JP2007322210A - Pressure measuring device and tire pressure measuring device using the same - Google Patents

Pressure measuring device and tire pressure measuring device using the same Download PDF

Info

Publication number
JP2007322210A
JP2007322210A JP2006151494A JP2006151494A JP2007322210A JP 2007322210 A JP2007322210 A JP 2007322210A JP 2006151494 A JP2006151494 A JP 2006151494A JP 2006151494 A JP2006151494 A JP 2006151494A JP 2007322210 A JP2007322210 A JP 2007322210A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
pressure
measuring device
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006151494A
Other languages
Japanese (ja)
Inventor
Shingo Akao
慎吾 赤尾
Takuya Nakamu
琢也 中務
Nobutaka Nakaso
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006151494A priority Critical patent/JP2007322210A/en
Publication of JP2007322210A publication Critical patent/JP2007322210A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device for separating temperature and pressure from each other based on a difference in the way temperature and pressure change owing to a change in frequency. <P>SOLUTION: A pressure measuring means, which has a plurality of go-around courses differing in pressure dependence or temperature dependence, is used to detect a go-around velocity or intensity of a going-around elastic surface wave, and to measure the pressure of a gas in contact with the go-around courses based on attenuation in intensity (intensity) of the surface wave consequent upon its going-around. An elastic surface wave excitation/reception means is connected to an electromagnetic-wave transmission/reception means to excite an elastic surface wave in the go-around courses on a surface according to an electromagnetic wave received via the transmission/reception means. Further, the excitation/reception means causes an electromagnetic wave corresponding to the surface wave to be transmitted from the transmission/reception means, with the surface wave going around the go-around courses. The pressure measuring device utilizes the measuring means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

走行中のタイヤの圧力と温度を測定するセンサーシステムに本発明は関する。   The present invention relates to a sensor system that measures the pressure and temperature of a running tire.

自動車のタイヤ圧力が低下した状態で高速走行するとバーストを起こし、交通事故を起こすことから、走行中のタイヤの圧力と温度(破裂する前にタイヤが高温になることでバーストを察知する)測定需要がある。しかし、走行中のタイヤは必然的に回転しており、タイヤ内部に無線センサーを配置して通信を行って計測することが望まれるが、そのため通常ICチップなどの部品を利用しなくてはならないために壊れやすくなったり、システムが高価となる。タイヤ温度を測定する為にタイヤのゴムの部分に接触して使用したいがタイヤ交換とともに廃棄される為に低コストのセンサーが必要とされる。無線駆動が可能で、且つ温度と圧力を計測できる安価なセンサーシステムの開発が待たれていた。   Demand for measuring the pressure and temperature of a running tire (it detects the burst when the tire gets hot before it bursts) because it causes a burst and a traffic accident when driving at high speed with the tire pressure of the car lowered. There is. However, a running tire inevitably rotates, and it is desirable to place a wireless sensor inside the tire to communicate and measure, but usually you must use components such as an IC chip. Therefore, it becomes fragile or the system becomes expensive. In order to measure the tire temperature, it is necessary to use it by contacting the rubber part of the tire, but a low-cost sensor is required because it is discarded along with the tire replacement. The development of an inexpensive sensor system that can be driven wirelessly and that can measure temperature and pressure has been awaited.

他方、球状弾性表面波素子は、球形状の基材の表面に弾性表面波を励起して伝搬させ、球表面を多重周回させたときの周回速度の変化を高感度に計測するものである。   On the other hand, the spherical surface acoustic wave element is a device that excites and propagates a surface acoustic wave on the surface of a spherical base material, and measures a change in the rotational speed when the surface of the sphere is rotated around the surface with high sensitivity.

また、圧電結晶球がその基材に使用され、たとえば水晶、ランガサイトあるいはそのファミリー、あるいはタンタル酸リチウムやニオブ酸リチウムなどが量産されて安価に入手が可能である。   Piezoelectric crystal spheres are used as the base material, and for example, quartz crystal, langasite or family thereof, or lithium tantalate and lithium niobate are mass-produced and can be obtained at low cost.

この場合、すだれ状電極は単一のものが使用されているが、弾性表面波を励起する電極と、それを出力するすだれ状電極は別個のものであっても、あるいは周回経路上に回折パターンが形成されており経路から離れた位置に電極が形成されていてもよい。さらに、物理的に単一の領域に周回経路が形成されていても、複数のすだれ状電極から独立にその出力を測定できるのであれば「複数の周回経路を有する」場合と効果はおなじでありそのように記すこととする。
さらに、複数のすだれ状電極は単一であっても、互いに異なる複数の弾性表面波モードを伝搬させてその出力を独立に測定できるのであれば、「複数の周回経路を有する」場合と効果はおなじでありそのように記すこととする。
In this case, a single interdigital electrode is used, but the electrode that excites the surface acoustic wave and the interdigital electrode that outputs it are separate, or the diffraction pattern on the circular path. The electrode may be formed at a position away from the path. Furthermore, even if a circular path is physically formed in a single region, the effect is the same as that of "having multiple circular paths" if the output can be measured independently from a plurality of interdigital electrodes. I will write that way.
Furthermore, even if there are a plurality of interdigital electrodes, the effect of “having a plurality of circulation paths” is as long as the output can be measured independently by propagating a plurality of different surface acoustic wave modes. It is the same and it will be written as such.

