JP2007315729A - Evacuating device for vacuum heat treating device - Google Patents

Evacuating device for vacuum heat treating device Download PDF

Info

Publication number
JP2007315729A
JP2007315729A JP2006148374A JP2006148374A JP2007315729A JP 2007315729 A JP2007315729 A JP 2007315729A JP 2006148374 A JP2006148374 A JP 2006148374A JP 2006148374 A JP2006148374 A JP 2006148374A JP 2007315729 A JP2007315729 A JP 2007315729A
Authority
JP
Japan
Prior art keywords
exhaust
control valve
flow rate
control
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148374A
Other languages
Japanese (ja)
Inventor
Takashi Maruyama
崇 丸山
Kenjiro Sato
健二郎 佐藤
Satoru Hori
堀  哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006148374A priority Critical patent/JP2007315729A/en
Publication of JP2007315729A publication Critical patent/JP2007315729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evacuating device for a vacuum heat treating device capable of obtaining heat-treated articles of good quality with little dispersion by maintaining the interior of a furnace body to a predetermined pressure even when the fluctuation width of atmospheric gas flow exhausted from the furnace body is large like a multi-chamber type vacuum heat treating device. <P>SOLUTION: The evacuating device for the vacuum heat treating device performs control of pressure in the furnace body by controlling the rotating speed of a vacuum pump (a mechanical booster pump 7) connected to the furnace body 2 through an exhaust line 3. The exhaust line 3 is provided with a branch part 11 wherein a plurality of branch lines 12a, 12b, 12c with different passage resistance comprising on-off valves A, B, C are arranged in parallel, and a changeover control means (a control device 10) is provided for performing opening/closing control of the on-off valves A, B, C to select one branch line as an exhaust flow passage and changing the exhaust flow passage over to the branch line on the high resistance side when the rotating speed of the vacuum pump reaches a lower limit value, while changing the exhaust flow passage over to the branch line on the low resistance side when the rotating speed reaches an upper limit value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、真空熱処理装置の炉体内の雰囲気ガスを排気するための真空排気装置に関する。   The present invention relates to a vacuum exhaust apparatus for exhausting atmospheric gas in a furnace of a vacuum heat treatment apparatus.

従来鉄鋼材料等の処理材をたとえば真空浸炭する熱処理装置としては、バッチ炉形式あるいは連続炉形式の炉が一般に用いられていたが、前者は生産性が低く、後者は処理条件一定のもとでは生産性は高いが、処理条件変更や数量増減に迅速に対応できないという問題点があった。そこでこれらの問題点を解決するものとして、複数の炉体(処理室)と、この炉体に対して処理材の受渡しをおこなう搬送手段とをそなえた多室型真空熱処理装置が提案されている(たとえば、特許文献1,2参照。)。
特開2006−63363号公報 特開2005−9702号公報
Conventionally, as a heat treatment apparatus for vacuum carburizing a processing material such as steel material, a batch furnace type or continuous furnace type furnace is generally used. However, the former is low in productivity, and the latter is under constant processing conditions. Although the productivity is high, there is a problem that it is not possible to respond quickly to changes in processing conditions and increase / decrease in quantity. In order to solve these problems, a multi-chamber vacuum heat treatment apparatus having a plurality of furnace bodies (processing chambers) and a conveying means for delivering the processing material to the furnace bodies has been proposed. (For example, see Patent Documents 1 and 2.)
JP 2006-63363 A Japanese Patent Laid-Open No. 2005-9702

上記の多室型真空熱処理装置においては、上記特許文献1(その段落[0028])にも記載されているような各炉体(処理チャンバ)に接続した共通の真空排気ダクトを介して、各処理室内の空気や浸炭性ガスなどの雰囲気ガスを一括して排気するために、真空ポンプをそなえた一基の真空排気装置が用いられる。そしてこの真空排気装置としては、従来の一般の真空熱処理炉と同様に、真空ポンプの回転速度をインバータにより制御して炉体内圧力を所定の真空度に維持する制御方式(以下、回転数制御方式という)の真空排気装置(たとえば、特許文献3参照。)、または真空ポンプと炉体とを接続する排気管の途中に設けた流量調整弁の開度を制御して炉体内圧力を所定の真空度に維持する制御方式(以下、開度制御方式という)の真空排気装置(たとえば、特許文献4参照。)が用いられている。
特開2001−214868号公報 特開2005−325371号公報
In the above-described multi-chamber vacuum heat treatment apparatus, the respective vacuum exhaust ducts connected to the respective furnace bodies (processing chambers) as described in Patent Document 1 (paragraph [0028] thereof) In order to exhaust the atmosphere gas such as air and carburizing gas in the processing chamber in a lump, a single vacuum exhaust device having a vacuum pump is used. As in this conventional vacuum evacuation apparatus, a control method for maintaining the pressure in the furnace at a predetermined degree of vacuum by controlling the rotation speed of the vacuum pump by an inverter (hereinafter referred to as a rotation speed control method) The pressure inside the furnace is controlled to a predetermined vacuum by controlling the opening of a flow rate adjusting valve provided in the middle of an exhaust pipe connecting the vacuum pump and the furnace body (for example, refer to Patent Document 3). A vacuum evacuation device (see, for example, Patent Document 4) of a control method (hereinafter referred to as an opening degree control method) that is maintained frequently is used.
JP 2001-214868 A JP 2005-325371 A

ところが上記の多室型真空熱処理装置においては、各炉体内における均熱、浸炭、拡散などの真空浸炭の各工程がランダムに進行するため、各炉体から排出される雰囲気ガスの流量が大きく変動するのに対し、上記の回転数制御方式の場合は、回転数制御による排気能力可調整巾には限界があるので、真空ポンプの回転数が下限値到達状態あるいは上限値到達状態となって、排気量過多による炉内圧低圧(高真空度)化あるいは排気量過少による炉内圧高圧化により炉体内圧力が目標圧力からずれやすく、ロット間あるいは炉体間の浸炭品質にばらつきを生じるという問題点を有する。また同様に上記の開度制御方式の場合も、開度制御により排気流量を精度よく調節できる流量調整巾も限られているので、流量制御弁が開度下限値到達状態あるいは開度上限値到達状態となって、上記と同様な排気量過多あるいは過少による炉内圧低圧化あるいは高圧化により炉体内圧力が目標圧力からずれやすく、浸炭品質にばらつきを生じるという問題点を有するものであった。   However, in the above-described multi-chamber vacuum heat treatment apparatus, the steps of vacuum carburizing such as soaking, carburizing, and diffusion in each furnace proceed at random, so the flow rate of the atmospheric gas discharged from each furnace varies greatly. On the other hand, in the case of the above-described rotation speed control method, since the exhaust capacity adjustable width by the rotation speed control is limited, the rotation speed of the vacuum pump becomes the lower limit reached state or the upper limit reached state, The pressure inside the furnace tends to deviate from the target pressure due to low internal pressure (high vacuum) due to excessive displacement or high internal pressure due to excessive displacement, resulting in variations in carburizing quality between lots or between furnace bodies. Have. Similarly, in the case of the above opening degree control method, the flow rate adjustment range in which the exhaust flow rate can be accurately adjusted by opening degree control is limited, so that the flow rate control valve reaches the opening lower limit value or the opening upper limit value. As a result, there was a problem that the pressure inside the furnace tends to deviate from the target pressure due to excessive or too small displacement similar to the above, resulting in variations in carburizing quality.

この発明は上記従来の問題点を解決しようとするもので、多室型真空熱処理装置のように炉体から排出される雰囲気ガス流量の変動巾が大きい場合でも、炉体内を所定圧力に維持して、ばらつきの少ない良好な品質の熱処理品を得ることができる真空熱処理装置の真空排気装置を提供することを目的とする。   The present invention is intended to solve the above-mentioned conventional problems, and maintains the furnace body at a predetermined pressure even when the fluctuation range of the flow rate of the atmospheric gas discharged from the furnace body is large as in a multi-chamber vacuum heat treatment apparatus. An object of the present invention is to provide a vacuum evacuation apparatus for a vacuum heat treatment apparatus capable of obtaining a heat treatment product of good quality with little variation.

上記目的を達成するために、請求項1記載の真空熱処理装置の真空排気装置は、炉体に排気管路を介して接続した真空ポンプの回転数制御により、炉体内圧力の制御をおこなう真空熱処理装置の真空排気装置において、前記排気管路に、開閉弁をそなえた流路抵抗の異なる複数本の分岐管路を並列状に配設した分岐部を設け、前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、前記真空ポンプの回転数が下限値に達したとき前記排気流通路を高抵抗側の分岐管路に切換え、前記回転数が上限値に達したとき前記排気流通路を低抵抗側の分岐管路に切換える切換制御手段を具備したことを特徴とする。   In order to achieve the above object, the vacuum exhaust apparatus of the vacuum heat treatment apparatus according to claim 1 is a vacuum heat treatment that controls the pressure in the furnace body by controlling the number of revolutions of a vacuum pump connected to the furnace body through an exhaust pipe line. In the vacuum evacuation device of the apparatus, the exhaust pipe is provided with a branch portion in which a plurality of branch pipes having different flow resistances provided with an open / close valve are arranged in parallel, and the open / close valve is controlled to open and close. When the number of revolutions of the vacuum pump reaches a lower limit value, the exhaust flow passage is switched to a branch line on the high resistance side, and the number of revolutions reaches the upper limit value. In this case, switching control means for switching the exhaust flow passage to the branch pipe on the low resistance side is provided.

この請求項1記載の発明によれば、流路抵抗の差により真空ポンプの回転数可調整巾に対して異なる排気流量制御可能範囲が得られる分岐管路を切換えて排気流通路とすることにより、排気流量制御可能範囲が拡張され、炉体内からの雰囲気ガス流量の大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を設定値に維持することができる。   According to the first aspect of the present invention, by switching the branch pipe from which the exhaust flow rate controllable range different from the adjustable range of the rotation speed of the vacuum pump can be obtained due to the difference in flow path resistance, the exhaust flow path is switched. The range in which the exhaust gas flow rate can be controlled is expanded, and the exhaust pressure can be exhausted without excess or deficiency even with a large fluctuation range of the atmospheric gas flow rate from the furnace body, and the furnace body pressure can be maintained at the set value.

また請求項2記載の真空熱処理装置の真空排気装置は、炉体と真空ポンプとを接続する排気管路に設けた流量制御弁の開度制御により炉体内圧力の制御をおこなう真空熱処理炉の真空排気装置において、前記排気管路に、開閉弁と流路抵抗の異なる流量制御弁とをそなえた複数本の分岐管路を並列状に配設した分岐部を設け、前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、該排気流通路の前記開度制御中の前記流量制御弁の開度が下限値に達したとき、前記排気流通路および開度制御対象の流量制御弁を高抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換え、前記開度が上限値に達したとき、前記排気流通路および流量制御弁を低抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換える切換制御手段を具備したことを特徴とする。   According to a second aspect of the present invention, there is provided a vacuum evacuation apparatus for a vacuum heat treatment apparatus in which the pressure in the furnace is controlled by opening control of a flow control valve provided in an exhaust pipe connecting the furnace body and a vacuum pump. In the exhaust system, the exhaust pipe is provided with a branch portion in which a plurality of branch pipes each having a flow control valve having a different flow resistance are provided in parallel, and the open / close valve is controlled to open and close. One branch pipe is selected as the exhaust flow passage, and when the opening of the flow control valve during the opening control of the exhaust flow passage reaches a lower limit value, the exhaust flow passage and the opening control The target flow control valve is switched to a branch line having a flow control valve on the high resistance side and the flow control valve. When the opening reaches the upper limit value, the exhaust flow passage and the flow control valve are switched to the low resistance side. A branch line with a flow control valve of Characterized by comprising a switching control means for obtaining.

