JP2007315720A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2007315720A
JP2007315720A JP2006147803A JP2006147803A JP2007315720A JP 2007315720 A JP2007315720 A JP 2007315720A JP 2006147803 A JP2006147803 A JP 2006147803A JP 2006147803 A JP2006147803 A JP 2006147803A JP 2007315720 A JP2007315720 A JP 2007315720A
Authority
JP
Japan
Prior art keywords
air
refrigerant
radiator
heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147803A
Other languages
Japanese (ja)
Other versions
JP4901303B2 (en
Inventor
Tadashi Ikeda
直史 池田
Junichiro Kasuya
潤一郎 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006147803A priority Critical patent/JP4901303B2/en
Publication of JP2007315720A publication Critical patent/JP2007315720A/en
Application granted granted Critical
Publication of JP4901303B2 publication Critical patent/JP4901303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device capable of effectively utilizing high temperature air heated by exchanging heat with a refrigerant which has flowed into a radiator. <P>SOLUTION: Air which has exchanged heat with the refrigerant flowing through the upper reaches in the refrigerant flow direction of each heat exchange tube 35c is guided to an evaporating member 39. The air becoming high in temperature by exchanging heat with the refrigerant immediately after flowing into the radiator 35 can thereby be brought into contact with the evaporating member 39, and the amount of evaporation of drain water can be increased. Air which has exchanged heat with the refrigerant flowing except the upper reaches in the refrigerant flow direction of each heat exchange tube 35c is guided to a compressor 37. The air of comparatively low temperature other than the air becoming high in temperature by exchanging heat with the refrigerant immediately after flowing into the radiator 35 can thereby be brought into contact with the compressor 37, and the cooling effect of the compressor 37 can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放熱器において冷媒と熱交換した空気を、蒸発部材におけるドレン水の蒸発または除湿部材の再生に利用可能な冷却装置に関するものである。   The present invention relates to a cooling device that can use air exchanged with a refrigerant in a radiator to evaporate drain water in an evaporating member or regenerate a dehumidifying member.

従来、この種の冷却装置としては、冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、放熱器の空気流通方向下流側に設けられ、冷却によって生じるドレン水を蒸発させる蒸発部材とを備えたものが知られている(例えば、特許文献1参照)。   Conventionally, as this type of cooling device, a radiator that radiates the refrigerant, a compressor that compresses the refrigerant that circulates through the radiator, a blower that circulates air that exchanges heat with the refrigerant that circulates through the radiator, and a radiator There is known one provided with an evaporation member that is provided on the downstream side in the air flow direction and evaporates drain water generated by cooling (see, for example, Patent Document 1).

この冷却装置は、放熱器において冷媒と熱交換した空気を、蒸発部材に接触させることによりドレン水を蒸発させるとともに、圧縮機の外面に接触させることにより圧縮機を冷却するようになっている。ここで、蒸発部材から蒸発するドレン水の蒸発量を増加させるためには、より高温の空気を蒸発部材に接触させることが有効である。   The cooling device evaporates the drain water by bringing the air heat-exchanged with the refrigerant in the radiator into contact with the evaporating member, and cools the compressor by bringing into contact with the outer surface of the compressor. Here, in order to increase the evaporation amount of the drain water evaporated from the evaporation member, it is effective to bring hotter air into contact with the evaporation member.

また、他の冷却装置としては、冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、所定空間内に供給する空気中の水分を吸着し、放熱器によって加熱された空気によって吸着した水分を放出させる除湿部材とを備えたものが知られている(例えば、特許文献2参照)。   Other cooling devices include a radiator that radiates the refrigerant, a compressor that compresses the refrigerant that circulates through the radiator, a blower that circulates air that exchanges heat with the refrigerant that circulates through the radiator, and a predetermined space. There is known a device provided with a dehumidifying member that adsorbs moisture in the air supplied to the air and releases the moisture adsorbed by the air heated by the radiator (for example, see Patent Document 2).

