JP2007318181A - Adjustment method of development processor, and manufacturing method for semiconductor device - Google Patents

Adjustment method of development processor, and manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2007318181A
JP2007318181A JP2007220236A JP2007220236A JP2007318181A JP 2007318181 A JP2007318181 A JP 2007318181A JP 2007220236 A JP2007220236 A JP 2007220236A JP 2007220236 A JP2007220236 A JP 2007220236A JP 2007318181 A JP2007318181 A JP 2007318181A
Authority
JP
Japan
Prior art keywords
exposure amount
development processing
exposure
amount monitor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007220236A
Other languages
Japanese (ja)
Inventor
Kei Hayazaki
圭 早崎
Daizo Muto
大蔵 武藤
Masashi Asano
昌史 浅野
Tadahito Fujisawa
忠仁 藤澤
Takeshi Shibata
剛 柴田
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007220236A priority Critical patent/JP2007318181A/en
Publication of JP2007318181A publication Critical patent/JP2007318181A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To shorten adjustment time of development by collectively correcting the temperature distribution of a heating treatment after development, and the nonuniformity of development during a development treatment, in the development treatment. <P>SOLUTION: An adjustment method of a development processor comprises: forming a plurality of exposure monitor patterns (S303) by transferring marks to a plurality of positions of photo-sensitive resin films at set exposure, using an exposure mask in which monitor marks are arranged; subjecting a substrate in which the monitor patterns are formed to a heating treatment (S304) and subsequently to a cooling treatment (S305); subjecting the photo-sensitive resin films to a development treatment (S307), using a development processor for scanning a nozzle whose length-wise length is larger than the maximum width of the substrate; measuring the states (S308) of each of the monitor patterns after the development treatment; obtaining the mean value of the monitor pattern states at a plurality of positions and obtaining the monitor pattern states (S308) in the length-wise direction of the nozzle; and calculating control parameters (S309) of the development processor from the distribution of the monitor pattern states and altering the control parameters (S310). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、感光性樹脂膜の現像処理に用いられる現像処理装置の調整方法、更には現像処理装置の調整方法を用いて調整された装置を用いた半導体装置の製造方法に関する。   The present invention relates to a method for adjusting a development processing apparatus used for development processing of a photosensitive resin film, and further relates to a method for manufacturing a semiconductor device using an apparatus adjusted using the method for adjusting a development processing apparatus.

半導体集積回路の製造におけるフォトリソグラフィー工程では、パターン露光を行うため、露光装置にて所望パターンの形成されたマスクを介して、ウェハ上に形成されたレジスト膜に前記所望パターンを転写して行われる。   In a photolithography process in manufacturing a semiconductor integrated circuit, pattern exposure is performed by transferring the desired pattern to a resist film formed on a wafer through a mask on which a desired pattern is formed by an exposure apparatus. .

パターンの微細化の要求から、露光波長の短波長化、及び、投影レンズの高NA化がなされており、それと同時にプロセスの改善が同時に行われてきた。しかしながら、近年のデバイスパターンの微細化要求はさらに厳しく、露光量裕度や焦点深度のプロセスマージンを十分に得ることが難しく、歩留まりの減少を引き起こしていた。   Due to the demand for pattern miniaturization, the exposure wavelength has been shortened and the NA of the projection lens has been increased. At the same time, the process has been improved at the same time. However, demands for miniaturization of device patterns in recent years have become more severe, and it has been difficult to obtain a sufficient process margin for exposure latitude and depth of focus, causing a reduction in yield.

少ないプロセスマージンで光リソグラフィを行うためには、プロセスマージンを消費する誤差の精密な分析と誤差配分(エラーバジェット)が重要視されてきている。例えば、ウェハ上に多数のチップを同じ設定露光量で露光したつもりでも、レジストの感度変化、PEB(Post Exposure Bake)、現像のウェハ面内の不均一性、レジストのウェハ面内膜厚変動などが原因となって、実効的な適正露光量がばらつき、そのために歩留まりの低下を引き起こしていた。そのために、少ないプロセスマージンを有効に使用し、歩留まりの低下を防ぐために、より高精度の露光量、及び、フォーカスをモニタしてフィードバック、または、フィードフォワードする露光量、及び、フォーカスの制御方法が求められると同時に、各プロセスユニット毎に、プロセスマージンを消費する誤差要因の精密な分析を行い、その分析結果を基に、主要な誤差要因の改善を施す必要もある。   In order to perform optical lithography with a small process margin, accurate analysis and error distribution (error budget) of errors that consume the process margin have been regarded as important. For example, even if a large number of chips are exposed on the wafer at the same set exposure amount, resist sensitivity changes, PEB (Post Exposure Bake), development non-uniformity within the wafer surface, resist wafer surface thickness variation, etc. As a result, the effective appropriate exposure amount varies, which causes a decrease in yield. Therefore, in order to effectively use a small process margin and prevent a decrease in yield, a more accurate exposure amount and an exposure amount to be fed back and fed forward by monitoring the focus and a focus control method are provided. At the same time, for each process unit, it is necessary to perform a precise analysis of the error factor that consumes the process margin, and to improve the main error factor based on the analysis result.

フォーカスに依存しない実効的な露光量を測定し、測定された露光量に基づいてロット間の露光量変動を抑制する技術が開示されている(例えば、特許文献1参照)。
特開2002−299205号公報
A technique is disclosed in which an effective exposure amount that does not depend on focus is measured, and variation in exposure amount between lots is suppressed based on the measured exposure amount (see, for example, Patent Document 1).
JP 2002-299205 A

現在、装置の稼働効率を向上させるために、複数の加熱処理装置を用いて露光処理後の加熱処理が行われる。設定温度と実際の加熱温度とは装置毎に異なる。加熱処理装置毎に加熱温度が異なるので、一つの装置を校正しただけでは、全体の歩留まりを向上させることができないという問題があった。   Currently, heat treatment after exposure processing is performed using a plurality of heat treatment apparatuses in order to improve the operating efficiency of the apparatus. The set temperature and the actual heating temperature are different for each apparatus. Since the heating temperature is different for each heat treatment apparatus, there is a problem that the overall yield cannot be improved only by calibrating one apparatus.

また、面内の温度均一性を向上させるために複数の熱源を有する加熱処理装置がある。この加熱処理装置では、設定温度と実際の加熱温度とは熱源毎に異なる。熱源処理装置毎に加熱温度が異なるので、一つの熱源を校正しただけでは、全体の歩留まりを向上させることができないという問題があった。   In addition, there is a heat treatment apparatus having a plurality of heat sources in order to improve in-plane temperature uniformity. In this heat treatment apparatus, the set temperature and the actual heating temperature are different for each heat source. Since the heating temperature is different for each heat source processing apparatus, there is a problem that the overall yield cannot be improved only by calibrating one heat source.

また、露光後加熱処理の温度ムラ、現像処理時の現像ムラにより、パターンが変動する。パターンの変動を抑制するためには、温度ムラ及び現像ムラの両方を抑制すればよい。しかし、二つの制御を行うパラメータを求めるには時間がかかるという問題があった。   Further, the pattern fluctuates due to temperature unevenness in post-exposure heat treatment and development unevenness in the development process. In order to suppress variations in the pattern, both temperature unevenness and development unevenness may be suppressed. However, there is a problem that it takes time to obtain parameters for performing the two controls.