この請求項2記載の発明によれば、流路抵抗の差により異なる排気流量制御可能範囲が得られる流量制御弁を切換えて該流量制御弁を開度制御することにより、排気流量制御可能範囲が拡張され、炉体内からの雰囲気ガス流量の大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を設定値に維持することができる。   According to the second aspect of the present invention, the exhaust flow rate controllable range can be obtained by switching the flow rate control valve capable of obtaining a different exhaust flow rate controllable range depending on the difference in flow path resistance and controlling the opening degree of the flow rate control valve. It is expanded, and even with respect to a large fluctuation range of the atmospheric gas flow rate from the furnace body, exhaust can be performed without excess and deficiency, and the furnace pressure can be maintained at a set value.

また請求項3記載の真空熱処理装置の真空排気装置は、炉体に排気管路を介して接続した真空ポンプの回転数制御により、炉体内圧力の制御をおこなう真空熱処理炉の真空排気装置において、前記排気管路に、開閉弁と流路抵抗の異なる流量制御弁とをそなえた複数本の分岐管路を並列状に配設した分岐部を設け、前記各流量制御弁のうちから選定される1個の流量制御弁の開度制御により炉体内圧力の制御をおこなう圧力制御手段と、前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、前記真空ポンプの回転数が下限値に達し且つ前記排気流通路の前記開度制御中の前記流量制御弁の開度が下限値に達したとき、前記排気流通路および開度制御対象の流量制御弁を高抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換え、前記真空ポンプの回転数が上限値に達し且つ前記開度が上限値に達したとき、前記排気流通路および流量制御弁を低抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換える切換制御手段とを具備したことを特徴とする。   The vacuum exhaust apparatus of the vacuum heat treatment apparatus according to claim 3 is a vacuum exhaust apparatus of a vacuum heat treatment furnace that controls the pressure in the furnace body by controlling the number of rotations of a vacuum pump connected to the furnace body through an exhaust pipe line. The exhaust pipe is provided with a branch portion in which a plurality of branch pipes each having an on-off valve and a flow rate control valve having different flow path resistances are arranged in parallel, and is selected from the flow rate control valves. Pressure control means for controlling the pressure inside the furnace by controlling the opening of one flow control valve, and opening and closing the on-off valve to select one branch pipe as an exhaust flow path, When the rotational speed reaches the lower limit value and the opening degree of the flow rate control valve during the opening degree control of the exhaust flow path reaches the lower limit value, the exhaust flow path and the flow rate control valve subject to opening degree control have high resistance. A branch pipe having a flow control valve on the side, and A branch pipe having a flow resistance control valve on the low resistance side when the number of rotations of the vacuum pump reaches an upper limit value and the opening degree reaches an upper limit value. And a switching control means for switching to the flow control valve.

この請求項3記載の発明によれば、流路抵抗の異なる流量制御弁をそなえた分岐管路を切換えることにより異なる流量制御可能範囲が得られる真空ポンプの回転数制御に組合わせて、流路抵抗の差により異なる排気流量制御可能範囲が得られる流量制御弁を切換えて該流量制御弁を開度制御することにより、排気流量制御可能範囲が大きく拡張され、炉体内からの雰囲気ガス流量の大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を設定値に維持することができる。   According to the third aspect of the present invention, the flow path is combined with the rotational speed control of the vacuum pump that can obtain different flow controllable ranges by switching the branch pipes having flow control valves having different flow path resistances. By switching the flow control valve that provides different exhaust flow controllable ranges depending on the resistance difference and controlling the opening of the flow control valve, the exhaust flow controllable range is greatly expanded, and the atmosphere gas flow rate from the furnace body is large. Exhaust can be performed without excess or deficiency with respect to the fluctuation range, and the pressure in the furnace can be maintained at a set value.

以上説明したようにこの発明によれば、多室型真空熱処理装置のように炉体から排出される雰囲気ガス流量の変動巾が大きい場合でも、炉体内を所定圧力に維持して、ばらつきの少ない良好な品質の熱処理品を得ることができる。   As described above, according to the present invention, even when the fluctuation range of the atmospheric gas flow rate discharged from the furnace body is large as in a multi-chamber vacuum heat treatment apparatus, the furnace body is maintained at a predetermined pressure and there is little variation. A heat-treated product of good quality can be obtained.

上記の効果に加えて、請求項1記載の発明によれば、流路抵抗の異なる複数本の分岐管路を開閉弁により切換えるという簡潔で低コストの装置により、炉体内圧力を所定圧力に維持することができる。   In addition to the above effect, according to the first aspect of the present invention, the pressure in the furnace is maintained at a predetermined pressure by a simple and low-cost device in which a plurality of branch pipes having different flow path resistances are switched by an on-off valve. can do.

また上記の効果に加えて、請求項2記載の発明によれば、一般にモータの制御できる回転数範囲に制限がある真空ポンプの回転数制御により得られる排気流量制御可能範囲に比べて、流量制御弁の開度制御により得られる排気流量制御可能範囲の方が広いので、分岐管路の本数、従って流量制御弁の個数の少ない装置によって、炉体内圧力を所定圧力に維持することができる。   In addition to the above effects, according to the second aspect of the present invention, the flow rate control can be performed in comparison with the exhaust flow rate controllable range obtained by the rotational speed control of the vacuum pump that is generally limited in the rotational speed range that can be controlled by the motor. Since the exhaust flow rate controllable range obtained by controlling the opening of the valve is wider, the pressure in the furnace can be maintained at a predetermined pressure by a device having a small number of branch pipes, and hence a small number of flow control valves.

また上記の効果に加えて、請求項3記載の発明によれば、真空ポンプの回転数制御と流量制御弁の開度制御の組合わせにより、大きな排気流量制御可能範囲が得られる。   In addition to the above effect, according to the invention described in claim 3, a large exhaust flow rate controllable range can be obtained by combining the rotation speed control of the vacuum pump and the opening degree control of the flow control valve.

以下図1〜図3に示す第1例により、請求項1に係る発明の実施の形態を説明する。図1において、1は処理材の真空浸炭処理をおこなう多室形の真空熱処理装置で、2は浸炭室を内蔵する複数個の炉体、3はこれらの各炉体にそれぞれ開閉弁4を介して接続した排気管路、5はこの排気管路3に接続した真空排気装置で、真空排気手段として油回転ポンプ6とその前段側に設けたメカニカルブースタポンプ7とをそなえている。8はメカニカルブースタポンプ7の回転速度制御用のインバータ、9は炉体2寄りの排気管路3に接続した真空計、10は制御装置である。   An embodiment of the invention according to claim 1 will be described below with reference to a first example shown in FIGS. In FIG. 1, 1 is a multi-chamber vacuum heat treatment apparatus for performing vacuum carburizing treatment of a treatment material, 2 is a plurality of furnace bodies containing a carburizing chamber, and 3 is an open / close valve 4 in each of these furnace bodies. The exhaust line 5 connected to the exhaust line 5 is an evacuation apparatus connected to the exhaust line 3 and includes an oil rotary pump 6 and a mechanical booster pump 7 provided on the front side as a vacuum evacuation means. 8 is an inverter for controlling the rotational speed of the mechanical booster pump 7, 9 is a vacuum gauge connected to the exhaust pipe 3 near the furnace body 2, and 10 is a control device.

排気管路3は、各炉体2内において別個に進行する真空浸炭工程に従って個別に開弁される開閉弁4を介して各炉体2内に連通するので、真空計9によりこの連通状態の炉体内圧力が検出される。そして制御装置10は、この真空計9の圧力検出値Pと、真空浸炭工程における均熱期〜拡散期(均熱期と浸炭期と拡散期)の炉体内圧力設定値Pとに基いて、インバータ8を介してメカニカルブースタポンプ7の回転数を制御(この例では同期電動機を駆動機とするメカニカルブースタポンプ7の給電周波数を制御)することにより、炉体内圧力の制御をおこなう圧力制御部をそなえている。また制御装置10は、後述する開閉弁A,B,Cの開閉制御もおこなうものであり、それについては後述する。 Since the exhaust pipe line 3 communicates with each furnace body 2 via the on-off valve 4 that is individually opened according to the vacuum carburizing process that proceeds separately in each furnace body 2, The pressure inside the furnace is detected. Then, the control device 10 is based on the pressure detection value P of the vacuum gauge 9 and the pressure setting value P 0 in the furnace in the soaking period to the diffusion period (soaking period, carburizing period, and diffusion period) in the vacuum carburizing process. The pressure control unit controls the pressure in the furnace by controlling the rotational speed of the mechanical booster pump 7 via the inverter 8 (in this example, the power supply frequency of the mechanical booster pump 7 driven by a synchronous motor is controlled). Is provided. The control device 10 also performs opening / closing control of the on-off valves A, B, and C, which will be described later, which will be described later.

11は排気管路3に設けた分岐部で、複数本(この例では3本)の分岐管路12a〜12cを並列状に配設して成り、分岐管路12aには開閉弁Aと流量調節弁13aが、分岐管路12bには開閉弁Bと流量調節弁13bが、分岐管路12cには開閉弁Cと流量調節弁13cが、それぞれ設けてある。開閉弁A,B,Cは、後述するようにメカニカルブースタポンプ7の回転数に応じて分岐管路12a〜12cのうちの1本の分岐管路が開路状態の排気流通路となるように、制御装置10の切換制御部により開閉制御される。   Reference numeral 11 denotes a branch portion provided in the exhaust pipe 3, and is formed by arranging a plurality of (three in this example) branch pipes 12a to 12c in parallel. The branch pipe 12a includes an on-off valve A and a flow rate. The control valve 13a is provided with an on-off valve B and a flow rate control valve 13b on the branch pipe 12b, and an on-off valve C and a flow rate control valve 13c are provided on the branch pipe 12c. As described later, the on-off valves A, B, and C are arranged so that one of the branch pipes 12a to 12c becomes an open exhaust flow path according to the rotational speed of the mechanical booster pump 7. Open / close control is performed by a switching control unit of the control device 10.

