126317B2 (en) 2011-11-04 2018-11-13 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9598243B2 (en) 2011-11-04 2017-03-21 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US10031150B2 (en) 2011-11-04 2018-07-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system, laboratory system and method of operating
US9423411B2 (en) 2014-02-17 2016-08-23 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9423410B2 (en) 2014-02-17 2016-08-23 Roche Diagnostics Operations, Inc. Transport device, sample distribution system, and laboratory automation system
JP2015197437A (en) * 2014-03-31 2015-11-09 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Sample distribution system and laboratory automation system
US9658241B2 (en) 2014-03-31 2017-05-23 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US9772342B2 (en) 2014-03-31 2017-09-26 Roche Diagnostics Operations, Inc. Dispatching device, sample distribution system and laboratory automation system
US9791468B2 (en) 2014-03-31 2017-10-17 Roche Diagnostics Operations, Inc. Transport device, sample distribution system and laboratory automation system
US9810706B2 (en) 2014-03-31 2017-11-07 Roche Diagnostics Operations, Inc. Vertical conveying device, laboratory sample distribution system and laboratory automation system
US10012666B2 (en) 2014-03-31 2018-07-03 Roche Diagnostics Operations, Inc. Sample distribution system and laboratory automation system
US9567167B2 (en) 2014-06-17 2017-02-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10732192B2 (en) 2014-06-26 2020-08-04 Hitachi High-Tech Corporation Automatic analyzer
WO2015198764A1 (en) * 2014-06-26 2015-12-30 株式会社日立ハイテクノロジーズ Automatic analytical apparatus
US9989547B2 (en) 2014-07-24 2018-06-05 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9593970B2 (en) 2014-09-09 2017-03-14 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for calibrating magnetic sensors
US10239708B2 (en) 2014-09-09 2019-03-26 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10509049B2 (en) 2014-09-15 2019-12-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US9618525B2 (en) 2014-10-07 2017-04-11 Roche Diagnostics Operations, Inc. Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US9939455B2 (en) 2014-11-03 2018-04-10 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10119982B2 (en) 2015-03-16 2018-11-06 Roche Diagnostics Operations, Inc. Transport carrier, laboratory cargo distribution system, and laboratory automation system
US10094843B2 (en) 2015-03-23 2018-10-09 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system
US11092613B2 (en) 2015-05-22 2021-08-17 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US10006927B2 (en) 2015-05-22 2018-06-26 Roche Diagnostics Operations, Inc. Method of operating a laboratory automation system and a laboratory automation system
US11226348B2 (en) 2015-07-02 2022-01-18 Roche Diagnostics Operations, Inc. Storage module, method of operating a laboratory automation system and laboratory automation system
US10564170B2 (en) 2015-07-22 2020-02-18 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US10175259B2 (en) 2015-09-01 2019-01-08 Roche Diagnostics Operations, Inc. Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
US10197586B2 (en) 2015-10-06 2019-02-05 Roche Diagnostics Operations, Inc. Method of determining a handover position and laboratory automation system
US9902572B2 (en) 2015-10-06 2018-02-27 Roche Diagnostics Operations, Inc. Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
US10160609B2 (en) 2015-10-13 2018-12-25 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10228384B2 (en) 2015-10-14 2019-03-12 Roche Diagnostics Operations, Inc. Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
US10520520B2 (en) 2016-02-26 2019-12-31 Roche Diagnostics Operations, Inc. Transport device with base plate modules
US10578632B2 (en) 2016-02-26 2020-03-03 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10605819B2 (en) 2016-02-26 2020-03-31 Roche Diagnostics Operations, Inc. Transport device having a tiled driving surface
US10948508B2 (en) 2016-02-26 2021-03-16 Roche Diagnostics Operations, Inc. Transport device unit for a laboratory sample distribution system
US10996233B2 (en) 2016-06-03 2021-05-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10989726B2 (en) 2016-06-09 2021-04-27 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method of operating a laboratory sample distribution system
US10197555B2 (en) 2016-06-21 2019-02-05 Roche Diagnostics Operations, Inc. Method of setting a handover position and laboratory automation system
US11112421B2 (en) 2016-08-04 2021-09-07 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10416183B2 (en) 2016-12-01 2019-09-17 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10436808B2 (en) 2016-12-29 2019-10-08 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US10495657B2 (en) 2017-01-31 2019-12-03 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
US11204361B2 (en) 2017-02-03 2021-12-21 Roche Diagnostics Operations, Inc. Laboratory automation system
US10989725B2 (en) 2017-06-02 2021-04-27 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system
US10962557B2 (en) 2017-07-13 2021-03-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US11110464B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11110463B2 (en) 2017-09-13 2021-09-07 Roche Diagnostics Operations, Inc. Sample container carrier, laboratory sample distribution system and laboratory automation system
US11971420B2 (en) 2018-03-07 2024-04-30 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
US11709171B2 (en) 2018-03-16 2023-07-25 Roche Diagnostics Operations, Inc. Laboratory system, laboratory sample distribution system and laboratory automation system
JP2021089194A (en) * 2019-12-04 2021-06-10 富士レビオ株式会社 Specimen rack conveying device
JP7348047B2 (en) 2019-12-04 2023-09-20 富士レビオ株式会社 Sample rack transport device
US12000850B2 (en) 2020-06-19 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and corresponding method of operation
US12000851B2 (en) 2020-07-15 2024-06-04 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and method for operating the same
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
CN114324928B (en) * 2021-12-31 2023-11-14 迈克医疗电子有限公司 Sample rack identification method, sample conveying system and storage medium
CN114324928A (en) * 2021-12-31 2022-04-12 迈克医疗电子有限公司 Sample rack identification method, sample conveying system and storage medium

Similar Documents

Publication Publication Date Title
JP2007322289A (en) Conveyer
JP6743204B2 (en) Storage and supply of container holders
US10732192B2 (en) Automatic analyzer
US8329102B2 (en) Conveying device and sample processing method
US9772341B2 (en) Automatic positioning apparatus
JP5373560B2 (en) Conveying device and sample analyzer using the same
US8864030B2 (en) Sample analyzer, method of obtaining sample identification information and sample identification information obtaining apparatus
JP6573524B2 (en) Sample rack transport apparatus and automatic analysis system
JP2010156624A (en) Transportation apparatus and specimen analyzer using the same
US9321600B2 (en) Automatic analyzer
US8929641B2 (en) System and method for determining the orientation of a unit dose package
JP3733123B2 (en) Container detection device
JP4669288B2 (en) Sample processing apparatus and sample processing system
JP5592986B2 (en) Sample analyzer and sample rack transport method
JP5485014B2 (en) Automatic analyzer
JP6619928B2 (en) Gripping device, transport device, and analyzer
JP2010014441A (en) Tray recognizing apparatus
JP5860615B2 (en) Automatic analyzer
JP4273051B2 (en) Dispensing device and dispensing method
JP3771840B2 (en) Microplate transfer device
JP2008020194A (en) Rack feed device and analyzer for extracorporeal diagnosis equipped therewith
JP3740417B2 (en) Dispensing device
JP7134747B2 (en) Cuvette transfer device and automatic analyzer
JPH0378583B2 (en)
JPH0718884B2 (en) Container transfer device in automatic analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804