JP2007320280A - Flow channel configured body and method of manufacturing the same - Google Patents

Flow channel configured body and method of manufacturing the same Download PDF

Info

Publication number
JP2007320280A
JP2007320280A JP2006155833A JP2006155833A JP2007320280A JP 2007320280 A JP2007320280 A JP 2007320280A JP 2006155833 A JP2006155833 A JP 2006155833A JP 2006155833 A JP2006155833 A JP 2006155833A JP 2007320280 A JP2007320280 A JP 2007320280A
Authority
JP
Japan
Prior art keywords
flow path
resin molded
resin molding
molded member
joint surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006155833A
Other languages
Japanese (ja)
Inventor
Yuichiro Kita
裕一郎 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2006155833A priority Critical patent/JP2007320280A/en
Publication of JP2007320280A publication Critical patent/JP2007320280A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a configuration capable of preventing a sample liquid from leaking out of a channel by avoiding the generation of a non-adhered part in the vicinity of the channel in a flow channel configured body having the channel formed on contact planes between two resin molded members and a method of manufacturing the same. <P>SOLUTION: When manufacturing the flow channel configured body 1, junction of a first resin formed member 2 to a second resin formed member 3 results in formation of a channel 5 by closing a channel forming groove 21 with the second resin formed member 3, and communication of a penetrated hole 32 for injecting the sample liquid to the channel 5. Though eject pin impressions are formed as recessions 28, 38 in the first resin formed member 2 and second resin formed member 3, bubbles do not remain because air in the recessions 28, 38 escapes to the outside through a deaerating groove 35 when in junction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂成形部材の接合面に流路が形成された流路構成体およびその製造方法に関するものである。   The present invention relates to a flow path structure in which a flow path is formed on a joint surface of a resin molded member, and a manufacturing method thereof.

近年、内部に微細な流路を形成した流路構成体が提案されており、このような流路構成体は、例えば、生化学・医学等の分野においてバイオチップとして用いられている。バイオチップとは、流路に導入された試験液を光学的に観察することにより、試験液の分析を行うものである。   In recent years, a flow path structure having a fine flow path formed therein has been proposed, and such a flow path structure is used as a biochip in fields such as biochemistry and medicine, for example. The biochip is for analyzing a test liquid by optically observing the test liquid introduced into the flow path.

このような流路構成体を製造するにあたっては、例えば、第1の樹脂成形部材において微細な流路形成溝が形成された第1の接合面と、第2の樹脂成形部材の第2の接合面とを接合する方法が採用されるが、接合方法としては、接着剤を用いた接合方法、樹脂成形部材を加熱して接合面を溶融させながら加圧する接合方法、樹脂成形部材に超音波振動を与えて接合面を溶融させながら加圧する接合方法などが採用されている。   In manufacturing such a flow path structure, for example, a first bonding surface in which fine flow path forming grooves are formed in the first resin molding member, and a second bonding of the second resin molding member. The method of joining the surfaces is employed, but as the joining method, a joining method using an adhesive, a joining method in which a resin molded member is heated and melted to melt the joined surface, and ultrasonic vibration is applied to the resin molded member For example, a bonding method in which pressure is applied while melting the bonding surface is used.

また、第1の接合面と第2の接合面との間に溶剤を介在させた状態で加圧して第1の樹脂成形部材と第2の樹脂成形部材とを接合する溶剤接着という方法も提案されている(例えば、特許文献1参照)。
特開2003−118000号公報
Also proposed is a method called solvent bonding in which a first resin molding member and a second resin molding member are joined by applying pressure with a solvent interposed between the first joining surface and the second joining surface. (For example, refer to Patent Document 1).
JP 2003-118000 A

しかしながら、樹脂成形部材を接合する場合には、接合領域に気泡が残留しやすく、このような気泡の残留は、流路付近に非接合部分を発生させ、流路から試料液が漏れる原因となる。   However, when the resin molded member is joined, bubbles are likely to remain in the joining region, and the remaining of such bubbles generates a non-joined portion in the vicinity of the flow path and causes the sample liquid to leak from the flow path. .

以上の問題点に鑑みて、本発明の課題は、樹脂成形部材同士の接合面に流路が形成された流路構成体およびその製造方法において、流路付近での非接着部分の発生を防止することにより、流路からの試料液の漏れを防止可能な構成を提供することにある。   In view of the above problems, an object of the present invention is to prevent the occurrence of a non-adhesive portion in the vicinity of the flow path in the flow path structure in which the flow path is formed on the joint surface between the resin molded members and the manufacturing method thereof. Thus, an object of the present invention is to provide a configuration capable of preventing leakage of the sample liquid from the flow path.

上記課題を解決するために、本発明では、第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、前記第1の接合面および前記第2の接合面の少なくとも一方に窪みが形成されており、前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方には、前記窪みを外部と連通させる脱気通路が形成されていることを特徴とする。   In order to solve the above-described problem, in the present invention, the first joint surface of the first resin molded member and the second joint surface of the second resin molded member are joined, and the first joint surface and the In the flow path structure in which the flow path forming groove is formed in at least one of the second bonding surfaces, a recess is formed in at least one of the first bonding surface and the second bonding surface, At least one of the first resin molded member and the second resin molded member is formed with a deaeration passage for communicating the recess with the outside.

本発明では、樹脂成形部材を成形する際、エジェクトピンの当接に起因する窪みなどが発生している場合でも、接合の際、窪みに溜まっていた空気が脱気通路を介して外部に逃げるので、気泡が第1の接合面と第2の接合面との接合領域に入り込むことがない。従って、接合領域に気泡が残留することを防止することができるので、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができる。   In the present invention, when molding a resin molded member, even when a depression due to the contact of the eject pin is generated, the air accumulated in the depression escapes to the outside through the deaeration passage. Therefore, bubbles do not enter the bonding area between the first bonding surface and the second bonding surface. Accordingly, it is possible to prevent bubbles from remaining in the bonding region, and thus it is possible to prevent the occurrence of non-bonded portions due to the remaining bubbles. Therefore, no non-bonded portion is generated in the vicinity of the flow path, so that leakage of the sample liquid from the flow path can be prevented.

本発明において、前記脱気通路は、前記第1の接合面および前記第2の接合面の少なくとも一方に形成された溝によって構成することができる。   In this invention, the said deaeration channel | path can be comprised by the groove | channel formed in at least one of the said 1st joining surface and the said 2nd joining surface.

本発明において、前記脱気通路は、前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方に形成された貫通穴によって構成してもよい。   In this invention, you may comprise the said deaeration channel | path by the through-hole formed in at least one of the said 1st resin molding member and the said 2nd resin molding member.

本発明の別の形態では、第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、前記第1の接合面側および前記第2の接合面側の少なくとも一方に窪みが形成されており、前記第1の樹脂成形部材と前記第2の樹脂成形部材では各々、前記第1の接合面側および前記第2の接合面側のうち、前記窪みを避けた領域が前記第1の接合面と前記第2の接合面との接合領域とされていることを特徴とする。   In another form of this invention, the 1st joining surface of the 1st resin molding member and the 2nd joining surface of the 2nd resin molding member are joined, The 1st joining surface and the 2nd joining In the flow path structure in which the flow path forming groove is formed in at least one of the surfaces, a recess is formed in at least one of the first joint surface side and the second joint surface side, and the first In each of the resin molded member and the second resin molded member, the first joint surface side and the second joint surface side are areas where the depressions are avoided, and the first joint surface and the second joint surface are formed. It is characterized by being a joining region with the joining surface.

本発明では、樹脂成形部材を成形する際、エジェクトピンが当接した部分に窪みが発生している場合でも、窪みを避けた領域で樹脂成形部材同士を接合する。従って、窪み内の空気が第1の接合面と第2の接合面との接合領域に入り込むことがないので、接合領域に気泡が残留することを防止することができ、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができる。   In the present invention, when the resin molded member is molded, the resin molded members are joined to each other in a region where the recess is avoided even when a recess is generated in the portion where the eject pin is in contact. Accordingly, since air in the recess does not enter the joining region between the first joining surface and the second joining surface, it is possible to prevent bubbles from remaining in the joining region, which results from the remaining bubbles. Generation | occurrence | production of a non-joining part can be prevented. Therefore, no non-bonded portion is generated in the vicinity of the flow path, so that leakage of the sample liquid from the flow path can be prevented.

本発明において、前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方で前記第1の接合面と前記第2の接合面との接合領域の外周縁に位置する縁部に面取り加工が施されていることが好ましい。このような構成は、接合面側に窪みがあるか否かに関わらず、適用することができる。   In the present invention, at least one of the first resin molded member and the second resin molded member is chamfered at an edge located at an outer peripheral edge of a joint region between the first joint surface and the second joint surface. It is preferable that processing has been performed. Such a configuration can be applied regardless of whether or not there is a depression on the bonding surface side.

