JP2007315825A - Surface inspecting device - Google Patents

Surface inspecting device Download PDF

Info

Publication number
JP2007315825A
JP2007315825A JP2006143420A JP2006143420A JP2007315825A JP 2007315825 A JP2007315825 A JP 2007315825A JP 2006143420 A JP2006143420 A JP 2006143420A JP 2006143420 A JP2006143420 A JP 2006143420A JP 2007315825 A JP2007315825 A JP 2007315825A
Authority
JP
Japan
Prior art keywords
inspection
light
light receiving
calculation rule
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006143420A
Other languages
Japanese (ja)
Other versions
JP4923210B2 (en
Inventor
Yukiko Fukamizu
裕紀子 深水
Hideo Mori
秀夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTS Optics Corp
Kirin Techno System Co Ltd
Original Assignee
KTS Optics Corp
Kirin Techno System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006143420A priority Critical patent/JP4923210B2/en
Application filed by KTS Optics Corp, Kirin Techno System Co Ltd filed Critical KTS Optics Corp
Priority to KR1020087027551A priority patent/KR101010843B1/en
Priority to CN2007800172294A priority patent/CN101443652B/en
Priority to EP07743192.2A priority patent/EP2019310B1/en
Priority to PCT/JP2007/059757 priority patent/WO2007132776A1/en
Priority to CN2010105604480A priority patent/CN102062738B/en
Priority to US11/748,768 priority patent/US7602487B2/en
Publication of JP2007315825A publication Critical patent/JP2007315825A/en
Application granted granted Critical
Publication of JP4923210B2 publication Critical patent/JP4923210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspecting device capable of making various sensitivity characteristics, corresponding to the kind or the like of a flaw. <P>SOLUTION: The surface inspection device 1 has a detection unit 5 for irradiating the inner peripheral surface 100a of an inspection target 100 from a laser diode 11 via a floodlight projecting fiber 13 and detecting the intensity of the reflected light of the inspection light. The detection unit includes a first light detecting fiber group 14A arranged in the vicinity of the floodlight projecting fiber 13, a second light detecting fiber group 14B arranged at the outside of the first light detecting fiber group and photodetectors 12A and 12B, respectively connected to these fiber groups. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被検査物の表面に照射した検査光の反射光の強度を検出し、検出された反射光の強度に基づいて被検査物の表面を検査する表面検査装置装置に関する。   The present invention relates to a surface inspection apparatus that detects the intensity of reflected light of inspection light applied to the surface of an inspection object and inspects the surface of the inspection object based on the intensity of the detected reflected light.

円筒状の被検査物の内周面を検査する装置として、軸状の検査ヘッドをその軸線の回りに回転させつつ軸線方向に送り出して被検査物の内部に検査ヘッドを挿入し、その検査ヘッドの外周から検査光を被検査物に照射してその被検査物の内周面をその軸線方向の一旦から他端まで逐次走査し、その走査に対応した被検査物からの反射光を検査ヘッドを介して受光し、その受光した反射光の強度に基づいて被検査物の状態、例えば欠陥等の有無を判別する表面検査装置が知られている(例えば、特許文献1参照)。   As an apparatus for inspecting the inner peripheral surface of a cylindrical inspection object, the inspection head is inserted into the inspection object by feeding it in the axial direction while rotating the axial inspection head around its axis. The inspection light is irradiated onto the inspection object from the outer periphery of the inspection object, and the inner peripheral surface of the inspection object is sequentially scanned from once to the other end in the axial direction, and the reflected light from the inspection object corresponding to the scanning is inspected by the inspection head. There is known a surface inspection apparatus that receives light via a light source and discriminates the state of an inspection object, for example, the presence or absence of a defect or the like based on the intensity of the received reflected light (see, for example, Patent Document 1).

特開平11−281582号公報JP-A-11-281582

特許文献1の表面検査装置は、検査光を投光する投光ファイバの回りに反射光を受光する複数の受光ファイバを隣接させてこれらの光ファイバをファイバ保持筒で保持するようにした検出手段を有している。この検出手段は投光ファイバと受光ファイバとの距離等の位置関係が固定されているので、反射光の方向や強さ等の反射光の性状変化に対する検出手段の感度特性も固定される。反射光の性状は被検査物に存在する欠陥の種類に応じて特徴付けられるので、従来の表面検査装置では、被検査物から発見すべき欠陥を検知できる感度特性を検出手段が持つように受光ファイバの位置等が設定される。   In the surface inspection apparatus of Patent Document 1, a plurality of light receiving fibers that receive reflected light are arranged adjacent to a light projecting fiber that projects inspection light, and these optical fibers are held by a fiber holding cylinder. have. Since this detection means has a fixed positional relationship such as the distance between the light projecting fiber and the light receiving fiber, the sensitivity characteristic of the detection means with respect to changes in the properties of the reflected light such as the direction and intensity of the reflected light is also fixed. Since the nature of the reflected light is characterized by the type of defects present in the inspection object, conventional surface inspection devices receive light so that the detection means has a sensitivity characteristic that can detect defects to be detected from the inspection object. The position of the fiber is set.

このように、従来の表面検査装置では検出手段の感度特性が発見すべき欠陥を検知できる感度特性に固定されているので、例えば、発見すべき欠陥の種類が変わった場合にその欠陥を十分に検知できないことや、欠陥と区別すべき箇所が新たに設定された場合にその箇所を欠陥として誤検出する等の問題がある。   As described above, in the conventional surface inspection apparatus, the sensitivity characteristic of the detection means is fixed to the sensitivity characteristic that can detect the defect to be detected. For example, when the type of the defect to be detected changes, the defect is sufficiently detected. There are problems such as being unable to detect, and when a part that should be distinguished from a defect is newly set, that part is erroneously detected as a defect.

そこで、本発明は、欠陥の種類等に応じて様々な感度特性を作り出すことができる表面検査装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a surface inspection apparatus capable of creating various sensitivity characteristics according to the type of defect.

本発明の表面検査装置(1)は、光源(11)から投光ファイバ(13)を介して被検査物(100)の表面(100a)に検査光を照射し、その検査光の反射光の強度を検出する検出手段(5)を有し、前記検出手段の検出結果に基づいて前記被検査物の表面を検査する表面検査装置において、前記検出手段は、前記投光ファイバの周囲に配置されて前記反射光を導くことができる複数の受光ファイバ(14)からなる第1の受光ファイバ群(14A)と、前記投光ファイバから見て前記第1の受光ファイバ群よりも外側に配置されて前記反射光を導くことができる複数の受光ファイバ(14)からなる第2の受光ファイバ群(14B)と、前記第1の受光ファイバ群にて導かれた反射光の強度に対応した信号を出力する第1の光電変換手段(12A)と、前記第2の受光ファイバ群にて導かれた反射光の強度に対応した信号を出力する第2の光電変換手段(12B)と、を備えることにより上述した課題を解決する。   The surface inspection apparatus (1) of the present invention irradiates the surface (100a) of the inspection object (100) from the light source (11) via the light projecting fiber (13), and reflects the reflected light of the inspection light. In a surface inspection apparatus that has a detection means (5) for detecting intensity and inspects the surface of the object to be inspected based on a detection result of the detection means, the detection means is arranged around the light projecting fiber. A first light receiving fiber group (14A) composed of a plurality of light receiving fibers (14) capable of guiding the reflected light, and disposed outside the first light receiving fiber group as viewed from the light projecting fiber. A second light receiving fiber group (14B) composed of a plurality of light receiving fibers (14) capable of guiding the reflected light, and a signal corresponding to the intensity of the reflected light guided by the first light receiving fiber group is output. First photoelectric conversion hand And (12A), and second photoelectric conversion means for outputting a signal corresponding to the intensity of the reflected light guided by the second light receiving fiber group (12B), solving the above problems by providing a.

この検査装置によれば、第1の受光ファイバ群の外側に第2の受光ファイバ群が配置されており、これらのファイバ群は投光ファイバとの位置関係が互いに相違する。そのため、一つの検出手段が互いに相違する複数の感度特性を有することになる。従って、検知すべき欠陥の種類に応じて第1の光電変換手段の信号と第2の光電変換手段の信号とを使い分けたり、あるいはこれらの信号を組合わせることにより、様々な感度特性を作り出すことが可能となる。   According to this inspection apparatus, the second light receiving fiber group is disposed outside the first light receiving fiber group, and these fiber groups are different in positional relationship with the light projecting fiber. For this reason, one detection means has a plurality of different sensitivity characteristics. Therefore, various sensitivity characteristics can be created by selectively using the signals of the first photoelectric conversion means and the signals of the second photoelectric conversion means according to the type of defect to be detected, or by combining these signals. Is possible.

本発明の検査装置の一態様においては、前記第1の光電変換手段から出力された第1の信号(Ps1)と前記第2の光電変換手段から出力された第2の信号(Ps2)とを所定の演算則に基づいて組み合わせる合成処理手段(601)と、前記検出手段の感度が所定の感度特性となるように前記所定の演算則を設定する演算則設定手段(602)と、を更に備えてもよい。演算則設定手段が設定する演算則に制限はない。また演算則設定手段が複数種類の演算則を予め保持しておきそれらの中から適当な演算則を選択して設定してもよい。例えば、第1の信号と第2の信号とを単純に加算する演算則を設定することにより、それぞれのファイバ群の受光面積を合計した受光面積を持つ受光ファイバ群を設けた場合、つまり受光ファイバの径を拡大した場合と略同等な感度特性を得ることができる。   In one aspect of the inspection apparatus of the present invention, the first signal (Ps1) output from the first photoelectric conversion means and the second signal (Ps2) output from the second photoelectric conversion means are used. Combining processing means (601) for combining based on a predetermined arithmetic rule, and arithmetic rule setting means (602) for setting the predetermined arithmetic law so that the sensitivity of the detecting means has a predetermined sensitivity characteristic. May be. There is no limitation on the calculation rule set by the calculation rule setting means. The calculation rule setting means may hold a plurality of types of calculation rules in advance and select and set an appropriate calculation rule from them. For example, when a light-receiving fiber group having a light-receiving area obtained by summing the light-receiving areas of the respective fiber groups is set by setting an arithmetic rule for simply adding the first signal and the second signal, that is, the light-receiving fiber Sensitivity characteristics that are substantially the same as when the diameter is increased can be obtained.