本発明の目的は、露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正し、調整時間の短縮化を得る現像処理装置の調整方法を提供することにある。   An object of the present invention is to provide a method for adjusting a development processing apparatus that collectively corrects the temperature distribution of the post-exposure heat treatment and the development unevenness during the development processing by the development processing to shorten the adjustment time.

本発明は、上記目的を達成するために以下のように構成されている。   The present invention is configured as follows to achieve the above object.

本発明の一例に係わる現像処理装置の調整方法は、基板上に感光性樹脂膜を形成する工程と、前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、前記露光量モニタパターンが形成された基板に加熱処理を行う工程と、加熱処理された基板に対して冷却処理を行う工程と、現像液を前記感光性樹脂膜に対して吐出し、長手方向の長さが前記基板の最大幅より大きいノズルを基板に対して相対的に走査させる現像処理装置を用意する工程と、前記現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、前記現像処理後、各露光量モニタパターンの状態を測定する工程と、前記ノズルのある位置が走査した線上に位置する露光量モニタパターンの状態の平均値を求める工程と、前記露光量モニタパターンの状態の平均値を複数の位置について求め、前記ノズルの長手方向の露光量モニタパターンの状態の分布を求める工程と、露光量モニタパターンの状態分布から前記現像処理装置の制御パラメータを算出する工程と、算出された制御パラメータに応じて前記現像処理装置の制御パラメータを変更する工程とを含むことを特徴とする。   The method for adjusting a development processing apparatus according to an example of the present invention includes a step of forming a photosensitive resin film on a substrate and a state of an exposure amount monitor pattern transferred to the photosensitive resin film to obtain the photosensitive resin film. A step of preparing an exposure mask having an exposure amount monitor mark for monitoring the effective exposure amount, and transferring the exposure amount monitor mark to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount. A step of forming a plurality of exposure amount monitor patterns, a step of performing heat treatment on the substrate on which the exposure amount monitor pattern is formed, a step of performing cooling processing on the heat-treated substrate, and a developer. A step of preparing a development processing apparatus that discharges the photosensitive resin film and scans a nozzle having a length in a longitudinal direction larger than the maximum width of the substrate relative to the substrate; and using the development processing apparatus. The A step of developing the photosensitive resin film, a step of measuring the state of each exposure amount monitor pattern after the development processing, and a state of the exposure amount monitor pattern in which the position of the nozzle is located on the scanned line. A step of obtaining an average value, a step of obtaining an average value of the state of the exposure amount monitor pattern for a plurality of positions, obtaining a state distribution of the amount of exposure monitor pattern in the longitudinal direction of the nozzle, and a state distribution of the amount of exposure monitor pattern And calculating a control parameter of the development processing apparatus, and changing the control parameter of the development processing apparatus according to the calculated control parameter.

本発明の一例に係わる現像処理装置の調整方法は、基板上に感光性樹脂膜を形成する工程と、前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、各基板について、所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、前記露光量モニタパターンが形成された各基板に加熱処理を行う工程と、加熱処理された各基板に冷却処理を行う工程と、前記冷却処理後、各露光量モニタパターンの状態を測定する工程と、前記冷却処理後に測定された露光量モニタパターンの状態の平均値を測定する工程と、複数の現像処理装置を用意する工程と、各現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、前記現像処理後、各露光量モニタパターンの状態を測定する工程と、各現像処理装置で現像処理された基板について、露光量モニタパターンの状態の平均値をそれぞれ算出する工程と、前記冷却処理後の前記露光量モニタパターンの状態の平均値、前記現像処理後の前記露光量モニタパターンの状態の平均値から前記各現像処理装置の制御パラメータを算出する工程と、算出された制御パラメータに応じて前記各現像処理装置の制御パラメータを変更する工程とを含むことを特徴とする。   The method for adjusting a development processing apparatus according to an example of the present invention includes a step of forming a photosensitive resin film on a substrate and a state of an exposure amount monitor pattern transferred to the photosensitive resin film to obtain the photosensitive resin film. A step of preparing an exposure mask in which an exposure amount monitor mark for monitoring an effective exposure amount is arranged, and a plurality of the photosensitive resin films with the exposure amount monitor mark at a predetermined set exposure amount for each substrate. A step of forming a plurality of exposure dose monitor patterns, a step of performing a heat treatment on each substrate on which the exposure dose monitor pattern is formed, and a step of performing a cooling treatment on each of the heated substrates. A step of measuring the state of each exposure amount monitor pattern after the cooling process, a step of measuring an average value of the state of the exposure amount monitor pattern measured after the cooling process, and a plurality of development processing devices. A step of developing the photosensitive resin film using each development processing device, a step of measuring the state of each exposure amount monitor pattern after the development processing, and development by each development processing device A step of calculating an average value of the state of the exposure amount monitor pattern for each processed substrate, an average value of the state of the exposure amount monitor pattern after the cooling processing, and a state of the exposure amount monitor pattern after the development processing And calculating a control parameter for each of the development processing apparatuses from the average value, and changing the control parameter for each of the development processing apparatuses in accordance with the calculated control parameter.

本発明の一例に係わる現像処理装置の調整方法は、基板上に感光性樹脂膜を形成する工程と、前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、前記露光量モニタパターンが形成された基板に加熱処理を行う工程と、加熱処理された基板に冷却処理を行う工程と、複数の現像処理装置を用意する工程と、各現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、前記現像処理後、各露光量モニタパターンの状態を測定する工程と、各現像処理装置で現像処理された基板について、露光量モニタパターンの状態の平均値をそれぞれ算出する工程と、前記露光量モニタパターンの状態の平均値から前記各現像処理装置について制御パラメータを算出する工程と、前記算出された制御パラメータに応じて前記各現像処理装置の制御パラメータを変更する工程とを含むことを特徴とする。   The method for adjusting a development processing apparatus according to an example of the present invention includes a step of forming a photosensitive resin film on a substrate and a state of an exposure amount monitor pattern transferred to the photosensitive resin film to obtain the photosensitive resin film. A step of preparing an exposure mask having an exposure amount monitor mark for monitoring the effective exposure amount, and transferring the exposure amount monitor mark to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount. A step of forming a plurality of exposure amount monitor patterns, a step of performing a heat treatment on the substrate on which the exposure amount monitor patterns are formed, a step of performing a cooling treatment on the heat-treated substrate, and a plurality of development processing apparatuses. A step of developing the photosensitive resin film using each development processing device, a step of measuring the state of each exposure amount monitor pattern after the development processing, and each development processing device. Present Calculating the average value of the exposure monitor pattern state for each processed substrate; calculating the control parameter for each of the development processing devices from the average value of the exposure monitor pattern state; And a step of changing the control parameter of each development processing device in accordance with the control parameter.

本発明によれば、露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正することができる。   According to the present invention, the temperature distribution of the post-exposure heat treatment and the development unevenness during the development treatment can be collectively corrected by the development treatment.

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の参考例)
図1は、本発明の第1の参考例に係わる加熱処理装置の校正方法の手順を示すフローチャートである。
(First reference example)
FIG. 1 is a flowchart showing the procedure of a calibration method for a heat treatment apparatus according to a first reference example of the present invention.