すなわち、本発明のさらに別の形態では、第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方で前記第1の接合面と前記第2の接合面との接合領域の外周縁に位置する縁部に面取り加工が施されていることを特徴とする。   That is, in still another embodiment of the present invention, the first joint surface of the first resin molded member and the second joint surface of the second resin molded member are joined, and the first joint surface and the first joint surface are joined. In the flow path structure in which the flow path forming groove is formed in at least one of the two bonding surfaces, the first bonding surface and the at least one of the first resin molded member and the second resin molded member The edge part located in the outer periphery of a joining area | region with a 2nd joining surface is chamfered, It is characterized by the above-mentioned.

本発明では、第1の接合面と第2の接合面との接合領域の外周縁に位置する樹脂成形部材の縁部に面取り加工が施されているため、第1の接合面と第2の接合面との接合領域に残留しようとする気泡を外部に放出しやすい。特に樹脂成形部材同士の接合に接着剤や溶剤接着を用いた場合、接合領域の外周側では内側に比較して接着剤の固化や、溶剤の蒸発が発生しやすく、接合が短時間のうちに完了して内側に気泡が残留しやすいが、面取り加工を施すことにより、樹脂成形部材同士の接合領域の外周側に接着剤や溶剤が多量に溜まるようにすれば、この部分での接合を遅らせることができる。従って、内側から気泡を放出しやすくなるので、接合領域に気泡が残留することを防止することができる。それ故、気泡の残留に起因する非接合部分の発生を防止することができ、流路付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができる。   In this invention, since the edge part of the resin molding member located in the outer periphery of the joining area | region of a 1st joining surface and a 2nd joining surface is given, the 1st joining surface and the 2nd Air bubbles that tend to remain in the joint area with the joint surface are easily released to the outside. In particular, when adhesive or solvent bonding is used to join resin molded members, the adhesive is more likely to solidify or evaporate on the outer peripheral side of the bonding area than the inside, and the bonding can be done in a short time. Air bubbles are likely to remain inside after completion, but if chamfering is performed so that a large amount of adhesive or solvent accumulates on the outer peripheral side of the joining region between the resin molded members, joining at this part is delayed. be able to. Therefore, since it becomes easy to discharge | release a bubble from an inner side, it can prevent that a bubble remains in a joining area | region. Therefore, it is possible to prevent the occurrence of a non-joined portion due to residual bubbles, and no non-joined portion is generated in the vicinity of the flow channel, so that leakage of the sample liquid from the flow channel can be prevented.

本発明において、前記流路形成溝は、例えば、幅寸法が500μm以下に構成されている。本発明において、前記流路形成溝は、例えば、深さ寸法が500μm以下に構成されている。   In the present invention, the flow path forming groove is configured to have a width dimension of 500 μm or less, for example. In the present invention, the flow path forming groove is configured to have a depth dimension of 500 μm or less, for example.

本発明に係る流路構成体の製造方法では、前記第1の接合面と前記第2の接合面との間に溶剤を介在させた状態で前記第1の樹脂成形部材および前記第2の樹脂成形部材を押圧して接合することが好ましい。このような方法によれば、接着剤を用いた接合方法や、接合面を溶融させる接合方法と比較して、流路形成溝が微細な場合、例えば、前記流路形成溝の幅寸法が500μm以下の場合や、前記流路形成溝の深さ寸法が500μm以下の場合でも、流路が潰れるという問題を回避することができる。   In the flow path structure manufacturing method according to the present invention, the first resin molding member and the second resin in a state where a solvent is interposed between the first joint surface and the second joint surface. It is preferable to press and join the molded members. According to such a method, compared with a bonding method using an adhesive or a bonding method in which a bonding surface is melted, when the flow path forming groove is fine, for example, the width dimension of the flow path forming groove is 500 μm. Even in the following cases or when the depth dimension of the flow path forming groove is 500 μm or less, the problem that the flow path is crushed can be avoided.

本発明によれば、第1の接合面と第2の接合面との接合領域に気泡が残留することを防止することができるので、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができる。   According to the present invention, it is possible to prevent bubbles from remaining in the bonding region between the first bonding surface and the second bonding surface, thereby preventing the occurrence of non-bonded portions due to the remaining bubbles. Can do. Therefore, no non-bonded portion is generated in the vicinity of the flow path, so that leakage of the sample liquid from the flow path can be prevented.

以下に、図面を参照して、本発明を適用した流路構成体について説明する。   Hereinafter, a flow path structure to which the present invention is applied will be described with reference to the drawings.

[実施の形態1]
図1(A)、(B)は各々、本発明の実施の形態1に係る流路構成体の平面図、およびそのA−A′断面図である。
[Embodiment 1]
1 (A) and 1 (B) are a plan view and a cross-sectional view taken along the line AA ′ of the flow path structure according to Embodiment 1 of the present invention, respectively.

図1(A)、(B)に示す流路構成体1は、バイオチップ等に用いる流路構成部材などを構成するものであり、内部には2次元あるいは3次元の流路5(空洞部)が構成されている。また、流路構成体1は、内部に形成された流路5内に試験液を通過させることにより、試験液中に含まれる特定物質を光学的に検出することが可能である。   A flow path structure 1 shown in FIGS. 1A and 1B constitutes a flow path structural member used for a biochip or the like, and has a two-dimensional or three-dimensional flow path 5 (hollow portion) inside. ) Is configured. Moreover, the flow path structure 1 can optically detect a specific substance contained in the test liquid by allowing the test liquid to pass through the flow path 5 formed inside.

本形態における流路構成体1は、アクリル樹脂を板状に成形してなる第1の樹脂成形部材2および第2の樹脂成形部材3を接合することにより得られるものである。すなわち、第1の樹脂成形部材2の接合面20(第1の接合面)には流路5を形成するための微細な流路形成溝21が形成され、第2の樹脂成形部材3には、試験液導入口などとして利用される貫通穴32が形成されており、第1の樹脂成形部材2と第2の樹脂成形部材3とを接合すると、流路形成溝21の上方が第2の樹脂成形部材3に塞がれて流路5が形成されるとともに、貫通穴32が流路5に連通する。ここで、流路形成溝21は微細であり、例えば、幅寸法が500μm以下、深さ寸法が500μm以下である。本形態において、第1の樹脂成形部材2と第2の樹脂成形部材3とは同一サイズであり、互いに完全に重なった状態で流路構成体1を構成しているので、その全面が接合領域である。   The flow path structure 1 in this embodiment is obtained by joining a first resin molded member 2 and a second resin molded member 3 formed by molding an acrylic resin into a plate shape. That is, a fine flow path forming groove 21 for forming the flow path 5 is formed on the bonding surface 20 (first bonding surface) of the first resin molded member 2, and the second resin molded member 3 has A through hole 32 used as a test solution inlet is formed, and when the first resin molded member 2 and the second resin molded member 3 are joined, the upper side of the flow path forming groove 21 is the second. The flow path 5 is formed by being blocked by the resin molding member 3, and the through hole 32 communicates with the flow path 5. Here, the flow path forming groove 21 is fine and has, for example, a width dimension of 500 μm or less and a depth dimension of 500 μm or less. In this embodiment, the first resin molded member 2 and the second resin molded member 3 are the same size, and the flow path structure 1 is configured in a state of being completely overlapped with each other, so that the entire surface thereof is a bonding region. It is.

第2の樹脂成形部材3には、接合の際に溶剤を注入するための貫通穴33が形成されている。なお、図1には、貫通穴33が1つ、形成されている例を示してあるが、複数、形成されていることもある。また、試験液導入用の貫通穴32を溶剤注入用して用いることもある。   The second resin molded member 3 is formed with a through hole 33 for injecting a solvent at the time of joining. Although FIG. 1 shows an example in which one through hole 33 is formed, a plurality of through holes 33 may be formed. Further, the through hole 32 for introducing the test solution may be used for solvent injection.

第1の樹脂成形部材2および第2の樹脂成形部材3は、樹脂成形により形成されているため、第1の樹脂成形部材2の接合面20、および第2の樹脂成形部材3の接合面30(第2の接合面)には、各々の四隅に、第1の樹脂成形部材2および第2の樹脂成形部材3を金型から取り出すときにエジェクトピンが当接した箇所に窪み28、38(エジェクトピン痕)が形成されている。なお、本形態において、窪み28、38は、第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねた際、互いに重なる位置に形成されている。   Since the first resin molding member 2 and the second resin molding member 3 are formed by resin molding, the bonding surface 20 of the first resin molding member 2 and the bonding surface 30 of the second resin molding member 3 are formed. In the (second bonding surface), in each of the four corners, depressions 28, 38 (in the places where the eject pins contacted when the first resin molded member 2 and the second resin molded member 3 are taken out from the mold) Eject pin marks) are formed. In the present embodiment, the recesses 28 and 38 are formed at positions where the first resin molded member 2 and the second resin molded member 3 are overlapped with each other.