また流量調節弁13a〜13cは手動調節式のもので、その流量調節により、開路状態における各分岐管路12a〜12cの流路抵抗は、分岐管路12aが最も低抵抗(小抵抗)、分岐管路12bがこれより高抵抗(大抵抗)、分岐管路12cはさらにこれより高抵抗となるように、設定されている。これらの流路抵抗についてさらに説明すると、図2は炉体内圧力が前記炉体内圧力設定値Pに維持されている状態におけるメカニカルブースタポンプ7の回転数と該ポンプ(および油回転ポンプ6)による排気流量(=炉体2から排出される雰囲気ガス流量Q)との関係を略示する線図で、前記各分岐管路12a〜12cの流路抵抗の差により、メカニカルブースタポンプ7の回転数(以下MB回転数という)が、そのポンプの排気速度が実用的に制御可能な上限値と下限値の間で変化したとき、小抵抗の分岐管路12a開路時の排気流量は曲線J(直線で近似。以下他の曲線も同様。)に従って変化するのに対し、これより流路抵抗の大きい分岐管路12b開路時には低流量側の曲線K、さらにこれより流路抵抗の大きい分岐管路12c開路時にはさらに低流量側の曲線Lに従って、それぞれ排気流量が変化する。 Further, the flow rate control valves 13a to 13c are of the manual adjustment type, and by adjusting the flow rate, the flow channel resistance of each branch pipeline 12a to 12c in the open state is the lowest resistance (small resistance) in the branch pipeline 12a. The pipe 12b is set to have a higher resistance (large resistance), and the branch pipe 12c is set to have a higher resistance. Still describe these flow resistance, FIG. 2 is due to speed and the pump of the mechanical booster pump 7 in a state in which the furnace body pressure is maintained in the furnace body pressure setpoint P 0 (and oil rotary pump 6) It is a diagram schematically showing the relationship with the exhaust flow rate (= atmospheric gas flow rate Q discharged from the furnace body 2), and the rotational speed of the mechanical booster pump 7 due to the difference in flow resistance between the branch pipes 12a to 12c. When the pumping speed of the pump changes between an upper limit value and a lower limit value that can be practically controlled, the exhaust flow rate when the small resistance branch pipe 12a is opened is a curve J (straight line). However, when the branch pipe 12b having a higher flow resistance is opened, the curve K on the low flow rate side is opened, and the branch pipe 12c having a higher flow resistance is further changed. When the circuit is opened, the exhaust flow rate changes according to the curve L on the lower flow rate side.

そして図2に示すように、上記各分岐管路12a〜12cの流路抵抗を、曲線K上の最大流量値(MB回転数上限値到達時流量)が曲線J上の最小流量値(MB回転数下限値到達時流量)以上となるように、また曲線L上の最大流量値が曲線K上の最小流量値以上となるように、各分岐管路12a〜12cの流路抵抗値を選定することにより、開閉弁A,B,Cの開閉制御による分岐管路の開路状態切換え時における排気流量変動に伴う炉体内圧力の変動巾を少量に抑制できる。   As shown in FIG. 2, the flow resistance of each of the branch pipes 12a to 12c is set such that the maximum flow rate value on the curve K (flow rate when reaching the MB rotation speed upper limit value) is the minimum flow rate value on the curve J (MB rotation). The flow resistance values of the branch pipes 12a to 12c are selected so that the maximum flow value on the curve L is equal to or higher than the minimum flow value on the curve K. Accordingly, the fluctuation range of the pressure in the furnace body accompanying the fluctuation of the exhaust gas flow rate at the time of switching the open state of the branch pipe line by the opening / closing control of the opening / closing valves A, B, C can be suppressed to a small amount.

次に上記構成の装置による真空浸炭時における炉体内圧力制御方法について、図3に示すフローチャートおよび図2に従って説明する。真空熱処理装置1の複数個の各炉体2には、図示しない搬送手段により処理材が搬入・送出されて、各炉体2内の浸炭室では別個に真空浸炭処理が施され、その均熱期〜拡散期において各炉体から排出される雰囲気ガスが真空ポンプ(メカニカルブースタポンプ7および油回転ポンプ6)により排気される。   Next, a pressure control method in the furnace during vacuum carburization by the apparatus having the above configuration will be described with reference to the flowchart shown in FIG. 3 and FIG. A plurality of furnace bodies 2 of the vacuum heat treatment apparatus 1 are loaded and sent with a processing material by a conveying means (not shown), and are subjected to a vacuum carburizing process separately in a carburizing chamber in each furnace body 2, and the soaking is performed. The atmospheric gas discharged from each furnace body during the period to the diffusion period is exhausted by a vacuum pump (mechanical booster pump 7 and oil rotary pump 6).

そこで真空熱処理装置1の稼働開始時に、真空排気装置5においては、開閉弁Aを開いて分岐管路12aのみを開路状態とし(ステップ21)、インバータ8を介して制御装置10によりメカニカルブースタポンプ7の回転速度(以下MB回転数)を制御して、炉体内圧力を設定圧力Pに維持し、MB回転数nはインバータ8から制御装置10にフィードバックされる。この炉体内圧力の制御は、図2に示す曲線Jに従って炉体2から排出される雰囲気ガス流量Qに対応する排気流量が得られるようにMB回転数を制御しておこなわれる。 Therefore, at the start of operation of the vacuum heat treatment apparatus 1, in the vacuum exhaust apparatus 5, the on-off valve A is opened to open only the branch pipe 12 a (step 21), and the mechanical booster pump 7 is controlled by the controller 10 via the inverter 8. Is controlled to maintain the pressure inside the furnace at the set pressure P 0 , and the MB speed n is fed back from the inverter 8 to the control device 10. The pressure in the furnace body is controlled by controlling the MB rotation speed so that an exhaust gas flow rate corresponding to the atmospheric gas flow rate Q discharged from the furnace body 2 is obtained according to the curve J shown in FIG.

この分岐管路12aの開路状態での圧力制御中に、上記雰囲気ガス流量Qが減少してMB回転数が下限値に到達したとき(ステップ22)は、開閉弁Aが開状態であることを確認して(ステップ23)、開閉弁Aを閉じ開閉弁Bを開く(ステップ24)。これによって高流路抵抗側の分岐管路12bが開路状態となるので、排気流量の制御可能範囲は図2の曲線K上に移行し、雰囲気ガス流量Qの減少状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。そしてこの分岐管路12bの開路状態(開閉弁B開状態)でさらに雰囲気ガス流量Qが減少してMB回転数が下限値に到達したとき(ステップ22)は、開閉弁Bを閉じ開閉弁Cを開く(ステップ23,25,26)。これによってさらに高流路抵抗側の分岐管路12cが開路状態となり、排気流量の制御可能範囲は図2の曲線L上に移行し、雰囲気ガス流量Qのさらなる減少状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。   During the pressure control in the open state of the branch pipe 12a, when the atmospheric gas flow rate Q decreases and the MB rotational speed reaches the lower limit value (step 22), the on-off valve A is in the open state. After confirmation (step 23), the on-off valve A is closed and the on-off valve B is opened (step 24). As a result, the branch pipe 12b on the high flow resistance side is opened, so that the controllable range of the exhaust flow rate shifts to the curve K in FIG. By controlling the number, it is possible to control the pressure inside the furnace. When the branch gas passage 12b is in the open state (open / close valve B open state) and the atmospheric gas flow rate Q further decreases and the MB rotational speed reaches the lower limit (step 22), the open / close valve B is closed and the open / close valve C is closed. Is opened (steps 23, 25, 26). As a result, the branch pipe 12c on the high flow resistance side is further opened, and the controllable range of the exhaust flow rate shifts to the curve L in FIG. By controlling the number, it is possible to control the pressure inside the furnace.

一方、上記の分岐管路12cの開路状態(開閉弁C開状態)で、炉体2からの雰囲気ガス流量Qが増加して、MB回転数が上限値に到達したとき(ステップ28)は、開閉弁Cを閉じ開閉弁Bを開く(ステップ29,30)。これにより分岐管路12bが開路状態となり排気流量制御可能範囲は図2の曲線K上に移行し、雰囲気ガス流量Qの増加状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。また分岐管路12bの開路状態(開閉弁B開状態)で、さらに雰囲気ガス流量Qが増加してMB回転数が上限値に到達したとき(ステップ28)は、開閉弁Bを閉じ開閉弁Aを開く(ステップ29,31,32)。これにより分岐管路12aが開路状態となり、排気流量制御可能範囲は図2の曲線J上に移行し、雰囲気ガス流量のさらなる増加状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。   On the other hand, when the atmospheric gas flow rate Q from the furnace body 2 increases and the MB rotation speed reaches the upper limit in the open state of the branch pipe 12c (open / close valve C open state) (step 28), The on-off valve C is closed and the on-off valve B is opened (steps 29 and 30). As a result, the branch pipe 12b is opened and the exhaust flow rate controllable range shifts to the curve K in FIG. 2, and the pressure inside the furnace can be controlled by MB rotation speed control even when the atmospheric gas flow rate Q is increased. It becomes. Further, when the atmospheric gas flow rate Q further increases and the MB rotational speed reaches the upper limit value (step 28) in the open state of the branch pipe line 12b (open / close valve B open state), the open / close valve B is closed and the open / close valve A is closed. Is opened (steps 29, 31, 32). As a result, the branch pipe 12a is opened, the control range of the exhaust gas flow shifts to the curve J in FIG. 2, and the pressure inside the furnace is controlled by the MB rotation speed control even when the atmospheric gas flow is further increased. It becomes possible.

なお図3のフローチャートにおいて、ステップ27に到達するのは開閉弁C開状態でMB回転数が下限値に到達したときで、炉体からの実排気量が当初の想定最小流量を下回ったときであり、またステップ33に到達するのは開閉弁A開状態でMB回転数が上限値に到達したときで、炉体からの実排気流量が当初の想定最大流量を上回ったときである。これらのエラーが頻発するようであれば、流量調節弁13c,13aの流量調節などにより、分岐管路12cの流路抵抗のさらなる高抵抗化あるいは分岐管路12aの流路抵抗のさらなる低抵抗化などの対策をとればよい。   In the flowchart of FIG. 3, step 27 is reached when the on-off valve C is open and the MB speed reaches the lower limit value, and when the actual displacement from the furnace body falls below the initial assumed minimum flow rate. In addition, step 33 is reached when the on-off valve A is open and the MB rotational speed reaches the upper limit value, and when the actual exhaust flow rate from the furnace body exceeds the initially assumed maximum flow rate. If these errors occur frequently, the flow resistance of the branch pipe 12c can be further increased or the flow resistance of the branch pipe 12a can be further reduced by adjusting the flow rate of the flow control valves 13c and 13a. Take measures such as

以上のフローチャート(図3)に従っておこなう開閉弁A〜Cの開閉制御による分岐管路の切換えは、制御装置10の切換制御部によっておこなわれる。そして図2に示すように、排気流通路を高流路抵抗を有する分岐管路へ切換えることにより、この切換えをおこなわない1本の分岐管路12aのみによる排気流量制御可能範囲は範囲Vであるのに対し、上記の分岐管路の切換えにより範囲Vという大きな排気流量制御可能範囲が得られ、雰囲気ガス流量Qの大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を所定の設定圧力に維持することができるのである。 Switching of the branch pipes by the opening / closing control of the opening / closing valves A to C performed according to the above flowchart (FIG. 3) is performed by the switching control unit of the control device 10. As shown in FIG. 2, by switching the exhaust flow path to a branch pipe having a high flow resistance, the exhaust flow rate controllable range by only one branch pipe 12a that does not perform this switching is a range V 0 . On the other hand, by switching the branch pipe, a large exhaust flow rate controllable range of range V is obtained. Exhaust is performed without excess or deficiency even with a large fluctuation range of the atmospheric gas flow rate Q, and the pressure inside the furnace is reduced. It can be maintained at a predetermined set pressure.