ところで、被検査物が鋳造品でかつ検査する表面が切削加工されている場合には、鋳造品の表面に現れる鋳巣を欠陥として検知すると同時に、切削加工によって表面に形成されるわずかな窪みを欠陥たる鋳巣と区別することが要請される。表面に鋳巣が存在する場合には、鋳巣に検査光を照射しても殆ど反射しないため反射光の強度は下がる。一方、表面に形成される窪みは反射光の方向を変化させる。そのため反射光の角度変化に関する検出手段の感度が敏感であると、つまり反射光の角度範囲に対して許容範囲が狭い感度特性であると、検出手段は表面の窪みで反射した反射光を受光できない場合がある。これにより、受光する反射光の強度が下がり鋳巣と窪みとの区別が付きにくくなる。   By the way, when the object to be inspected is a cast product and the surface to be inspected is cut, a hollow formed on the surface of the cast product is detected as a defect, and at the same time, a slight depression formed on the surface by the cutting process is detected. It is required to distinguish from a defective casting hole. In the case where a cast hole exists on the surface, the intensity of the reflected light decreases because the cast hole is hardly reflected even when irradiated with the inspection light. On the other hand, the depression formed on the surface changes the direction of the reflected light. Therefore, if the sensitivity of the detection means with respect to the change in the angle of the reflected light is sensitive, that is, the sensitivity characteristic has a narrow allowable range with respect to the angle range of the reflected light, the detection means cannot receive the reflected light reflected by the depression on the surface. There is a case. Thereby, the intensity | strength of the reflected light which light-receives falls, and it becomes difficult to attach a cast hole and a hollow.

そこで、本発明の検査装置の一態様においては、前記演算則設定手段は、前記被検査物の表面からの反射光の角度変化に関する前記検出手段の感度が所定範囲内の角度変化に対して略平坦な感度特性となるように前記所定の演算則を設定してもよい。この場合、窪みからの反射光の角度変化幅に対応して所定範囲を設定すれば、その範囲内の感度特性が略平坦であるので、窪みからの反射光を窪みのない表面からの反射光と同等の強度で受光できるようになる。従って、鋳巣と窪みとの区別が明確になり検査精度が向上する。   Therefore, in one aspect of the inspection apparatus of the present invention, the calculation rule setting means is substantially free from an angle change in which the sensitivity of the detection means relating to an angle change of reflected light from the surface of the inspection object is within a predetermined range. The predetermined calculation rule may be set so that the sensitivity characteristic is flat. In this case, if a predetermined range is set corresponding to the angle change width of the reflected light from the depression, the sensitivity characteristic within the range is substantially flat. Therefore, the reflected light from the depression is reflected from the surface without the depression. Can receive light with the same intensity. Therefore, the distinction between the cast hole and the hollow becomes clear and the inspection accuracy is improved.

第1及び第2の受光ファイバ群のそれぞれの反射光の角度変化に関する感度特性は、これらの光ファイバ群の間隔、各ファイバ群と投光ファイバとの距離、これらのファイバ群を構成する受光ファイバの径の大きさ等の物理的構成に依存する。従って、このような平坦な感度特性を得るための演算則は、反射光の角度変化に関する第1の受光ファイバ群の感度特性と第2の受光ファイバ群の感度特性とを考慮して適宜に設定される。例えば、前記演算則設定手段は、前記所定の演算則として、前記第2の信号に所定値を乗じたものを前記第1の信号に加算する演算則を設定してもよい。このような演算則によっても略平坦な感度特性を得ることができる。   The sensitivity characteristics regarding the angle change of the reflected light of each of the first and second light receiving fiber groups are the distance between these optical fiber groups, the distance between each fiber group and the light projecting fiber, and the light receiving fibers constituting these fiber groups. Depends on the physical configuration such as the size of the diameter. Accordingly, an arithmetic rule for obtaining such flat sensitivity characteristics is appropriately set in consideration of the sensitivity characteristics of the first light receiving fiber group and the sensitivity characteristics of the second light receiving fiber group with respect to the change in angle of the reflected light. Is done. For example, the calculation rule setting means may set a calculation rule for adding a value obtained by multiplying the second signal by a predetermined value to the first signal as the predetermined calculation rule. A substantially flat sensitivity characteristic can also be obtained by such a calculation rule.

ところで、被検査物の表面が切削加工されたものである場合、その切削加工による切粉が表面に付着することがあり、その切粉の存在を欠陥として検知する要請がある。切粉に照射された検査光が殆ど反射しない場合や反射光の方向が大きく外れる場合などには、受光される反射光の強度が低下するので切粉の検出が可能である。しかし、切粉は一様な形状でないので、切粉に照射された検査光が正常な表面と同様に反射する場合には、切粉の存在を見過ごすおそれがある。   By the way, when the surface of the object to be inspected is machined, chips from the machining may adhere to the surface, and there is a demand to detect the presence of the chips as a defect. When the inspection light applied to the chips hardly reflects or when the direction of the reflected light deviates greatly, the intensity of the reflected light received decreases, so that the chips can be detected. However, since the chips are not in a uniform shape, the presence of the chips may be overlooked if the inspection light irradiated on the chips reflects in the same manner as a normal surface.

そこで、本発明の検査装置の一態様においては、前記演算則設定手段は、前記被検査物の反射位置までの距離変化に関する前記検出手段の感度が所定の距離だけ反射位置が近くなった場合に負のピークを持つ感度特性となるように前記所定の演算則を設定してもよい。これによれば、例えば所定の距離を切粉の平均的寸法に設定することにより、切粉の存在により受光される反射光の強度が負の値となって切粉の検知が可能となるので、切粉の存在を見過ごす危険性が減じられる。このような感度特性を得るための演算則は、上述のように検出手段の物理的構成に依存するので、被検査物の反射位置までの距離変化に関する第1の受光ファイバ群による感度特性と第2の受光ファイバ群の感度特性とを考慮して適宜に設定される。例えば、前記演算則設定手段は、前記所定の演算則として、前記第1の信号から前記第2の信号を減算する演算則を設定してもよい。このような演算則によっても所定の距離だけ反射位置が近くなった場合に負のピークを持つ感度特性を得ることができる。   Therefore, in one aspect of the inspection apparatus of the present invention, the calculation rule setting unit is configured such that the sensitivity of the detection unit relating to a change in the distance to the reflection position of the inspection object is close to the reflection position by a predetermined distance. The predetermined calculation rule may be set so that the sensitivity characteristic has a negative peak. According to this, for example, by setting the predetermined distance to the average size of the chips, the intensity of the reflected light received due to the presence of the chips becomes a negative value and the chips can be detected. The risk of overlooking the presence of chips is reduced. Since the calculation rule for obtaining such sensitivity characteristics depends on the physical configuration of the detection means as described above, the sensitivity characteristics and the first sensitivity characteristics of the first light receiving fiber group regarding the change in distance to the reflection position of the inspection object are described. It is set appropriately in consideration of the sensitivity characteristics of the two light receiving fiber groups. For example, the calculation rule setting means may set a calculation rule for subtracting the second signal from the first signal as the predetermined calculation rule. Even with such a calculation rule, a sensitivity characteristic having a negative peak can be obtained when the reflection position is close to a predetermined distance.

本発明の検査装置は、被検査物の平面状の表面を検査する装置として構成してもよいし、非平面状の表面を検査する装置として構成してもよい。例えば、前記被検査物の前記表面として円筒状の内周面(100a)が設けられ、前記検出手段は、軸状に延びる検査ヘッド(16)の外周から前記円筒体の内周面に向かって検査光を照射するとともに、前記検査ヘッドを軸線方向に移動させる直線駆動手段(30)と、前記検査ヘッドをその軸線の回りに回転させる回転駆動手段(40)とを更に備えてもよい。   The inspection apparatus of the present invention may be configured as an apparatus for inspecting a planar surface of an object to be inspected, or may be configured as an apparatus for inspecting a non-planar surface. For example, a cylindrical inner peripheral surface (100a) is provided as the surface of the object to be inspected, and the detection means is directed from the outer periphery of the inspection head (16) extending in a shaft shape toward the inner peripheral surface of the cylindrical body. The apparatus may further comprise linear drive means (30) for irradiating the inspection light and moving the inspection head in the axial direction, and rotational drive means (40) for rotating the inspection head around the axis.

なお、以上の説明では本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記したが、それにより本発明が図示の形態に限定されるものではない。   In addition, in the above description, in order to make an understanding of this invention easy, the reference sign of the accompanying drawing was attached in parenthesis, but this invention is not limited to the form of illustration by it.

以上に説明したように、本発明によれば、第1の受光ファイバ群の外側に第2の受光ファイバ群が配置されており、これらのファイバ群は投光ファイバとの位置関係が互いに相違するため、一つの検出手段が互いに相違する複数の感度特性を有することになる。従って、検知すべき欠陥の種類に応じて第1の光電変換手段の信号と第2の光電変換手段の信号とを使い分けたり、あるいはこれらの信号を組合わせることにより、様々な感度特性を作り出すことが可能となる。   As described above, according to the present invention, the second light receiving fiber group is disposed outside the first light receiving fiber group, and these fiber groups are different from each other in the positional relationship with the light projecting fiber. Therefore, one detection means has a plurality of sensitivity characteristics different from each other. Therefore, various sensitivity characteristics can be created by selectively using the signals of the first photoelectric conversion means and the signals of the second photoelectric conversion means according to the type of defect to be detected, or by combining these signals. Is possible.