この冷却装置は、放熱器において冷媒と熱交換した空気を、水分を吸着した除湿部材に接触させることにより水分を放出させるとともに、圧縮機の外面に接触させることにより圧縮機を冷却するようになっている。ここで、除湿部材が吸着した水分を効率的に放出させるためには、より高温の空気を除湿部材に接触させることが有効である。
特開2005−74090号公報 特開2003−130391号公報
This cooling device releases air by bringing the air heat-exchanged with the refrigerant in the radiator into contact with the dehumidifying member that has adsorbed moisture, and cools the compressor by bringing it into contact with the outer surface of the compressor. ing. Here, in order to efficiently release the moisture adsorbed by the dehumidifying member, it is effective to bring higher temperature air into contact with the dehumidifying member.
JP-A-2005-74090 JP 2003-130391 A

ところで、前記それぞれの冷却装置において、例えば二酸化炭素等の高圧側が超臨界状態となる流体を冷媒として用いる場合に、放熱器に流入する冷媒の温度は、フロン冷媒と比較して高くなる。また、放熱器内における冷媒の温度は、フロン冷媒の場合に急激に低下して一定となるのに対して、高い状態から徐々に低下して一定となる特性を有している。   By the way, in each said cooling device, when using the fluid in which the high voltage | pressure side, such as a carbon dioxide, becomes a supercritical state as a refrigerant | coolant, the temperature of the refrigerant | coolant which flows in into a heat radiator becomes high compared with a CFC refrigerant | coolant. Further, the temperature of the refrigerant in the radiator has a characteristic that it gradually decreases and becomes constant from a high state, while it suddenly decreases and becomes constant in the case of the chlorofluorocarbon refrigerant.

しかしながら、高圧側が超臨界状態となる冷媒を前記それぞれの冷却装置に用いる場合に、放熱器内の高温の冷媒と熱交換した高温の空気と一定温度の冷媒と熱交換した低温の空気は混合された状態で蒸発部材または除湿部材に流通するため、放熱器内の高温の冷媒と熱交換した高温の空気は有効に利用されていない。   However, when a refrigerant in which the high pressure side is in a supercritical state is used for each of the cooling devices, the high temperature air exchanged with the high temperature refrigerant in the radiator and the low temperature air exchanged with the constant temperature refrigerant are mixed. Therefore, the high-temperature air exchanged with the high-temperature refrigerant in the radiator is not effectively used.

本発明の目的とするところは、放熱器に流入した冷媒と熱交換することにより加熱された高温の空気を有効に利用することのできる冷却装置を提供することにある。   An object of the present invention is to provide a cooling device that can effectively use high-temperature air heated by exchanging heat with the refrigerant flowing into the radiator.

本発明は前記目的を達成するために、超臨界状態の冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、冷却対象の冷却によって生じるドレン水を蒸発させる蒸発部材とを備えた冷却装置において、前記蒸発部材を、放熱器の冷媒流通方向上流側の空気流通方向下流側に配置している。   To achieve the above object, the present invention circulates a radiator that radiates heat in a supercritical state refrigerant, a compressor that compresses the refrigerant circulated through the radiator, and air that exchanges heat with the refrigerant that circulates through the radiator. In a cooling device including a blower and an evaporating member that evaporates drain water generated by cooling of an object to be cooled, the evaporating member is disposed on the downstream side in the air circulation direction on the upstream side in the refrigerant circulation direction of the radiator.

これにより、放熱器に流入した高温の冷媒と熱交換した高温の空気が蒸発部材に接触する。   Thereby, the high-temperature air exchanged with the high-temperature refrigerant flowing into the radiator comes into contact with the evaporation member.

また、本発明は前記目的を達成するために、超臨界状態の冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、所定空間内に供給する空気中の水分を吸着し、吸着した水分を放熱器によって加熱された空気によって放出させる除湿部材とを備えた冷却装置において、前記除湿部材を、放熱器の冷媒流通方向上流側の空気流通方向下流側に配置している。   In order to achieve the above object, the present invention provides a radiator that dissipates heat in the supercritical state refrigerant, a compressor that compresses the refrigerant that circulates in the radiator, and air that exchanges heat with the refrigerant that circulates in the radiator. In a cooling device comprising a blower that circulates and a dehumidifying member that adsorbs moisture in the air supplied into the predetermined space and releases the adsorbed moisture by air heated by a radiator, the dehumidifying member is a radiator It arrange | positions in the air distribution direction downstream of the refrigerant | coolant distribution direction upstream.