次に図4〜図6に示す第2例により、請求項2に係る発明の実施の形態を説明する。この第2例は、前記第1例におけるメカニカルブースタポンプ7の回転数制御のかわりに、流量制御弁による流量制御をおこなうものであるが、複数個の分岐管路の開路切換をおこなう点などの具体的構成は第1例と共通するものであり、図1と同一部分には同一符号を付して図示し、それらの部分の詳細な説明は省略する。   Next, an embodiment of the invention according to claim 2 will be described with reference to a second example shown in FIGS. In this second example, instead of the rotational speed control of the mechanical booster pump 7 in the first example, the flow rate control is performed by a flow rate control valve. The specific configuration is the same as in the first example, and the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description of those parts is omitted.

図4において、41は処理材の真空浸炭処理をおこなう多室形の真空熱処理装置で、各炉体2に接続した排気管路3に、メカニカルブースタポンプ7と油回転ポンプ6を真空排気手段としてそなえた真空排気装置42を接続して成る。   In FIG. 4, reference numeral 41 denotes a multi-chamber vacuum heat treatment apparatus that performs vacuum carburizing treatment of a treatment material. A mechanical booster pump 7 and an oil rotary pump 6 are used as vacuum exhaust means in an exhaust pipe line 3 connected to each furnace body 2. The vacuum exhaust device 42 provided is connected.

43は、メカニカルブースタポンプ7の前段側の排気管路3に設けた分岐部で、複数本(この例では3本)の分岐管路44a〜44cを並列状に配設し、分岐管路44aには開閉弁Aと流量制御弁Dが、分岐管路44bには開閉弁Bと流量制御弁Eが、分岐管路44cには開閉弁Cと流量制御弁Fが、それぞれ設けてある。開閉弁A,B,Cは、後述するように流量制御弁の開度に応じて1本の分岐管路が開路状態の排気流通路となるように、制御装置45の切換制御部により開閉制御される。   43 is a branch portion provided in the exhaust pipe 3 on the upstream side of the mechanical booster pump 7, and a plurality of (three in this example) branch pipes 44a to 44c are arranged in parallel to form a branch pipe 44a. Includes an on-off valve A and a flow control valve D, an on-off valve B and a flow control valve E on the branch pipe 44b, and an on-off valve C and a flow control valve F on the branch pipe 44c, respectively. The on-off valves A, B, and C are controlled by a switching control unit of the control device 45 so that one branch pipe becomes an open exhaust flow passage according to the opening degree of the flow control valve, as will be described later. Is done.

また流量制御弁D〜Fは異なる流路抵抗を有するものであり、流量制御弁Dが最も流路抵抗の小さい低抵抗(大流量制御用)の流量制御弁、流量制御弁Eはこれより流路抵抗の大きい流量制御弁、流量制御弁Fはこれよりさらに流路抵抗の大きい高抵抗(小流量制御用)の流量制御弁である。そして前記開閉弁A〜Cの開閉制御により開路状態となった1本の分岐管路の流量制御弁は、真空計9の圧力検出値Pと、真空浸炭工程における炉体内圧力設定値Pとに基いて、制御装置45の圧力制御部により開度制御され、炉体内圧力の制御がおこなわれる。 The flow rate control valves D to F have different flow path resistances. The flow rate control valve D is a low resistance (for large flow rate control) flow rate control valve and the flow rate control valve E has a lowest flow path resistance. The flow rate control valve and flow rate control valve F having a large path resistance are high resistance (for small flow rate control) flow rate control valves having a larger flow path resistance. The flow control valve of one branch pipe that is opened by the opening / closing control of the opening / closing valves A to C includes a pressure detection value P of the vacuum gauge 9 and a pressure setting value P 0 in the furnace in the vacuum carburizing process. Therefore, the opening degree is controlled by the pressure control unit of the control device 45, and the pressure in the furnace is controlled.

上記の流量制御弁D,E,Fの流路抵抗についてさらに説明すると、図5は炉体内圧力が前記炉体内圧力設定値Pに維持されている状態における各流量制御弁の開度と、真空ポンプ(メカニカルブースタポンプ7および油回転ポンプ6)による排気流量(=炉体2から排出される雰囲気ガス流量Q)との関係を略示する線図で、各流量制御弁(以下、制御弁と略称する)の開度を、開度制御により排気流量を精度よく調節できる開度の上限値と下限値の間で変化させたとき、低抵抗の制御弁Dによる排気流量は曲線M(直線で近似、以下他の曲線も同様。)に従って変化するのに対し、これより高抵抗の制御弁Eでは低流量側の曲線N、さらにこれより高抵抗の制御弁Fではさらに低流量側の流量曲線Oに従って、それぞれ排気流量が変化する。 It said flow control valve D, E, will be further explained. Passage resistance of F, 5 and opening of the flow control valve in a state in which the furnace body pressure is maintained in the furnace body pressure setpoint P 0, FIG. 5 is a diagram schematically showing a relationship with an exhaust flow rate (= atmospheric gas flow rate Q discharged from the furnace body 2) by a vacuum pump (mechanical booster pump 7 and oil rotary pump 6), and each flow control valve (hereinafter, control valve). The exhaust flow rate of the low resistance control valve D is a curve M (straight line) when the opening amount of the control valve D is changed between the upper limit value and the lower limit value. In the following, the other curves are also the same.), While the control valve E having a higher resistance than this changes the curve N on the low flow rate side, and further on the control valve F having a higher resistance, the flow rate on the lower flow rate side. Exhaust flow rate changes according to curve O To do.

そして図5に示すように、各制御弁D,E,Fの流路抵抗は、曲線N上の最大流量値(制御弁E開度上限値到達時流量)が曲線M上の最小流量値(制御弁D開度下限値到達時流量)以上となるように、また曲線O上の最大流量値が曲線N上の最小流量値以上となるように、各制御弁D〜Fの流路抵抗値を選定することにより、開度制御対象の制御弁切換え時における排気流量変動に伴う炉内圧力の変動巾を少量に抑制できる。   As shown in FIG. 5, the flow resistances of the control valves D, E, and F are such that the maximum flow value on the curve N (the flow when the control valve E opening upper limit value is reached) is the minimum flow value on the curve M ( Flow rate resistance value of each control valve D to F so that the maximum flow rate value on the curve O is equal to or higher than the minimum flow rate value on the curve N. By selecting this, it is possible to suppress the fluctuation range of the pressure in the furnace accompanying the fluctuation of the exhaust flow rate at the time of switching the control valve to be controlled for opening to a small amount.

次に上記構成の装置による真空浸炭時における炉体内圧力制御方法について、図6に示すフローチャートおよび図5に従って説明する。真空熱処理装置41の複数個の各炉体2には、図示しない搬送手段により処理材が搬入・送出されて、各炉体2内の浸炭室では別個に真空浸炭処理が施され、その均熱期〜拡散期において各炉体から排出される雰囲気ガスが真空ポンプ(メカニカルブースタポンプ7および油回転ポンプ6)により排気される。   Next, a furnace pressure control method during vacuum carburization by the apparatus having the above configuration will be described with reference to the flowchart shown in FIG. 6 and FIG. A processing material is carried into and sent out to each of the plurality of furnace bodies 2 of the vacuum heat treatment apparatus 41 by a conveying means (not shown), and vacuum carburizing treatment is separately performed in the carburizing chamber in each furnace body 2, and the soaking is performed. The atmospheric gas discharged from each furnace body during the period to the diffusion period is exhausted by a vacuum pump (mechanical booster pump 7 and oil rotary pump 6).

そこで真空熱処理装置41の稼働開始時に、真空排気装置42においては、開閉弁Aを開いて分岐管路44aを開路状態とし(ステップ51)、該管路の制御弁Dを開度制御対象の制御弁として、制御装置45(の圧力制御部)による炉体内圧力制御を開始する(ステップ52,53)。この炉体内圧力の制御は、図5に示す曲線Mに従って炉体2から排出される雰囲気ガス流量Qに対応する排気流量が得られるように制御弁Dを開度制御しておこなわれる。   Therefore, at the start of the operation of the vacuum heat treatment apparatus 41, the evacuation apparatus 42 opens the on-off valve A to open the branch pipe 44a (step 51), and the control valve D of the pipe is controlled for opening control. As a valve, pressure control in the furnace is started by the control device 45 (pressure control unit thereof) (steps 52 and 53). The control of the furnace pressure is performed by controlling the opening of the control valve D so as to obtain an exhaust gas flow rate corresponding to the atmospheric gas flow rate Q discharged from the furnace body 2 according to the curve M shown in FIG.

この分岐管路44aの開路状態(制御弁Don状態)での圧力制御中に、上記雰囲気ガス流量Qが減少して制御弁Dの開度が下限値に到達したとき(ステップ54)は、開閉弁Aを閉じ開閉弁Bを開き、分岐管路44bを開路状態として開度制御対象の制御弁を制御弁Dから制御弁Eに切換える(ステップ55,52,57,58)。これによって高流路抵抗側の制御弁Eによる開度制御状態となるので、排気流量の制御可能範囲は図5の曲線N上に移行し、雰囲気ガス流量Qの減少状態に対しても、制御弁の開度制御により炉体内圧力の制御が可能となる。そしてこの分岐管路44bの開路状態(制御弁Eon状態)でさらに雰囲気ガス流量Qが減少して制御弁開度が下限値に到達したとき(ステップ59)は、開閉弁Bを閉じ開閉弁Cを開き、分岐管路44cを開路状態として開度制御対象の制御弁を制御弁Eから制御弁Fに切換える(ステップ60,52,57,63,64)。これによってさらに高流路抵抗側の制御弁Fによる開度制御状態となるので、排気流量の制御可能範囲は図5の曲線O上に移行し、雰囲気ガス流量Qのさらなる減少状態に対しても、制御弁の開度制御により炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q decreases and the opening degree of the control valve D reaches the lower limit during the pressure control in the open state (control valve Don state) of the branch pipe 44a, the opening / closing is performed. The valve A is closed, the on-off valve B is opened, the branch pipe 44b is opened, and the control valve to be controlled for opening is switched from the control valve D to the control valve E (steps 55, 52, 57, 58). As a result, the opening degree control state by the control valve E on the high flow path resistance side is entered, so that the controllable range of the exhaust flow rate shifts to the curve N in FIG. The pressure inside the furnace can be controlled by controlling the opening of the valve. When the atmospheric gas flow rate Q further decreases in the open state of the branch pipe 44b (control valve Eon state) and the control valve opening reaches the lower limit (step 59), the on-off valve B is closed and the on-off valve C is closed. And the branch pipe 44c is opened, and the control valve to be controlled for opening is switched from the control valve E to the control valve F (steps 60, 52, 57, 63, 64). As a result, the opening degree control state by the control valve F on the higher flow path resistance side is further changed, so that the controllable range of the exhaust flow rate shifts to the curve O in FIG. The furnace pressure can be controlled by controlling the opening of the control valve.