図1は、本発明の一形態に係る表面検査装置の概略構成を示している。表面検査装置1は、被検査物100の円筒体の内周面100aの検査に適した装置である。表面検査装置1は、そのような検査を実行して被検査物100の内周面100aに関する情報を出力する検査機構2と、検査機構2の各部の動作を制御するとともに、検査機構2が出力した情報を処理する制御部3とを備えている。更に、検査機構2は被検査物100に対して検査光を投光し、かつ被検査物100からの反射光を受光するための検出ユニット5と、その検出ユニット5に所定の動作を与えるための駆動ユニット6とを備えている。   FIG. 1 shows a schematic configuration of a surface inspection apparatus according to an embodiment of the present invention. The surface inspection apparatus 1 is an apparatus suitable for inspection of the inner peripheral surface 100a of the cylindrical body of the inspection object 100. The surface inspection apparatus 1 executes such an inspection and outputs information related to the inner peripheral surface 100a of the inspection object 100. The surface inspection apparatus 1 controls the operation of each part of the inspection mechanism 2, and the inspection mechanism 2 outputs the information. And a control unit 3 for processing the processed information. Further, the inspection mechanism 2 projects inspection light onto the inspection object 100 and receives the reflected light from the inspection object 100, and gives a predetermined operation to the detection unit 5. Drive unit 6.

検出ユニット5は、検査光の光源としてのレーザダイオード(以下、LDと呼ぶ。)11と、被検査物100からの反射光を受光し、その反射光の単位時間当たりの光量(反射光強度)に応じた電流又は電圧の電気信号を出力する二つのフォトディテクタ(以下、PDと呼ぶ。)12A、12Bと、LD11から射出される検査光を被検査物100に向かって導く投光ファイバ13と、被検査物100からの反射光をPD12Aに導くための第1受光ファイバ群14Aと、被検査物100からの反射光をPD12Bに導くための第2受光ファイバ群14Bと、そららの投光ファイバ13及び受光ファイバ群14A、14Bを束ねた状態で保持する保持筒15と、その保持筒15の外側に同軸的に設けられる中空軸状の検査ヘッド16とを備えている。   The detection unit 5 receives a laser diode (hereinafter referred to as LD) 11 as a light source of inspection light and reflected light from the inspection object 100, and the amount of the reflected light per unit time (reflected light intensity). Two photo detectors (hereinafter referred to as PDs) 12A and 12B that output electric signals having a current or voltage corresponding to the above, and a light projecting fiber 13 that guides the inspection light emitted from the LD 11 toward the inspection object 100; A first light receiving fiber group 14A for guiding reflected light from the inspection object 100 to the PD 12A, a second light receiving fiber group 14B for guiding reflected light from the inspection object 100 to the PD 12B, and their light projecting fibers 13 and the receiving fiber groups 14A and 14B are held in a bundled state, and a hollow shaft inspection head 16 is provided coaxially on the outside of the holding cylinder 15. There.

図2は、保持筒15にて保持された投光ファイバ13及び受光ファイバ群14A、14Bの先端部(図1において右端部)を示している。投光ファイバ13は保持筒15の中心線上に配置されており、第1受光ファイバ群14Aはその投光ファイバ13の周囲に配置された6本の受光ファイバ14からなる。また第2受光ファイバ群14Bは投光ファイバ13から見て第1受光ファイバ群14Aの外側に配置された12本の受光ファイバ14からなる。投光ファイバ13と各受光ファイバ群14A、14Bを構成する受光ファイバ14とは、図示しない樹脂系接着剤等の接合手段で互いに固定されており、位置ずれが防止されている。なお、第1受光ファイバ群14A及び第2受光ファイバ群14Bをそれぞれ構成する受光ファイバ14の本数に制限はなく、適宜の本数を採用してよい。   FIG. 2 shows tip portions (right end portions in FIG. 1) of the light projecting fiber 13 and the light receiving fiber groups 14A and 14B held by the holding cylinder 15. The light projecting fiber 13 is disposed on the center line of the holding cylinder 15, and the first light receiving fiber group 14 </ b> A includes six light receiving fibers 14 disposed around the light projecting fiber 13. The second light receiving fiber group 14 </ b> B is composed of twelve light receiving fibers 14 disposed outside the first light receiving fiber group 14 </ b> A when viewed from the light projecting fiber 13. The light projecting fiber 13 and the light receiving fibers 14 constituting each of the light receiving fiber groups 14A and 14B are fixed to each other by a bonding means such as a resin-based adhesive (not shown) to prevent displacement. The number of the light receiving fibers 14 constituting each of the first light receiving fiber group 14A and the second light receiving fiber group 14B is not limited, and an appropriate number may be adopted.

図1に示すように、保持筒15の先端には、投光ファイバ13を介して導かれた検査光を検査ヘッド16の軸線AXの方向(以下、軸線方向と呼ぶ。)に沿ってビーム状に射出させ、かつ検査ヘッド16の軸線方向に沿って検査光とは逆向きに進む反射光を受光ファイバ14に集光するレンズ17が設けられている。検査ヘッド16の先端部(図1において右端部)には、光路変更手段としてのミラー18が固定され、検査ヘッド16の外周にはそのミラー18と対向するようにして透光窓16aが設けられている。ミラー18は、レンズ17から射出された検査光の光路を透光窓16aに向けて変更し、かつ透光窓16aから検査ヘッド16内に入射した反射光の光路をレンズ17に向かって進む方向に変更する。   As shown in FIG. 1, at the tip of the holding cylinder 15, the inspection light guided through the light projecting fiber 13 is beam-shaped along the direction of the axis AX of the inspection head 16 (hereinafter referred to as the axial direction). And a lens 17 that collects the reflected light that travels in the direction opposite to the inspection light along the axial direction of the inspection head 16 onto the light receiving fiber 14. A mirror 18 as an optical path changing means is fixed to the tip portion (right end portion in FIG. 1) of the inspection head 16, and a light transmission window 16 a is provided on the outer periphery of the inspection head 16 so as to face the mirror 18. ing. The mirror 18 changes the optical path of the inspection light emitted from the lens 17 toward the light transmission window 16a, and travels the optical path of the reflected light incident from the light transmission window 16a into the inspection head 16 toward the lens 17. Change to

駆動ユニット6は、直線駆動機構30と、回転駆動機構40と、焦点調整機構50とを備えている。直線駆動機構30は検査ヘッド16をその軸線方向に移動させる移動手段として設けられている。このような機能を実現するため、直線駆動機構30は、ベース31と、そのベース31に固定された一対のレール32と、レール32に沿って検査ヘッド16の軸線方向に移動可能なスライダ33と、そのスライダ33の側方に検査ヘッド16の軸線AXと平行に配置された送りねじ34と、その送りねじ34を回転駆動する電動モータ35とを備えている。スライダ33は検出ユニット5の全体を支持する手段として機能する。即ち、LD11及びPD12A、12Bはスライダ33に固定され、検査ヘッド16は回転駆動機構40を介してスライダ33に取り付けられ、保持筒15は焦点調節機構50を介してスライダ33に取り付けられている。更に、送りねじ34は、スライダ33に固定されたナット36にねじ込まれている。従って、電動モータ35にて送りねじ34を回転駆動することにより、スライダ33がレール32に沿って検査ヘッド16の軸線方向に移動し、それに伴ってスライダ33に支持された検出ユニット5の全体が検査ヘッド16の軸線方向に移動する。直線駆動機構30を用いた検出ユニット5の駆動により、被検査物100の内周面100aに対する検査光の照射位置を検査ヘッド16の軸線方向に関して変化させることができる。   The drive unit 6 includes a linear drive mechanism 30, a rotation drive mechanism 40, and a focus adjustment mechanism 50. The linear drive mechanism 30 is provided as a moving unit that moves the inspection head 16 in the axial direction thereof. In order to realize such a function, the linear drive mechanism 30 includes a base 31, a pair of rails 32 fixed to the base 31, and a slider 33 movable along the rail 32 in the axial direction of the inspection head 16. Further, a feed screw 34 disposed in parallel to the axis AX of the inspection head 16 and a motor 35 that rotationally drives the feed screw 34 are provided on the side of the slider 33. The slider 33 functions as a means for supporting the entire detection unit 5. That is, the LD 11 and the PDs 12 </ b> A and 12 </ b> B are fixed to the slider 33, the inspection head 16 is attached to the slider 33 via the rotation drive mechanism 40, and the holding cylinder 15 is attached to the slider 33 via the focus adjustment mechanism 50. Further, the feed screw 34 is screwed into a nut 36 fixed to the slider 33. Therefore, when the feed screw 34 is rotationally driven by the electric motor 35, the slider 33 moves along the rail 32 in the axial direction of the inspection head 16, and accordingly, the entire detection unit 5 supported by the slider 33 is moved. It moves in the axial direction of the inspection head 16. By driving the detection unit 5 using the linear drive mechanism 30, the irradiation position of the inspection light on the inner peripheral surface 100 a of the inspection object 100 can be changed with respect to the axial direction of the inspection head 16.