特許文献は以下の通り。
特開2005−291790号公報
The patent literature is as follows.
JP 2005-291790 A

真空成膜プロセスにおいては、プロセス温度とともに、真空中の圧力計測が必要になる場合が多い。特に大気中からの減圧プロセスでは、断熱膨張によって温度が低下する。温度低下が起こると、周回速度が低下するが、圧力が低くなると周回速度が小さくなるためにいずれの影響によって周回速度が低下したか分離できない為に、温度と圧力の何れも測定することが不可能になる。   In a vacuum film forming process, it is often necessary to measure pressure in a vacuum together with the process temperature. In particular, in the decompression process from the atmosphere, the temperature decreases due to adiabatic expansion. When the temperature drops, the circulatory speed decreases.However, when the pressure decreases, the circulatory speed decreases, so it is impossible to measure whether the circulatory speed has decreased. It becomes possible.

本発明は、球状弾性表面波素子、それを使用した環境評価装置と方法について、素子の温度、周囲の圧力などを行うに際し、単一の素子を用いてこの2つの測定を行おうとすると、いずれの変化に対しても依存性を持つ場合に、温度の影響と圧力の影響を独立に測定することが出来ない。   The present invention relates to a spherical surface acoustic wave device and an environment evaluation apparatus and method using the same, and when performing these two measurements using a single device when performing the temperature of the device, the ambient pressure, etc., When there is a dependence on the change of temperature, the influence of temperature and pressure cannot be measured independently.

2つの原因によって、周回速度が変化する場合に、夫々を独立に測定することを可能に
する方法として、複数の周波数を用いる方法がある。これは高い周波数の弾性表面波は表面への物質の付着やあるいは感応膜の弾性の変化に対して敏感であることを利用し、相対的に低い周波数の弾性表面波の出力変化の仕方を測定すれば2つの周波数の違いを用いることで、温度と表面付着物の付着量を独立に計測できるというものである。しかし、温度と、圧力については、何れも周波数依存性を持たない為に、周波数の違いによる変化の仕方の違いからこれらを分離することが出来ない。
There is a method using a plurality of frequencies as a method for enabling independent measurement when the circulating speed changes due to two causes. This utilizes the fact that high-frequency surface acoustic waves are sensitive to the adhesion of substances to the surface or the elasticity of the sensitive film, and measures how the output of relatively low-frequency surface acoustic waves changes. Then, by using the difference between the two frequencies, the temperature and the amount of deposits on the surface can be measured independently. However, since neither temperature nor pressure has frequency dependence, it is impossible to separate them from the difference in how they change due to the difference in frequency.

この様な問題点に対し、特許文献1の様に弾性表面波励起/受信手段は電磁波送受信手段に接続されていて、上記電磁波送受信手段を介して受信した電磁波に従い上記表面の上記周回経路に弾性表面波を励起させ、また上記弾性表面波励起/受信手段が上記周回経路を周回する弾性表面波に対応した電磁波を上記電磁波送受信手段から発信させる、ことを特徴とする請求項1乃至6のいずれか1項に記載の気体圧力測定装置などが知られていた。   With respect to such problems, the surface acoustic wave excitation / reception means is connected to the electromagnetic wave transmission / reception means as in Patent Document 1, and the elastic surface loops on the surface according to the electromagnetic waves received via the electromagnetic wave transmission / reception means. 7. The surface acoustic wave excitation / reception unit causes the electromagnetic wave corresponding to the surface acoustic wave that circulates around the circulation path to be transmitted from the electromagnetic wave transmission / reception unit. The gas pressure measuring device described in item 1 was known.

しかし、この場合でも温度と、圧力については、何れも周波数依存性を持たない為に、周波数の違いによる変化の仕方の違いからこれらを分離することが出来ないことは同じであった。   However, even in this case, since temperature and pressure have neither frequency dependency, it is the same that they cannot be separated from each other due to the difference in the change method due to the difference in frequency.