一方、上記の制御弁Fによる圧力制御状態(開閉弁C開状態)で、炉体2からの雰囲気ガス流量Qが増加して、制御弁開度が上限値に到達したとき(ステップ66)は、開閉弁Cを閉じ開閉弁Bを開き、分岐管路44bを開路状態として開度制御対象弁を制御弁Fから制御弁Eに切換える(ステップ67,52,57,58)。これにより低流路抵抗側の制御弁Eによる開度制御状態となり排気流量制御可能範囲は図5の曲線N上に移行し、雰囲気ガス流量Qの増加状態に対しても、制御弁の開度制御により炉体内圧力の制御が可能となる。また制御弁Eによる圧力制御状態(開閉弁B開状態)で、さらに雰囲気ガス流量Qが増加して制御弁開度が上限値に到達したとき(ステップ61)は、開閉弁Bを閉じ開閉弁Aを開き、分岐管路44aを開路状態として開度制御対象弁を制御弁Eから制御弁Dに切換える(ステップ62,52,53)。これによりさらに低流路抵抗側の制御弁Dによる開度制御状態となり、排気流量制御可能範囲は図5の曲線M上に移行し、雰囲気ガス流量Qのさらなる増加状態に対しても、制御弁の開度制御により炉体内圧力の制御が可能となる。   On the other hand, when the atmospheric gas flow rate Q from the furnace body 2 increases in the pressure control state (opening state of the on-off valve C) by the control valve F and the control valve opening reaches the upper limit (step 66). Then, the on-off valve C is closed, the on-off valve B is opened, the branch pipe 44b is opened, and the opening control target valve is switched from the control valve F to the control valve E (steps 67, 52, 57, 58). As a result, the opening control state by the control valve E on the low flow path resistance side is entered, and the exhaust flow rate controllable range shifts to the curve N in FIG. The pressure inside the furnace can be controlled by the control. When the atmospheric gas flow rate Q further increases and the control valve opening reaches the upper limit value (step 61) in the pressure control state by the control valve E (open / close valve B open state), the open / close valve B is closed and the open / close valve is closed. A is opened, the branch pipe 44a is opened, and the opening control target valve is switched from the control valve E to the control valve D (steps 62, 52, 53). As a result, the opening degree control state by the control valve D on the low flow resistance side is further changed, and the exhaust flow rate controllable range shifts to the curve M in FIG. It is possible to control the pressure inside the furnace by controlling the opening degree.

なお図6のフローチャートにおいて、ステップ56で制御弁Dの開度が上限値に到達するのは、炉体からの実排気流量が当初の想定最大流量を上回ったときであり、またステップ65で制御弁Fの開度が下限値に到達するのは炉体からの実排気流量が当初の想定最小流量を下回ったときである。これらのエラーが頻発するようであれば、制御弁Dをさらに流路抵抗の小さい流量制御弁に交換し、あるいは制御弁Fをさらに流路抵抗の大きい流量制御弁に交換するなどの対策をとればよい。   In the flowchart of FIG. 6, the opening of the control valve D reaches the upper limit value in step 56 when the actual exhaust flow rate from the furnace body exceeds the initial assumed maximum flow rate, and the control is performed in step 65. The opening degree of the valve F reaches the lower limit value when the actual exhaust flow rate from the furnace body falls below the initial assumed minimum flow rate. If these errors occur frequently, take measures such as replacing the control valve D with a flow control valve with a smaller flow path resistance or replacing the control valve F with a flow control valve with a higher flow path resistance. That's fine.

以上のフローチャート(図6)に従っておこなう開閉弁A〜Cの開閉制御による分岐管路の切換えおよび開度制御対象の制御弁の切換えは、制御装置45の切換制御部によっておこなわれる。そして図5に示すように、排気流通路および開度制御対象の制御弁を高流路抵抗を有する制御弁へ切換えることにより、この切換えをおこなわない1本の分岐管路12aおよび制御弁Dのみによる排気流量制御可能範囲は範囲Vであるのに対し、上記の分岐管路および制御弁の切換えにより範囲Vという大きな排気流量制御可能範囲が得られ、雰囲気ガス流量Qの大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を所定の設定圧力に維持することができるのである。 The switching of the branch pipes and the switching of the control valve to be controlled by the opening / closing control of the opening / closing valves A to C performed according to the above flowchart (FIG. 6) are performed by the switching control unit of the control device 45. Then, as shown in FIG. 5, only the one branch pipe 12a and the control valve D that do not perform the switching are switched by switching the exhaust flow passage and the control valve to be controlled for opening to the control valve having a high flow resistance. Exhaust flow rate controllable range due to the above is the range V 0 , whereas by switching the branch pipe and the control valve, a large exhaust flow rate controllable range of range V is obtained. However, the exhaust can be performed without excess and deficiency, and the furnace pressure can be maintained at a predetermined set pressure.

次に図7〜図11に示す第3例により、請求項3に係る発明の実施の形態を説明する。この第3例は、前記第1例におけるメカニカルブースタポンプ7の回転数制御と、前記第2例における流量制御弁による流量制御を組合わせておこなうものであり、複数個の分岐管路の開路切換をおこなう点や各分岐管路に設ける流量制御弁などの具体的構成は第1例および第2例と共通するものであり、図1および図4と同一部分には同一符号を付して図示し、それらの部分の詳細な説明は省略する。   Next, an embodiment of the invention according to claim 3 will be described with reference to a third example shown in FIGS. The third example is a combination of the rotational speed control of the mechanical booster pump 7 in the first example and the flow rate control by the flow rate control valve in the second example. The specific configurations of the flow control valve and the like provided in each branch pipe are the same as those in the first and second examples, and the same parts as those in FIGS. 1 and 4 are denoted by the same reference numerals. Detailed description of these parts is omitted.

図7において、71は処理材の真空浸炭処理をおこなう多室形の真空熱処理装置で、各炉体2に接続した排気管路3に、メカニカルブースタポンプ7と油回転ポンプ6を真空排気手段としてそなえた真空排気装置72を接続して成る。   In FIG. 7, reference numeral 71 denotes a multi-chamber vacuum heat treatment apparatus for performing vacuum carburization treatment of a treated material. A mechanical booster pump 7 and an oil rotary pump 6 are used as vacuum exhaust means in an exhaust pipe line 3 connected to each furnace body 2. The evacuation apparatus 72 provided is connected.

43は、メカニカルブースタポンプ7の前段側の排気管路3に設けた分岐部で、複数本(この例では3本)の分岐管路44a〜44cを並列状に配設し、分岐管路44aには開閉弁Aと流量制御弁Dが、分岐管路44bには開閉弁Bと流量制御弁Eが、分岐管路44cには開閉弁Cと流量制御弁Fが、それぞれ設けてある。開閉弁A,B,Cは、後述するようにメカニカルブースタポンプ7の回転数および流量制御弁の開度に応じて1本の分岐管路が開路状態の排気流通路となるように、制御装置73の切換制御部により開閉制御される。   43 is a branch portion provided in the exhaust pipe 3 on the upstream side of the mechanical booster pump 7, and a plurality of (three in this example) branch pipes 44a to 44c are arranged in parallel to form a branch pipe 44a. Includes an on-off valve A and a flow control valve D, an on-off valve B and a flow control valve E on the branch pipe 44b, and an on-off valve C and a flow control valve F on the branch pipe 44c, respectively. As will be described later, the on-off valves A, B, and C are controlled so that one branch pipe becomes an open exhaust flow passage according to the rotational speed of the mechanical booster pump 7 and the opening degree of the flow control valve. Open / close control is performed by 73 switching control section.

また流量制御弁D〜Fは異なる流路抵抗を有するものであり、流量制御弁Dが最も流路抵抗の小さい低抵抗(大流量制御用)の流量制御弁、流量制御弁Eはこれより流路抵抗の大きい流量制御弁、流量制御弁Fはこれよりさらに流路抵抗の大きい高抵抗(小流量制御用)の流量制御弁である。そして前記開閉弁A〜Cの開閉制御により開路状態となった1本の分岐管路の流量制御弁は、後述するようにメカニカルブースタポンプ7の回転数が下限値に達している状態で、真空計9の圧力検出値Pと、真空浸炭工程における炉体内圧力設定値Pとに基いて、制御装置45の圧力制御部により開度制御され、炉体内圧力の制御がおこなわれる。 The flow rate control valves D to F have different flow path resistances. The flow rate control valve D is a low resistance (for large flow rate control) flow rate control valve and the flow rate control valve E has a lowest flow path resistance. The flow rate control valve and flow rate control valve F having a large path resistance are high resistance (for small flow rate control) flow rate control valves having a larger flow path resistance. Then, the flow control valve of one branch pipe that is opened by the opening / closing control of the opening / closing valves A to C is in a state where the rotational speed of the mechanical booster pump 7 has reached the lower limit value as described later. and nine of the pressure detection value P, based on the furnace body pressure setpoint P 0 in the vacuum carburization process, is opening control by the pressure control unit of the control device 45, control of the furnace body pressure is performed.

上記の流量制御弁(以下、制御弁と略称する)D,E,Fの流路抵抗および真空ポンプの流量特性についてさらに説明すると、図8は炉体内圧力が前記炉体内圧力設定値Pに維持されている状態における、メカニカルブースタポンプ7の回転数および各制御弁の開度と、真空ポンプ(メカニカルブースタポンプ7および油回転ポンプ6)による排気流量(=炉体2から排出される雰囲気ガス流量Q)との関係を略示する線図で、各制御弁D,E,Fの全開(開度上限)状態においてMB回転数がそのポンプ作動上許容される上限値と下限値の間で変化したとき、小抵抗の制御弁Dをそなえた分岐管路44a開路時の排気流量は曲線Jに従って変化するのに対し、これより大抵抗の制御弁Eをそなえた分岐管路44b開路時には低流量側の曲線K、さらにこれより大抵抗の制御弁Fをそなえた分岐管路44c開路時にはさらに低流量側の曲線Lに従って、それぞれ排気流量が変化する。そしてメカニカルブースタポンプ7の回転数が下限値に維持された状態で、各制御弁の開度を、開度制御により排気流量を精度よく調節できる開度の上限値と下限値の間で変化させたとき、低抵抗の制御弁Dによる排気流量は直線Mに従って変化するのに対し、これより高抵抗の制御弁Eでは低流量側の直線N、さらにこれより高抵抗の制御弁Fではさらに低流量側の直線Oに従って、それぞれ排気流量が変化する。 The flow resistance of the flow rate control valves (hereinafter abbreviated as control valves) D, E, and F and the flow rate characteristics of the vacuum pump will be further described. FIG. 8 shows that the pressure inside the furnace is the pressure set value P 0 in the furnace. The rotational speed of the mechanical booster pump 7 and the opening degree of each control valve in the maintained state, and the exhaust gas flow rate (= atmospheric gas discharged from the furnace body 2) by the vacuum pump (mechanical booster pump 7 and oil rotary pump 6) In the diagram schematically showing the relationship with the flow rate Q), when the control valve D, E, F is fully open (opening upper limit), the MB rotation speed is between the upper limit value and the lower limit value that are allowed for the pump operation. When changed, the exhaust flow rate when the branch pipe 44a having the small resistance control valve D is opened changes according to the curve J, but is lower when the branch pipe 44b having the higher resistance control valve E is opened. Flow side song When the branch pipe 44c having the line K and the control valve F having a higher resistance than this is opened, the exhaust flow rate changes in accordance with the curve L on the lower flow rate side. Then, with the rotational speed of the mechanical booster pump 7 maintained at the lower limit value, the opening degree of each control valve is changed between the upper limit value and the lower limit value of the opening degree that can accurately adjust the exhaust gas flow rate by the opening degree control. The exhaust flow rate by the low resistance control valve D changes according to the straight line M, while the higher resistance control valve E has a lower flow rate side straight line N, and the higher resistance control valve F has a lower flow rate. The exhaust flow rate changes in accordance with the straight line O on the flow rate side.