回転駆動機構40は検査ヘッド16を軸線AXの回りに回転させる回転駆動手段として設けられている。そのような機能を実現するため、回転駆動機構40は、検査ヘッド16を軸線AXの回りに回転自在に支持する軸受(不図示)と、回転駆動源としての電動モータ41と、その電動モータ41の回転を検査ヘッド16に伝達する伝達機構42とを備えている。伝達機構42には、ベルト伝達装置、歯車列との公知の回転伝達機構を利用してよい。電動モータ41の回転を伝達機構42を介して検査ヘッド16に伝達することにより、検査ヘッド16がその内部に固定されたミラー18を伴って軸線AXの回りに回転する。回転駆動機構40を用いた検査ヘッド16の回転により、被検査物100の内周面100aに対する検査光の照射位置を周方向に関して変化させることができる。そして、検査ヘッド16の軸線方向への移動と軸線AXの回りの回転とを組合わせることにより、被検査物100の内周面100aをその全面に亘って検査光で走査することが可能となる。なお、検査ヘッド16の回転時において、保持筒15は回転しない。更に、回転駆動機構40には、検査ヘッド16の回転位置に応じたパルス信号を出力するロータリーエンコーダ43が設けられている。ロータリーエンコーダ43は、検査ヘッド16に取り付けられて一体に回転し、かつ周方向に沿って所定間隔で並ぶ複数の検知孔(不図示)が形成された円板43aと、その円板43aの検知孔の位置に応じたパルスを生成するパルス生成部43bとを備える。ロータリーエンコーダ43からのパルス信号は制御部3にて利用される。   The rotation drive mechanism 40 is provided as a rotation drive unit that rotates the inspection head 16 around the axis AX. In order to realize such a function, the rotation drive mechanism 40 includes a bearing (not shown) that supports the inspection head 16 so as to be rotatable around the axis AX, an electric motor 41 as a rotation drive source, and the electric motor 41. And a transmission mechanism 42 that transmits the rotation of the rotation to the inspection head 16. As the transmission mechanism 42, a known rotation transmission mechanism including a belt transmission device and a gear train may be used. By transmitting the rotation of the electric motor 41 to the inspection head 16 via the transmission mechanism 42, the inspection head 16 rotates around the axis AX with the mirror 18 fixed therein. By rotating the inspection head 16 using the rotation drive mechanism 40, the irradiation position of the inspection light on the inner peripheral surface 100a of the inspection object 100 can be changed in the circumferential direction. Then, by combining the movement of the inspection head 16 in the axial direction and the rotation around the axis AX, the inner peripheral surface 100a of the inspection object 100 can be scanned over the entire surface with the inspection light. . Note that the holding cylinder 15 does not rotate when the inspection head 16 rotates. Furthermore, the rotary drive mechanism 40 is provided with a rotary encoder 43 that outputs a pulse signal corresponding to the rotation position of the inspection head 16. The rotary encoder 43 is attached to the inspection head 16 and rotates integrally. The rotary encoder 43 is formed with a plurality of detection holes (not shown) arranged at predetermined intervals along the circumferential direction, and detection of the disk 43a. A pulse generation unit 43b that generates a pulse corresponding to the position of the hole. The pulse signal from the rotary encoder 43 is used by the control unit 3.

焦点調節機構50は、検査光が被検査物100の内周面100aにて焦点を結び、かつ内周面100aからの反射光が第1受光ファイバ群14A又は第2受光ファイバ群14のいずれか一方で焦点を結ぶように保持筒15を軸線AXの方向に駆動する焦点調節手段として設けられている。その機能を実現するため、焦点調節機構50は保持筒50の基端部に固定された支持板51と、直線駆動機構30のスライダ33と支持板51との間に配置されて支持板51を検査ヘッド16の軸線方向に案内するレール52と、検査ヘッド16の軸線AXと平行に配置されて支持板51にねじ込まれた送りねじ53と、その送りねじ53を回転駆動する電動モータ54とを備えている。電動モータ54にて送りねじ53を回転駆動することにより、支持板51がレール52に沿って移動して保持筒15が検査ヘッド16の軸線方向に移動する。これにより、検査光が被検査物100の内周面100a上で焦点を結び、かつ内周面100aからの反射光が第1受光ファイバ群14A又は第2受光ファイバ群14Bのいずれか一方で焦点を結ぶようにレンズ17からミラー18を経て内周面100aに至る光路の長さを調節することができる。   The focus adjusting mechanism 50 focuses the inspection light on the inner peripheral surface 100a of the inspection object 100, and the reflected light from the inner peripheral surface 100a is either the first light receiving fiber group 14A or the second light receiving fiber group 14. On the other hand, it is provided as a focus adjusting means for driving the holding cylinder 15 in the direction of the axis AX so as to focus. In order to realize the function, the focus adjustment mechanism 50 is disposed between the support plate 51 fixed to the base end portion of the holding cylinder 50 and the slider 33 and the support plate 51 of the linear drive mechanism 30 to dispose the support plate 51. A rail 52 that guides in the axial direction of the inspection head 16, a feed screw 53 that is arranged parallel to the axis AX of the inspection head 16 and is screwed into the support plate 51, and an electric motor 54 that rotationally drives the feed screw 53. I have. By rotating the feed screw 53 with the electric motor 54, the support plate 51 moves along the rail 52, and the holding cylinder 15 moves in the axial direction of the inspection head 16. Thereby, the inspection light is focused on the inner peripheral surface 100a of the inspection object 100, and the reflected light from the inner peripheral surface 100a is focused on either the first light receiving fiber group 14A or the second light receiving fiber group 14B. The length of the optical path from the lens 17 to the inner peripheral surface 100a through the mirror 18 can be adjusted so as to connect the two.

次に制御部3について説明する。制御部3は、表面検査装置1による検査工程の管理、測定結果の処理等を実行するコンピュータユニットとしての演算処理部60と、その演算処理部60の指示に従って検査機構2の各部の動作を制御する動作制御部61と、PD12Aの出力信号に対して所定の処理を実行する信号処理部62Aと、PD12Aの出力信号に対して所定の処理を実行する信号処理部62Bと、演算処理部60に対してユーザが指示を入力するための入力部63と、演算処理部60における測定結果等をユーザに提示するための出力部64と、演算処理部60にて実行すべきコンピュータプログラム、及び測定されたデータ等を記憶する記憶部65とを備えている。演算処理部60、入力部63、出力部64及び記憶部65はパーソナルコンピュータ等の汎用のコンピュータ機器を利用してこれらを構成することができる。この場合、入力部63にはキーボード、マウス等の入力機器が設けられ、出力部64にはモニタ装置が設けられる。プリンタ等の出力機器が出力部64に追加されてもよい。記憶部65には、ハードディスク記憶装置、あるいは記憶保持が可能な半導体記憶素子等の記憶装置が用いられる。動作制御部61及び信号処理部62A、62Bはハードウエア制御回路によって実現されてもよいし、コンピュータユニットによって実現されてもよい。   Next, the control unit 3 will be described. The control unit 3 controls the operation of each part of the inspection mechanism 2 according to instructions from the arithmetic processing unit 60 as a computer unit that executes inspection process management, measurement result processing, and the like by the surface inspection apparatus 1. Operation control unit 61, signal processing unit 62A that executes predetermined processing on the output signal of PD 12A, signal processing unit 62B that executes predetermined processing on the output signal of PD 12A, and arithmetic processing unit 60 On the other hand, an input unit 63 for a user to input an instruction, an output unit 64 for presenting a measurement result or the like in the arithmetic processing unit 60 to the user, a computer program to be executed by the arithmetic processing unit 60, and measurement And a storage unit 65 for storing data and the like. The arithmetic processing unit 60, the input unit 63, the output unit 64, and the storage unit 65 can be configured using general-purpose computer equipment such as a personal computer. In this case, the input unit 63 is provided with input devices such as a keyboard and a mouse, and the output unit 64 is provided with a monitor device. An output device such as a printer may be added to the output unit 64. The storage unit 65 is a hard disk storage device or a storage device such as a semiconductor storage element capable of storing data. The operation control unit 61 and the signal processing units 62A and 62B may be realized by a hardware control circuit or may be realized by a computer unit.

以下では、内周面100aが切削加工された鋳造品を被検査物100とした場合に好適な形態を例示する。表面検査装置1が実行できる検査モードには、被検査物100の表面としての内周面100aに現れた鋳巣等の表面自体の欠陥を検出する表面欠陥検査モードと、被検査物100の表面に付着した切粉等の異物を欠陥として検出する付着異物検査モードとがそれぞれ設定されており、ユーザによる入力部63からの指示に応じて各検査モードを選択できるように構成されている。なお、これらの検査モードに応じて演算処理部60及び動作制御部61の動作がそれぞれ異なるが、まずは各モードに共通する動作を説明する。   Below, a suitable form is illustrated when making the to-be-inspected object 100 the cast product by which the internal peripheral surface 100a was cut. The inspection modes that can be executed by the surface inspection apparatus 1 include a surface defect inspection mode for detecting defects on the surface of the ingot or the like appearing on the inner peripheral surface 100 a as the surface of the inspection object 100, and the surface of the inspection object 100. A foreign matter inspection mode for detecting foreign matter such as chips adhering to the surface as a defect is set, and each inspection mode can be selected in accordance with an instruction from the input unit 63 by the user. The operations of the arithmetic processing unit 60 and the operation control unit 61 are different depending on these inspection modes. First, operations common to the respective modes will be described.