このような窪み28、38は、後述する接合時、気泡が残留する原因となるため、本形態では、第2の樹脂成形部材3の接合面30には、複数の窪み28、38の形成位置を通るように脱気溝35(脱気通路)が形成されており、脱気溝35は、第2の樹脂成形部材3の接合面30の外周縁まで届いている。このような脱気溝35は、第1の樹脂成形部材2および第2の樹脂成形部材3を樹脂成形により形成する際、金型に突条部を形成しておくことにより形成できる他、樹脂成形により第1の樹脂成形部材2および第2の樹脂成形部材3を形成した後の切削加工などの二次加工より形成することができる。   Since such cavities 28 and 38 cause bubbles to remain at the time of joining, which will be described later, in the present embodiment, formation positions of the plurality of dents 28 and 38 are formed on the joint surface 30 of the second resin molded member 3. A deaeration groove 35 (a deaeration passage) is formed so as to pass through, and the deaeration groove 35 reaches the outer peripheral edge of the joint surface 30 of the second resin molding member 3. Such a deaeration groove 35 can be formed by forming a protrusion on the mold when the first resin molding member 2 and the second resin molding member 3 are formed by resin molding. It can be formed by secondary processing such as cutting after forming the first resin molded member 2 and the second resin molded member 3 by molding.

このように構成された樹脂成形部材2、3を用いて流路構成体1を製造するには、まず、接合面20、30同士が重なるように第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねる。その結果、窪み28、38および脱気溝35は、下方が第1の樹脂成形部材2の接合面20で覆われるが、脱気溝35は、第2の樹脂成形部材3の接合面30の外周縁まで届いているので、窪み28、38は、脱気溝35を介して外部と連通している。   In order to manufacture the flow path structure 1 using the resin molded members 2 and 3 configured as described above, first, the first resin molded member 2 and the second resin are formed such that the joint surfaces 20 and 30 overlap each other. The molded member 3 is overlapped. As a result, the depressions 28 and 38 and the deaeration groove 35 are covered with the joint surface 20 of the first resin molding member 2 at the lower side, but the deaeration groove 35 is formed on the joint surface 30 of the second resin molding member 3. Since it reaches the outer peripheral edge, the recesses 28 and 38 communicate with the outside through the deaeration groove 35.

次に、貫通穴33からプロピルアルコールなどの溶剤を注入する。その結果、溶剤は、接合面20、30との間に薄く広がる。   Next, a solvent such as propyl alcohol is injected from the through hole 33. As a result, the solvent spreads thinly between the joint surfaces 20 and 30.

次に、第1の樹脂成形部材2と第2の樹脂成形部材3とを例えば60℃位にまで加熱しながら第1の樹脂成形部材2と第2の樹脂成形部材3とを加圧し、第1の樹脂成形部材2と第2の樹脂成形部材3とを溶剤接着して流路構成体1を得る。   Next, the first resin molded member 2 and the second resin molded member 3 are pressurized while heating the first resin molded member 2 and the second resin molded member 3 to about 60 ° C., for example. The first resin molded member 2 and the second resin molded member 3 are solvent-bonded to obtain the flow path structure 1.

このような方法で流路構成体1を製造する際、窪み28、38に溜まっていた空気は、脱気溝35(脱気通路)を介して外部に逃げるので、気泡が接合領域に入り込むことがない。従って、接合領域に気泡が残留することを防止することができるので、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路5付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができる。また、本形態では、溶剤接着を採用したので、接着剤を用いた接合方法や、接合面を溶融させる接合方法と比較して、流路形成溝21が微細であっても、流路5が潰れるという問題を回避することができる。   When the flow path structure 1 is manufactured by such a method, the air accumulated in the recesses 28 and 38 escapes to the outside through the deaeration groove 35 (deaeration passage), so that bubbles enter the joining region. There is no. Accordingly, it is possible to prevent bubbles from remaining in the bonding region, and thus it is possible to prevent the occurrence of non-bonded portions due to the remaining bubbles. Therefore, no non-joined portion is generated in the vicinity of the flow path 5, and thus leakage of the sample liquid from the flow path can be prevented. Further, in this embodiment, since the solvent bonding is adopted, even if the flow path forming groove 21 is fine as compared with the bonding method using an adhesive or the bonding method for melting the bonding surface, the flow path 5 is The problem of being crushed can be avoided.

[実施の形態2]
図2(A)、(B)は各々、本発明の実施の形態2に係る流路構成体の平面図、およびそのB−B′断面図である。
[Embodiment 2]
2A and 2B are a plan view and a BB ′ cross-sectional view, respectively, of a flow path structure according to Embodiment 2 of the present invention.

図2(A)、(B)に示す流路構成体1でも、第1の樹脂成形部材2の接合面20には流路5を形成する微細な流路形成溝21が形成され、第2の樹脂成形部材3には、試験液導入口などとして利用される貫通穴32が形成されており、第1の樹脂成形部材2と第2の樹脂成形部材3とを接合すると、流路形成溝21の上方が第2の樹脂成形部材3に塞がれて流路5が形成されるとともに、貫通穴32が流路5に連通する。ここで、流路形成溝21は微細であり、例えば、幅寸法が500μm以下、深さ寸法が500μm以下である。本形態において、第1の樹脂成形部材2と第2の樹脂成形部材3とは同一サイズであり、互いに完全に重なった状態で流路構成体1を構成しているので、その全面が接合領域である。   Even in the flow path structure 1 shown in FIGS. 2A and 2B, the flow path forming body 21 that forms the flow path 5 is formed on the joint surface 20 of the first resin molding member 2. The resin molded member 3 is formed with a through-hole 32 used as a test solution introduction port or the like. When the first resin molded member 2 and the second resin molded member 3 are joined, a flow path forming groove is formed. The upper part of 21 is blocked by the second resin molding member 3 to form the flow path 5, and the through hole 32 communicates with the flow path 5. Here, the flow path forming groove 21 is fine and has, for example, a width dimension of 500 μm or less and a depth dimension of 500 μm or less. In this embodiment, the first resin molded member 2 and the second resin molded member 3 are the same size, and the flow path structure 1 is configured in a state of being completely overlapped with each other, so that the entire surface thereof is a bonding region. It is.

また、本形態でも、第1の樹脂成形部材2の接合面20、および第2の樹脂成形部材3の接合面30には、各々の四隅に、エジェクトピンの当接により窪み28、38(エジェクトピン痕)が形成されている。なお、本形態において、窪み28、38は、第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねた際、互いに重なる位置に形成されている。   Also in this embodiment, the bonding surface 20 of the first resin molding member 2 and the bonding surface 30 of the second resin molding member 3 are provided with depressions 28 and 38 (ejects) at the respective four corners by contact of the eject pins. Pin marks) are formed. In the present embodiment, the recesses 28 and 38 are formed at positions where the first resin molded member 2 and the second resin molded member 3 are overlapped with each other.

本形態では、第2の樹脂成形部材3には、窪み38まで到達する貫通穴36(脱気通路)が形成されている。このような貫通穴36は、第1の樹脂成形部材2および第2の樹脂成形部材3を樹脂成形により形成する際、金型にピン状の突起を形成しておくことにより形成できる他、樹脂成形により第1の樹脂成形部材2および第2の樹脂成形部材3を形成した後の穴開け加工(二次加工)より形成することができる。   In the present embodiment, the second resin molded member 3 is formed with a through hole 36 (a deaeration passage) that reaches the recess 38. Such a through hole 36 can be formed by forming pin-shaped protrusions on the mold when the first resin molded member 2 and the second resin molded member 3 are formed by resin molding. The first resin molding member 2 and the second resin molding member 3 can be formed by drilling (secondary processing) after forming.

このように構成された樹脂成形部材2、3を用いて流路構成体1を製造するには、まず、接合面20、30同士が重なるように第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねる。その結果、窪み28、38は、下方が第1の樹脂成形部材2の接合面20で覆われるが、第2の樹脂成形部材3には貫通穴36が形成されているので、窪み28、38は、貫通穴36を介して外部と連通している。   In order to manufacture the flow path structure 1 using the resin molded members 2 and 3 configured as described above, first, the first resin molded member 2 and the second resin are formed such that the joint surfaces 20 and 30 overlap each other. The molded member 3 is overlapped. As a result, the depressions 28 and 38 are covered with the joint surface 20 of the first resin molding member 2 at the bottom, but the depressions 28 and 38 are formed in the second resin molding member 3 because the through holes 36 are formed. Is in communication with the outside through a through hole 36.

次に、貫通穴33からプロピルアルコールなどの溶剤を注入する。その結果、溶剤は、接合面20、30との間に薄く広がる。   Next, a solvent such as propyl alcohol is injected from the through hole 33. As a result, the solvent spreads thinly between the joint surfaces 20 and 30.