そして図8に示すように、各制御弁D,E,Fの流路抵抗は、曲線K上の最大流量値(MB回転数上限値到達時流量)が直線M上の最小流量値(制御弁D開度下限値到達時流量)以上となるように、また曲線L上の最大流量値が曲線N上の最小流量値以上となるように、各制御弁D〜Fの流路抵抗値を選定することにより、開閉弁A,B,Cの開路状態切換えに伴う制御対象切換え時における排気流量変動による炉内圧力の変動巾を少量に抑制できる。   As shown in FIG. 8, the flow resistances of the control valves D, E, and F are such that the maximum flow rate value on the curve K (the flow rate when the MB rotation speed upper limit value is reached) is the minimum flow rate value on the straight line M (control valve). The flow resistance value of each control valve D to F is selected so that the maximum flow rate value on the curve L is equal to or higher than the minimum flow rate value on the curve N. By doing so, the fluctuation range of the pressure in the furnace due to the fluctuation of the exhaust flow rate at the time of switching the controlled object accompanying the switching of the open / close state of the on-off valves A, B, C can be suppressed to a small amount.

次に上記構成の装置による真空浸炭時における炉体内圧力制御方法について、図9〜図11に示すフローチャートおよび図8に従って説明する。真空熱処理装置71の複数個の各炉体2には、図示しない搬送手段により処理材が搬入・送出されて、各炉体2内の浸炭室では別個に真空浸炭処理が施され、その均熱期〜拡散期において各炉体から排出される雰囲気ガスが真空ポンプ(メカニカルブースタポンプ7および油回転ポンプ6)により排気される。   Next, a pressure control method in the furnace during vacuum carburization by the apparatus having the above configuration will be described with reference to the flowcharts shown in FIGS. 9 to 11 and FIG. A plurality of furnace bodies 2 of the vacuum heat treatment apparatus 71 are loaded and sent with a processing material by a conveying means (not shown), and are subjected to a vacuum carburizing process separately in a carburizing chamber in each furnace body 2. The atmospheric gas discharged from each furnace body during the period to the diffusion period is exhausted by a vacuum pump (mechanical booster pump 7 and oil rotary pump 6).

そこで真空熱処理装置71の稼働開始時に、真空排気装置72においては、開閉弁Aを開いて分岐管路44aを開路状態とし(ステップ81)、メカニカルブースタポンプ7の制御を開始し(ステップ82)、インバータ8を介して制御装置73によりメカニカルブースタポンプ7の回転速度(以下MB回転数)を制御して、炉体内圧力を設定圧力Pに維持し、MB回転数nはインバータ8から制御装置73にフィードバックされる。この炉体内圧力の制御は、図8に示す曲線Jに従って炉体2から排出される雰囲気ガス流量Qに対応する排気流量が得られるようにMB回転数を制御しておこなわれる。 Therefore, at the start of operation of the vacuum heat treatment device 71, the vacuum exhaust device 72 opens the on-off valve A to open the branch pipe 44a (step 81), and starts control of the mechanical booster pump 7 (step 82). The controller 73 controls the rotational speed of the mechanical booster pump 7 (hereinafter referred to as “MB rotational speed”) via the inverter 8 to maintain the pressure inside the furnace at the set pressure P 0 , and the MB rotational speed n is controlled from the inverter 8 to the controller 73. Feedback. The pressure in the furnace body is controlled by controlling the MB rotation speed so as to obtain an exhaust gas flow rate corresponding to the atmospheric gas flow rate Q discharged from the furnace body 2 according to the curve J shown in FIG.

この分岐管路44aの開路状態での圧力制御中に、上記雰囲気ガス流量Qが減少してMB回転数が下限値に到達したとき(ステップ83)は、図10に示すようにMB回転数を下限値に固定し(ステップ84)、開閉弁Aが開状態であることを確認して(ステップ85)、該管路の制御弁Dを開度制御対象の制御弁として、制御装置73(の圧力制御部)による炉体内圧力制御を開始する(ステップ86)。この炉体内圧力の制御は、図8に示す直線Mに従って炉体2から排出される雰囲気ガス流量Qに対応する排気流量が得られるように制御弁Dを開度制御しておこなわれ、これによって排気流量の制御可能範囲は上記図8の直線M上に移行し、雰囲気ガス流量Qの減少に対しても炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q decreases and the MB rotational speed reaches the lower limit during the pressure control in the open state of the branch pipe 44a (step 83), the MB rotational speed is set as shown in FIG. The lower limit value is fixed (step 84), and it is confirmed that the on-off valve A is open (step 85). The control valve D of the pipe line is used as a control valve for opening control, and the control device 73 Pressure control in the furnace by the pressure control unit) is started (step 86). The pressure in the furnace body is controlled by controlling the opening of the control valve D so that an exhaust gas flow rate corresponding to the atmospheric gas flow rate Q discharged from the furnace body 2 is obtained according to the straight line M shown in FIG. The controllable range of the exhaust flow rate shifts to the straight line M in FIG. 8, and the furnace pressure can be controlled even when the atmospheric gas flow rate Q decreases.

この分岐管路44aの開路状態(制御弁Don状態)での圧力制御中に、上記雰囲気ガス流量Qが減少して制御弁Dの開度が下限値に到達したとき(ステップ87)は、開閉弁Aを閉じ開閉弁Bを開き、分岐管路44bを開路状態として制御弁Dの開度制御を終了し(ステップ88)、メカニカルブースタポンプ7の制御を再開する(ステップ82)。これによって高流路抵抗側の分岐管路44b開路状態におけるMB回転数制御状態となるので、排気流量の制御可能範囲は図8の曲線K上に移行し、雰囲気ガス流量Qの減少状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。そしてこの分岐管路44bの開路状態での圧力制御中に、さらに雰囲気ガス流量Qが減少してMB回転数が下限値に到達したとき(ステップ83)は、MB回転数を下限値に固定し(ステップ84)、開閉弁Bが開路状態であることを確認して(ステップ91)、該管路の制御弁Eを開度制御対象の制御弁として、制御装置73(の圧力制御部)による炉体内圧力制御を開始する(ステップ92)。これによって排気流量の制御可能範囲は上記図8の直線N上に移行し、雰囲気ガス流量Qの減少に対しても炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q decreases and the opening degree of the control valve D reaches the lower limit during the pressure control in the open state of the branch pipe 44a (control valve Don state) (step 87), it is opened and closed. The valve A is closed, the on-off valve B is opened, the branch pipe 44b is opened, the opening control of the control valve D is terminated (step 88), and the control of the mechanical booster pump 7 is resumed (step 82). As a result, the MB rotational speed control state in the open state of the branch pipe 44b on the high flow path resistance side is entered, so that the controllable range of the exhaust flow rate shifts to the curve K in FIG. However, the pressure inside the furnace can be controlled by the MB rotation speed control. When the atmospheric gas flow rate Q further decreases and the MB rotational speed reaches the lower limit during the pressure control in the open state of the branch pipe 44b (step 83), the MB rotational speed is fixed to the lower limit. (Step 84) After confirming that the on-off valve B is in an open state (Step 91), the control device 73 (its pressure control unit) uses the control valve E of the pipe as a control valve to be controlled for opening. The furnace pressure control is started (step 92). As a result, the controllable range of the exhaust flow rate shifts to the straight line N in FIG.

またこの分岐管路44bの開路状態(制御弁Eon状態)での圧力制御中に、上記雰囲気ガス流量Qがさらに減少して制御弁Eの開度が下限値に到達したとき(ステップ93)は、開閉弁Bを閉じ開閉弁Cを開き、分岐管路44cを開路状態として制御弁Eの開度制御を終了し(ステップ94)、メカニカルブースタポンプ7の制御を再開する(ステップ82)。これによって高流路抵抗側の分岐管路44c開路状態におけるMB回転数制御状態となるので、排気流量の制御可能範囲は図8の曲線L上に移行し、雰囲気ガス流量Qの減少状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。そしてこの分岐管路44cの開路状態での圧力制御中に、さらに雰囲気ガス流量Qが減少してMB回転数が下限値に到達したとき(ステップ83)は、MB回転数を下限値に固定し(ステップ84)、開閉弁Cが開路状態であることを確認して(ステップ97)、該管路の制御弁Fを開度制御対象の制御弁として、制御装置73(の圧力制御部)による炉体内圧力制御を開始する(ステップ98)。これによって排気流量の制御可能範囲は上記図8の直線O上に移行し、雰囲気ガス流量Qの減少に対しても炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q further decreases and the opening degree of the control valve E reaches the lower limit during pressure control in the open state (control valve Eon state) of the branch pipe 44b (step 93). Then, the on-off valve B is closed, the on-off valve C is opened, the branch pipe 44c is opened, the opening control of the control valve E is terminated (step 94), and the control of the mechanical booster pump 7 is resumed (step 82). As a result, the MB rotational speed control state in the open state of the branch pipe 44c on the high flow path resistance side is established, so that the controllable range of the exhaust flow rate shifts to the curve L in FIG. However, the pressure inside the furnace can be controlled by the MB rotation speed control. When the atmospheric gas flow rate Q further decreases and the MB rotational speed reaches the lower limit during the pressure control in the open state of the branch pipe 44c (step 83), the MB rotational speed is fixed to the lower limit. (Step 84) After confirming that the on-off valve C is in an open state (Step 97), the control device F (its pressure control unit) uses the control valve F of the pipe line as a control valve for opening degree control. The furnace pressure control is started (step 98). As a result, the controllable range of the exhaust flow rate shifts to the straight line O in FIG. 8, and the pressure in the furnace can be controlled even when the atmospheric gas flow rate Q decreases.

一方、上記の制御弁Fによる圧力制御状態(開閉弁C開状態)で、炉体2からの雰囲気ガス流量Qが増加して、制御弁開度が上限値に到達したとき(ステップ100)は、制御弁Fの開度を上限値に固定し(ステップ101)、メカニカルブースタポンプ7の制御を再開する(ステップ82)。これによって分岐管路44c開路状態におけるMB回転数制御状態となるので、排気流量の制御可能範囲は図8の曲線L上に移行し、雰囲気ガス流量Qの増加状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。   On the other hand, when the atmospheric gas flow rate Q from the furnace body 2 increases in the pressure control state (opening state of the on-off valve C) by the control valve F and the control valve opening reaches the upper limit value (step 100). Then, the opening degree of the control valve F is fixed to the upper limit value (step 101), and the control of the mechanical booster pump 7 is resumed (step 82). As a result, the MB rotational speed control state in the open state of the branch pipe 44c is entered, so the controllable range of the exhaust flow rate shifts to the curve L in FIG. 8, and the MB rotational speed is increased even when the atmospheric gas flow rate Q is increased. The pressure inside the furnace can be controlled by the control.