請求項1に対応する発明は、弾性表面波が周回する少なくとも円環状の周回経路が表面に沿い設けられ、弾性表面波を励起し受信する弾性表面波励起/受信手段が周回経路に対応して設けられている弾性表面波素子を備えており、上記弾性表面波素子は複数の周回経路を有し、そのうち少なくとも一つの周回経路は、他の周回経路に比較して、弾性表面波の周回速度が温度依存性と圧力依存性の少なくともいずれか一方が異なっており、
上記複数の周回経路を周回する弾性表面波のそれぞれの周回速度の値を用いて、上記周回経路に接する気体の圧力を測定する圧力測定装置である。
In the invention corresponding to claim 1, at least an annular circulation path around which the surface acoustic wave circulates is provided along the surface, and the surface acoustic wave excitation / reception means for exciting and receiving the surface acoustic wave corresponds to the circuit path. The surface acoustic wave element has a plurality of circulation paths, and at least one of the circulation paths has a circumferential velocity of the surface acoustic wave as compared with other circulation paths. Is at least one of temperature-dependent and pressure-dependent,
It is a pressure measuring device that measures the pressure of the gas in contact with the circulation path by using the value of the rotation speed of each surface acoustic wave that circulates in the plurality of circulation paths.

請求項2に対応する発明は、弾性表面波が周回する少なくとも円環状の周回経路が表面に沿い設けられ、弾性表面波を励起し受信する弾性表面波励起/受信手段が周回経路に対応して設けられている弾性表面波素子を備えており、上記弾性表面波素子は複数の周回経路を有し、そのうち少なくとも一つの周回経路は、他の周回経路と比較して、弾性表面波の減衰率が温度依存性と圧力依存性の少なくともいずれか一方が異なっており、
上記複数の周回経路を周回する弾性表面波のそれぞれの減衰率の値を用いて、上記周回経路に接する気体の圧力を測定する圧力測定装置である。
In the invention corresponding to claim 2, at least an annular circulation path around which the surface acoustic wave circulates is provided along the surface, and the surface acoustic wave excitation / reception means for exciting and receiving the surface acoustic wave corresponds to the circuit path. The surface acoustic wave element has a plurality of circulation paths, and at least one of the circulation paths has a surface acoustic wave attenuation factor compared to other circulation paths. Is at least one of temperature-dependent and pressure-dependent,
The pressure measuring device measures the pressure of the gas in contact with the circulation path by using the value of the attenuation factor of each surface acoustic wave that circulates the plurality of circulation paths.

請求項3に対応する発明は、上記複数の周回経路を周回する弾性表面波は、互いに異なる振動モードの弾性表面波であることを特徴とする請求項1あるいは請求項2記載の圧力測定装置である。   According to a third aspect of the present invention, in the pressure measuring device according to the first or second aspect, the surface acoustic waves that circulate in the plurality of circulation paths are surface acoustic waves having different vibration modes. is there.

請求項4に対応する発明は、上記複数の周回経路は、異なる圧電性結晶材料によりなる別個の球形の円環状表面にすだれ状電極を形成してなる球状弾性表面波素子を備えていることを特徴とする請求項1から請求項3記載の圧力測定装置である。   According to a fourth aspect of the present invention, the plurality of circulation paths include a spherical surface acoustic wave element formed by forming interdigital electrodes on separate spherical annular surfaces made of different piezoelectric crystal materials. The pressure measuring device according to claim 1, wherein the pressure measuring device is a pressure measuring device.

請求項5に対応する発明は、上記複数の周回経路に接続される弾性表面波励起/受信手段は電磁波送受信手段に接続されていて、電磁波送受信手段を介して受信した電磁波に従い表面の上記周回経路に弾性表面波を励起させ、また弾性表面波励起/受信手段が周回経路を周回する弾性表面波に対応した電磁波を電磁波送受信手段から発信させる、上記請求項1から請求項4記載の圧力測定装置を有するタイヤ圧力測定装置である。   According to a fifth aspect of the present invention, the surface acoustic wave excitation / reception means connected to the plurality of circulation paths is connected to the electromagnetic wave transmission / reception means, and the circulation path of the surface according to the electromagnetic waves received via the electromagnetic wave transmission / reception means 5. The pressure measuring device according to claim 1, wherein the surface acoustic wave is excited and the electromagnetic wave corresponding to the surface acoustic wave that the surface acoustic wave excitation / reception unit circulates in the circulation path is transmitted from the electromagnetic wave transmission / reception unit. Is a tire pressure measuring device.

以上説明したように、本発明によれば、温度と、圧力については、何れも周波数依存性を持たないものであっても、互いに温度依存性か圧力依存性が異なる素子の夫々の出力の違いによる変化の仕方の違いからこれらを分離することが出来る圧力測定装置及びタイヤ圧力測定装置を提供することが可能となった。   As described above, according to the present invention, even if temperature and pressure have neither frequency dependency, the difference in output between elements having different temperature dependency or pressure dependency. Therefore, it is possible to provide a pressure measuring device and a tire pressure measuring device that can separate these from the difference in the manner of change due to.

図4に、試作した球状弾性表面波素子を示す。   FIG. 4 shows a prototype spherical surface acoustic wave device.

本発明において弾性表面波とは、厳密に弾性表面波である必要はなく、漏洩弾性表面波であても擬似漏洩弾性表面波であてっても、また回廊波であっても、またSH波であっても良く、基材表面にエネルギーを集中して伝搬する弾性表面波であれば良い。   In the present invention, the surface acoustic wave does not need to be strictly a surface acoustic wave, and may be a leaky surface acoustic wave, a pseudo leaky surface acoustic wave, a corridor wave, or an SH wave. There may be a surface acoustic wave that concentrates energy on the substrate surface and propagates.