これにより、放熱器に流入した高温の冷媒と熱交換した高温の空気が除湿部材に接触する。   Thereby, the high-temperature air exchanged with the high-temperature refrigerant flowing into the radiator contacts the dehumidifying member.

本発明によれば、放熱器に流入した高温の冷媒と熱交換した高温の空気を蒸発部材に接触させることができるので、ドレン水の蒸発量を増加させることが可能となる。   According to the present invention, since the high-temperature air that has exchanged heat with the high-temperature refrigerant that has flowed into the radiator can be brought into contact with the evaporation member, it is possible to increase the evaporation amount of the drain water.

また、本発明によれば、放熱器に流入した高温の冷媒と熱交換した高温の空気を除湿部材に接触させることができるので、吸着した水分を効率的に放出することが可能となる。   In addition, according to the present invention, since the high-temperature air exchanged with the high-temperature refrigerant flowing into the radiator can be brought into contact with the dehumidifying member, the adsorbed moisture can be efficiently released.

図1乃至図5は本発明の冷却装置の第1の実施形態として、販売する商品を陳列した状態で冷却可能なショーケースを示すもので、図1はショーケースの全体斜視図、図2はショーケースの側面断面図、図3は機械室の平面図、図4は放熱器の全体斜視図、図5は放熱器の流入ヘッダ側からの左右方向の位置と、その位置における冷媒と熱交換した後の空気の温度との関係を示す図である。   FIG. 1 to FIG. 5 show a showcase that can be cooled in a state where merchandise to be sold is displayed as a first embodiment of the cooling device of the present invention. FIG. 1 is an overall perspective view of the showcase, and FIG. 3 is a plan view of the machine room, FIG. 4 is an overall perspective view of the radiator, and FIG. 5 is a horizontal position from the inflow header side of the radiator and heat exchange with the refrigerant at that position. It is a figure which shows the relationship with the temperature of the air after having performed.

このショーケースは、前面に開口部を有するショーケース本体10と、ショーケース本体10内に設けられた通風路20と、ショーケース本体10の下部に設けられた機械室30とを備えている。   This showcase includes a showcase body 10 having an opening on the front surface, an air passage 20 provided in the showcase body 10, and a machine room 30 provided in a lower portion of the showcase body 10.

ショーケース本体10は、上面側、背面側及び底面側が断熱壁11によって形成され、左右両側面側がガラス板12によって覆われている。ショーケース本体10内には、断熱壁11の内面と間隔をおいて上面側、背面側及び底面側にそれぞれ上面板13、背面板14及び底面板15が設けられ、その内部に商品収納部16が形成されている。商品収納部16には、複数の商品棚17が互いに上下方向に並べて設けられ、底面板15及び各商品棚17の上面に商品が載置されるようになっている。   In the showcase body 10, the upper surface side, the back surface side, and the bottom surface side are formed by heat insulating walls 11, and both the left and right side surfaces are covered with glass plates 12. In the showcase body 10, a top plate 13, a back plate 14, and a bottom plate 15 are provided on the upper surface side, the back surface side, and the bottom surface side, respectively, spaced from the inner surface of the heat insulating wall 11, and the product storage portion 16 is provided therein. Is formed. In the product storage unit 16, a plurality of product shelves 17 are arranged side by side in the vertical direction, and products are placed on the bottom plate 15 and the top surfaces of the product shelves 17.