次に、第1の樹脂成形部材2と第2の樹脂成形部材3とを例えば60℃位にまで加熱しながら第1の樹脂成形部材2と第2の樹脂成形部材3とを加圧し、第1の樹脂成形部材2と第2の樹脂成形部材3とを溶剤接着して流路構成体1を得る。   Next, the first resin molded member 2 and the second resin molded member 3 are pressurized while heating the first resin molded member 2 and the second resin molded member 3 to about 60 ° C., for example. The first resin molded member 2 and the second resin molded member 3 are solvent-bonded to obtain the flow path structure 1.

このような方法で流路構成体1を製造する際、窪み28、38に溜まっていた空気は、貫通穴36(脱気通路)を介して外部に逃げるので、気泡が接合領域に入り込むことがない。従って、接合領域に気泡が残留することを防止することができるので、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路5付近に非接合部分が発生しないので、流路からの試料液の漏れを防止することができるなど、実施の形態1と同様な効果を奏する。   When the flow path structure 1 is manufactured by such a method, the air accumulated in the recesses 28 and 38 escapes to the outside through the through hole 36 (deaeration passage), so that bubbles may enter the joining region. Absent. Accordingly, it is possible to prevent bubbles from remaining in the bonding region, and thus it is possible to prevent the occurrence of non-bonded portions due to the remaining bubbles. Therefore, since no non-joined portion is generated in the vicinity of the flow path 5, the same effects as in the first embodiment can be obtained, such as prevention of leakage of the sample liquid from the flow path.

[実施の形態3]
図3(A)、(B)、(C)は各々、本発明の実施の形態3に係る流路構成体の平面図、そのC−C′断面図、および接合領域の外周縁を拡大して示す断面図である。
[Embodiment 3]
3A, 3B, and 3C are respectively a plan view of a flow path structure according to Embodiment 3 of the present invention, a cross-sectional view thereof taken along the line C-C ', and an enlarged outer peripheral edge of the joining region. FIG.

図3(A)、(B)に示す流路構成体1でも、実施の形態1、2と同様、第1の樹脂成形部材2の接合面20には流路5を形成する微細な流路形成溝21が形成され、第2の樹脂成形部材3には、試験液導入口などとして利用される貫通穴32が形成されており、第1の樹脂成形部材2と第2の樹脂成形部材3とを接合すると、流路形成溝21の上方が第2の樹脂成形部材3に塞がれて流路5が形成されるとともに、貫通穴32が流路5に連通する。ここで、流路形成溝21は微細であり、例えば、幅寸法が500μm以下、深さ寸法が500μm以下である。また、本形態でも、第1の樹脂成形部材2の接合面20、および第2の樹脂成形部材3の接合面30には、各々の四隅に、エジェクトピンの当接により窪み28、38(エジェクトピン痕)が形成されている。なお、本形態において、窪み28、38は、第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねた際、互いに重なる位置に形成されている。   3A and 3B, as in the first and second embodiments, the fine channel that forms the channel 5 on the joint surface 20 of the first resin molding member 2 is also used. The formation groove 21 is formed, and the second resin molded member 3 is formed with a through-hole 32 used as a test solution introduction port or the like, and the first resin molded member 2 and the second resin molded member 3 are formed. Are joined to the second resin molding member 3 to form the flow path 5 and the through hole 32 communicates with the flow path 5. Here, the flow path forming groove 21 is fine and has, for example, a width dimension of 500 μm or less and a depth dimension of 500 μm or less. Also in this embodiment, the bonding surface 20 of the first resin molding member 2 and the bonding surface 30 of the second resin molding member 3 are provided with depressions 28 and 38 (ejects) at the respective four corners by contact of the eject pins. Pin marks) are formed. In the present embodiment, the recesses 28 and 38 are formed at positions where the first resin molded member 2 and the second resin molded member 3 are overlapped with each other.

ここで、第2の樹脂成形部材3の接合面30には、複数の窪み28、38の形成位置を通るように脱気溝35(脱気通路)が形成されており、脱気溝35は、第2の樹脂成形部材3の接合面30の外周縁まで届いている。   Here, a deaeration groove 35 (a deaeration passage) is formed on the joint surface 30 of the second resin molding member 3 so as to pass through the formation positions of the plurality of depressions 28 and 38. The second resin molding member 3 reaches the outer peripheral edge of the joint surface 30.

また、本形態では、図3(C)に示すように、第1の樹脂成形部材2および第2の樹脂成形部材3において、接合領域の外周縁に位置する縁部に面取り加工が施され、テーパ面27、37が形成されている。本形態において、第1の樹脂成形部材2と第2の樹脂成形部材3とは同一サイズであり、互いに完全に重なった状態で流路構成体1を構成しているので、その全面が接合領域である。従って、第1の樹脂成形部材2および第2の樹脂成形部材3の外周縁全体が面取り加工され、テーパ面27、37が形成されている。このようなテーパ面27、37は、第1の樹脂成形部材2および第2の樹脂成形部材3を樹脂成形により形成する際、金型の入角にテーパを付しておくことにより形成できる他、樹脂成形により第1の樹脂成形部材2および第2の樹脂成形部材3を形成した後の二次加工より形成することができる。   Moreover, in this form, as shown in FIG.3 (C), in the 1st resin molding member 2 and the 2nd resin molding member 3, the edge part located in the outer periphery of a joining area | region is given, Tapered surfaces 27 and 37 are formed. In this embodiment, the first resin molded member 2 and the second resin molded member 3 are the same size, and the flow path structure 1 is configured in a state of being completely overlapped with each other, so that the entire surface thereof is a bonding region. It is. Therefore, the entire outer peripheral edges of the first resin molded member 2 and the second resin molded member 3 are chamfered to form tapered surfaces 27 and 37. Such taper surfaces 27 and 37 can be formed by tapering the entrance angle of the mold when the first resin molded member 2 and the second resin molded member 3 are formed by resin molding. It can be formed by secondary processing after forming the first resin molded member 2 and the second resin molded member 3 by resin molding.

このように構成された樹脂成形部材2、3を用いて流路構成体1を製造するには、まず、接合面20、30同士が重なるように第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねる。その結果、窪み28、38および脱気溝35は、下方が第1の樹脂成形部材2の接合面20で覆われるが、脱気溝35は、第2の樹脂成形部材3の接合面30の外周縁まで届いているので、窪み28、38は、脱気溝35を介して外部と連通している。また、テーパ面27、37によって、第1の樹脂成形部材2と第2の樹脂成形部材3との間に形成された隙間は外側に向けて大きく開口している。   In order to manufacture the flow path structure 1 using the resin molded members 2 and 3 configured as described above, first, the first resin molded member 2 and the second resin are formed such that the joint surfaces 20 and 30 overlap each other. The molded member 3 is overlapped. As a result, the depressions 28 and 38 and the deaeration groove 35 are covered with the joint surface 20 of the first resin molding member 2 at the lower side, but the deaeration groove 35 is formed on the joint surface 30 of the second resin molding member 3. Since it reaches the outer peripheral edge, the recesses 28 and 38 communicate with the outside through the deaeration groove 35. Moreover, the clearance gap formed between the 1st resin molding member 2 and the 2nd resin molding member 3 by the taper surfaces 27 and 37 is opened large toward the outer side.

次に、貫通穴33からプロピルアルコールなどの溶剤を注入する。その結果、溶剤は接合面20、30との間で薄く広がる。また、第1の樹脂成形部材2と第2の樹脂成形部材3との間の隙間において外周縁では溶剤が多量に溜まる。   Next, a solvent such as propyl alcohol is injected from the through hole 33. As a result, the solvent spreads thinly between the joint surfaces 20 and 30. Further, in the gap between the first resin molded member 2 and the second resin molded member 3, a large amount of solvent accumulates at the outer peripheral edge.

次に、第1の樹脂成形部材2と第2の樹脂成形部材3とを例えば60℃位にまで加熱しながら第1の樹脂成形部材2と第2の樹脂成形部材3とを加圧し、第1の樹脂成形部材2と第2の樹脂成形部材3とを溶剤接着して流路構成体1を得る。   Next, the first resin molded member 2 and the second resin molded member 3 are pressurized while heating the first resin molded member 2 and the second resin molded member 3 to about 60 ° C., for example. The first resin molded member 2 and the second resin molded member 3 are solvent-bonded to obtain the flow path structure 1.

このような方法で流路構成体1を製造する際、窪み28、38に溜まっていた空気は、貫通穴36(脱気通路)を介して外部に逃げるので、気泡が接合領域に入り込むことがない。従って、接合領域に気泡が残留することを防止することができるので、気泡の残留に起因する非接合部分の発生を防止することができるなど、実施の形態1、2と同様な効果を奏する。   When the flow path structure 1 is manufactured by such a method, the air accumulated in the recesses 28 and 38 escapes to the outside through the through hole 36 (deaeration passage), so that bubbles may enter the joining region. Absent. Therefore, since bubbles can be prevented from remaining in the joining region, the same effects as those of the first and second embodiments can be achieved, such as the generation of non-joined portions due to the remaining bubbles.