測定に用いる回路のブロックダイアグラムを図1に示す。   A block diagram of a circuit used for measurement is shown in FIG.

バースト信号を各素子のすだれ状電極に印加して、その反射波を測定する。   A burst signal is applied to the interdigital electrode of each element, and the reflected wave is measured.

周回速度の測定は、バースト信号の周回ごとの時間を測定しても、あるいはある時刻における信号の位相の変化から周回速度の変化を検出しても、あるいは、共振周波数の変化から周回速度の変化を求めてもよい。共振周波数の測定が周回速度の測定にかえることができるのは、弾性表面波の結晶球を1周回するために必要な時間が信号周期の整数倍の場合に共振を起こすためである。   Circumferential speed is measured by measuring the time of each round of the burst signal, detecting a change in the peripheral speed from the change in the phase of the signal at a certain time, or changing the peripheral speed from the change in the resonance frequency. You may ask for. The measurement of the resonance frequency can be replaced with the measurement of the orbital speed because resonance occurs when the time required for one round of the surface acoustic wave crystal sphere is an integral multiple of the signal period.

さらに、弾性表面波が周回経路を周回する際に周囲の気体にエネルギーを漏洩して減衰するが、減衰率は所定の周回をするさいにエネルギーを失う程度によって表記できる。これは具体的には異なる周回した時点での信号強度から測定することが可能で、とくに所定の周回数の強度がわかっていれば周回数の異なる信号強度を測定するだけで減衰率の測定(評価)が可能になる。本発明では実際に測定するのは周回することで減衰した信号の強度であっても、減衰率を反映した測定値であるからこれを除かないものとする。   Further, when the surface acoustic wave circulates in the circulation path, energy is leaked to the surrounding gas and attenuated. The attenuation rate can be expressed by the degree of loss of energy during the predetermined circulation. Specifically, it is possible to measure from the signal strength at the time of different laps, especially if the strength of a predetermined number of laps is known, it is possible to measure the attenuation rate only by measuring the signal strength at different laps ( Evaluation) becomes possible. In the present invention, even if the intensity of the signal attenuated by wrapping is actually measured, it is a measurement value that reflects the attenuation factor, so this is not excluded.

水晶結晶と、ランガサイト結晶の、温度依存性と圧力依存性を示す。
このように、ランガサイトは温度依存性が40ppm/度程度に対して水晶は25ppm/度であってランガサイトは温度に対して敏感である。たとえばタンタル酸リチウムは−55ppm/度、ニオブ酸リチウムは−80ppm/℃などの大きな値を持つことがわかっている。
The temperature dependence and pressure dependence of quartz crystal and langasite crystal are shown.
As described above, the temperature dependence of the langasite is about 40 ppm / degree, while the crystal is 25 ppm / degree, and the langasite is sensitive to the temperature. For example, it has been found that lithium tantalate has a large value such as -55 ppm / degree, and lithium niobate has a value of -80 ppm / ° C.

図1に、実験で用いた測定システムを示す。また、ランガサイトは比重が大きい(比重=5.7kg/m3)ことを主な理由として、空気の圧力に対して鈍感であることが図2から判る。圧力に対しては水晶の方が敏感になる。 FIG. 1 shows a measurement system used in the experiment. Moreover, it can be seen from FIG. 2 that Langasite is insensitive to air pressure mainly because of its large specific gravity (specific gravity = 5.7 kg / m 3 ). Quartz is more sensitive to pressure.

よって、異なる2つの材料を用意して、温度tと圧力pの測定をする場合、温度依存性の関数VdepT(t)、圧力依存性の関数VdepP(p)を夫々の素子に対して測定して、周回経路1についてVdepT1とVdepP1を求めておき、周回経路2についてVdepT2とVdepP2をもとめておけば以下の連立方程式を構成することが出来る。夫々の環境で測定された周回速度の変化率をそれぞれA及びBとすると近似式として以下のように得ることが出来る。
A=VdepT1(t)+VdepP1(p)
B=VdepT2(t)+VdepP2(p)
さらに、3種類の結晶球を使用することも容易であり、より高精度化を図ることが可能である。
Therefore, when two different materials are prepared and the temperature t and the pressure p are measured, the temperature-dependent function VdepT (t) and the pressure-dependent function VdepP (p) are measured for each element. Thus, if VdepT1 and VdepP1 are obtained for the circulation path 1 and VdepT2 and VdepP2 are obtained for the circulation path 2, the following simultaneous equations can be constructed. Assuming that the rate of change of the circulating speed measured in each environment is A and B, respectively, an approximate expression can be obtained as follows.
A = VdepT1 (t) + VdepP1 (p)
B = VdepT2 (t) + VdepP2 (p)
Furthermore, it is easy to use three types of crystal spheres, and higher accuracy can be achieved.