まず、基板上にフォトレジスト膜を塗布形成した後(S101)、露光前加熱を行う(S102)。次に、図2に示すフォトマスクを用意する。フォトマスク100には、実効的なレジスト感度をモニタするための露光量モニタマーク200が形成されている。露光量モニタマーク200は、フォーカス位置に依存せず露光量のみに依存してレジストにパターンを形成するマークである。露光量モニタマークは、デバイスパターンが形成されたデバイス領域の周囲のダイシング領域に形成されている。   First, after a photoresist film is applied and formed on a substrate (S101), pre-exposure heating is performed (S102). Next, a photomask shown in FIG. 2 is prepared. On the photomask 100, an exposure amount monitor mark 200 for monitoring effective resist sensitivity is formed. The exposure amount monitor mark 200 is a mark for forming a pattern on the resist depending on only the exposure amount without depending on the focus position. The exposure amount monitor mark is formed in a dicing area around the device area where the device pattern is formed.

図3に示すように、露光量モニタマーク200は、透光部201と遮光部202とが露光装置で解像しない幅pのブロック内に配列されている。複数のブロックが、ブロック内の透光部201と遮光部202との配列方向に、連続的に配列されている。そして、前記配列方向では、ブロック内の透光部201と遮光部202とのデューティー比が単調に変化している。なお、複数のブロックが断続的に配列されていても良い。   As shown in FIG. 3, the exposure monitor mark 200 is arranged in a block having a width p in which the light transmitting portion 201 and the light shielding portion 202 are not resolved by the exposure apparatus. A plurality of blocks are continuously arranged in the arrangement direction of the light transmitting part 201 and the light shielding part 202 in the block. In the arrangement direction, the duty ratio between the light transmitting portion 201 and the light shielding portion 202 in the block changes monotonously. A plurality of blocks may be arranged intermittently.

実効的な露光量をモニタしたいマスクが、開口数NA、コヒーレントファクターσ、露光波長λの露光装置にセットされた場合を考える。この装置で解像しないブロックの幅p(ウェハ上寸法)の条件は、回折理論より、
λ/p≧(1+σ)NA…(1)
となる。
Consider a case where a mask whose effective exposure amount is to be monitored is set in an exposure apparatus having a numerical aperture NA, a coherent factor σ, and an exposure wavelength λ. The condition of the width p (wafer dimension) of the block that is not resolved by this apparatus is based on diffraction theory.
λ / p ≧ (1 + σ) NA (1)
It becomes.

上記モニタマークの周期を式(1)の条件に設定することにより、露光量モニタマークにおける回折光(1次以上の回折光)は投影レンズの瞳に入らず、直進光(0次回折光)のみが瞳に入るようになる。上記条件を満たすことによって、モニタマークのパターンは解像限界以下となる。そして、露光量モニタマークのパターンが解像限界以下のピッチであると、そのパターンは解像されず、開口比に応じてウェハ面上に到達する露光量が異なったフラット露光となる。このため、露光装置の設定露光量が同じでも開口比に応じて実効的な露光量が変化する。この場合の露光量は、露光量モニタマークのパターンが解像しないため、フォーカス変動の影響を完全に取り除くことができる。   By setting the period of the monitor mark to the condition of the expression (1), the diffracted light (first-order or higher-order diffracted light) at the exposure monitor mark does not enter the pupil of the projection lens, but only the straight light (zero-order diffracted light) Comes into the eyes. By satisfying the above conditions, the monitor mark pattern is below the resolution limit. If the exposure dose monitor mark pattern has a pitch less than or equal to the resolution limit, the pattern is not resolved, resulting in flat exposure with different exposure amounts reaching the wafer surface according to the aperture ratio. For this reason, even if the set exposure amount of the exposure apparatus is the same, the effective exposure amount changes according to the aperture ratio. In this case, since the exposure amount monitor mark pattern is not resolved, the influence of the focus fluctuation can be completely eliminated.

使用する露光条件が、露光波長λ=248nm,NA=0.68,σ=0.75であることを考慮して、モニタマークの周期をマスクパターンにおける回折光(1次以上の回折光)は投影レンズの瞳に入らず、直進光(0次回折光)のみが瞳に入る条件である式(1)を満たすよう、ウェハ換算寸法で0.2μmを用いた。   Considering that the exposure conditions used are exposure wavelength λ = 248 nm, NA = 0.68, and σ = 0.75, the period of the monitor mark is diffracted light (first-order or higher order diffracted light) in the mask pattern. 0.2 μm in terms of wafer was used so as to satisfy Expression (1), which is a condition that only the straight light (0th order diffracted light) enters the pupil without entering the pupil of the projection lens.

図4には図3に示した露光量モニタマークをフォトレジスト膜に転写した際に得られるウェハ面上での強度分布を示した。ウェハ面上には、モニタマークで回折された0次回折光のみが照射されるため、像強度分布は透過部の面積の2乗に比例した分布となる。従って、このマスクを用いて、露光後の加熱、冷却を行うと、フォトレジスト膜には露光量モニタマークの潜像(露光量モニタパターン)が形成され、図5に示すような膜厚分布となる。このパターンを光学式の線幅測長装置で測定することにより、加熱処理後の実効的な露光量を得ることができる。また、現像処理後には、フォトレジスト膜は図6に示すような膜厚分布となる。このパターンを光学式の線幅測長装置で測定することにより、現像処理後の実効的な露光量を得ることができる。   FIG. 4 shows the intensity distribution on the wafer surface obtained when the exposure amount monitor mark shown in FIG. 3 is transferred to the photoresist film. Since only the 0th-order diffracted light diffracted by the monitor mark is irradiated on the wafer surface, the image intensity distribution is a distribution proportional to the square of the area of the transmission part. Therefore, when heating and cooling after exposure are performed using this mask, a latent image (exposure monitor pattern) of the exposure monitor mark is formed on the photoresist film, and the film thickness distribution as shown in FIG. Become. By measuring this pattern with an optical line width measuring device, an effective exposure amount after the heat treatment can be obtained. Further, after the development processing, the photoresist film has a film thickness distribution as shown in FIG. By measuring this pattern with an optical line width measuring device, an effective exposure amount after development processing can be obtained.

図2に示したフォトマスクを用いて、所定の露光量で基板上に形成されたフォトレジスト膜に露光量モニタマークを転写し、露光量モニタパターンを形成する(ステップS103)。   Using the photomask shown in FIG. 2, the exposure amount monitor mark is transferred to a photoresist film formed on the substrate with a predetermined exposure amount to form an exposure amount monitor pattern (step S103).

上記条件で、各加熱処理装置毎に、図1のフローチャートを用いてPEB設定温度を振ったサンプルを作成する(ステップS104)。冷却した後(ステップS105)、現像を行う(ステップS106)。加熱処理後の、冷却処理及び現像処理の条件は各サンプルで同一とする。   Under the above-described conditions, a sample in which the PEB set temperature is varied is created for each heat treatment apparatus using the flowchart of FIG. 1 (step S104). After cooling (step S105), development is performed (step S106). The conditions for the cooling treatment and the development treatment after the heat treatment are the same for each sample.