この分岐管路44cの開路状態での圧力制御中に、さらに雰囲気ガス流量Qが増加して、MB回転数が上限値に到達したとき(ステップ102)は、図11に示すようにMB回転数を一旦上限に固定し(ステップ103)、開閉弁Cが開路状態であることを確認して(ステップ106)、開閉弁Cを閉じ開閉弁Bを開き分岐管路44bを開路状態として、MB回転数を下限値に固定し、制御弁Fの開度制御を終了し制御弁Eの開度制御を開始する(ステップ107)。これによって排気流量の制御可能範囲は、図8の直線N上に移行し、雰囲気ガス流量Qの減少に対しても炉体内圧力の制御が可能となる。そしてこの制御弁Eによる圧力制御中に、雰囲気ガス流量Qが増加して制御弁開度が上限値に到達したとき(ステップ108)は、制御弁Eの開度を上限値に固定し(ステップ109)、メカニカルブースタポンプ7の制御を再開する(ステップ82)。これによって分岐管路44b開路状態におけるMB回転数制御状態となるので、排気流量の制御可能範囲は図8の曲線K上に移行し、雰囲気ガス流量Qの増加状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q further increases during the pressure control in the open state of the branch pipe 44c and the MB rotational speed reaches the upper limit (step 102), the MB rotational speed as shown in FIG. Is temporarily fixed to the upper limit (step 103), and it is confirmed that the on-off valve C is in the open state (step 106), the on-off valve C is closed, the on-off valve B is opened, and the branch pipe 44b is opened. The number is fixed to the lower limit value, the opening control of the control valve F is finished, and the opening control of the control valve E is started (step 107). As a result, the controllable range of the exhaust flow rate shifts to a straight line N in FIG. 8, and the pressure in the furnace can be controlled even when the atmospheric gas flow rate Q decreases. During the pressure control by the control valve E, when the atmospheric gas flow rate Q increases and the control valve opening reaches the upper limit (step 108), the opening of the control valve E is fixed to the upper limit (step 108). 109), the control of the mechanical booster pump 7 is resumed (step 82). As a result, the MB rotational speed control state in the open state of the branch pipe 44b is entered, so that the controllable range of the exhaust flow rate shifts to the curve K in FIG. The pressure inside the furnace can be controlled by the control.

またこの分岐管路44bの開路状態での圧力制御中に、さらに雰囲気ガス流量Qが増加して、MB回転数が上限値に到達したとき(ステップ102)は、MB回転数を一旦上限に固定し(ステップ103)、開閉弁Bが開路状態であることを確認して(ステップ105)、開閉弁Bを閉じ開閉弁Aを開き分岐管路44aを開路状態として、MB回転数を下限値に固定し、制御弁Eの開度制御を終了し制御弁Dの開度制御を開始する(ステップ112)。これによって排気流量の制御可能範囲は、図8の直線M上に移行し、雰囲気ガス流量Qの減少に対しても炉体内圧力の制御が可能となる。そしてこの制御弁Dによる圧力制御中に、さらに雰囲気ガス流量Qが増加して制御弁開度が上限値に到達したとき(ステップ113)は、制御弁Eの開度を上限値に固定し(ステップ114)、メカニカルブースタポンプ7の制御を再開する(ステップ82)。これによって分岐管路44a開路状態におけるMB回転数制御状態となるので、排気流量の制御可能範囲は図8の曲線J上に移行し、雰囲気ガス流量Qの増加状態に対しても、MB回転数制御により炉体内圧力の制御が可能となる。   When the atmospheric gas flow rate Q further increases during the pressure control in the open state of the branch pipe 44b and the MB rotational speed reaches the upper limit (step 102), the MB rotational speed is temporarily fixed at the upper limit. (Step 103), confirm that the on-off valve B is in the open state (Step 105), close the on-off valve B, open the on-off valve A, open the branch pipe 44a, and set the MB speed to the lower limit. It fixes, the opening control of the control valve E is complete | finished, and the opening control of the control valve D is started (step 112). As a result, the controllable range of the exhaust flow rate shifts to a straight line M in FIG. 8, and the pressure in the furnace can be controlled even when the atmospheric gas flow rate Q decreases. During the pressure control by the control valve D, when the atmospheric gas flow rate Q further increases and the control valve opening reaches the upper limit (step 113), the opening of the control valve E is fixed to the upper limit ( Step 114), the control of the mechanical booster pump 7 is resumed (Step 82). As a result, the MB rotational speed control state in the open state of the branch pipe 44a is entered, so the controllable range of the exhaust flow rate shifts to the curve J in FIG. The pressure inside the furnace can be controlled by the control.

以上、図10のフローチャートについては、炉体2からの雰囲気ガス流量Qの減少時について、図11のフローチャートについては雰囲気ガス流量Qの増加時について、それぞれ説明したが、たとえば図10のフローチャートにおいて雰囲気ガス流量Qが反転増加して、開度制御中の制御弁の開度が上限に達したとき(ステップ89,95)は、図11のフローチャートで説明したように各制御弁の開度を上限に固定して(ステップ90,96)、同一分岐管路におけるMB回転数制御に切換えればよい。また同様に図11のフローチャートにおいて雰囲気ガス流量Qが反転減少して、開度制御中の制御弁の開度が下限に達したとき(ステップ110,115)は、図10のフローチャートで説明したように開閉弁の切換えおよび制御弁の開度制御を終了して(ステップ111,116)、大流量抵抗側の分岐管路におけるMB回転数制御に切換えればよい。   As described above, the flowchart of FIG. 10 has been described when the atmospheric gas flow rate Q from the furnace body 2 is decreased, and the flowchart of FIG. 11 is described when the atmospheric gas flow rate Q is increased. When the gas flow rate Q increases and the opening degree of the control valve during opening degree control reaches the upper limit (steps 89 and 95), the opening degree of each control valve is set to the upper limit as described in the flowchart of FIG. (Steps 90 and 96) and switching to MB rotation speed control in the same branch pipe. Similarly, when the atmospheric gas flow rate Q is reversed and decreased in the flowchart of FIG. 11 and the opening of the control valve during the opening control reaches the lower limit (steps 110 and 115), as described in the flowchart of FIG. Then, the switching of the on-off valve and the opening control of the control valve are finished (steps 111 and 116), and the control may be switched to the MB rotational speed control in the branch line on the large flow resistance side.

また図10のフローチャートにおいて、ステップ99で制御弁Fの開度が下限値に到達するのは、炉体からの実排気流量が当初の想定最小流量を下回ったときであり、また図11のフローチャートにおいて、MB回転数が上限値に達したときステップ104で開閉弁Aが開放状態にあるのは、炉体からの実排気流量が当初の想定最大流量を上回ったときである。これらのエラーが頻発するようであれば、制御弁Fをさらに流路抵抗の大きい流量制御弁に交換し、あるいはメカニカルブースタポンプ7をさらに排気流量の大きいポンプに交換するなどの対策をとればよい。   In the flowchart of FIG. 10, the opening degree of the control valve F reaches the lower limit value in step 99 when the actual exhaust flow rate from the furnace body falls below the initial assumed minimum flow rate, and in the flowchart of FIG. When the MB rotational speed reaches the upper limit value, the on-off valve A is in the open state at step 104 when the actual exhaust flow rate from the furnace body exceeds the initial assumed maximum flow rate. If these errors occur frequently, measures such as replacing the control valve F with a flow control valve having a larger flow resistance or replacing the mechanical booster pump 7 with a pump having a larger exhaust flow rate may be taken. .

以上のフローチャート(図9〜図11)に従っておこなう開閉弁A〜Cの開閉制御による分岐管路の切換えおよび開度制御対象の制御弁の切換えおよびMB回転数制御と制御弁の開度制御との切換えは、制御装置45の切換制御部によっておこなわれる。そして図8に示すように、排気流通路および開度制御対象の制御弁を高流路抵抗を有する制御弁へ切換えることにより、この切換えをおこなわない1本の分岐管路44aにおけるMB回転数制御のみによる排気流量制御可能範囲は範囲Vであるのに対し、上記の分岐管路および制御弁の切換えとMB回転数制御の組合せにより、範囲Vという第1例および第2例に比べて特に大きな排気流量制御可能範囲が得られ、雰囲気ガス流量Qの大きな変動巾に対しても過不足なく排気をおこなって、炉体内圧力を所定の設定圧力に維持することができるのである。 Switching of branch pipes and switching of control valves to be controlled by opening / closing control of the on-off valves A to C performed according to the above flowcharts (FIGS. 9 to 11), and MB rotation speed control and control valve opening control Switching is performed by a switching control unit of the control device 45. Then, as shown in FIG. 8, by switching the exhaust flow passage and the control valve to be controlled for opening to the control valve having a high flow resistance, the MB rotation speed control in one branch pipe 44a that does not perform this switching is performed. The exhaust flow rate controllable range only by the range is the range V 0 , whereas the range V is particularly compared with the first and second examples of the range V by the combination of the switching of the branch pipes and the control valve and the MB rotation speed control. A large exhaust flow rate controllable range can be obtained, and the exhaust in the atmosphere gas flow rate Q can be exhausted without excess or deficiency, and the furnace pressure can be maintained at a predetermined set pressure.

この発明は上記の例に限定されるものではなく、たとえば上記第3例では、ひとつの分岐管路の開路状態における制御弁の開度制御は、MB回転数の下限値保持状態でおこなったが、この制御弁の開度制御は、MB回転数の上限値保持状態でおこなうようにしてもよく、またMB回転数制御と制御弁の開度制御を同時に(並行して)おこなうようにしてもよい。   The present invention is not limited to the above example. For example, in the third example, the control valve opening degree control in the open state of one branch pipe is performed in the state where the lower limit value of the MB speed is maintained. The opening degree control of the control valve may be performed in a state where the upper limit value of the MB rotational speed is maintained, or the MB rotational speed control and the opening degree control of the control valve may be performed simultaneously (in parallel). Good.

請求項1に係る発明の実施の形態の一例を示す真空熱処理装置の機器系統図である。It is an equipment distribution diagram of a vacuum heat treatment apparatus showing an example of an embodiment of the invention according to claim 1. 図1の真空排気装置におけるポンプ回転数に対する排気流量の変化を示す線図である。It is a diagram which shows the change of the exhaust flow volume with respect to the pump rotation speed in the vacuum exhaust apparatus of FIG. 図1の真空排気装置における分岐管路切換制御動作のフローチャートである。It is a flowchart of the branch line switching control operation | movement in the vacuum exhaust apparatus of FIG. 請求項2に係る発明の実施の形態の一例を示す真空熱処理装置の機器系統図である。It is an equipment distribution diagram of a vacuum heat treatment apparatus showing an example of an embodiment of the invention according to claim 2. 図4の真空排気装置における流量制御弁の開度に対する排気流量の変化を示す線図である。It is a diagram which shows the change of the exhaust flow volume with respect to the opening degree of the flow control valve in the vacuum exhaust apparatus of FIG. 図4の真空排気装置における分岐管路および流量制御弁切換制御動作のフローチャートである。6 is a flowchart of a branch pipe line and flow rate control valve switching control operation in the vacuum exhaust device of FIG. 4. 請求項3に係る発明の実施の形態の一例を示す真空熱処理装置の機器系統図である。It is an equipment distribution diagram of a vacuum heat treatment apparatus showing an example of an embodiment of the invention according to claim 3. 図7の真空排気装置におけるポンプ回転数および流量制御弁の開度に対する排気流量の変化を示す線図である。It is a diagram which shows the change of the exhaust flow volume with respect to the rotation speed of the pump in the vacuum exhaust apparatus of FIG. 7, and the opening degree of a flow control valve. 図7の真空排気装置における分岐管路および流量制御弁切換制御動作のフローチャートの一部である。It is a part of flowchart of the branch pipe line and flow control valve switching control operation | movement in the vacuum exhaust apparatus of FIG. 図7の真空排気装置における分岐管路および流量制御弁切換制御動作のフローチャートの一部である。It is a part of flowchart of the branch pipe line and flow control valve switching control operation | movement in the vacuum exhaust apparatus of FIG. 図7の真空排気装置における分岐管路および流量制御弁切換制御動作のフローチャートの一部である。It is a part of flowchart of the branch pipe line and flow control valve switching control operation | movement in the vacuum exhaust apparatus of FIG.