また、同じ大きさの結晶球を用いても、結晶材料が異なれば周回速度が異なる為に図1に示すように、時間的に弾性表面波が1周回する為に必要な時間より、たとえば4分の1以下の継続時間のバースト信号を用いるばあい、数周回する間にその速度の違いから時間的に検出時刻が異なるために、複数の素子の出力を計測する際のお互いの信号が時間的に重なり正確な測定が困難になることを防ぐことが出来る。   Further, even if crystal spheres of the same size are used, if the crystal materials are different, the circulation speed is different. Therefore, as shown in FIG. When using a burst signal with a duration of less than 1 / minute, the detection time differs in time due to the difference in speed during several laps. Therefore, it is possible to prevent the accurate measurement from being overlapped.

なお、上記は、周回速度のみの情報を採用したが、周回信号の強度値を利用してもよいことは当然である。気体の圧力が変化するに従って、表面を周回する弾性表面波の周囲の気体に漏洩する比率が異なる為に、多重周回してその信号強度を測定するか、あるいは周回するに従って減衰するその速度を測定するかによって、圧力を求めることが出来る。一般にSH波やラブ波と呼ばれる周回経路表面水平に変位を有する波は、伝搬経路の表面垂直方向に変位を有するたとえばレーリー波などに比較して周回速度も減衰率も殆ど圧力依存性を持たない。   In the above description, only the information about the circulation speed is used. However, it is natural that the intensity value of the circulation signal may be used. As the gas pressure changes, the ratio of the surface acoustic wave that circulates around the surface leaks to the surrounding gas, so the signal strength is measured by multiple laps, or the velocity that decays as it circulates is measured. Depending on how you do it, you can determine the pressure. Generally, a wave having a displacement horizontally on the surface of the circuit path called SH wave or Love wave has almost no pressure dependency in the circuit speed and attenuation rate compared to, for example, a Rayleigh wave having a displacement in the direction perpendicular to the surface of the propagation path. .

強度(減衰率)を用いてその圧力測定する方法に利点は、温度に対して周回速度は図2に示すように大きく変化するが、強度(あるいは減衰率)は温度に対して鈍感であってたとえば次式を用いて測定してもよいことは明らかである。   The advantage of the method of measuring the pressure using the strength (attenuation rate) is that the circulatory velocity changes greatly with respect to the temperature as shown in FIG. For example, it is obvious that the measurement may be performed using the following equation.

異なる2つの周回経路について、強度変化(減衰率)の温度依存性の関数AmpdepT(t)、圧力依存性の関数AmpdepP(p)を夫々の素子に対して測定して得れば、以下のように関係式を得ることが出来る。
C=AmpdepT1(t)+AmpdepP1(p)
D=AmpdepT2(t)+AmpdepP2(p)
圧電結晶材料を用いた弾性表面波素子のすだれ状電極に、コイルアンテナを接続して外部から磁界(電磁波)を印加してコイルアンテナで受信した起電力を素子のすだれ状電極に印加し弾性波を励起することができる。さらに伝搬して反射した弾性波はすだれ状電極に到達して電圧を励起、コイルアンテナなどを介して磁界(電磁波)を外部に返すことで非接触無給電での駆動と測定が考案されて公知となっている。本発明は公知となっている電磁界を用いたエネルギー送信手法を用いれば、図5に示すようにタイヤの内部の圧力と温度を無線で計測することが可能となる。異なる結晶材料を用いた球状弾性表面波素子を2個組み合わせたセンサーであり、夫々は異なる周波数で駆動してその出力を電磁界によって非接触で受信して解析できる。周波数の違いから何れの素子を駆動測定するか識別が可能であるが、電波法の制限から使用できる周波数が一つに限られる場合には、短いバースト信号で励起して互い素子の出力が周回速度の違いによってタイミングをずらす現象を利用して識別する方法も考えられておりその何れを採用してもよい。
For two different circulation paths, the temperature dependence function AmpdepT (t) and the pressure dependence function AmpdepP (p) of the intensity change (attenuation rate) are measured for each element as follows: A relational expression can be obtained.
C = AmpdepT1 (t) + AmpdepP1 (p)
D = AmpdepT2 (t) + AmpdepP2 (p)
An electromotive force received by the coil antenna by applying a magnetic field (electromagnetic wave) to the interdigital electrode of a surface acoustic wave element using a piezoelectric crystal material and applying an external magnetic field (electromagnetic wave) to the interdigital electrode of the element is applied. Can be excited. Furthermore, the propagating and reflected elastic waves reach the interdigital electrode, excite the voltage, and return the magnetic field (electromagnetic wave) to the outside via a coil antenna etc. It has become. In the present invention, if a known energy transmission method using an electromagnetic field is used, the pressure and temperature inside the tire can be measured wirelessly as shown in FIG. This is a sensor in which two spherical surface acoustic wave elements using different crystal materials are combined. Each sensor can be driven at a different frequency and its output can be received and analyzed in a non-contact manner by an electromagnetic field. It is possible to identify which element is driven and measured from the difference in frequency, but when the frequency that can be used is limited to one due to limitations of the Radio Law, the output of each element circulates by exciting with a short burst signal. A method of identifying using a phenomenon in which timing is shifted depending on a difference in speed is also considered, and any of them may be adopted.