各サンプルの露光量モニタパターンの長さを測定する(ステップS107)。そして、各加熱処理装置のPEB設定温度とパターンの長さ(実効露光量)D.M(μm)との関係を求める(ステップS108)。図7には各加熱処理装置A〜Eの設定温度とパターン長D.Mの相関グラフを示した。このグラフから近似式を求め、それに基づき実効露光量が同一(パターン長D.Mが同一)になる最適な温度を算出し、各装置の最適な設定温度を求める(ステップS109)。算出された設定温度から各加熱処理装置の設定温度の校正を行う(ステップS110)。   The length of the exposure amount monitor pattern of each sample is measured (step S107). The PEB set temperature and the pattern length (effective exposure amount) of each heat treatment apparatus D.E. A relationship with M (μm) is obtained (step S108). 7 shows the set temperature and pattern length D.E. A correlation graph of M is shown. An approximate expression is obtained from this graph, based on which an optimum temperature at which the effective exposure amount is the same (the pattern length DM is the same) is calculated, and the optimum set temperature of each apparatus is obtained (step S109). Calibration of the set temperature of each heat treatment apparatus is performed from the calculated set temperature (step S110).

(表1)には校正前と校正後の露光量モニタパターンの長さ“D.M”、クリティカルディメンジョン“CD”、並びに校正前の予想温度を示す。   (Table 1) shows the length “DM” of the exposure amount monitor pattern before and after calibration, the critical dimension “CD”, and the expected temperature before calibration.

Figure 2007318181
Figure 2007318181

(表2)に、露光量モニタパターンの長さの最大値と最小値の差“ΔD.M”、クリティカルディメンジョンの最大値と最小値の差“ΔCD”、予想温度の最大値と最小値の差“Δ予想温度”を示す。   (Table 2) shows the difference between the maximum value and the minimum value of the exposure amount monitor pattern “ΔD.M”, the difference between the maximum value and the minimum value of the critical dimension “ΔCD”, the maximum value and the minimum value of the expected temperature. The difference “Δ expected temperature” is shown.

Figure 2007318181
Figure 2007318181

(表2)に示すように、実効露光量(D.M)、クリティカルディメンジョン共に加熱処理装置間差が校正されている事を確認した。   As shown in Table 2, it was confirmed that the difference between the heat treatment apparatuses was calibrated for both the effective exposure amount (DM) and the critical dimension.

本参考例によれば、加熱処理装置間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が装置間で変動することを抑制することができる。そして、校正後の装置を用いて半導体装置を製造することにより歩留まりの向上を得ることができる。   According to the present reference example, it is possible to prevent the effective exposure amount obtained by the photosensitive resin film from varying between the heat treatment apparatuses from varying between the apparatuses. Then, the yield can be improved by manufacturing the semiconductor device using the calibrated apparatus.

露光量モニタマークを用いた適用例を一例示したが、露光後の上記パターンの測長手段は光学顕微鏡や光学式の線幅測長装置だけに限定されるものではなく、合わせずれ検査装置やSEMやAFMなど、また、光学式の線幅測長の手段においても、位相差法や微分干渉法、多波長の光源で計測する方法など、種々適用可能である。また、露光装置自体に内蔵された合わせ位置ずれ検査機能や線幅測長機能等を用いることも可能である。   Although an example of application using the exposure monitor mark is illustrated, the length measuring means for the pattern after the exposure is not limited to an optical microscope or an optical line width measuring device, but a misalignment inspection device, Various methods such as a phase difference method, a differential interference method, a measurement method using a multi-wavelength light source, and the like can be applied to SEM, AFM, and the like as well as optical line width measurement means. It is also possible to use an alignment misalignment inspection function, a line width measurement function, or the like built in the exposure apparatus itself.

(第2の参考例)
本参考例では、加熱処理装置に熱源が複数存在する場合の、基板面内バラツキの校正評価方法の一例を示す。
(Second reference example)
In this reference example, an example of a calibration evaluation method for in-plane variation when a plurality of heat sources exist in the heat treatment apparatus will be described.

本参考例では、図8に示す複数の熱源301,302,303を有する加熱処理装置を用いた場合に、基板面内の実効露光量のバラツキを校正する方法を説明する。図9は、本発明の第2の参考例に係わる加熱処理装置の校正方法の手順を示すフローチャートである。   In this reference example, a method for calibrating variations in the effective exposure amount in the substrate surface when a heat treatment apparatus having a plurality of heat sources 301, 302, and 303 shown in FIG. 8 is used will be described. FIG. 9 is a flowchart showing the procedure of the calibration method for the heat treatment apparatus according to the second reference example of the present invention.

第1の参考例と同様に、レジスト塗布(ステップS101)、露光前加熱(ステップS102)、露光(ステップS103)を行う。図10に示すように、露光時、各熱源301,302,303に位置に対応する位置のレジスト膜に露光量モニタパターンを含む311,312,313を形成する。   Similarly to the first reference example, resist coating (step S101), pre-exposure heating (step S102), and exposure (step S103) are performed. As shown in FIG. 10, at the time of exposure, 311, 312, 313 including an exposure amount monitor pattern are formed on a resist film at a position corresponding to the position of each heat source 301, 302, 303.

図1のフローを用いてPEB設定温度を振った複数のサンプルを作成する(ステップS204)。その後、冷却処理(ステップS105)、現像処理(ステップS106)を行う。各パターン311,312,313に含まれる露光量モニタパターンの長さを測定する(ステップS107)。   Using the flow of FIG. 1, a plurality of samples with varying PEB set temperatures are created (step S204). Thereafter, cooling processing (step S105) and development processing (step S106) are performed. The length of the exposure amount monitor pattern included in each pattern 311, 312, 313 is measured (step S 107).

そして、各熱源のPEB設定温度とパターンの長さ(実効露光量)との関係を求める(ステップS208)。各熱源について、求められた関係に基づいて実効露光量が同一(パターン長が同一)になる最適な温度を算出し、各熱源の最適な設定温度を求める(ステップS209)、算出された値から各熱源の設定温度の校正を行う(ステップS210)。   Then, the relationship between the PEB set temperature of each heat source and the pattern length (effective exposure amount) is obtained (step S208). For each heat source, an optimum temperature at which the effective exposure amount is the same (the pattern length is the same) is calculated based on the obtained relationship, and an optimum set temperature for each heat source is obtained (step S209). Calibration of the set temperature of each heat source is performed (step S210).

(表3)には校正前と校正後の露光量モニタパターンの長さ“D.M”、クリティカルディメンジョン“CD”、並びに校正前の予想温度を示す。   Table 3 shows the length “DM”, the critical dimension “CD”, and the expected temperature before calibration before and after calibration.

Figure 2007318181
Figure 2007318181

(表4)に、露光量モニタパターンの長さの最大値と最小値の差ΔD.M、クリティカルディメンジョンの最大値と最小値の差ΔCD、予想温度の最大値と最小値の差“Δ予想温度”を示す。   (Table 4) shows a difference ΔD. Between the maximum value and the minimum value of the exposure monitor pattern length. M, the difference ΔCD between the maximum value and the minimum value of the critical dimension, and the difference “Δ expected temperature” between the maximum value and the minimum value of the expected temperature.