通風路20は、断熱壁11の内面と上面板13、背面板14及び底面板15との間に設けられている。ショーケース本体10の開口部の下端には、左右方向に亘って通風路20に連通する空気吸入口21が設けられ、ショーケース本体10の開口部の上端には、左右方向に亘って通風路20に連通する空気吐出口22が設けられている。また、商品収納部16の背面側に位置する通風路20には、通風路20を流通する空気を冷却するための冷却器23が設けられ、商品収納部16の底面側に位置する通風路20には、通風路20に空気を流通させるための冷却器用送風機24が設けられている。更に、底面側の断熱壁11には、冷却器23において生じる結露水及び除霜水等のドレン水を機械室30に排出するための排水孔25が設けられている。   The ventilation path 20 is provided between the inner surface of the heat insulating wall 11 and the top plate 13, the back plate 14, and the bottom plate 15. At the lower end of the opening of the showcase body 10, an air inlet 21 communicating with the ventilation path 20 is provided in the left-right direction, and the ventilation path is provided at the upper end of the opening of the showcase body 10 in the left-right direction. An air discharge port 22 communicating with 20 is provided. In addition, the air passage 20 located on the back side of the product storage unit 16 is provided with a cooler 23 for cooling the air flowing through the air passage 20, and the air passage 20 located on the bottom side of the product storage unit 16. Are provided with a cooler blower 24 for circulating air through the ventilation path 20. Further, the heat insulating wall 11 on the bottom side is provided with a drain hole 25 for discharging drain water such as dew condensation water and defrost water generated in the cooler 23 to the machine room 30.

機械室30は、底面側の断熱壁11の下面と床板31との間に設けられ、前面側、背面側及び左右両側面側がそれぞれ前面パネル32、背面パネル33及び側面パネル34によって覆われている。前面パネル32には、吸気口32aが設けられ、背面パネル33には、排気口33aが設けられている。機械室30内には、冷却器23において冷媒が吸収した熱を放出させるための放熱器35と、放熱器35を流通する冷媒と熱交換する空気を機械室30の前方から後方に向かって流通させる一対の送風機としての放熱器用送風機36と、冷却器23及び放熱器35に冷媒を流通させるための圧縮機37と、排水孔25から機械室30内に流通するドレン水を受容するためのドレンパン38と、ドレンパン38内のドレン水の蒸発を促進させるための蒸発部材39と、放熱器35の空気流通方向下流側の機械室30内を蒸発部材39側と圧縮機37側とに仕切る仕切部材40とを備えている。   The machine room 30 is provided between the lower surface of the heat insulating wall 11 on the bottom surface side and the floor plate 31, and the front side, the back side, and the left and right side surfaces are covered with the front panel 32, the back panel 33, and the side panel 34, respectively. . The front panel 32 is provided with an intake port 32a, and the rear panel 33 is provided with an exhaust port 33a. In the machine room 30, a radiator 35 for releasing the heat absorbed by the refrigerant in the cooler 23, and air that exchanges heat with the refrigerant flowing through the radiator 35 circulates from the front to the rear of the machine room 30. A radiator fan 36 as a pair of fans to be blown, a compressor 37 for circulating refrigerant through the cooler 23 and the radiator 35, and a drain pan for receiving drain water flowing from the drain hole 25 into the machine chamber 30 38, an evaporation member 39 for promoting the evaporation of drain water in the drain pan 38, and a partition member for partitioning the inside of the machine chamber 30 downstream of the radiator 35 in the air flow direction into the evaporation member 39 side and the compressor 37 side. 40.

放熱器35は、互いに機械室30内の左右方向に間隔をおいて設けられ、それぞれ上下方向に延びる流入ヘッダ35a及び流出ヘッダ35bと、両端側が各ヘッダ35a,35bに接続された上下複数の熱交換チューブ35cと、各熱交換チューブ35cの間に設けられた放熱フィン35dとからなる。   The radiator 35 is provided with an inflow header 35a and an outflow header 35b that are spaced apart from each other in the left-right direction in the machine chamber 30 and extend in the up-down direction. It consists of the exchange tube 35c and the radiation fin 35d provided between each heat exchange tube 35c.

流入ヘッダ35a及び流出ヘッダ35bは、それぞれアルミニウム等からなる中空円筒状に形成された部材からなり、中心軸方向に間隔をおいて各熱交換チューブ35cが並べて接続されるようになっている。機械室30内の左側に位置する流入ヘッダ35aには、圧縮機37から吐出された冷媒を流入させるための冷媒流入口35eが設けられている。また、機械室30内の右側に位置する流出ヘッダ35bには、放熱した冷媒を冷却器23に向かって流出させるための冷媒流出口35fが設けられている。   The inflow header 35a and the outflow header 35b are each made of a member formed in a hollow cylindrical shape made of aluminum or the like, and the heat exchange tubes 35c are connected side by side at intervals in the central axis direction. The inflow header 35 a located on the left side in the machine room 30 is provided with a refrigerant inflow port 35 e for allowing the refrigerant discharged from the compressor 37 to flow in. The outflow header 35 b located on the right side in the machine room 30 is provided with a refrigerant outlet 35 f for allowing the radiated refrigerant to flow out toward the cooler 23.