実際に、上式を用いて以下の表1の様に温度と圧力を両方を測定することが可能であった。   Actually, it was possible to measure both temperature and pressure using the above equation as shown in Table 1 below.

直径1cmのニオブ酸リチウム結晶球材料に用いた球状弾性表面波素子であって、Z軸シリンダー経路に、電極周期(71μm)のすだれ状電極を形成して圧力測定を行う。   A spherical surface acoustic wave device used for a lithium niobate crystal sphere material having a diameter of 1 cm, and an interdigital electrode having an electrode period (71 μm) is formed in a Z-axis cylinder path to perform pressure measurement.

作成した素子に対して、周波数52MHzの高周波バースト信号を入力すると伝搬経路表面水平方向にしか変位を持たないために圧力に殆ど影響をうけない波が周回する。   When a high-frequency burst signal with a frequency of 52 MHz is input to the created element, a wave that hardly affects the pressure circulates because it has a displacement only in the horizontal direction of the propagation path surface.

また、周波数が46MHzの高周波信号を入力すると圧力に対して影響を受けるモードの波が周回する。温度依存性はここでは所定周回数周回するために必要な時間(遅延時間)の変化を周回速度変化のパラメーターとして採用している。   Further, when a high frequency signal having a frequency of 46 MHz is input, a wave of a mode affected by pressure circulates. Here, the temperature dependence employs a change in time (delay time) required for a predetermined number of laps as a parameter of the lap speed change.

この単一の素子表面の単一のすだれ状電極に対して周波数を変えることで、2つの全く異なる温度依存性と圧力依存性を持つ周回経路を用意して測定を行う。   By changing the frequency with respect to a single interdigital electrode on the surface of this single element, measurement is performed by preparing two circular paths having completely different temperature dependence and pressure dependence.

室温20度、1気圧の状態の周回速度を初期状態として駆動周波数52MHz測定時で次の関係式を得た。
23ppm=60t
14ppm=80t+35p
上記2式から、温度t=0.38度上昇、圧力P=0.47気圧減圧であることが測定できた。
The following relational expression was obtained at the measurement of the driving frequency of 52 MHz with the circulation speed at a room temperature of 20 degrees and 1 atmosphere as an initial state.
23ppm = 60t
14ppm = 80t + 35p
From the above two equations, it was possible to measure that the temperature t = 0.38 ° C. and the pressure P = 0.47 atm.

ニオブ酸リチウムを結晶球に使用した球状弾性表面波素子と、ランガサイト結晶を用いた球状弾性表面波素子をもちいて圧力測定を行った。ニオブ酸リチウムの素子は実施例1の素子を用い、(46MHz)で駆動した。   Pressure measurement was performed using a spherical surface acoustic wave device using lithium niobate as a crystal sphere and a spherical surface acoustic wave device using a langasite crystal. The element of lithium niobate was the element of Example 1 and was driven at (46 MHz).

ランガサイトの素子については以下の表2の温度依存性と圧力依存性であることが前もって行った実験で明らかになっていた。ランガサイト素子に投入した高周波信号の周波数は45MHzである。すだれ状電極の電極周期はニオブ酸リチウム結晶素子と同じである。   It has been clarified in experiments conducted in advance that the Langasite element has temperature dependency and pressure dependency in Table 2 below. The frequency of the high-frequency signal input to the langasite element is 45 MHz. The electrode period of the interdigital electrode is the same as that of the lithium niobate crystal element.

室温20度、1気圧の状態の周回速度を初期状態として駆動周波数52MHz測定時、次の実験式を得た。   The following empirical formula was obtained when measuring the driving frequency of 52 MHz with the rotation speed at room temperature of 20 degrees and 1 atmosphere as the initial state.

40ppm=80t+35p
25ppm=(−40)t+12p
上記2式から、温度t=1.5度上昇、圧力P=0.16気圧減圧であることが測定できた。
40ppm = 80t + 35p
25 ppm = (− 40) t + 12p
From the above two formulas, it was measured that the temperature t was increased by 1.5 degrees and the pressure P was reduced by 0.16 atm.