Figure 2007318181
Figure 2007318181

(表4)に示すように、実効露光量(D.M)、クリティカルディメンジョンと共に熱源間差が校正されている事を確認した。   As shown in (Table 4), it was confirmed that the difference between the heat sources was calibrated together with the effective exposure amount (DM) and the critical dimension.

本参考例によれば、加熱処理装置間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が装置間で変動することを抑制することができる。そして、校正後の装置を用いて半導体装置を製造することにより歩留まりの向上を得ることができる。   According to the present reference example, it is possible to prevent the effective exposure amount obtained by the photosensitive resin film from varying between the heat treatment apparatuses from varying between the apparatuses. Then, the yield can be improved by manufacturing the semiconductor device using the calibrated apparatus.

露光量モニタマークを用いた適用例を一例示したが、露光後の上記パターンの測長手段は光学顕微鏡や光学式の線幅測長装置だけに限定されるものではなく、合わせずれ検査装置やSEMやAFMなど、また、光学式の線幅測長の手段においても、位相差法や微分干渉法、多波長の光源で計測する方法など、種々適用可能である。また、露光装置自体に内蔵された合わせ位置ずれ検査機能や線幅測長機能等を用いることも可能である。   Although an example of application using the exposure monitor mark is illustrated, the length measuring means for the pattern after the exposure is not limited to an optical microscope or an optical line width measuring device, but a misalignment inspection device, Various methods such as a phase difference method, a differential interference method, a measurement method using a multi-wavelength light source, and the like can be applied to SEM, AFM, and the like as well as optical line width measurement means. It is also possible to use an alignment misalignment inspection function, a line width measurement function, or the like built in the exposure apparatus itself.

(第1の実施形態)
本実施形態では、現像処理装置の調整を行う方法を説明する。
(First embodiment)
In this embodiment, a method for adjusting the development processing apparatus will be described.

フォトレジスト膜塗布、露光前加熱処理、露光、PEB処理、冷却処理を行ったサンプルを用意する。PEB処理時設定温度を振って複数のサンプルを測定する。冷却処理後に露光量モニタパターンの寸法(DMPEB:実効露光量)を光学式の線幅測長装置で測定する。測定結果を図11に示す。これより、PEB温度T(℃)とパターンの寸法DMPEB(μm)の関係は、下記の式で表されることがわかった。 Samples that have been subjected to photoresist film coating, pre-exposure heat treatment, exposure, PEB treatment, and cooling treatment are prepared. A plurality of samples are measured by shaking the set temperature during PEB processing. After the cooling treatment, the exposure monitor pattern dimension (DM PEB : effective exposure dose) is measured with an optical line width measuring device. The measurement results are shown in FIG. From this, it was found that the relationship between the PEB temperature T (° C.) and the pattern dimension DM PEB (μm) is expressed by the following equation.

DMPEB =−0.125T+41.2…(2)
図12に示した現像処理装置を用意する。図12は、本発明の第1の実施形態に係わる現像処理装置の構成を示す図である。図12(a)は平面図、図12(b)は断面図である。現像装置は、基板400に対して現像液402を吐出するノズル401を有する。ノズル401の長手方向の長さは基板の直径以上の長さである。現像液402を吐出している状態でノズル401を塗布開始位置Psから塗布終了位置Peにかけて移動させて、基板400上に現像液402を供給する。PEB温度が振られたサンプルに対してノズル401と基板400との距離Dgap を振る。
DM PEB = −0.125T + 41.2 (2)
The development processing apparatus shown in FIG. 12 is prepared. FIG. 12 is a diagram showing the configuration of the development processing apparatus according to the first embodiment of the present invention. 12A is a plan view, and FIG. 12B is a cross-sectional view. The developing device includes a nozzle 401 that discharges the developer 402 to the substrate 400. The length of the nozzle 401 in the longitudinal direction is equal to or longer than the diameter of the substrate. The nozzle 401 is moved from the application start position Ps to the application end position Pe while the developer 402 is being discharged, and the developer 402 is supplied onto the substrate 400. The distance D gap between the nozzle 401 and the substrate 400 is swung with respect to the sample whose PEB temperature is swung.

現像処理後に露光量モニタマークの寸法(DMDEV:実効露光量)を光学式の線幅測長装置で測定する。測定結果を図13に示す。これより、PEB温度(T)、現像ノズルと基板との距離(Dgap )と実効露光量(DMPEB )の関係は、下記の式で表されることがわかった。 After the development processing, the dimension of the exposure amount monitor mark (DM DEV : effective exposure amount) is measured with an optical line width measuring device. The measurement results are shown in FIG. From this, it was found that the relationship between the PEB temperature (T), the distance between the developing nozzle and the substrate (D gap ), and the effective exposure amount (DM PEB ) is expressed by the following equation.

DMDEV =−0.125T+0.5Dgap +30.7…(3)
図14のフローチャートを用いて本願の現像処理装置の調整方法を説明する。図14は、本発明の第1の実施形態に係わる現像処理装置の調整方法の手順を示すフローチャートである。
DM DEV = −0.125T + 0.5D gap + 30.7 (3)
A method for adjusting the development processing apparatus of the present application will be described with reference to the flowchart of FIG. FIG. 14 is a flowchart showing the procedure of the adjustment method of the development processing apparatus according to the first embodiment of the present invention.

先ず、レジスト膜の塗布(ステップS301)、露光前の加熱処理(ステップS302)を行う。図2に示したマスクに形成された露光量モニタマークを、露光量モニタパターンをx、y方向とも30mmピッチでレジスト膜に転写し、露光量モニタパターンの潜像を形成する(ステップS303)。PEB設定温度を振ってPEB処理を行った複数のサンプルを作成する(ステップS304)。PEB処理後、基板の冷却処理を行う(ステップS305)
冷却処理後に露光量モニタパターンの寸法を計測する(ステップS306)。したところ、冷却処理後の露光量モニタパターン寸法は、図15のようになり、分布をプロットすると、図16に示すように同心円の分布となった。式(2)により、面内の温度分布は図17のように算出された。
First, application of a resist film (step S301) and heat treatment before exposure (step S302) are performed. The exposure amount monitor mark formed on the mask shown in FIG. 2 is transferred onto the resist film at a 30 mm pitch in both the x and y directions to form a latent image of the exposure amount monitor pattern (step S303). A plurality of samples subjected to the PEB process by varying the PEB set temperature are created (step S304). After the PEB process, the substrate is cooled (step S305).
After the cooling process, the dimension of the exposure amount monitor pattern is measured (step S306). As a result, the exposure monitor pattern size after the cooling process is as shown in FIG. 15, and when the distribution is plotted, it becomes a concentric distribution as shown in FIG. The in-plane temperature distribution was calculated as shown in FIG.