また、第1の樹脂成形部材2と第2の樹脂成形部材3との間において外周縁では、テーパ面27、37により、外周縁からやや内側まで広い隙間が食い込んでいる。このため、第1の樹脂成形部材2と第2の樹脂成形部材3との間に残留しようとする気泡を外部に放出しやすい。また、本形態では、第1の樹脂成形部材2と第2の樹脂成形部材3との接合に溶剤接着を用いたため、接合領域の外周側では内側に比較して溶剤の蒸発が発生しやすく、接合が完了しやすいが、本形態では、テーパ面27、37の形成により、接合領域の外周側に溶剤が多量に溜まっているので、この部分での接合を遅らせることができる。それ故、内側から気泡を放出しやすいので、接合領域に気泡が残留することを防止することができる。それ故、気泡の残留に起因する非接合部分の発生を防止することができるので、流路5付近に非接合部分が発生しないので、流路5からの試料液の漏れを防止することができる。さらに、樹脂成形後、第1の樹脂成形部材2および第2の樹脂成形部材3の外周縁にバリなどの突起が発生している場合でも、このような突起を除去できるので、接合領域に気泡が残留することを防止することができ、流路5付近での気泡の残留に起因する非接合部分の発生を防止することができる。   In addition, a wide gap between the first resin molded member 2 and the second resin molded member 3 at the outer peripheral edge is formed by the tapered surfaces 27 and 37 from the outer peripheral edge to the inner side. For this reason, it is easy to discharge | release the bubble which tends to remain between the 1st resin molding member 2 and the 2nd resin molding member 3 outside. Further, in this embodiment, since the solvent adhesion is used for joining the first resin molded member 2 and the second resin molded member 3, the evaporation of the solvent is more likely to occur on the outer peripheral side of the joining region compared to the inner side. Although the joining is easy to complete, in this embodiment, since a large amount of solvent is accumulated on the outer peripheral side of the joining region due to the formation of the tapered surfaces 27 and 37, the joining at this part can be delayed. Therefore, since it is easy to discharge | release a bubble from an inner side, it can prevent that a bubble remains in a joining area | region. Therefore, it is possible to prevent the occurrence of a non-joined portion due to residual bubbles, so that no non-joined portion is generated in the vicinity of the flow channel 5, so that leakage of the sample liquid from the flow channel 5 can be prevented. . Furthermore, even if protrusions such as burrs are generated on the outer peripheral edges of the first resin molded member 2 and the second resin molded member 3 after the resin molding, such protrusions can be removed, so that bubbles are formed in the joining region. Can be prevented, and the occurrence of non-joined portions due to the remaining of bubbles in the vicinity of the flow path 5 can be prevented.

なお、本形態で説明した面取り加工については、実施の形態2にも適用することができる。   Note that the chamfering described in this embodiment can also be applied to the second embodiment.

[実施の形態4]
図4(A)、(B)は各々、本発明の実施の形態4に係る流路構成体の平面図、およびそのD−D′断面図である。
[Embodiment 4]
4 (A) and 4 (B) are a plan view and a DD ′ cross-sectional view, respectively, of a flow path structure according to Embodiment 4 of the present invention.

図4(A)、(B)に示す流路構成体1でも、実施の形態1と同様、第1の樹脂成形部材2の接合面20には流路5を形成する微細な流路形成溝21が形成され、第2の樹脂成形部材3には、試験液導入口などとして利用される貫通穴32が形成されており、第1の樹脂成形部材2と第2の樹脂成形部材3とを接合すると、流路形成溝21の上方が第2の樹脂成形部材3に塞がれて流路5が形成されるとともに、貫通穴32が流路5に連通する。ここで、流路形成溝21は微細であり、例えば、幅寸法が500μm以下、深さ寸法が500μm以下である。   4A and 4B, the flow channel structure 1 shown in FIGS. 4A and 4B also has a fine flow channel forming groove that forms the flow channel 5 on the joint surface 20 of the first resin molding member 2, as in the first embodiment. 21 is formed, and the second resin molded member 3 is formed with a through-hole 32 used as a test solution introduction port or the like, and the first resin molded member 2 and the second resin molded member 3 are connected to each other. When joined, the upper part of the flow path forming groove 21 is closed by the second resin molding member 3 to form the flow path 5, and the through hole 32 communicates with the flow path 5. Here, the flow path forming groove 21 is fine and has, for example, a width dimension of 500 μm or less and a depth dimension of 500 μm or less.

本形態でも、第1の樹脂成形部材2の接合面20、および第2の樹脂成形部材3の接合面30には、エジェクトピンが当接した箇所に窪み28、38(エジェクトピン痕)が形成されているが、本形態では、第1の樹脂成形部材2の接合面20、および第2の樹脂成形部材3の接合面30の四隅のうち、3つの隅に窪み28、38が形成されている。   Also in this embodiment, depressions 28 and 38 (eject pin marks) are formed on the joining surface 20 of the first resin molding member 2 and the joining surface 30 of the second resin molding member 3 at locations where the eject pins contact. However, in this embodiment, depressions 28 and 38 are formed at three corners among the four corners of the joint surface 20 of the first resin molding member 2 and the joint surface 30 of the second resin molding member 3. Yes.

ここで、第1の樹脂成形部材2と第2の樹脂成形部材3とは、完全には重なってはおらず、窪み28、38は開放状態のままである。すなわち、本形態では、第1の樹脂成形部材2と第2の樹脂成形部材3とは、窪み28、38が形成されていない隅を含む対角方向にずれており、いずれの窪み28、38も開放状態のままである。   Here, the first resin molding member 2 and the second resin molding member 3 are not completely overlapped, and the recesses 28 and 38 remain open. That is, in this embodiment, the first resin molded member 2 and the second resin molded member 3 are shifted in the diagonal direction including the corners where the recesses 28 and 38 are not formed. Remains open.

このように構成された樹脂成形部材2、3を用いて流路構成体1を製造するには、まず、接合面20、30同士が重なるように第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねる。その際、第1の樹脂成形部材2と第2の樹脂成形部材3とを対角方向にずらし、いずれの窪み28、38も開放状態とする。   In order to manufacture the flow path structure 1 using the resin molded members 2 and 3 configured as described above, first, the first resin molded member 2 and the second resin are formed such that the joint surfaces 20 and 30 overlap each other. The molded member 3 is overlapped. In that case, the 1st resin molding member 2 and the 2nd resin molding member 3 are shifted to a diagonal direction, and all the hollows 28 and 38 are made into an open state.

次に、貫通穴33からプロピルアルコールなどの溶剤を注入する。その結果、溶剤は接合面20、30との間で薄く広がる。   Next, a solvent such as propyl alcohol is injected from the through hole 33. As a result, the solvent spreads thinly between the joint surfaces 20 and 30.

次に、第1の樹脂成形部材2と第2の樹脂成形部材3とを例えば60℃位にまで加熱しながら第1の樹脂成形部材2と第2の樹脂成形部材3とを加圧し、第1の樹脂成形部材2と第2の樹脂成形部材3とを溶剤接着して流路構成体1を得る。   Next, the first resin molded member 2 and the second resin molded member 3 are pressurized while heating the first resin molded member 2 and the second resin molded member 3 to about 60 ° C., for example. The first resin molded member 2 and the second resin molded member 3 are solvent-bonded to obtain the flow path structure 1.

このように、本形態では、第1の樹脂成形部材2と第2の樹脂成形部材3では各々、接合面20、30の側のうち、窪み28、38を避けた領域を接合領域としている。このため、窪み28、38内の空気が接合領域に入り込むことがないので、接合領域に気泡が残留することを防止することができ、気泡の残留に起因する非接合部分の発生を防止することができる。それ故、流路5付近に非接合部分が発生しないので、流路5からの試料液の漏れを防止することができる。また、第1の樹脂成形部材2および第2の樹脂成形部材3において電極端子などを形成する必要がある場合には、第1の樹脂成形部材2および第2の張り出し領域に電極端子を形成すれば、フレキシブル配線基板などを容易に接続できる。   As described above, in this embodiment, in the first resin molded member 2 and the second resin molded member 3, a region where the depressions 28 and 38 are avoided on the side of the bonding surfaces 20 and 30 is used as a bonding region. For this reason, since the air in the depressions 28 and 38 does not enter the joining region, it is possible to prevent bubbles from remaining in the joining region, and to prevent the occurrence of non-joined portions due to the remaining bubbles. Can do. Therefore, no non-bonded portion is generated in the vicinity of the flow path 5, so that leakage of the sample liquid from the flow path 5 can be prevented. Further, when it is necessary to form electrode terminals or the like in the first resin molded member 2 and the second resin molded member 3, the electrode terminals are formed in the first resin molded member 2 and the second overhanging region. For example, a flexible wiring board can be easily connected.