被検査物100の内周面100aの表面を検査する場合、被検査物100は検査ヘッド16と同軸上に配置される。検査の開始にあたって、演算処理部60は入力部63からの指示に従って動作制御部61に被検査物100の内周面100aを検査するために必要な動作の開始を指示する。その指示を受けた動作制御部61は、LD11を所定の強度で発光させるとともに、検査ヘッド16が軸線方向に移動し、かつ軸線AXの回りに一定速度で回転するようにモータ35及びモータ41の動作を制御する。そして、ユーザの指示により表面欠陥検査モードが選択された場合には、動作制御部61は検査光が内周面100a上で焦点を結び、かつ内周面100aからの反射光が第2受光ファイバ群14Bに焦点を結ぶようにモータ54の動作を制御する。一方、表面欠陥検査モードが選択された場合には、動作制御部61は検査光が内周面100a上で焦点を結び、かつ内周面100aからの反射光が第1受光ファイバ群14Aに焦点を結ぶようにモータ54の動作を制御する。このような動作制御により、内周面100aがその一端から他端まで検査光によって走査される。   When inspecting the surface of the inner peripheral surface 100 a of the inspection object 100, the inspection object 100 is arranged coaxially with the inspection head 16. In starting the inspection, the arithmetic processing unit 60 instructs the operation control unit 61 to start an operation necessary for inspecting the inner peripheral surface 100 a of the inspection object 100 in accordance with an instruction from the input unit 63. Upon receiving the instruction, the operation control unit 61 causes the LD 11 to emit light with a predetermined intensity, and moves the inspection head 16 in the axial direction and rotates the motor 35 and the motor 41 around the axis AX at a constant speed. Control the behavior. When the surface defect inspection mode is selected by the user's instruction, the operation control unit 61 focuses the inspection light on the inner peripheral surface 100a, and the reflected light from the inner peripheral surface 100a is the second light receiving fiber. The operation of the motor 54 is controlled so as to focus on the group 14B. On the other hand, when the surface defect inspection mode is selected, the operation control unit 61 focuses the inspection light on the inner peripheral surface 100a, and the reflected light from the inner peripheral surface 100a focuses on the first light receiving fiber group 14A. The operation of the motor 54 is controlled so as to connect the two. By such operation control, the inner peripheral surface 100a is scanned by inspection light from one end to the other end.

その走査に連係して信号処理部62AにはPD12Aの出力信号が、信号処理部62BにはPD12Bの出力信号がそれぞれ順次導かれる。信号処理部62Aは、PD12Aの出力信号を演算処理部60にて処理するために必要なアナログ信号処理を実施し、更にその処理後のアナログ信号を所定のビット数でA/D変換し、得られたデジタル信号を反射光信号として演算処理部60に出力する。信号処理部62Aが行うA/D変換は、ロータリーエンコーダ43から出力されるパルス列をサンプリングクロック信号として利用して行われる。これにより、検査ヘッド16が所定角度回転する間のPD12の受光量(強度)に相関した階調のデジタル信号が生成されて信号処理部62Aから出力される。PD12Bの出力信号が入力される信号処理部62Bも上記と同様に機能する。   In conjunction with the scanning, the output signal of the PD 12A is sequentially guided to the signal processing unit 62A, and the output signal of the PD 12B is sequentially guided to the signal processing unit 62B. The signal processing unit 62A performs analog signal processing necessary for processing the output signal of the PD 12A by the arithmetic processing unit 60, and A / D-converts the analog signal after the processing with a predetermined number of bits. The digital signal thus output is output to the arithmetic processing unit 60 as a reflected light signal. The A / D conversion performed by the signal processing unit 62A is performed using the pulse train output from the rotary encoder 43 as a sampling clock signal. Thereby, a digital signal having a gradation correlated with the amount of received light (intensity) of the PD 12 while the inspection head 16 rotates by a predetermined angle is generated and output from the signal processing unit 62A. The signal processing unit 62B to which the output signal of the PD 12B is input also functions in the same manner as described above.

各信号処理部62A、62Bから反射光信号を受け取った演算処理部60は、信号処理部62Aからの信号と、信号処理部62Bからの信号とを互いに区別できる状態で記憶部65に記憶する。更に、演算処理部60は記憶部65が記憶する反射光信号を利用して被検査物100の内周面100aを平面的に展開した2次元画像を生成し、その2次元画像に基づいて欠陥の有無を判定し、その判定結果としての検査結果を出力部64に出力する。   Receiving the reflected light signal from each of the signal processing units 62A and 62B, the arithmetic processing unit 60 stores the signal from the signal processing unit 62A and the signal from the signal processing unit 62B in the storage unit 65 in a state where they can be distinguished from each other. Further, the arithmetic processing unit 60 uses the reflected light signal stored in the storage unit 65 to generate a two-dimensional image in which the inner peripheral surface 100a of the inspected object 100 is developed in a plane, and based on the two-dimensional image, a defect is generated. The inspection result as the determination result is output to the output unit 64.

次に、演算処理部60がこのような2次元画像を生成し、その2次元画像に基づいて検査結果を出力するプロセスについて図3を参照して説明する。図3は演算処理部60の機能を説明するブロック図である。演算処理部60は記憶部65が記憶する所定のプログラムを実行することにより、図3に示した合成処理部601、演算則設定部602、画像生成部603及び判定部604としてそれぞれ機能する。まず、演算処理部60は、記憶部65が記憶するPD12Aの出力信号を基礎とした反射光信号Ps1と、PD12Aの出力信号を基礎とした反射光信号Ps2とを合成処理部601にそれぞれ読み込む。次に、その合成処理部601は、これらの信号Ps1、Ps2を演算則設定部602が設定する演算則に従って組合わせ、その合成信号を画像生成部603に出力する。演算則設定部602は、上述した表面欠陥検査モードに対応する演算則と、表面異物検査モードに対応する演算則とをそれぞれ保持しており、入力部63からの指示に基づいて選択された検査モードに対応する演算則を設定する。   Next, a process in which the arithmetic processing unit 60 generates such a two-dimensional image and outputs an inspection result based on the two-dimensional image will be described with reference to FIG. FIG. 3 is a block diagram illustrating the function of the arithmetic processing unit 60. The calculation processing unit 60 functions as the synthesis processing unit 601, the calculation rule setting unit 602, the image generation unit 603, and the determination unit 604 shown in FIG. 3 by executing a predetermined program stored in the storage unit 65. First, the arithmetic processing unit 60 reads the reflected light signal Ps1 based on the output signal of the PD 12A stored in the storage unit 65 and the reflected light signal Ps2 based on the output signal of the PD 12A into the synthesis processing unit 601. Next, the synthesis processing unit 601 combines these signals Ps 1 and Ps 2 in accordance with the calculation rule set by the calculation rule setting unit 602, and outputs the combined signal to the image generation unit 603. The calculation rule setting unit 602 holds a calculation rule corresponding to the above-described surface defect inspection mode and a calculation rule corresponding to the surface foreign matter inspection mode, respectively, and an inspection selected based on an instruction from the input unit 63 Set the operation rule corresponding to the mode.

演算則設定部602が保持する演算則は、被検査物100の内周面100aの性状変化、換言すれば反射光の性状変化に対する各PD12A、12Bの出力信号の特性(感度特性)を考慮して設定されている。まず、表面欠陥検査モードで設定される演算則について説明する。表面欠陥検査モードでは、被検査物100の内周面100aに現れる鋳巣等の欠陥と、欠陥とすべきでない切削加工により形成される内周面100aの窪みとを区別できる感度特性が得られるように演算則が設定される。なお、この窪みは切削加工した場合に不可避なものであり、バイト等の工具を新品に取り替えた場合に表面に現れるいわゆるビビリに近い浅い窪みのことである。被検査物100の内周面100aに形成される窪みは反射光の方向を変化させる。つまり窪みは検査光の照射方向(光軸)に対してある程度の角度を持った表面と考えられる。   The calculation rule held by the calculation rule setting unit 602 takes into account the characteristics (sensitivity characteristics) of the output signals of the PDs 12A and 12B with respect to the property change of the inner peripheral surface 100a of the inspection object 100, in other words, the property change of the reflected light. Is set. First, the calculation rule set in the surface defect inspection mode will be described. In the surface defect inspection mode, a sensitivity characteristic that can distinguish a defect such as a cast hole appearing on the inner peripheral surface 100a of the inspection object 100 and a depression of the inner peripheral surface 100a formed by cutting that should not be a defect is obtained. The operation rule is set as follows. This recess is inevitable when cutting, and is a shallow recess close to so-called chatter that appears on the surface when a tool such as a tool is replaced with a new tool. The depression formed in the inner peripheral surface 100a of the inspection object 100 changes the direction of the reflected light. That is, the depression is considered to be a surface having a certain angle with respect to the irradiation direction (optical axis) of the inspection light.