符号の説明Explanation of symbols

1…真空熱処理装置、2…炉体、3…排気管路、5…真空排気装置、6…油回転ポンプ、7…メカニカルブースタポンプ、8…インバータ、9…真空計、10…制御装置、11…分岐部、12a…分岐管路、12b…分岐管路、12c…分岐管路、13a…流量調節弁、13b…流量調節弁、13c…流量調節弁、41…真空熱処理装置、42…真空排気装置、43…分岐部、44a…分岐管路、44b…分岐管路、44c…分岐管路、45…制御装置、71…真空熱処理装置、72…真空排気装置、73…制御装置、A…開閉弁、B…開閉弁、C…開閉弁、D…流量制御弁、E…流量制御弁、F…流量制御弁。   DESCRIPTION OF SYMBOLS 1 ... Vacuum heat processing apparatus, 2 ... Furnace body, 3 ... Exhaust pipe line, 5 ... Vacuum exhaust apparatus, 6 ... Oil rotary pump, 7 ... Mechanical booster pump, 8 ... Inverter, 9 ... Vacuum gauge, 10 ... Control apparatus, 11 ... Branch part, 12a ... Branch line, 12b ... Branch line, 12c ... Branch line, 13a ... Flow control valve, 13b ... Flow control valve, 13c ... Flow control valve, 41 ... Vacuum heat treatment device, 42 ... Vacuum exhaust Device 43 ... Branching portion 44a ... Branching conduit 44b ... Branching conduit 44c ... Branching conduit 45 ... Control device 71 ... Vacuum heat treatment device 72 ... Vacuum exhaust device 73 ... Control device A ... Opening / closing Valve, B ... Open / close valve, C ... Open / close valve, D ... Flow control valve, E ... Flow control valve, F ... Flow control valve.

Claims (3)

炉体に排気管路を介して接続した真空ポンプの回転数制御により、炉体内圧力の制御をおこなう真空熱処理装置の真空排気装置において、
前記排気管路に、開閉弁をそなえた流路抵抗の異なる複数本の分岐管路を並列状に配設した分岐部を設け、
前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、前記真空ポンプの回転数が下限値に達したとき前記排気流通路を高抵抗側の分岐管路に切換え、前記回転数が上限値に達したとき前記排気流通路を低抵抗側の分岐管路に切換える切換制御手段を具備したことを特徴とする真空熱処理装置の真空排気装置。
In the vacuum exhaust apparatus of the vacuum heat treatment apparatus that controls the pressure in the furnace body by controlling the rotation speed of the vacuum pump connected to the furnace body through the exhaust pipe line,
The exhaust pipe is provided with a branch portion in which a plurality of branch pipes having different flow path resistances provided with on-off valves are arranged in parallel,
The on-off valve is controlled to open and close, and one branch pipe is selected as an exhaust flow path. When the number of revolutions of the vacuum pump reaches a lower limit value, the exhaust flow path is switched to a high resistance side branch pipe. A vacuum evacuation apparatus for a vacuum heat treatment apparatus, comprising switching control means for switching the exhaust flow passage to a branch pipe on the low resistance side when the rotational speed reaches an upper limit value.
炉体と真空ポンプとを接続する排気管路に設けた流量制御弁の開度制御により炉体内圧力の制御をおこなう真空熱処理炉の真空排気装置において、
前記排気管路に、開閉弁と流路抵抗の異なる流量制御弁とをそなえた複数本の分岐管路を並列状に配設した分岐部を設け、
前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、該排気流通路の前記開度制御中の前記流量制御弁の開度が下限値に達したとき、前記排気流通路および開度制御対象の流量制御弁を高抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換え、前記開度が上限値に達したとき、前記排気流通路および流量制御弁を低抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換える切換制御手段を具備したことを特徴とする真空熱処理炉の真空排気装置。
In the vacuum exhaust system of the vacuum heat treatment furnace that controls the pressure in the furnace body by controlling the opening degree of the flow rate control valve provided in the exhaust pipe connecting the furnace body and the vacuum pump,
The exhaust pipe is provided with a branch portion in which a plurality of branch pipes provided with on-off valves and flow rate control valves having different flow path resistances are arranged in parallel,
When the on-off valve is controlled to open and close, one branch pipe is selected as an exhaust flow passage, and when the opening of the flow control valve during the opening control of the exhaust flow passage reaches a lower limit value, The exhaust flow passage and the flow rate control valve subject to opening degree control are switched to the branch pipe having the high resistance side flow control valve and the flow rate control valve, and when the opening degree reaches the upper limit value, the exhaust flow passage and A vacuum evacuation apparatus for a vacuum heat treatment furnace, comprising a branch pipe having a flow resistance control valve on a low resistance side and switching control means for switching to the flow control valve.
炉体に排気管路を介して接続した真空ポンプの回転数制御により、炉体内圧力の制御をおこなう真空熱処理炉の真空排気装置において、
前記排気管路に、開閉弁と流路抵抗の異なる流量制御弁とをそなえた複数本の分岐管路を並列状に配設した分岐部を設け、
前記各流量制御弁のうちから選定される1個の流量制御弁の開度制御により炉体内圧力の制御をおこなう圧力制御手段と、
前記開閉弁を開閉制御して1本の前記分岐管路を排気流通路として選定し、前記真空ポンプの回転数が下限値に達し且つ前記排気流通路の前記開度制御中の前記流量制御弁の開度が下限値に達したとき、前記排気流通路および開度制御対象の流量制御弁を高抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換え、前記真空ポンプの回転数が上限値に達し且つ前記開度が上限値に達したとき、前記排気流通路および流量制御弁を低抵抗側の流量制御弁をそなえた分岐管路および該流量制御弁に切換える切換制御手段とを具備したことを特徴とする真空熱処理炉の真空排気装置。
In the vacuum exhaust system of a vacuum heat treatment furnace that controls the pressure in the furnace body by controlling the number of rotations of a vacuum pump connected to the furnace body through an exhaust pipe line,
The exhaust pipe is provided with a branch portion in which a plurality of branch pipes provided with on-off valves and flow rate control valves having different flow path resistances are arranged in parallel,
Pressure control means for controlling the pressure in the furnace by opening control of one flow control valve selected from the flow control valves;
The flow control valve that controls opening and closing of the on-off valve to select one of the branch pipes as an exhaust flow passage, the rotation speed of the vacuum pump reaches a lower limit value, and the opening degree of the exhaust flow passage is being controlled. When the opening of the vacuum pump reaches the lower limit, the exhaust flow passage and the flow control valve subject to opening control are switched to the branch pipe having the high resistance flow control valve and the flow control valve, and the vacuum pump When the rotational speed reaches the upper limit value and the opening degree reaches the upper limit value, the exhaust flow passage and the flow control valve are switched to the branch pipe having the low resistance side flow control valve and the flow control valve. And a vacuum exhaust apparatus for a vacuum heat treatment furnace.
JP2006148374A 2006-05-29 2006-05-29 Evacuating device for vacuum heat treating device Pending JP2007315729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148374A JP2007315729A (en) 2006-05-29 2006-05-29 Evacuating device for vacuum heat treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148374A JP2007315729A (en) 2006-05-29 2006-05-29 Evacuating device for vacuum heat treating device

Publications (1)

Publication Number Publication Date
JP2007315729A true JP2007315729A (en) 2007-12-06

Family

ID=38849742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148374A Pending JP2007315729A (en) 2006-05-29 2006-05-29 Evacuating device for vacuum heat treating device

Country Status (1)

Country Link
JP (1) JP2007315729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839630A (en) * 2009-03-16 2010-09-22 北京华邦天控科技发展有限公司 Control system and method of baking furnace
US20170370648A1 (en) * 2015-03-30 2017-12-28 Ihi Corporation Heat treatment system
CN110686518A (en) * 2019-10-11 2020-01-14 江苏智冷物联技术有限公司 Intelligent vacuum-pumping system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839630A (en) * 2009-03-16 2010-09-22 北京华邦天控科技发展有限公司 Control system and method of baking furnace
US20170370648A1 (en) * 2015-03-30 2017-12-28 Ihi Corporation Heat treatment system
EP3279595A4 (en) * 2015-03-30 2018-10-17 IHI Corporation Heat treatment system
US11248846B2 (en) 2015-03-30 2022-02-15 Ihi Corporation Heat treatment system
CN110686518A (en) * 2019-10-11 2020-01-14 江苏智冷物联技术有限公司 Intelligent vacuum-pumping system

Similar Documents

Publication Publication Date Title
JP3852010B2 (en) Vacuum heat treatment method and apparatus
CA2134426C (en) Method of feeding gas into a chamber
JP6678489B2 (en) Substrate processing equipment
CN103000555A (en) Thermal treatment apparatus, temperature control system, thermal treatment method, and temperature control method
CN102132387A (en) Plasma processing apparatus, plasma processing method, method for cleaning plasma processing apparatus and pressure control valve for plasma processing apparatus
JP2007315729A (en) Evacuating device for vacuum heat treating device
JP4807660B2 (en) Vacuum carburizing equipment
JP2008002274A (en) Evacuation device of vacuum heat treatment device
JP4399517B2 (en) Film forming apparatus and film forming method
CN111599718A (en) Backpressure gas circuit device, reaction chamber base backpressure control method and reaction chamber
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
US20240068093A1 (en) System and method for controlling foreline pressure
JP2004206662A (en) Apparatus and method for processing
JP4490008B2 (en) Vacuum processing apparatus and vacuum processing method
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
JP5225634B2 (en) Heat treatment method and heat treatment equipment
JP4521257B2 (en) Heat treatment method and heat treatment apparatus
JP4547664B2 (en) Vacuum carburizing furnace and carburizing gas exhaust method
JP5598407B2 (en) Film forming apparatus and film forming method
JP2013159813A (en) Film deposition apparatus and film deposition method
JPH10154702A (en) Manufacturing method of semiconductor device
JPWO2005008755A1 (en) Temperature control method, substrate processing apparatus, and semiconductor manufacturing method
CN114192773B (en) Automatic vacuum degassing method and device for metal powder
KR102463338B1 (en) Manufacturing method and manufacturing apparatus of steam treatment products
JP4672267B2 (en) Nitriding method and nitriding apparatus used therefor