さらに、この基板に対して、現像処理を行い(ステップS307)、各露光量モニタパターンの寸法を計測する(ステップS308)。現像処理後の露光量モニタパターン寸法は、図18に示すようになり、分布をプロットすると図19の平面図に示すようになった。図17と図18の値を式(3)に代入して現像ノズルと基板との距離(gap)を求めたところ、図20に示すようになった。これより、面内の分布が図21に示すようになった。このような分布になったのは、ここで用いた現像方法が、直線状の現像ノズルを基板の−x方向から+x方向に走査させながら現像液を供給する方法で、ノズルと基板との距離が同じに調整できていなかったためであると判定し、距離が1mmとなるように調整した(ステップS309,S310)。   Further, development processing is performed on the substrate (step S307), and the dimensions of each exposure amount monitor pattern are measured (step S308). The exposure monitor pattern dimensions after the development processing are as shown in FIG. 18, and the distribution is plotted as shown in the plan view of FIG. 17 and 18 were substituted into the expression (3) to obtain the distance (gap) between the developing nozzle and the substrate, and the result was as shown in FIG. As a result, the in-plane distribution is as shown in FIG. This is because the development method used here is a method of supplying the developer while scanning the linear development nozzle from the −x direction to the + x direction of the substrate, and the distance between the nozzle and the substrate. Are not adjusted to the same value, and the distance is adjusted to 1 mm (steps S309 and S310).

本実施例では、加熱処理後と現像処理後の露光量モニタマークの測定結果から現像処理装置の調整を行ったが、図22のフローチャートに示すように、現像処理後の測定結果だけから調整することも可能である。例えば直線状のノズルから現像液を吐出しながらをウェハの一端から他端に走査させ、現像液を供給するような現像方法では、実効露光量分布を、ノズルの同一位置における走査線上の算出した実効露光量を平均することで求めることが望ましい。図19に示したパターン長DMDEV(露光量)分布を、ノズルのある位置が走査した線上の露光量モニタパターン長DMDEV の平均値を求めると、図23に示すようになる。この露光量分布がなるべく一定になるように、ノズルからの吐出量分布を調整するか、ギャップを調整すればよい。 In this embodiment, the development processing apparatus is adjusted based on the measurement results of the exposure monitor marks after the heat treatment and after the development processing. However, as shown in the flowchart of FIG. It is also possible. For example, in a developing method in which a developer is supplied from a linear nozzle while discharging the developer from one end to the other, the effective exposure distribution is calculated on the scanning line at the same position of the nozzle. It is desirable to obtain it by averaging the effective exposure amount. The pattern length DM DEV (exposure amount) distribution shown in FIG. 19 is obtained as shown in FIG. 23 when the average value of the exposure amount monitor pattern length DM DEV on the line scanned by the position of the nozzle is obtained. The discharge amount distribution from the nozzle or the gap may be adjusted so that the exposure amount distribution is as constant as possible.

また、図24に示すように直線状のノズルから現像液を吐出しながらウェハを回転させることで現像液を供給するような現像方法でも、実効露光量分布を、ノズルの同一位置における走査線上(同心円上)の算出した実効露光量を平均することで求めることが望ましい。図19に示した露光量分布を、走査線上(同心円上)で平均すると、図25に示すようになる。この露光量分布がなるべく一定になるように、ノズルからの吐出量分布を調整するか、ギャップを調整すればよい。   Also, as shown in FIG. 24, even in a developing method in which the developer is supplied by rotating the wafer while discharging the developer from a linear nozzle, the effective exposure distribution is shown on the scanning line at the same position of the nozzle ( It is desirable to obtain the average effective exposure amount calculated on the concentric circles). When the exposure amount distribution shown in FIG. 19 is averaged on the scanning line (concentric circle), it is as shown in FIG. The discharge amount distribution from the nozzle or the gap may be adjusted so that the exposure amount distribution is as constant as possible.

これら手法はノズル長手方向の流量分布を均一であるかを調べるノズルの評価方法にも適用可能である。   These methods can also be applied to a nozzle evaluation method for checking whether the flow rate distribution in the nozzle longitudinal direction is uniform.

図13、図24で示した現像処理装置の調整は、複数の装置の装置間差の調整にも適用可能である。この場合は、実効露光量の分布を求めるのではなく、それぞれの処理装置の実効露光量の平均値を求めておいて、各処理装置の実効露光量の平均値が等しくなるように、ノズルからの吐出量、ギャップ、現像液温度、雰囲気温度等を調整すればよい。   The adjustment of the development processing apparatus shown in FIGS. 13 and 24 can also be applied to the adjustment of the difference between apparatuses of a plurality of apparatuses. In this case, instead of obtaining the distribution of effective exposure amounts, the average value of the effective exposure amounts of the respective processing apparatuses is obtained, and the average value of the effective exposure amounts of the respective processing apparatuses is equalized from the nozzles. The discharge amount, gap, developer temperature, ambient temperature, and the like may be adjusted.

本実施形態によれば、露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正し、調整時間の短縮化を得る。 According to this embodiment, the temperature distribution of the post-exposure heat treatment and the development unevenness during the development treatment are collectively corrected by the development treatment, and the adjustment time is shortened.

なお、本発明は、上記した実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, this invention is not limited to above-described embodiment, In the implementation stage, it can change variously in the range which does not deviate from the summary. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, at least one of the problems described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. When at least one of the effects is obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.

第1の参考例に係わる加熱処理装置の校正方法の手順を示すフローチャート。The flowchart which shows the procedure of the calibration method of the heat processing apparatus concerning a 1st reference example. 第1の参考例に係わるフォトマスクの構成を示す平面図。The top view which shows the structure of the photomask concerning a 1st reference example. 第1の参考例に係わる露光量モニタマークの構成を示す平面図。The top view which shows the structure of the exposure amount monitor mark concerning a 1st reference example. 図3に示した露光量モニタマークをフォトレジスト膜に転写した際に得られるウェハ面上での強度分布を示す図。The figure which shows intensity distribution on the wafer surface obtained when the exposure amount monitor mark shown in FIG. 3 is transcribe | transferred to a photoresist film. 加熱、冷却処理後のフォトレジスト膜の膜厚分布を示す図。The figure which shows the film thickness distribution of the photoresist film after a heating and cooling process. 現像処理後のフォトレジスト膜の膜厚分布を示す図。The figure which shows the film thickness distribution of the photoresist film after image development processing. 各加熱処理装置A〜Eの設定温度とパターン長D.Mの相関グラフを示す図。Set temperature and pattern length of each of the heat treatment apparatuses A to E The figure which shows the correlation graph of M. 第2の参考例に係わるか熱処理装置の構成を示す図。The figure which shows the structure of the heat processing apparatus concerning the 2nd reference example. 第2の参考例に係わる加熱処理装置の校正方法の手順を示すフローチャート。The flowchart which shows the procedure of the calibration method of the heat processing apparatus concerning a 2nd reference example. 熱源と露光量モニタパターンの位置の関係を示す図。The figure which shows the relationship between the position of a heat source and an exposure amount monitor pattern. 冷却処理後の露光量モニタパターンの寸法DMPEB とPEB温度の関係を示す図。The figure which shows the relationship between the dimension DM PEB and PEB temperature of the exposure amount monitor pattern after a cooling process. 第1の実施形態に係わる現像処理装置の構成を示す図。1 is a diagram illustrating a configuration of a development processing apparatus according to a first embodiment. 現像処理後のPEB温度と露光量モニタパターンの寸法DMDEV との関係のギャップ依存性を示す図。It shows a gap dependency of the relationship between the dimension DM DEV of PEB temperature after development and exposure dose monitor pattern. 第1の実施形態に係わる現像処理装置の調整方法の手順を示すフローチャート。5 is a flowchart showing a procedure of a developing method adjustment method according to the first embodiment. 加熱処理後の露光量モニタパターンの寸法DMPEB の分布を示す図。The figure which shows distribution of the dimension DM PEB of the exposure amount monitor pattern after heat processing. 加熱処理後の露光量モニタパターンの寸法DMPEB の分布を示す平面図。The top view which shows distribution of the dimension DM PEB of the exposure amount monitor pattern after heat processing. 加熱処理後の温度の分布を示す平面図。The top view which shows distribution of the temperature after heat processing. 現像処理後の露光量モニタパターンの寸法DMDEV の分布を示す図。The figure which shows distribution of the dimension DMDEV of the exposure amount monitor pattern after a development process. 現像処理後の露光量モニタパターンの寸法DMDEV の分布を示す平面図。The top view which shows distribution of the dimension DMDEV of the exposure amount monitor pattern after a development process. 基板表面とノズルとのギャップの分布を示す図。The figure which shows distribution of the gap of a substrate surface and a nozzle. 基板表面とノズルとのギャップの分布を示す平面図。The top view which shows distribution of the gap of a board | substrate surface and a nozzle. 第1の実施形態に係わる校正方法の手順を示すフローチャート。The flowchart which shows the procedure of the calibration method concerning 1st Embodiment. ノズルのある位置が走査した線上の露光量モニタパターン長DMDEV の平均値の分布を示す図。It shows a distribution of the average value of the exposure dose monitor pattern length DM DEV on a line position is scanned with the nozzles. 第1の実施形態に係わる現像処理装置の構成を示す図。1 is a diagram illustrating a configuration of a development processing apparatus according to a first embodiment. ノズルのある位置が走査した線上の露光量モニタパターン長DMDEV の平均値の分布を示す図。It shows a distribution of the average value of the exposure dose monitor pattern length DM DEV on a line position is scanned with the nozzles.