図4は、反射光の角度変化に関する検出ユニット5の感度特性を示している。図4の一点鎖線L1は反射光の角度が変化した場合のPD12Aの出力信号、つまり第1受光ファイバ群14Aの感度特性を示し、二点鎖線L2は、反射光の角度が変化した場合のPD12Bの出力信号、つまり第2受光ファイバ群14Bの感度特性を示し、実線L3はPD12Aの出力信号とPD12Bの出力信号とを合成した場合の感度特性を示している。図4の横軸は角度[deg]を、縦軸は反射光強度をそれぞれ示している。表面欠陥検査モードでは、上述のように第2受光ファイバ群14Bに反射光の焦点を結ぶように検出ユニット5が調整される。このため、二点鎖線L2のように、第2受光ファイバ群14Bの感度特性は反射光の方向にずれがない原点において最大値をとり、反射光のずれが大きくなるに従い強度が低下する感度特性となる。一方、第1受光ファイバ群14Aの感度特性は第2受光ファイバ群14Bに焦点を合わせた関係で、±4deg付近で最大値をとり、原点において最小値となる中央が凹んだ形状の感度特性を示す。これらの感度特性は、光ファイバ群14A、14Bの間隔、各ファイバ群14A、14Bと投光ファイバ13との距離、これらのファイバ群を構成する受光ファイバ14の径の大きさ等の物理的構成に依存するので、検出ユニット5の形態に固有のものである。   FIG. 4 shows the sensitivity characteristic of the detection unit 5 with respect to the change in angle of the reflected light. 4 indicates the output signal of the PD 12A when the angle of the reflected light changes, that is, the sensitivity characteristic of the first light receiving fiber group 14A, and the two-dot chain line L2 indicates the PD 12B when the angle of the reflected light changes. Output signal, that is, the sensitivity characteristic of the second light receiving fiber group 14B, and the solid line L3 indicates the sensitivity characteristic when the output signal of the PD 12A and the output signal of the PD 12B are combined. In FIG. 4, the horizontal axis indicates the angle [deg], and the vertical axis indicates the reflected light intensity. In the surface defect inspection mode, the detection unit 5 is adjusted so that the reflected light is focused on the second light receiving fiber group 14B as described above. For this reason, like the two-dot chain line L2, the sensitivity characteristic of the second light receiving fiber group 14B takes a maximum value at the origin where there is no deviation in the direction of the reflected light, and the sensitivity characteristic that the intensity decreases as the deviation of the reflected light increases. It becomes. On the other hand, the sensitivity characteristic of the first light receiving fiber group 14A is a relationship where the second light receiving fiber group 14B is focused. Show. These sensitivity characteristics include physical configurations such as the distance between the optical fiber groups 14A and 14B, the distance between each of the fiber groups 14A and 14B and the light projecting fiber 13, and the diameter of the light receiving fiber 14 constituting these fiber groups. , Which is unique to the form of the detection unit 5.

内周面100aに形成される上記の窪みは、−6〜6deg程度の範囲で反射光を変化させる。従って、検出ユニット5がこの範囲内の角度変化に対して略平坦な感度特性を持つようにすれば、窪みに検査光が照射された場合でも検出ユニット5が受光する反射光の強度は低下せず、窪みと鋳巣とを明確に区別することができる。そこで、この形態の表面欠陥検査モードでは、図4の実線L3で示す如く−6〜6deg程度の範囲内の角度変化に対して略平坦な感度特性となるように、PD12Aの出力信号に所定値としての0.5を乗じたものをPD12Bの出力信号に加算する演算則を設定している。   The above-described depression formed in the inner peripheral surface 100a changes the reflected light in a range of about −6 to 6 deg. Therefore, if the detection unit 5 has a substantially flat sensitivity characteristic with respect to an angle change within this range, the intensity of the reflected light received by the detection unit 5 is reduced even when the inspection light is irradiated to the depression. Therefore, it is possible to clearly distinguish the recess from the cast hole. Therefore, in the surface defect inspection mode of this embodiment, the output signal of the PD 12A has a predetermined value so as to have a substantially flat sensitivity characteristic with respect to an angle change within a range of about −6 to 6 deg as shown by a solid line L3 in FIG. A calculation rule is set for adding the product of 0.5 to the output signal of the PD 12B.

次に、表面異物検査モードで設定される演算則について説明する。表面異物検査モードでは、被検査物100の内周面100aに付着した切粉等の異物に照射された検査光が異物のない正常な表面と同様に反射する場合であっても異物を検知できる感度特性が得られるように演算則が設定される。切粉等の異物が内周面100aに付着している場合と、そうでない場合とを比べると、異物が付着している場合はその異物が存在する分だけ検査光の反射位置が近くなる。言い換えれば、異物が付着している場合はそれがない場合に比べて、レンズ17からミラー18を経て内周面100aに至る光路の長さが短くなる。   Next, a calculation rule set in the surface foreign matter inspection mode will be described. In the surface foreign matter inspection mode, foreign matter can be detected even when inspection light applied to foreign matter such as chips adhering to the inner peripheral surface 100a of the inspection object 100 is reflected in the same manner as a normal surface without foreign matter. An arithmetic rule is set so that sensitivity characteristics can be obtained. Comparing the case where foreign matters such as chips adhere to the inner peripheral surface 100a and the case where foreign matters are not attached, when the foreign matter is attached, the reflection position of the inspection light becomes closer by the presence of the foreign matter. In other words, the length of the optical path from the lens 17 through the mirror 18 to the inner peripheral surface 100a is shorter when foreign matter is attached than when there is no foreign matter.

図5は被検査物100の反射位置までの距離変化に関する検出ユニット5の感度特性を示している。図5の一点鎖線L1は反射位置までの距離が変化した場合のPD12Aの出力信号、つまり第1受光ファイバ群14Aの感度特性を示し、二点鎖線L2は、反射位置までの距離が変化した場合のPD12Bの出力信号、つまり第2受光ファイバ群14Bの感度特性を示し、実線L3はPD12Aの出力信号とPD12Bの出力信号とを合成した場合の感度特性を示している。図5の横軸は基準位置を原点とし、その基準位置と反射位置との位置ずれ[mm]を示している。負号は検出ユニット5側に近いことを意味する。図5の縦軸は反射光強度を示している。表面異物検査モードでは、上述のように第1受光ファイバ群14Aに反射光の焦点を結ぶように検出ユニット5が調整される。このため、一点鎖線L1のように、第1受光ファイバ群14Aの感度特性は位置ずれのない原点において最大値をとり、位置ずれが大きくなるに従い強度が低下する感度特性となる。一方、第2受光ファイバ群14Bの感度特性は第1受光ファイバ群14Aに焦点を合わせた関係で、第1受光ファイバ群14Aの感度特性を−0.5mm付近までシフトしたものと同等な感度特性となる。これらの感度特性は、上述の通り検出ユニット5の物理的構成に依存するので、検出ユニット5の形態に固有のものである。   FIG. 5 shows the sensitivity characteristic of the detection unit 5 with respect to the change in distance to the reflection position of the inspection object 100. 5 shows the output signal of the PD 12A when the distance to the reflection position changes, that is, the sensitivity characteristic of the first light receiving fiber group 14A, and the two-dot chain line L2 shows the case where the distance to the reflection position changes. The output signal of the PD 12B, that is, the sensitivity characteristic of the second light receiving fiber group 14B is shown, and the solid line L3 shows the sensitivity characteristic when the output signal of the PD 12A and the output signal of the PD 12B are combined. The horizontal axis in FIG. 5 indicates the positional deviation [mm] between the reference position and the reflection position with the reference position as the origin. A negative sign means that it is close to the detection unit 5 side. The vertical axis in FIG. 5 represents the reflected light intensity. In the surface foreign matter inspection mode, the detection unit 5 is adjusted so that the reflected light is focused on the first light receiving fiber group 14A as described above. For this reason, as indicated by the alternate long and short dash line L1, the sensitivity characteristic of the first light receiving fiber group 14A takes a maximum value at the origin where there is no positional deviation, and becomes a sensitivity characteristic in which the strength decreases as the positional deviation increases. On the other hand, the sensitivity characteristic of the second light receiving fiber group 14B is the same as that obtained by shifting the sensitivity characteristic of the first light receiving fiber group 14A to around -0.5 mm because the focus is on the first light receiving fiber group 14A. It becomes. Since these sensitivity characteristics depend on the physical configuration of the detection unit 5 as described above, they are specific to the form of the detection unit 5.

内周面100aに付着する切粉の平均的な寸法(例えば厚さ)は、0.5mm程度であるので、内周面100aに付着した切粉に検査光を照射した場合、切粉のない基準位置に比べて反射位置が0.5mm程度近づくことになる。従って、検出ユニット5がその程度の反射位置の近づきを検知できる負のピークを持つ感度特性を持つようにすれば、仮に切粉等の異物に照射された検査光が異物のない正常な表面と同様に反射する場合であっても異物を検知できるようになる。そこで、この形態の表面異物検査モードでは、図5の実線L3で示す如く−0.5mm程度で負のピークを持つ感度特性となるように、PD12Aの出力信号からPD12Bの出力信号を減算する演算則を設定している。   Since the average dimension (for example, thickness) of the chips adhering to the inner peripheral surface 100a is about 0.5 mm, when the inspection light is irradiated to the chips adhering to the inner peripheral surface 100a, there is no chips. The reflection position approaches about 0.5 mm compared to the reference position. Therefore, if the detection unit 5 has a sensitivity characteristic having a negative peak that can detect the approach of the reflection position to such an extent, the inspection light irradiated to the foreign matter such as the chips is assumed to be a normal surface free from the foreign matter. Similarly, foreign matter can be detected even when reflected. Therefore, in the surface foreign matter inspection mode of this embodiment, an operation of subtracting the output signal of PD12B from the output signal of PD12A so as to have a sensitivity characteristic having a negative peak at about −0.5 mm as shown by a solid line L3 in FIG. The law is set.

以上説明した各演算則は、検出ユニット5の物理的構成、具体的には光ファイバ群14A、14Bの間隔、各ファイバ群14A、14Bと投光ファイバ13との距離、これらのファイバ群を構成する受光ファイバ14の径の大きさ等に適した一例であり、所定の感度特性を得るために他の演算則を使用することもできる。   Each of the arithmetic rules described above constitutes the physical configuration of the detection unit 5, specifically, the distance between the optical fiber groups 14A and 14B, the distance between each of the fiber groups 14A and 14B and the projecting fiber 13, and these fiber groups. This is an example suitable for the size of the diameter of the light receiving fiber 14, and other arithmetic rules can be used to obtain a predetermined sensitivity characteristic.