各熱交換チューブ35cは、アルミニウム等の金属製の扁平チューブからなり、断面長手方向が空気流通方向に向くように各ヘッダ35a,35bに接続されている。   Each heat exchange tube 35c is made of a flat tube made of metal such as aluminum, and is connected to each header 35a, 35b so that the longitudinal direction of the cross section faces the air flow direction.

放熱フィン35dは、左右方向に延びるアルミニウム等の金属板を上下に屈曲することにより波形状に形成された部材からなり、上側及び下側に位置する熱交換チューブ35cと接触するように、各熱交換チューブ35cの間に取付けられている。   The heat dissipating fin 35d is made of a member formed in a wave shape by vertically bending a metal plate such as aluminum extending in the left-right direction, and each heat fin 35d is in contact with the heat exchange tubes 35c located on the upper side and the lower side. It is attached between the exchange tubes 35c.

各放熱器用送風機36は、放熱器35の空気流通方向下流側に機械室30内の左右方向に並べて配置されている。各放熱器用送風機36は、放熱器35を流通する冷媒と熱交換する空気を吸気口32aから機械室30内に流入させ、排気口33aから外部に吐出するようになっている。   The radiator fans 36 are arranged in the left-right direction in the machine room 30 on the downstream side of the radiator 35 in the air flow direction. Each radiator blower 36 allows air that exchanges heat with the refrigerant flowing through the radiator 35 to flow into the machine chamber 30 from the intake port 32a and to be discharged from the exhaust port 33a to the outside.

圧縮機37は、機械室30内の右側に位置する放熱器用送風機36の空気流通方向下流側に設けられている。また、圧縮機37には、銅管、ステンレス管等の配管を介して放熱器35、図示しない膨張弁及び冷却器23に順次接続され、冷媒循環回路が構成されている。冷媒循環回路を循環する冷媒としては、地球温暖化及びオゾン層破壊等の環境への影響が小さい自然系冷媒としての二酸化炭素が用いられる。冷媒として用いられる二酸化炭素は高圧側が超臨界状態となる特性を有している。   The compressor 37 is provided on the downstream side in the air flow direction of the radiator fan 36 located on the right side in the machine room 30. Further, the compressor 37 is sequentially connected to a radiator 35, an expansion valve (not shown) and a cooler 23 via a pipe such as a copper pipe and a stainless pipe, thereby constituting a refrigerant circulation circuit. As the refrigerant circulating in the refrigerant circuit, carbon dioxide is used as a natural refrigerant that has little environmental impact such as global warming and ozone layer destruction. Carbon dioxide used as a refrigerant has a characteristic that the high pressure side is in a supercritical state.

ドレンパン38は、上面が開口された浅い箱形に形成され、機械室30内の左側に位置する放熱器用送風機36の空気流通方向下流側に設けられている。   The drain pan 38 is formed in a shallow box shape whose upper surface is opened, and is provided on the downstream side in the air flow direction of the radiator fan 36 located on the left side in the machine room 30.

蒸発部材39は、平板状に形成された複数の蒸発板39aからなり、各蒸発板39a間に空気を流通させるように、各蒸発板39aが互いに空気流通方向と直行する機械室30内の左右方向に間隔をおいてドレンパン38内に配置されている。各蒸発板39aは、ポリエステル繊維等の不織布からなり、毛細管作用によってドレンパン38内のドレン水を吸収するようになっている。   The evaporating member 39 includes a plurality of evaporating plates 39a formed in a flat plate shape, and the left and right sides of the machine chamber 30 in which the evaporating plates 39a are orthogonal to each other so as to circulate air between the evaporating plates 39a. They are arranged in the drain pan 38 at intervals in the direction. Each evaporation plate 39a is made of a nonwoven fabric such as polyester fiber, and absorbs drain water in the drain pan 38 by capillary action.