ニオブ酸リチウムを用いた球状弾性表面波素子と、水晶を用いた球状弾性表面波素子を用いて、強度を測定し、その結果から圧力測定を行った。圧力依存性は、51周回目の信号の振幅を1気圧で0.055mVになるように信号強度を調整して原点として表3の様に数値化した。水晶素子に投入した高周波信号の周波数は45MHzである。すだれ状電極の電極周期はニオブ酸リチウム結晶素子と同じである。   The strength was measured using a spherical surface acoustic wave device using lithium niobate and a spherical surface acoustic wave device using quartz, and pressure was measured from the result. The pressure dependency was quantified as shown in Table 3 by adjusting the signal intensity so that the amplitude of the signal in the 51st round was 0.055 mV at 1 atmosphere. The frequency of the high-frequency signal input to the crystal element is 45 MHz. The electrode period of the interdigital electrode is the same as that of the lithium niobate crystal element.

室温20度、1気圧の状態の周回速度を初期状態として次の実験式を得た。
−0.003=(−0.001)t
0.012=(−0.072)p
上2式を解くことで、温度は3度上昇、圧力pは0.166気圧の減圧ともとめることが出来た。
The following empirical formula was obtained by setting the rotation speed at a room temperature of 20 degrees and 1 atmosphere as an initial state.
−0.003 = (− 0.001) t
0.012 = (− 0.072) p
By solving the above two equations, the temperature rose by 3 degrees and the pressure p was reduced to 0.166 atm.

本発明の第1の実施形態にかかる、球状表面弾性波素子をタイヤ圧力測定に応用した場合の計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the measuring device at the time of applying the spherical surface acoustic wave element concerning the 1st Embodiment of this invention to tire pressure measurement. 空気の圧力と音速変化の関係を示すグラフである。It is a graph which shows the relationship between the pressure of air, and a sound speed change. 空気の圧力と周回波の強度との関係を示すグラフである。It is a graph which shows the relationship between the pressure of air and the intensity | strength of a surrounding wave. 球状弾性表面波素子の斜視図である。It is a perspective view of a spherical surface acoustic wave element. 本発明の第1の実施形態にかかる、タイヤ圧力の測定状態を示す概念断面図である。It is a conceptual sectional view showing the measurement state of tire pressure concerning the 1st embodiment of the present invention.

符号の説明Explanation of symbols

11…球状表面弾性波素子
12…真空ポンプ
13…オシロスコープ
14…増幅器
15…高周波信号発生器
16…ピラニー型圧力計
17…ロータリー真空ポンプ
20…水晶
21…すだれ状電極
31…タイヤ(ゴム)
32…ホイール
33…磁界結合用コイル
34…高周波送受信信号処理演算器
35…整合回路
DESCRIPTION OF SYMBOLS 11 ... Spherical surface acoustic wave element 12 ... Vacuum pump 13 ... Oscilloscope 14 ... Amplifier 15 ... High frequency signal generator 16 ... Pirani type pressure gauge 17 ... Rotary vacuum pump 20 ... Crystal 21 ... Interdigital electrode 31 ... Tire (rubber)
32 ... Wheel 33 ... Coil for magnetic field coupling 34 ... High-frequency transmission / reception signal processing calculator 35 ... Matching circuit

Claims (5)