符号の説明Explanation of symbols

100…マスク
200…露光量モニタマーク
201…透光部
202…遮光部
DESCRIPTION OF SYMBOLS 100 ... Mask 200 ... Exposure amount monitor mark 201 ... Translucent part 202 ... Light-shielding part

Claims (8)

基板上に感光性樹脂膜を形成する工程と、
前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、
所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、
前記露光量モニタパターンが形成された基板に加熱処理を行う工程と、
加熱処理された基板に対して冷却処理を行う工程と、
現像液を前記感光性樹脂膜に対して吐出し、長手方向の長さが前記基板の最大幅より大きいノズルを基板に対して相対的に走査させる現像処理装置を用意する工程と、
前記現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、
前記現像処理後、各露光量モニタパターンの状態を測定する工程と、
前記ノズルのある位置が走査した線上に位置する露光量モニタパターンの状態の平均値を求める工程と、
前記露光量モニタパターンの状態の平均値を複数の位置について求め、前記ノズルの長手方向の露光量モニタパターンの状態の分布を求める工程と、
露光量モニタパターンの状態分布から前記現像処理装置の制御パラメータを算出する工程と、
算出された制御パラメータに応じて前記現像処理装置の制御パラメータを変更する工程と、
を含むことを特徴とする現像処理装置の調整方法。
Forming a photosensitive resin film on the substrate;
Preparing an exposure mask on which an exposure amount monitor mark for monitoring an effective exposure amount obtained by the photosensitive resin film according to the state of the exposure amount monitor pattern transferred to the photosensitive resin film;
Transferring the exposure amount monitor marks to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount to form a plurality of exposure amount monitor patterns;
Heat-treating the substrate on which the exposure amount monitor pattern is formed;
Performing a cooling process on the heat-treated substrate;
A step of preparing a development processing apparatus that discharges a developer onto the photosensitive resin film and scans a nozzle having a length in a longitudinal direction larger than the maximum width of the substrate relative to the substrate;
A step of developing the photosensitive resin film using the development processing apparatus;
After the development processing, measuring the state of each exposure amount monitor pattern,
A step of obtaining an average value of the state of an exposure amount monitor pattern located on a scanned line at a position where the nozzle is located;
Obtaining an average value of the state of the exposure monitor pattern for a plurality of positions, and obtaining a distribution of the state of the exposure monitor pattern in the longitudinal direction of the nozzle;
Calculating a control parameter of the development processing device from a state distribution of an exposure monitor pattern;
Changing the control parameters of the development processing device according to the calculated control parameters;
A method for adjusting a development processing apparatus, comprising:
基板上に感光性樹脂膜を形成する工程と、
前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、
各基板について、所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、
前記露光量モニタパターンが形成された各基板に加熱処理を行う工程と、
加熱処理された各基板に冷却処理を行う工程と、
前記冷却処理後、各露光量モニタパターンの状態を測定する工程と、
前記冷却処理後に測定された露光量モニタパターンの状態の平均値を測定する工程と、
複数の現像処理装置を用意する工程と、
各現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、
前記現像処理後、各露光量モニタパターンの状態を測定する工程と、
各現像処理装置で現像処理された基板について、露光量モニタパターンの状態の平均値をそれぞれ算出する工程と、
前記冷却処理後の前記露光量モニタパターンの状態の平均値、前記現像処理後の前記露光量モニタパターンの状態の平均値から前記各現像処理装置の制御パラメータを算出する工程と、
算出された制御パラメータに応じて前記各現像処理装置の制御パラメータを変更する工程と、
を含むことを特徴とする現像処理装置の調整方法。
Forming a photosensitive resin film on the substrate;
Preparing an exposure mask on which an exposure amount monitor mark for monitoring an effective exposure amount obtained by the photosensitive resin film according to the state of the exposure amount monitor pattern transferred to the photosensitive resin film;
For each substrate, transferring the exposure amount monitor marks to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount, and forming a plurality of exposure amount monitor patterns;
Heat-treating each substrate on which the exposure amount monitor pattern is formed;
Performing a cooling process on each heat-treated substrate;
A step of measuring the state of each exposure amount monitor pattern after the cooling process;
Measuring the average value of the exposure monitor pattern state measured after the cooling process;
A step of preparing a plurality of development processing devices;
A step of performing development processing of the photosensitive resin film using each development processing apparatus;
After the development processing, measuring the state of each exposure amount monitor pattern,
A step of calculating an average value of an exposure amount monitor pattern for each substrate developed by each development processing apparatus;
Calculating a control parameter of each development processing device from an average value of the state of the exposure amount monitor pattern after the cooling process and an average value of the state of the exposure amount monitor pattern after the development process;
Changing the control parameters of each development processing device in accordance with the calculated control parameters;
A method for adjusting a development processing apparatus, comprising:
基板上に感光性樹脂膜を形成する工程と、
前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、
所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、
前記露光量モニタパターンが形成された基板に加熱処理を行う工程と、
加熱処理された基板に冷却処理を行う工程と、
複数の現像処理装置を用意する工程と、
各現像処理装置を用いて、前記感光性樹脂膜の現像処理を行う工程と、
前記現像処理後、各露光量モニタパターンの状態を測定する工程と、
各現像処理装置で現像処理された基板について、露光量モニタパターンの状態の平均値をそれぞれ算出する工程と、
前記露光量モニタパターンの状態の平均値から前記各現像処理装置について制御パラメータを算出する工程と、
前記算出された制御パラメータに応じて前記各現像処理装置の制御パラメータを変更する工程と、
を含むことを特徴とする現像処理装置の調整方法。
Forming a photosensitive resin film on the substrate;
Preparing an exposure mask on which an exposure amount monitor mark for monitoring an effective exposure amount obtained by the photosensitive resin film according to the state of the exposure amount monitor pattern transferred to the photosensitive resin film;
Transferring the exposure amount monitor marks to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount to form a plurality of exposure amount monitor patterns;
Heat-treating the substrate on which the exposure amount monitor pattern is formed;
A step of cooling the heat-treated substrate;
A step of preparing a plurality of development processing devices;
A step of performing development processing of the photosensitive resin film using each development processing apparatus;
After the development processing, measuring the state of each exposure amount monitor pattern,
A step of calculating an average value of an exposure amount monitor pattern for each substrate developed by each development processing apparatus;
Calculating a control parameter for each of the development processing devices from an average value of the state of the exposure amount monitor pattern;
Changing the control parameters of each of the development processing devices according to the calculated control parameters;
A method for adjusting a development processing apparatus, comprising:
前記露光量モニタマークは、前記投影露光装置で解像することができない一定幅p内に遮光部と透光部とが一方向に配列された複数のブロックが断続的、または連続的に前記一方向に配列され、該ブロックの遮光部と透光部との寸法比が前記一方向に単調に変化するパターンであることを特徴とする請求項1〜3の何れかに記載の現像処理装置の調整方法。   In the exposure amount monitor mark, a plurality of blocks in which a light shielding portion and a light transmitting portion are arranged in one direction within a certain width p that cannot be resolved by the projection exposure apparatus are intermittently or continuously provided. The development processing apparatus according to claim 1, wherein the pattern is arranged in a direction, and a dimensional ratio between the light shielding portion and the light transmitting portion of the block changes monotonously in the one direction. Adjustment method. 前記露光装置の露光波長をλ、ウェハ側の開口数をNA、コヒーレンスファクタσとしたとき、ウェハ上におけるピッチPが、
λ/p≧(1+σ)NA
を満たすことを特徴とする請求項4に記載の現像処理装置の調整方法。
When the exposure wavelength of the exposure apparatus is λ, the numerical aperture on the wafer side is NA, and the coherence factor σ, the pitch P on the wafer is
λ / p ≧ (1 + σ) NA
The method of adjusting a development processing apparatus according to claim 4, wherein:
前記現像処理装置は、現像液を前記感光性樹脂膜に対して吐出し、長手方向の長さが前記基板の最大幅より大きいノズルを基板に対して相対的に走査させることを特徴とする請求項2又は3に記載の現像処理装置の調整方法。   The development processing apparatus discharges a developing solution to the photosensitive resin film, and scans a nozzle having a length in a longitudinal direction larger than a maximum width of the substrate relative to the substrate. Item 4. The method for adjusting a development processing apparatus according to Item 2 or 3. 前記現像処理装置の制御パラメータは、現像ノズルの長手方向の流量分布、現像液流量、現像ノズルと前記基板との距離の少なくともひとつであることを特徴とする請求項1又は6に記載の現像処理装置の調整方法。   The development processing according to claim 1, wherein the control parameter of the development processing apparatus is at least one of a flow rate distribution in the longitudinal direction of the development nozzle, a developer flow rate, and a distance between the development nozzle and the substrate. Device adjustment method. 請求項1〜7の何れかに記載された現像処理装置の調整方法を用いて調整された現像処理装置を用いて感光性樹脂膜の現像処理を行うことを特徴とする半導体装置の製造方法。   A method for manufacturing a semiconductor device, comprising: developing a photosensitive resin film using a development processing apparatus adjusted using the development processing apparatus adjustment method according to claim 1.
JP2007220236A 2007-08-27 2007-08-27 Adjustment method of development processor, and manufacturing method for semiconductor device Pending JP2007318181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220236A JP2007318181A (en) 2007-08-27 2007-08-27 Adjustment method of development processor, and manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220236A JP2007318181A (en) 2007-08-27 2007-08-27 Adjustment method of development processor, and manufacturing method for semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003188496A Division JP4127664B2 (en) 2003-06-30 2003-06-30 Method for adjusting development processing apparatus