図3に示すように、画像生成部603は、各検査モードに対応した演算則に従って合成された合成信号Ps3を合成処理部601から受けとると、その合成信号Ps3を利用して被検査物100の内周面100aを平面的に展開した2次元画像を生成し、その2次元画像を出力部64及び判定部604にそれぞれ出力する。画像生成部603が生成する2次元画像は、例えば被検査物の周方向をx軸方向、検査ヘッド16の軸線方向をy軸方向とする直交2軸座標系で定義される平面上に内周面100aを展開した画像に相当する。判定部604は、画像生成部603から得た2次元画像を、検査モード毎に用意された所定のアルゴリズムで処理することにより、許容限度を超える欠陥の有無を判定し、その判定結果を出力部64に出力する。   As illustrated in FIG. 3, when the image generation unit 603 receives the synthesized signal Ps3 synthesized according to the calculation rule corresponding to each inspection mode from the synthesis processing unit 601, the image generation unit 603 uses the synthesized signal Ps3 to A two-dimensional image in which the inner peripheral surface 100a is developed in a plane is generated, and the two-dimensional image is output to the output unit 64 and the determination unit 604, respectively. The two-dimensional image generated by the image generation unit 603 has, for example, an inner circumference on a plane defined by an orthogonal biaxial coordinate system in which the circumferential direction of the inspection object is the x-axis direction and the axial direction of the inspection head 16 is the y-axis direction. This corresponds to an image obtained by developing the surface 100a. The determination unit 604 determines the presence or absence of a defect exceeding an allowable limit by processing the two-dimensional image obtained from the image generation unit 603 with a predetermined algorithm prepared for each inspection mode, and outputs the determination result to the output unit 64.

以上説明したように、本形態の表面検査装置1によれば、PD12Aの出力信号を基礎とした反射光信号Ps1と、PD12Bの出力信号を基礎とした反射光信号Ps2とが各検査モードに対応した演算則に従って組合わされることにより、各検査モードに適した検出ユニット5の感度特性を作り出すことができる。これにより、一つの検出ユニット5で互いに異なる複数の検査を実行することができ、なおかつ各検査モードでの検査精度が向上する。   As described above, according to the surface inspection apparatus 1 of the present embodiment, the reflected light signal Ps1 based on the output signal of the PD 12A and the reflected light signal Ps2 based on the output signal of the PD 12B correspond to each inspection mode. By combining according to the above-described calculation rule, the sensitivity characteristic of the detection unit 5 suitable for each inspection mode can be created. Thereby, a plurality of different inspections can be executed by one detection unit 5, and the inspection accuracy in each inspection mode is improved.

以上の形態において、LD11が本発明に係る光源に、PD12Aが本発明に係る第1の光電変換手段に、PD12Bが本発明に係る第2の光電変換手段に、第1受光ファイバ群14Aが本発明の第1の受光ファイバ群に、第2受光ファイバ群14Bが本発明の第2の受光ファイバ群に、それぞれ相当する。   In the above embodiment, the LD 11 is the light source according to the present invention, the PD 12A is the first photoelectric conversion means according to the present invention, the PD 12B is the second photoelectric conversion means according to the present invention, and the first light receiving fiber group 14A is the present. The second light receiving fiber group 14B corresponds to the first light receiving fiber group of the present invention, and the second light receiving fiber group 14B corresponds to the second light receiving fiber group of the present invention.

但し、本発明は以上の形態に限定されず、種々の形態にて実施してよい。上記の形態では、各PD12A、12Bからの出力信号をA/D変換してから、これらのデジタル信号が所定の演算則に従って合成されるように演算処理部60を機能させているが、各PDからの出力信号をアナログ信号の状態で所定の演算則に従って合成されるように、図63に示した合成処理部601及び演算則設定部602のそれぞれをハードウエア回路で実現してもよい。   However, this invention is not limited to the above form, You may implement with a various form. In the above embodiment, after the output signals from the PDs 12A and 12B are A / D converted, the arithmetic processing unit 60 is made to function so that these digital signals are synthesized according to a predetermined arithmetic rule. Each of the synthesis processing unit 601 and the computation rule setting unit 602 shown in FIG. 63 may be realized by a hardware circuit so that the output signal from the signal is synthesized according to a predetermined computation rule in the state of an analog signal.

上述の形態では、図2に示すように投光ファイバ13に対する位置関係が互いに相違する二つの受光ファイバ群14A、14Bが設けられているが、第2受光ファイバ群14Bの外周に複数の受光ファイバを配置して、3つの受光ファイバ群を設けてもよい。3つの受光ファイバ群を設けた場合、最も外側の第3の受光ファイバ群から導かれた反射光を受光する第3の光電変換手段を設けてもよい。これにより、各光電変換手段の信号をそれぞれ組合わせるバリエーションが増えるので、より多様な感度特性を検出手段に与えることができるようになる。   In the above-described embodiment, as shown in FIG. 2, two light receiving fiber groups 14A and 14B having different positional relationships with respect to the light projecting fiber 13 are provided, but a plurality of light receiving fibers are provided on the outer periphery of the second light receiving fiber group 14B. And three light receiving fiber groups may be provided. When three light receiving fiber groups are provided, third photoelectric conversion means for receiving reflected light guided from the outermost third light receiving fiber group may be provided. As a result, the number of variations for combining the signals of the respective photoelectric conversion means increases, so that more various sensitivity characteristics can be given to the detection means.

演算則設定部602が設定する演算則は、種々のものが想定される。例えば、上述した表面異物検査モードでは、PD12Aの信号からPD12Bの信号を減算することとしたが、第2受光ファイバ群12Bに反射光の焦点を合わせた上で、PD12Bの信号からPD12Aの信号を減算してもよい。こうすることにより、図5に示した実線L3を縦軸に関して反転させた感度特性を得ることができる。この場合には、基準位置よりも反射位置が所定距離だけ離れた状態を検知できる。これにより、被検査物の表面に形成された所定距離に相当する寸法の凹部を検出することができるようになる。   Various arithmetic rules set by the arithmetic rule setting unit 602 are assumed. For example, in the surface foreign matter inspection mode described above, the PD 12B signal is subtracted from the PD 12A signal. However, the reflected light is focused on the second light receiving fiber group 12B, and then the PD 12A signal is converted from the PD 12B signal. You may subtract. By doing so, it is possible to obtain a sensitivity characteristic in which the solid line L3 shown in FIG. In this case, it is possible to detect a state in which the reflection position is separated from the reference position by a predetermined distance. As a result, it is possible to detect a recess having a dimension corresponding to a predetermined distance formed on the surface of the inspection object.

また、PD12Aの信号とPD12Bとの信号を単純に加算する演算則を設定することにより、それぞれのファイバ群の受光面積を合計した受光面積を持つ受光ファイバ群を設けた場合、つまり受光ファイバの径を拡大した場合と略同等な感度特性を得ることができる。なお、これらの信号を両方とも使用することは必須ではなく、必要に応じてこれらの信号を単独で使用することもできる。   In addition, by setting an arithmetic rule for simply adding the signals of PD12A and PD12B, when a light receiving fiber group having a light receiving area obtained by summing the light receiving areas of the respective fiber groups is provided, that is, the diameter of the light receiving fiber. Sensitivity characteristics that are substantially equivalent to the case of enlarging can be obtained. Note that it is not essential to use both of these signals, and these signals can be used alone as necessary.

上述した検査装置1は、円筒状の内周面の検査に適用したが、検査ヘッド16の回転させずに軸線方向へ移動させつつ、軸線方向と直交する方向へのさせることにより平面状の表面を持つ被検査物の検査装置として用いることもできる。上述した表面異物検査モードでは、反射位置の変化に対して図5に示した感度特性を有しているので、表面検査装置1を所定の分解能で被検査物の真円率を求めることができる回転式距離計測装置として機能させることができる。   The inspection apparatus 1 described above is applied to the inspection of the cylindrical inner peripheral surface. However, the inspection device 16 is moved in the axial direction without rotating the inspection head 16 and is moved in the direction orthogonal to the axial direction to obtain a planar surface. It can also be used as an inspection apparatus for an inspection object having In the surface foreign matter inspection mode described above, the sensitivity characteristic shown in FIG. 5 is provided for the change in the reflection position, so that the surface inspection apparatus 1 can obtain the roundness of the object to be inspected with a predetermined resolution. It can function as a rotary distance measuring device.

本発明の一形態に係る表面検査装置の概略構成を示した図。The figure which showed schematic structure of the surface inspection apparatus which concerns on one form of this invention. 保持筒にて保持された投光ファイバ及び受光ファイバ群の先端部を示した平面模式図。The plane schematic diagram which showed the front-end | tip part of the light projection fiber and the light reception fiber group hold | maintained with the holding cylinder. 演算処理部の機能を説明するブロック図。The block diagram explaining the function of an arithmetic processing part. 反射光の角度変化に関する検出ユニットの感度特性を示した図。The figure which showed the sensitivity characteristic of the detection unit regarding the angle change of reflected light. 被検査物の反射位置までの距離変化に関する検出ユニットの感度特性を示した図。The figure which showed the sensitivity characteristic of the detection unit regarding the distance change to the reflective position of a to-be-inspected object.