仕切部材40は、放熱器35の空気流通方向下流側の機械室30内を蒸発部材39側と圧縮機37側とに仕切ることにより、放熱器35の流入ヘッダ35a側を通過した空気を蒸発部材39側に流通させ、放熱器35の流出ヘッダ35b側を通過した空気を圧縮機37側に流通させるようになっている。また、仕切部材40は、放熱器35の流入ヘッダ35a側から放熱器35の左右方向寸法の三分の一〜二分の一の位置を仕切るようになっている。   The partition member 40 partitions the inside of the machine chamber 30 on the downstream side in the air flow direction of the radiator 35 into an evaporation member 39 side and a compressor 37 side, so that the air that has passed through the inflow header 35a side of the radiator 35 is evaporated. The air that has been circulated to the 39 side and passed through the outflow header 35 b side of the radiator 35 is circulated to the compressor 37 side. Further, the partition member 40 is configured to partition the position of one-third to one-half of the horizontal dimension of the radiator 35 from the inflow header 35a side of the radiator 35.

以上のように構成された冷却装置において、圧縮機37から吐出された冷媒は、放熱器35を流通することにより放熱し、膨張弁を介して冷却器23に流通することにより吸熱して圧縮機37に吸入される。   In the cooling device configured as described above, the refrigerant discharged from the compressor 37 dissipates heat by flowing through the radiator 35 and absorbs heat by flowing to the cooler 23 through the expansion valve to compress the compressor. 37 is inhaled.

冷却器用送風機24によって空気吸入口21から通風路20に吸入された空気は、冷却器23において吸熱する冷媒と熱交換することにより冷却された後に空気吐出口22から吐出され、商品収納部16の底面板15及び各商品棚17に載置された商品が冷却保存される。このとき、冷却器23では、空気が冷却されて結露が発生し、結露水がドレン水として排水孔25を介して機械室30内のドレンパン38内に流入する。ドレンパン38内に流入したドレン水は、蒸発部材39に吸収される。   The air sucked into the ventilation path 20 from the air suction port 21 by the cooler blower 24 is cooled by exchanging heat with the refrigerant that absorbs heat in the cooler 23 and then discharged from the air discharge port 22. The products placed on the bottom plate 15 and the product shelves 17 are stored cold. At this time, in the cooler 23, the air is cooled and condensation occurs, and the condensed water flows into the drain pan 38 in the machine room 30 through the drain hole 25 as drain water. The drain water that has flowed into the drain pan 38 is absorbed by the evaporation member 39.

各放熱器用送風機36によって吸気口32aから機械室30内に流入した機械室30外の空気は、放熱器35において放熱する冷媒と熱交換することにより加熱された後に仕切部材40によって圧縮機37側と蒸発部材39側とに分けられて機械室30内を流通する。仕切部材40の蒸発部材39側を流通する空気は、蒸発部材39と接触することにより蒸発部材39が吸収しているドレン水を蒸発させた後、排気口33aから機械室30外に排出される。仕切部材40の圧縮機37側を流通する空気は、圧縮機37を冷却した後、排気口33aから機械室30外に排出される。   The air outside the machine room 30 that has flowed into the machine room 30 from the air inlet 32a by each radiator blower 36 is heated by exchanging heat with the refrigerant that radiates heat in the radiator 35, and then the compressor 37 side by the partition member 40. And the inside of the machine room 30 are divided into the evaporation member 39 side. The air flowing through the evaporation member 39 side of the partition member 40 evaporates the drain water absorbed by the evaporation member 39 by coming into contact with the evaporation member 39, and is then discharged from the exhaust port 33 a to the outside of the machine room 30. . The air that circulates on the compressor 37 side of the partition member 40 cools the compressor 37 and is then discharged out of the machine room 30 through the exhaust port 33a.