なお、実施の形態3で説明した面取り加工については、本形態にも適用することができる。すなわち、本形態でも、第1の樹脂成形部材2および第2の樹脂成形部材3において接合領域の外周縁に位置する縁部に面取り加工を施してもよい。   Note that the chamfering described in the third embodiment can also be applied to this embodiment. That is, also in this embodiment, chamfering may be applied to the edge portion located on the outer peripheral edge of the joining region in the first resin molded member 2 and the second resin molded member 3.

[実施の形態5]
図5(A)、(B)、(C)は各々、本発明の実施の形態5に係る流路構成体の平面図、そのE−E′断面図、および接合領域の外周縁を拡大して示す断面図である。
[Embodiment 5]
5A, 5B, and 5C are respectively a plan view of a flow channel structure according to Embodiment 5 of the present invention, an EE ′ cross-sectional view thereof, and an outer peripheral edge of the joining region. FIG.

実施の形態3で説明した面取り加工については、本形態のように、接合面での窪みや、窪みに対する脱気対策の有無に関わらず、採用してもよい。   The chamfering process described in the third embodiment may be employed regardless of whether there is a depression on the joint surface or a deaeration measure against the depression as in this embodiment.

図5(A)、(B)に示す流路構成体1でも、実施の形態1、2と同様、第1の樹脂成形部材2の接合面20には流路5を形成する微細な流路形成溝21が形成され、第2の樹脂成形部材3には、試験液導入口などとして利用される円形の貫通穴32が形成されており、第1の樹脂成形部材2と第2の樹脂成形部材3とを接合すると、流路形成溝21の上方が第2の樹脂成形部材3に塞がれて流路5が形成されるとともに、貫通穴32が流路5に連通する。ここで、流路形成溝21は微細であり、例えば、幅寸法が500μm以下、深さ寸法が500μm以下である。   5A and 5B, as in the first and second embodiments, a fine flow path that forms the flow path 5 on the joint surface 20 of the first resin molding member 2 is also used. A formation groove 21 is formed, and the second resin molding member 3 is formed with a circular through hole 32 used as a test solution introduction port or the like, and the first resin molding member 2 and the second resin molding are formed. When the member 3 is joined, the flow path forming groove 21 is closed by the second resin molding member 3 to form the flow path 5, and the through hole 32 communicates with the flow path 5. Here, the flow path forming groove 21 is fine and has, for example, a width dimension of 500 μm or less and a depth dimension of 500 μm or less.

また、本形態では、図5(C)に示すように、第1の樹脂成形部材2および第2の樹脂成形部材3において、接合領域の外周縁に位置する縁部に面取り加工が施され、テーパ面27、37が形成されている。本形態において、第1の樹脂成形部材2と第2の樹脂成形部材3とは同一サイズであり、互いに完全に重なった状態で流路構成体1を構成しているので、その全面が接合領域である。従って、第1の樹脂成形部材2および第2の樹脂成形部材3の外周全体が面取り加工され、テーパ面27、37が形成されている。   Moreover, in this form, as shown in FIG.5 (C), in the 1st resin molding member 2 and the 2nd resin molding member 3, the edge part located in the outer periphery of a joining area | region is given, Tapered surfaces 27 and 37 are formed. In this embodiment, the first resin molded member 2 and the second resin molded member 3 are the same size, and the flow path structure 1 is configured in a state of being completely overlapped with each other, so that the entire surface thereof is a bonding region. It is. Accordingly, the entire outer periphery of the first resin molded member 2 and the second resin molded member 3 is chamfered to form tapered surfaces 27 and 37.

このように構成された樹脂成形部材2、3を用いて流路構成体1を製造するには、まず、接合面20、30同士が重なるように第1の樹脂成形部材2と第2の樹脂成形部材3とを重ねる。   In order to manufacture the flow path structure 1 using the resin molded members 2 and 3 configured as described above, first, the first resin molded member 2 and the second resin are formed such that the joint surfaces 20 and 30 overlap each other. The molded member 3 is overlapped.

次に、貫通穴33からプロピルアルコールなどの溶剤を注入する。その結果、溶剤は接合面20、30との間で薄く広がる。また、第1の樹脂成形部材2と第2の樹脂成形部材3との間において外周縁では溶剤が多量に溜まる。   Next, a solvent such as propyl alcohol is injected from the through hole 33. As a result, the solvent spreads thinly between the joint surfaces 20 and 30. Further, a large amount of solvent is accumulated at the outer peripheral edge between the first resin molded member 2 and the second resin molded member 3.

次に、第1の樹脂成形部材2と第2の樹脂成形部材3とを例えば60℃位にまで加熱しながら第1の樹脂成形部材2と第2の樹脂成形部材3とを加圧し、第1の樹脂成形部材2と第2の樹脂成形部材3とを溶剤接着して流路構成体1を得る。   Next, the first resin molded member 2 and the second resin molded member 3 are pressurized while heating the first resin molded member 2 and the second resin molded member 3 to about 60 ° C., for example. The first resin molded member 2 and the second resin molded member 3 are solvent-bonded to obtain the flow path structure 1.

このような方法で流路構成体1を製造する際、第1の樹脂成形部材2と第2の樹脂成形部材3との間において外周縁では、テーパ面27、37により、外周縁からやや内側まで広い隙間が食い込んでいる。このため、第1の樹脂成形部材2と第2の樹脂成形部材3との間のうち、外周側に残留する気泡を外部に放出しやすい。また、本形態では、第1の樹脂成形部材2と第2の樹脂成形部材3との接合に溶剤接着を用いたため、接合領域の外周側では内側に比較して溶剤の蒸発が発生しやすく、接合が完了しやすいが、本形態では、テーパ面27、37の形成により、接合領域の外周側に溶剤が多量に溜まっているので、この部分での接合を遅らせることができる。それ故、内側から気泡を放出しやすいので、接合領域に気泡が残留することを防止することができる。それ故、気泡の残留に起因する非接合部分の発生を防止することができるので、流路5付近に非接合部分が発生しないので、流路5からの試料液の漏れを防止することができる。さらに、樹脂成形後、第1の樹脂成形部材2および第2の樹脂成形部材3の外周縁にバリなどの突起が発生している場合でも、このような突起を除去できるので、接合領域に気泡が残留することを防止することができ、流路5付近での気泡の残留に起因する非接合部分の発生を防止することができる。   When the flow path structure 1 is manufactured by such a method, the outer peripheral edge between the first resin molded member 2 and the second resin molded member 3 is slightly inward from the outer peripheral edge by the tapered surfaces 27 and 37. A wide gap is invading. For this reason, it is easy to discharge | release the bubble which remains on the outer peripheral side between the 1st resin molding member 2 and the 2nd resin molding member 3 outside. Further, in this embodiment, since the solvent adhesion is used for joining the first resin molded member 2 and the second resin molded member 3, the evaporation of the solvent is more likely to occur on the outer peripheral side of the joining region compared to the inner side. Although the joining is easy to complete, in this embodiment, since a large amount of solvent is accumulated on the outer peripheral side of the joining region due to the formation of the tapered surfaces 27 and 37, the joining at this part can be delayed. Therefore, since it is easy to discharge | release a bubble from an inner side, it can prevent that a bubble remains in a joining area | region. Therefore, it is possible to prevent the occurrence of a non-joined portion due to residual bubbles, so that no non-joined portion is generated in the vicinity of the flow channel 5, so that leakage of the sample liquid from the flow channel 5 can be prevented. . Furthermore, even if protrusions such as burrs are generated on the outer peripheral edges of the first resin molded member 2 and the second resin molded member 3 after the resin molding, such protrusions can be removed, so that bubbles are formed in the joining region. Can be prevented, and the occurrence of non-joined portions due to the remaining of bubbles in the vicinity of the flow path 5 can be prevented.

[評価結果の一例]
(実施例1/実施の形態1)
本実施例では、第1の樹脂成形部材2および第2の樹脂成形部材3としてアクリル樹脂板を用いた。第2の樹脂成形部材3には貫通穴32を形成し、第1の樹脂成形部材2には、幅200μm、深さ200μmの流路形成溝21を形成した。なお、貫通孔32および流路形成溝21は、第1の樹脂成形部材2と第2の樹脂成形部材3とを重ね合わせた際、貫通穴32と流路形成溝21の一部とが重なるよう配置する。また、第1の樹脂成形部材2および第2の樹脂成形部材3の角付近には、エジェクトピン痕である窪み28、38(φ1.5mm、深さ30μm)が形成されており、第2の樹脂成形部材3には、窪み28、38を外部と連通させる脱気溝35を切削刃で形成した。なお、本例において、第1の樹脂成形部材2および第2の樹脂成形部材3の端部は、C面取り加工が施されていない。
[Example of evaluation results]
(Example 1 / Embodiment 1)
In this example, acrylic resin plates were used as the first resin molded member 2 and the second resin molded member 3. A through hole 32 was formed in the second resin molded member 3, and a flow path forming groove 21 having a width of 200 μm and a depth of 200 μm was formed in the first resin molded member 2. The through hole 32 and the flow path forming groove 21 are overlapped with each other when the first resin molded member 2 and the second resin molded member 3 are overlapped. Arrange so that. Further, in the vicinity of the corners of the first resin molded member 2 and the second resin molded member 3, recesses 28 and 38 (φ1.5 mm, depth 30 μm) which are eject pin marks are formed. The resin molded member 3 was formed with a deaeration groove 35 that communicates the depressions 28 and 38 with the outside with a cutting blade. In this example, the end portions of the first resin molded member 2 and the second resin molded member 3 are not subjected to C chamfering.