符号の説明Explanation of symbols

1 表面検査装置
5 検出ユニット(検出手段)
11 LD(光源)
12A PD(第1の光電変換手段)
12B PD(第2の光電変換手段)
13 投光ファイバ
14 受光ファイバ
14A 第1受光ファイバ群(第1の受光ファイバ群)
14B 第2受光ファイバ群(第2の受光ファイバ群)
16 検査ヘッド
30 直線駆動機構(直線駆動手段)
40 回転駆動機構(回転駆動手段)
100 被検査物
100a 内周面(表面)
601 合成処理部(合成処理手段)
602 演算則設定部(演算則設定手段)
AX 軸線
Ps1 第1の信号
Ps2 第2の信号
1 Surface inspection device 5 Detection unit (detection means)
11 LD (light source)
12A PD (first photoelectric conversion means)
12B PD (second photoelectric conversion means)
13 Light Emitting Fiber 14 Light Receiving Fiber 14A First Light Receiving Fiber Group (First Light Receiving Fiber Group)
14B Second light receiving fiber group (second light receiving fiber group)
16 Inspection head 30 Linear drive mechanism (linear drive means)
40 Rotation drive mechanism (rotation drive means)
100 Inspected object 100a Inner peripheral surface (surface)
601 Composition processing unit (composition processing means)
602 Calculation rule setting unit (Calculation rule setting means)
AX axis Ps1 first signal Ps2 second signal

Claims (7)

光源から投光ファイバを介して被検査物の表面に検査光を照射し、その検査光の反射光の強度を検出する検出手段を有し、前記検出手段の検出結果に基づいて前記被検査物の表面を検査する表面検査装置において、
前記検出手段は、前記投光ファイバの周囲に配置されて前記反射光を導くことができる複数の受光ファイバからなる第1の受光ファイバ群と、前記投光ファイバから見て前記第1の受光ファイバ群よりも外側に配置されて前記反射光を導くことができる複数の受光ファイバからなる第2の受光ファイバ群と、前記第1の受光ファイバ群にて導かれた反射光の強度に対応した信号を出力する第1の光電変換手段と、前記第2の受光ファイバ群にて導かれた反射光の強度に対応した信号を出力する第2の光電変換手段と、を備えることを特徴とする表面検査装置。
A detection unit configured to irradiate the surface of the inspection object from the light source through the projection fiber and detect the intensity of the reflected light of the inspection light; and based on a detection result of the detection unit, the inspection object In the surface inspection device that inspects the surface of
The detection means includes a first light receiving fiber group including a plurality of light receiving fibers arranged around the light projecting fiber and capable of guiding the reflected light, and the first light receiving fiber as viewed from the light projecting fiber. A second light receiving fiber group comprising a plurality of light receiving fibers arranged outside the group and capable of guiding the reflected light, and a signal corresponding to the intensity of the reflected light guided by the first light receiving fiber group And a first photoelectric conversion means for outputting a signal corresponding to the intensity of the reflected light guided by the second light receiving fiber group. Inspection device.
前記第1の光電変換手段から出力された第1の信号と前記第2の光電変換手段から出力された第2の信号とを所定の演算則に基づいて組み合わせる合成処理手段と、前記検出手段の感度が所定の感度特性となるように前記所定の演算則を設定する演算則設定手段と、を更に備えることを特徴とする請求項1に記載の表面検査装置。   Combining processing means for combining the first signal output from the first photoelectric conversion means and the second signal output from the second photoelectric conversion means based on a predetermined arithmetic rule; The surface inspection apparatus according to claim 1, further comprising calculation rule setting means for setting the predetermined calculation rule so that sensitivity has a predetermined sensitivity characteristic. 前記演算則設定手段は、前記被検査物の表面からの反射光の角度変化に関する前記検出手段の感度が所定範囲内の角度変化に対して略平坦な感度特性となるように前記所定の演算則を設定することを特徴とする請求項2に記載の表面検査装置。   The calculation rule setting unit is configured to set the predetermined calculation rule so that the sensitivity of the detection unit with respect to an angle change of reflected light from the surface of the inspection object has a substantially flat sensitivity characteristic with respect to an angle change within a predetermined range. The surface inspection apparatus according to claim 2, wherein: 前記演算則設定手段は、前記所定の演算則として、前記第2の信号に所定値を乗じたものを前記第1の信号に加算する演算則を設定することを特徴とする請求項3に記載の表面検査装置。   The calculation rule setting means sets a calculation rule for adding a value obtained by multiplying the second signal by a predetermined value to the first signal as the predetermined calculation rule. Surface inspection equipment. 前記演算則設定手段は、前記被検査物の反射位置までの距離変化に関する前記検出手段の感度が所定の距離だけ反射位置が近くなった場合に負のピークを持つ感度特性となるように前記所定の演算則を設定することを特徴とする請求項2に記載の表面検査装置。   The arithmetic rule setting means is configured to set the predetermined sensitivity so that the sensitivity of the detection means related to a change in distance to the reflection position of the inspection object has a sensitivity characteristic having a negative peak when the reflection position is close by a predetermined distance. The surface inspection apparatus according to claim 2, wherein the operation rule is set. 前記演算則設定手段は、前記所定の演算則として、前記第1の信号から前記第2の信号を減算する演算則を設定することを特徴とする請求項5に記載の表面検査装置。   6. The surface inspection apparatus according to claim 5, wherein the calculation rule setting means sets a calculation rule for subtracting the second signal from the first signal as the predetermined calculation rule. 前記被検査物の前記表面として円筒状の内周面が設けられ、
前記検出手段は、軸状に延びる検査ヘッドの外周から前記円筒体の内周面に向かって検査光を照射するとともに、前記検査ヘッドを軸線方向に移動させる直線駆動手段と、前記検査ヘッドをその軸線の回りに回転させる回転駆動手段とを更に備えることを特徴とする請求項1〜6のいずれか一項に記載の表面検査装置。
A cylindrical inner peripheral surface is provided as the surface of the inspection object,
The detection means irradiates the inspection light from the outer periphery of the inspection head extending in the axial direction toward the inner peripheral surface of the cylindrical body, and moves the inspection head in the axial direction; and the inspection head The surface inspection apparatus according to claim 1, further comprising a rotation driving unit that rotates around an axis.
JP2006143420A 2006-05-16 2006-05-23 Surface inspection device Active JP4923210B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006143420A JP4923210B2 (en) 2006-05-23 2006-05-23 Surface inspection device
CN2007800172294A CN101443652B (en) 2006-05-16 2007-05-11 Surface inspection apparatus
EP07743192.2A EP2019310B1 (en) 2006-05-16 2007-05-11 Surface inspection apparatus and surface inspection head device
PCT/JP2007/059757 WO2007132776A1 (en) 2006-05-16 2007-05-11 Surface inspection appaatus and surface inspection head device
KR1020087027551A KR101010843B1 (en) 2006-05-16 2007-05-11 Surface inspection apparatus and surface inspection head device
CN2010105604480A CN102062738B (en) 2006-05-16 2007-05-11 Surface inspection apparatus
US11/748,768 US7602487B2 (en) 2006-05-16 2007-05-15 Surface inspection apparatus and surface inspection head apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143420A JP4923210B2 (en) 2006-05-23 2006-05-23 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2007315825A true JP2007315825A (en) 2007-12-06
JP4923210B2 JP4923210B2 (en) 2012-04-25

Family

ID=38849825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143420A Active JP4923210B2 (en) 2006-05-16 2006-05-23 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4923210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085332A (en) * 2008-10-01 2010-04-15 Sigma Kk Surface inspection apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965708A (en) * 1982-09-04 1984-04-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sonde for automatic surface inspection
JPS63153456A (en) * 1986-12-18 1988-06-25 Yokogawa Electric Corp Optical disk testing system
JPS6454304A (en) * 1987-08-26 1989-03-01 Toyota Central Res & Dev Surface state inspection device
JPH11281582A (en) * 1998-03-26 1999-10-15 Tb Optical Kk Surface inspection apparatus
JP2002156332A (en) * 2000-11-20 2002-05-31 National Institute Of Advanced Industrial & Technology Detection method and device of surface flaw or the like
JP2005164398A (en) * 2003-12-02 2005-06-23 Kirin Techno-System Corp Surface inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965708A (en) * 1982-09-04 1984-04-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sonde for automatic surface inspection
JPS63153456A (en) * 1986-12-18 1988-06-25 Yokogawa Electric Corp Optical disk testing system
JPS6454304A (en) * 1987-08-26 1989-03-01 Toyota Central Res & Dev Surface state inspection device
JPH11281582A (en) * 1998-03-26 1999-10-15 Tb Optical Kk Surface inspection apparatus
JP2002156332A (en) * 2000-11-20 2002-05-31 National Institute Of Advanced Industrial & Technology Detection method and device of surface flaw or the like
JP2005164398A (en) * 2003-12-02 2005-06-23 Kirin Techno-System Corp Surface inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085332A (en) * 2008-10-01 2010-04-15 Sigma Kk Surface inspection apparatus

Also Published As

Publication number Publication date
JP4923210B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
EP2019310B1 (en) Surface inspection apparatus and surface inspection head device
US7944554B2 (en) Inspection head supporting structure in surface inspecting apparatus and surface inspecting apparatus
JP2007315803A (en) Surface inspection device
JP2003117778A (en) Precision measurement device for machine tool
CN101443652B (en) Surface inspection apparatus
JP6288280B2 (en) Surface shape measuring device
EP3201611A1 (en) Wafer edge inspection with trajectory following edge profile
JP4806093B1 (en) Method and measuring system for measuring locus of movement of rotation axis of rotating body
JP4923210B2 (en) Surface inspection device
JP2010139432A (en) Surface inspection device
JP2009025006A (en) Optical device, light source device, and optical measuring device
JP2009229234A (en) Lightwave interference measuring instrument
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP2008164532A (en) Apparatus and method for surface inspection
JP2010240665A (en) Method and apparatus for inspecting laser beam state and method for manufacturing solar panel
JP2007183145A (en) Method and instrument for measuring tubular bore
JP5638195B2 (en) Inspection head of surface inspection equipment
JP2007315823A (en) Surface inspecting device
JP5305795B2 (en) Surface inspection device
JP4923209B2 (en) Surface inspection device
JP2009229235A (en) Interference fringe imaging device and lightwave interference measuring instrument equipped therewith
JP2005140679A (en) Surface flaw detector
JP2007315804A (en) Surface inspection device
JP2008170253A (en) Surface flaw inspection device
JP5292268B2 (en) Hard disk surface inspection apparatus and surface inspection method for patterned media

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250