Publications (1)

Publication Number Publication Date
JP2007318181A true JP2007318181A (en) 2007-12-06

Family

ID=38851694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220236A Pending JP2007318181A (en) 2007-08-27 2007-08-27 Adjustment method of development processor, and manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2007318181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026338A (en) * 2011-07-19 2013-02-04 Tokyo Electron Ltd Development processing method, development processing device, program and computer storage medium
JP2018165838A (en) * 2010-09-28 2018-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure tool for microlithography and method for micro-lithographic imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165838A (en) * 2010-09-28 2018-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure tool for microlithography and method for micro-lithographic imaging
JP2013026338A (en) * 2011-07-19 2013-02-04 Tokyo Electron Ltd Development processing method, development processing device, program and computer storage medium

Similar Documents

Publication Publication Date Title
JP4127664B2 (en) Method for adjusting development processing apparatus
JP3949853B2 (en) Control method for exposure apparatus and control method for semiconductor manufacturing apparatus
JP4898419B2 (en) Method for determining exposure amount and focus position offset amount, program and device manufacturing method
JP3906035B2 (en) Method for controlling semiconductor manufacturing apparatus
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
KR100844809B1 (en) Production method of semiconductor device and production system of semiconductor device
US7439001B2 (en) Focus blur measurement and control method
US7732109B2 (en) Method and system for improving critical dimension uniformity
KR102128577B1 (en) Patterning process control method, lithographic apparatus, metrology apparatus lithography cells and associated computer programs
US20050170264A1 (en) Exposure system, test mask for flare testing, method for evaluating lithography process, method for evaluating exposure tools, method for generating corrected mask pattern, and method for manufacturing semiconductor device
US7972765B2 (en) Pattern forming method and a semiconductor device manufacturing method
JP3761357B2 (en) Exposure amount monitor mask, exposure amount adjustment method, and semiconductor device manufacturing method
JP2008512003A (en) Control of critical dimensions of structures formed on wafers in semiconductor processes
JP2005017689A (en) Mask, method for controlling exposure light quantity, and method for manufacturing semiconductor device
KR20180119503A (en) Method of monitoring and device manufacturing method
JP2004354906A (en) Evaluation method of resist sensitivity, and method of manufacturing resist
JP2007318181A (en) Adjustment method of development processor, and manufacturing method for semiconductor device
JP2004264102A (en) Method of measuring sem shrink amount, and distance measurement sem system
JP2003318092A (en) Aligner and method for manufacturing semiconductor device
JP5540655B2 (en) Method for manufacturing integrated circuit device
JP2009239029A (en) Method for evaluating lithography apparatus and method for controlling lithography apparatus
JP2003086497A (en) Method of lithography
JP5223197B2 (en) Pattern measuring method and photomask inspection method
KR100685895B1 (en) Apparatus and Method for Fabrication Semiconductor Device
JP2009290110A (en) Size control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401