次に、接合工程において、第1の樹脂成形部材2の接合面と第2の樹脂成形部材3の接合面との間に、溶剤として2−プロパノールを注入し、その後、約50kPaで加圧し、60℃にて一定時間放置した。   Next, in the bonding step, 2-propanol is injected as a solvent between the bonding surface of the first resin molding member 2 and the bonding surface of the second resin molding member 3, and then pressurized at about 50 kPa, It was left at 60 ° C. for a certain time.

(実施例2/実施の形態2)
本実施例では、第1の樹脂成形部材2に形成される流路形成溝21を、幅300μm、深さ300μmとした。また、第1の樹脂成形部材2および第2の樹脂成形部材3の角付近には、エジェクトピン痕である窪み28、38(φ1.5mm、深さ30μm)が形成されており、第2の樹脂成形部材3には、窪み28、38を外部と連通させる脱気溝35を切削刃で形成した。なお、本例において、第1の樹脂成形部材2および第2の樹脂成形部材3の端部は、C面取り加工が施されていない。本実施例では、流路形成溝21の深さが実施の形態1と比べて深いため、クラックが発生しないよう加える圧力を約10kPaとし、実施の形態1と比べて加える圧力を低くした。第1の樹脂成形部材2および第2の樹脂成形部材3におけるその他の構成、および接合工程におけるその他の条件は実施例1と同様である。
(Example 2 / Embodiment 2)
In the present embodiment, the flow path forming groove 21 formed in the first resin molded member 2 has a width of 300 μm and a depth of 300 μm. Further, in the vicinity of the corners of the first resin molded member 2 and the second resin molded member 3, recesses 28 and 38 (φ1.5 mm, depth 30 μm) which are eject pin marks are formed. The resin molded member 3 was formed with a deaeration groove 35 that communicates the depressions 28 and 38 with the outside with a cutting blade. In this example, the end portions of the first resin molded member 2 and the second resin molded member 3 are not subjected to C chamfering. In this example, since the depth of the flow path forming groove 21 is deeper than that of the first embodiment, the pressure applied so as not to generate cracks is set to about 10 kPa, and the pressure applied is lower than that of the first embodiment. Other configurations in the first resin molded member 2 and the second resin molded member 3 and other conditions in the joining step are the same as those in the first embodiment.

(実施例3/実施の形態3)
本実施例では、第1の樹脂成形部材2に形成される流路形成溝21を、幅300μm、深さ300μmとした。また、第1の樹脂成形部材2および第2の樹脂成形部材3の角付近には、エジェクトピン痕である窪み28、38(φ1.5mm、深さ30μm)が形成されており、第2の樹脂成形部材3には、窪み28、38を外部と連通させる脱気溝35を切削刃で形成した。さらに、第1の樹脂成形部材2および第2の樹脂成形部材3の端部には、幅0.3mm程度にわたってC面取り部(テーパ面27、37)を形成した。本実施例では、流路形成溝21の深さが実施の形態1と比べて深いため、クラックが発生しないよう加える圧力を約10kPaとし、実施の形態1と比べて加える圧力を低くした。第1の樹脂成形部材2および第2の樹脂成形部材3におけるその他の構成、および接合工程におけるその他の条件は実施例1、2と同様である。
(Example 3 / Embodiment 3)
In the present embodiment, the flow path forming groove 21 formed in the first resin molded member 2 has a width of 300 μm and a depth of 300 μm. Further, in the vicinity of the corners of the first resin molded member 2 and the second resin molded member 3, recesses 28 and 38 (φ1.5 mm, depth 30 μm) which are eject pin marks are formed. The resin molded member 3 was formed with a deaeration groove 35 that communicates the depressions 28 and 38 with the outside with a cutting blade. Further, C chamfered portions (tapered surfaces 27 and 37) were formed at the end portions of the first resin molded member 2 and the second resin molded member 3 over a width of about 0.3 mm. In this example, since the depth of the flow path forming groove 21 is deeper than that of the first embodiment, the pressure applied so as not to generate cracks is set to about 10 kPa, and the pressure applied is lower than that of the first embodiment. Other configurations in the first resin molded member 2 and the second resin molded member 3 and other conditions in the joining step are the same as those in the first and second embodiments.

(比較例)
本例の条件は、実施例1の条件において、脱気溝35を省略したものであり、その他の条件は、実施例1と同様である。
(Comparative example)
The conditions of this example are the same as the conditions of Example 1, except that the deaeration groove 35 is omitted, and the other conditions are the same as those of Example 1.

(評価結果)
上記の比較例では、気泡の残留に起因する非接着部分が端部で発生し、流路5での液漏れが確認された。これに対して、上記の実施例1〜3はいずれも、比較例と違って、気泡の残留に起因する非接着部分の発生がなく、流路5での液漏れが発生しなかった。なお、実施例2では、実施例1と比較して押圧力を低くした分、端部に気泡がわずかに残留したが、流路5での液漏れは発生しなかった。これに対して、実施例3では、実施例1と比較して押圧力を低くしたが、実施例2と違って端部でも気泡の残留は見られなかった。
(Evaluation results)
In the above comparative example, a non-adhered portion due to the remaining bubbles was generated at the end, and liquid leakage in the flow path 5 was confirmed. On the other hand, in each of the above Examples 1 to 3, unlike the comparative example, there was no occurrence of a non-adhered portion due to residual bubbles, and no liquid leakage occurred in the flow path 5. In Example 2, bubbles were slightly left at the end as much as the pressing force was lower than that in Example 1, but no liquid leakage occurred in the flow path 5. In contrast, in Example 3, the pressing force was lower than that in Example 1, but unlike Example 2, no bubbles remained at the ends.

[その他の実施の形態]
上記形態の流路構成体1は、2枚の樹脂成形部材2、3を重ね合わせるによって構成されているが、複数枚の樹脂成形部材を重ね合わせることにより構成される流路構成体においても、本発明を適用することができる。
[Other embodiments]
Although the flow path structure 1 of the said form is comprised by superimposing the two resin molding members 2 and 3, also in the flow path structure comprised by superimposing a plurality of resin molding members, The present invention can be applied.

上記形態の流路構成体1では、樹脂成形部材2、3としてアクリル樹脂を用いたが、ポリカーボネート樹脂、アクリロニトリル・ブタジエン・スチレン樹脂を用いてもよい。   In the flow path structure 1 of the above-described form, acrylic resin is used as the resin molding members 2 and 3, but polycarbonate resin and acrylonitrile / butadiene / styrene resin may be used.

上記形態において用いる溶剤としては、アルコール類、ケトン類、炭化水素系の溶剤が挙げられる。   Examples of the solvent used in the above form include alcohols, ketones, and hydrocarbon solvents.

上記形態の流路構成体1は、溶剤を用いて2枚の樹脂成形部材2、3を接合したものであるが、溶剤を用いず、樹脂成形部材2、3を密着させ加熱、加圧を行うことにより樹脂成形部材同士を接合させる流路構成体に対しても、本発明を適用することができる。   Although the flow path structure 1 of the said form joins the two resin molding members 2 and 3 using a solvent, the resin molding members 2 and 3 are closely_contact | adhered and heated and pressurized without using a solvent. The present invention can also be applied to a flow path structure that joins resin molded members together.

上記形態において、窪み28、38は、樹脂成形部材を金型から離型する離型工程時に、樹脂成形部材を押し出すエジェクトピン痕であったが、エジェクトピン痕以外の窪み28、38が形成されている場合にも適用することができる。   In the above embodiment, the recesses 28 and 38 are eject pin marks that extrude the resin molded member during the mold release step of releasing the resin molded member from the mold, but the recesses 28 and 38 other than the eject pin marks are formed. It can also be applied when

(A)、(B)は各々、本発明の実施の形態1に係る流路構成体の平面図、およびそのA−A′断面図である。(A), (B) is the top view of the flow-path structure based on Embodiment 1 of this invention, respectively, and its AA 'sectional drawing. (A)、(B)は各々、本発明の実施の形態2に係る流路構成体の平面図、およびそのB−B′断面図である。(A), (B) is the top view of the flow-path structure based on Embodiment 2 of this invention, respectively, and its BB 'sectional drawing. (A)、(B)、(C)は各々、本発明の実施の形態3に係る流路構成体の平面図、そのC−C′断面図、および接合領域の外周縁を拡大して示す断面図である。(A), (B), (C) is an enlarged plan view of the flow path structure according to Embodiment 3 of the present invention, its C-C 'cross-sectional view, and the outer peripheral edge of the joining region. It is sectional drawing. (A)、(B)は各々、本発明の実施の形態4に係る流路構成体の平面図、およびそのD−D′断面図である。(A), (B) is the top view of the flow-path structure based on Embodiment 4 of this invention, respectively, and its DD 'sectional drawing. (A)、(B)、(C)は各々、本発明の実施の形態5に係る流路構成体の平面図、そのE−E′断面図、および接合領域の外周縁を拡大して示す断面図である。(A), (B), (C) is an enlarged plan view of the flow path structure according to Embodiment 5 of the present invention, its EE ′ cross-sectional view, and the outer peripheral edge of the joining region. It is sectional drawing.