弾性表面波が周回する少なくとも円環状の周回経路が表面に沿い設けられ、弾性表面波を励起し受信する弾性表面波励起/受信手段が周回経路に対応して設けられている弾性表面波素子を備えており、上記弾性表面波素子は複数の周回経路を有し、そのうち少なくとも一つの周回経路は、他の周回経路に比較して、弾性表面波の周回速度が温度依存性と圧力依存性の少なくともいずれか一方が異なっており、
上記複数の周回経路を周回する弾性表面波のそれぞれの強度周回速度の値を用いて、上記周回経路に接する気体のすくなくとも圧力を測定する圧力測定装置。
A surface acoustic wave element in which at least an annular loop path around which a surface acoustic wave circulates is provided along the surface, and surface acoustic wave excitation / reception means for exciting and receiving the surface wave is provided corresponding to the loop path. The surface acoustic wave element has a plurality of circulation paths, and at least one of the circulation paths has a temperature-dependent and pressure-dependent rotation speed of the surface acoustic wave compared to the other circulation paths. At least one of them is different,
A pressure measuring device that measures at least the pressure of the gas in contact with the circulation path by using the value of the strength circulation speed of each surface acoustic wave that circulates in the plurality of circulation paths.
弾性表面波が周回する少なくとも円環状の周回経路が表面に沿い設けられ、弾性表面波を励起し受信する弾性表面波励起/受信手段が周回経路に対応して設けられている弾性表面波素子を備えており、上記弾性表面波素子は複数の周回経路を有し、そのうち少なくとも一つの周回経路は、他の周回経路と比較して、弾性表面波の減衰率が温度依存性と圧力依存性の少なくともいずれか一方が異なっており、
上記複数の周回経路を周回する弾性表面波のそれぞれの減衰率の値を用いて、上記周回経路に接する気体のすくなくとも圧力を測定する圧力測定装置。
A surface acoustic wave element in which at least an annular loop path around which a surface acoustic wave circulates is provided along the surface, and surface acoustic wave excitation / reception means for exciting and receiving the surface wave is provided corresponding to the loop path. The surface acoustic wave element has a plurality of circulation paths, and at least one of the circulation paths has a temperature-dependent and pressure-dependent attenuation coefficient of the surface acoustic wave compared to other circulation paths. At least one of them is different,
A pressure measurement device that measures at least the pressure of the gas in contact with the circulation path by using the value of the attenuation factor of each surface acoustic wave that circulates in the plurality of circulation paths.
上記複数の周回経路を周回する弾性表面波は、互いに異なる振動モードの弾性表面波であることを特徴とする請求項1あるいは請求項2記載の圧力測定装置。   3. The pressure measuring device according to claim 1, wherein the surface acoustic waves that circulate around the plurality of circulation paths are surface acoustic waves having different vibration modes. 上記複数の周回経路は、異なる圧電性結晶材料によりなる別個の球形の円環状表面にすだれ状電極を形成してなる球状弾性表面波素子を備えていることを特徴とする請求項1から請求項3記載の圧力測定装置。   2. The surface acoustic wave device according to claim 1, wherein each of the plurality of circulation paths includes a spherical surface acoustic wave element in which interdigital electrodes are formed on separate spherical annular surfaces made of different piezoelectric crystal materials. 3. The pressure measuring device according to 3. 上記複数の周回経路に接続される、弾性表面波励起/受信手段は電磁波送受信手段に接続されていて、電磁波送受信手段を介して受信した電磁波に従い表面の上記周回経路に弾性表面波を励起させ、また弾性表面波励起/受信手段が周回経路を周回する弾性表面波に対応した電磁波を電磁波送受信手段から発信させる、上記請求項1から請求項4記載の圧力測定装置を有するタイヤ圧力測定装置である。   The surface acoustic wave excitation / reception means connected to the plurality of circulation paths is connected to the electromagnetic wave transmission / reception means, and excites surface acoustic waves in the circulation path on the surface according to the electromagnetic waves received via the electromagnetic wave transmission / reception means, 5. The tire pressure measuring device having the pressure measuring device according to claim 1, wherein the surface acoustic wave excitation / reception means transmits an electromagnetic wave corresponding to the surface acoustic wave that circulates in the circulation path from the electromagnetic wave transmitting / receiving means. .
JP2006151494A 2006-05-31 2006-05-31 Pressure measuring device and tire pressure measuring device using the same Pending JP2007322210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151494A JP2007322210A (en) 2006-05-31 2006-05-31 Pressure measuring device and tire pressure measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151494A JP2007322210A (en) 2006-05-31 2006-05-31 Pressure measuring device and tire pressure measuring device using the same

Publications (1)

Publication Number Publication Date
JP2007322210A true JP2007322210A (en) 2007-12-13

Family

ID=38855170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151494A Pending JP2007322210A (en) 2006-05-31 2006-05-31 Pressure measuring device and tire pressure measuring device using the same

Country Status (1)

Country Link
JP (1) JP2007322210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969600A (en) * 2018-10-05 2021-06-15 赛峰起落架系统公司 Device for measuring tire pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969600A (en) * 2018-10-05 2021-06-15 赛峰起落架系统公司 Device for measuring tire pressure
CN112969600B (en) * 2018-10-05 2023-08-15 赛峰起落架系统公司 Device for measuring tire pressure

Similar Documents

Publication Publication Date Title
US7287431B2 (en) Wireless oil filter sensor
US7267009B2 (en) Multiple-mode acoustic wave sensor
US6293136B1 (en) Multiple mode operated surface acoustic wave sensor for temperature compensation
US20060238078A1 (en) Wireless and passive acoustic wave rotation rate sensor
US20060243032A1 (en) Multiple-function acoustic wave oil quality sensor
WO2005095947A1 (en) Environment difference detector
RU2387051C1 (en) Detector of physical value on surface acoustic waves
JP4561251B2 (en) Method of analyzing propagation surface of multi-circular surface acoustic wave element and element
JP4826194B2 (en) Surface acoustic wave device and method of using the same
JP2007322210A (en) Pressure measuring device and tire pressure measuring device using the same
JP2007216857A (en) Tire information detection device
JP4337488B2 (en) Method and apparatus for measuring drive of spherical surface acoustic wave device
JP4924109B2 (en) Substance measuring device and substance measuring method
JP4426802B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4426803B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
KR101046539B1 (en) sensor
JP4700749B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
JP4727968B2 (en) Surface acoustic wave element identification device and acoustic wave element identification device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP4389552B2 (en) Acoustic wave element and environmental difference detection device using acoustic wave element
JP4700748B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device
Chang et al. A wireless surface acoustic wave-based tire pressure and temperature sensing module
SU1177697A1 (en) Method of pressure gauging
JP4789424B2 (en) Gas pressure measuring device and gas pressure measuring method
JP4479438B2 (en) Surface acoustic wave device and environmental difference detection device using surface acoustic wave device