符号の説明Explanation of symbols

1 流路構成体
2 第1の樹脂成形部材
3 第2の樹脂成形部材
5 流路
20、30 接合面
21 流路形成溝
27、37 テーパ面
28、38 窪み
32 試験液注入用の貫通穴
33 溶剤注入用の貫通穴
35 脱気溝
36 脱気用の貫通穴
DESCRIPTION OF SYMBOLS 1 Flow path structure body 2 1st resin molding member 3 2nd resin molding member 5 Flow path 20, 30 Joint surface 21 Flow path formation groove | channel 27, 37 Tapered surface 28, 38 Indentation 32 Through-hole 33 for test solution injection | pouring Through hole 35 for solvent injection Deaeration groove 36 Through hole for deaeration

Claims (9)

第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、
前記第1の接合面および前記第2の接合面の少なくとも一方に窪みが形成されており、
前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方には、前記窪みを外部と連通させる脱気通路が形成されていることを特徴とする流路構成体。
The first joint surface of the first resin molding member and the second joint surface of the second resin molding member are joined, and a flow path is formed on at least one of the first joint surface and the second joint surface In the flow path structure in which the groove is formed,
A recess is formed in at least one of the first joint surface and the second joint surface,
At least one of the first resin molding member and the second resin molding member is formed with a deaeration passage that allows the depression to communicate with the outside.
請求項1において、
前記脱気通路は、前記第1の接合面および前記第2の接合面の少なくとも一方に形成された溝によって形成されていることを特徴とする流路構成体。
In claim 1,
The deaeration passage is formed by a groove formed in at least one of the first joint surface and the second joint surface.
請求項1において、
前記脱気通路は、前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方に形成された貫通穴によって形成されていることを特徴とする流路構成体。
In claim 1,
The deaeration passage is formed by a through hole formed in at least one of the first resin molding member and the second resin molding member.
第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、
前記第1の接合面側および前記第2の接合面側の少なくとも一方に窪みが形成されており、
前記第1の樹脂成形部材と前記第2の樹脂成形部材では各々、前記第1の接合面側および前記第2の接合面側のうち、前記窪みを避けた領域が前記第1の接合面と前記第2の接合面との接合領域とされていることを特徴とする流路構成体。
The first joint surface of the first resin molding member and the second joint surface of the second resin molding member are joined, and a flow path is formed on at least one of the first joint surface and the second joint surface In the flow path structure in which the groove is formed,
A depression is formed in at least one of the first joint surface side and the second joint surface side,
In each of the first resin molding member and the second resin molding member, a region avoiding the dent in the first joint surface side and the second joint surface side is the first joint surface. A flow path structure, characterized in that the flow path structure is a bonding region with the second bonding surface.
請求項1ないし4のいずれかにおいて、
前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方で前記第1の接合面と前記第2の接合面との接合領域の外周縁に位置する縁部に面取り加工が施されていることを特徴とする流路構成体。
In any of claims 1 to 4,
A chamfering process is performed on an edge located at an outer peripheral edge of a joining region between the first joining surface and the second joining surface at least one of the first resin molding member and the second resin molding member. A flow path structure characterized by comprising:
第1の樹脂成形部材の第1の接合面と第2の樹脂成形部材の第2の接合面とが接合され、前記第1の接合面および前記第2の接合面の少なくとも一方に流路形成溝が形成されている流路構成体において、
前記第1の樹脂成形部材および前記第2の樹脂成形部材の少なくとも一方で前記第1の接合面と前記第2の接合面との接合領域の外周縁に位置する縁部に面取り加工が施されていることを特徴とする流路構成体。
The first joint surface of the first resin molding member and the second joint surface of the second resin molding member are joined, and a flow path is formed on at least one of the first joint surface and the second joint surface In the flow path structure in which the groove is formed,
A chamfering process is performed on an edge located at an outer peripheral edge of a joining region between the first joining surface and the second joining surface at least one of the first resin molding member and the second resin molding member. A flow path structure characterized by comprising:
請求項1ないし6のいずれかにおいて、
前記流路形成溝は、幅寸法が500μm以下であることを特徴とする流路構成体。
In any one of Claims 1 thru | or 6.
The flow path forming body, wherein the flow path forming groove has a width dimension of 500 μm or less.
請求項7において、
前記流路形成溝は、深さ寸法が500μm以下であることを特徴とする流路構成体。
In claim 7,
The flow path formation body, wherein the flow path forming groove has a depth dimension of 500 μm or less.
請求項1ないし8のいずれかに記載の流路構成体の製造方法において、
前記第1の接合面と前記第2の接合面との間に溶剤を介在させた状態で前記第1の樹脂成形部材および前記第2の樹脂成形部材を押圧して接合することを特徴とする流路構成体の製造方法。
In the manufacturing method of the channel composition object according to any one of claims 1 to 8,
The first resin molding member and the second resin molding member are pressed and joined in a state where a solvent is interposed between the first joining surface and the second joining surface. A method for producing a flow path structure.
JP2006155833A 2006-06-05 2006-06-05 Flow channel configured body and method of manufacturing the same Pending JP2007320280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155833A JP2007320280A (en) 2006-06-05 2006-06-05 Flow channel configured body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155833A JP2007320280A (en) 2006-06-05 2006-06-05 Flow channel configured body and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007320280A true JP2007320280A (en) 2007-12-13

Family

ID=38853466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155833A Pending JP2007320280A (en) 2006-06-05 2006-06-05 Flow channel configured body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007320280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125757A1 (en) * 2008-04-11 2009-10-15 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
JP2011127919A (en) * 2009-12-15 2011-06-30 Hamamatsu Photonics Kk Specimen handling element
JP2012093285A (en) * 2010-10-28 2012-05-17 Arkray Inc Microchip
JP2019207132A (en) * 2018-05-29 2019-12-05 株式会社フコク Micro flow channel chip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125757A1 (en) * 2008-04-11 2009-10-15 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
JP2011127919A (en) * 2009-12-15 2011-06-30 Hamamatsu Photonics Kk Specimen handling element
JP2012093285A (en) * 2010-10-28 2012-05-17 Arkray Inc Microchip
JP2019207132A (en) * 2018-05-29 2019-12-05 株式会社フコク Micro flow channel chip
JP7173759B2 (en) 2018-05-29 2022-11-16 株式会社フコク microfluidic chip

Similar Documents

Publication Publication Date Title
JP2008000995A (en) Manufacturing method for bonded article made of resin, molding die, and resin bonded article
US8123998B2 (en) Injection molding method and injection molding die
JP2007320280A (en) Flow channel configured body and method of manufacturing the same
WO2012014405A1 (en) Microchannel chip and microanalysis system
JP5725155B2 (en) Manufacturing method of injection mold, injection mold, injection mold set, manufacturing method of microchip substrate, and microchip manufacturing method using this mold
WO2010021306A1 (en) Method for manufacturing micro-channel chip, die for molding micro-channel chip, and micro-channel chip
JP2006234600A (en) Plastic microchip and its manufacturing method
WO2019116680A1 (en) Injection molded article
JP6275669B2 (en) Resin products
US10160145B2 (en) Microfluidic device
TW201628825A (en) Injection mold
WO2011093265A1 (en) Gas vent pin in injection molding
JP2009166416A (en) Method for manufacturing microchip, and microchip
JP2008216121A (en) Method for manufacturing microchip
JP2014122831A (en) Microfluidic device
JP2009113487A (en) Insertion block for formation of hook field on injection-molded object, and molded object comprising hook field of this type
JP4140973B2 (en) Method for producing molded product having liquid flow path inside and molded product
JP2008221801A (en) Mold component member and its manufacturing method
JP2012192604A (en) Injection molding method
JP5838863B2 (en) Injection molded products and inspection chips
WO2018037447A1 (en) Fluid device
JP2011215006A (en) Method of manufacturing microchip, and the microchip
JP6702772B2 (en) Liquid supply member manufacturing method and manufacturing apparatus
WO2010016371A1 (en) Microchip, microchip manufacturing method and microchip manufacturing device
WO2018061906A1 (en) Resin component, and molding method and molding device for same