ここで、放熱器35の冷媒流通方向の流入ヘッダ35a側からの距離Lと、距離Lの位置における各熱交換チューブ35cを流通する冷媒と熱交換した後の空気の温度Tとの関係を図5を用いて説明する。図5において、実線の距離Lと温度Tとの関係は、冷媒として二酸化炭素を用いた場合を示し、破線の距離Lと温度Tとの関係は、冷媒としてフロンを用いた場合を示している。   Here, the relationship between the distance L from the inflow header 35a side in the refrigerant distribution direction of the radiator 35 and the temperature T of the air after heat exchange with the refrigerant flowing through each heat exchange tube 35c at the position of the distance L is shown. 5 will be described. In FIG. 5, the relationship between the distance L and the temperature T indicated by a solid line indicates a case where carbon dioxide is used as the refrigerant, and the relationship between the distance L and the temperature T indicated by a broken line indicates a case where Freon is used as the refrigerant. .

図5に示すように、冷媒としてフロンを用いた場合には、流入ヘッダ35a側から流出ヘッダ35b側に向かって熱交換後の空気の温度Tが急激に低くなり一定となるのに対して、冷媒として二酸化炭素を用いた場合には、流入ヘッダ35a側から流出ヘッダ35b側に向かって放熱器35の冷媒流通方向寸法の三分の一〜二分の一の距離Lまで温度Tが徐々に低くなり一定となる。   As shown in FIG. 5, when using chlorofluorocarbon as a refrigerant, the temperature T of the air after heat exchange suddenly decreases from the inflow header 35a side to the outflow header 35b side, and becomes constant. When carbon dioxide is used as the refrigerant, the temperature T gradually decreases from the inflow header 35a side to the outflow header 35b side to a distance L that is one third to one half of the refrigerant flow direction dimension of the radiator 35. It becomes constant.

例えば、30℃の機械室30内に流入する空気は、放熱器35の流入ヘッダ35a近傍の各熱交換チューブ35cを流通する冷媒と熱交換することにより約120℃に加熱され、放熱器35の流出ヘッダ35b近傍の各熱交換チューブ35cを流通する冷媒と熱交換することにより約40℃に加熱される。即ち、放熱器35の流入ヘッダ35a側から放熱器35の左右方向寸法の3分の1の位置を仕切部材40によって仕切ると、放熱器35において加熱されて仕切部材40の蒸発部材39側を流通する空気の温度は約75℃となる。また、放熱器35の左右方向寸法の中央部を仕切部材40によって仕切ると、放熱器35において加熱されて仕切部材40の蒸発部材39側を流通する空気の温度は約70℃となる。   For example, air flowing into the machine room 30 at 30 ° C. is heated to about 120 ° C. by exchanging heat with the refrigerant flowing through the heat exchange tubes 35 c in the vicinity of the inflow header 35 a of the radiator 35. It is heated to about 40 ° C. by exchanging heat with the refrigerant flowing through each heat exchange tube 35c in the vicinity of the outflow header 35b. That is, when the partition member 40 divides the position of one third of the horizontal dimension of the radiator 35 from the inflow header 35a side of the radiator 35 by the partition member 40, the radiator 35 is heated and circulates through the evaporation member 39 side of the partition member 40. The temperature of the air is about 75 ° C. Further, when the central portion of the radiator 35 in the left-right direction dimension is partitioned by the partition member 40, the temperature of the air heated in the radiator 35 and flowing through the evaporation member 39 side of the partition member 40 becomes about 70 ° C.

これにより、蒸発部材39には、仕切部材40の蒸発部材39側を流通する高温の空気が接触するするため、ドレン水の蒸発量を増加させることが可能となる。また、圧縮機37には、仕切部材40の圧縮機37側を流通する低温の空気が接触するため、圧縮機37の冷却を効率的に行うことが可能となる。   Thereby, since the high temperature air which distribute | circulates the evaporation member 39 side of the partition member 40 contacts the evaporation member 39, it becomes possible to increase the evaporation amount of drain water. Moreover, since the low temperature air which distribute | circulates the compressor 37 side of the partition member 40 contacts the compressor 37, it becomes possible to cool the compressor 37 efficiently.

このように、本実施形態の冷却装置によれば、各熱交換チューブ35cの冷媒流通方向上流側を流通する冷媒と熱交換した空気を蒸発部材39に案内するようにしたので、放熱器35に流入直後の冷媒と熱交換して高温となる空気を蒸発部材39に接触させることができ、ドレン水の蒸発量を増加させることが可能となる。   Thus, according to the cooling device of the present embodiment, the heat exchanged with the refrigerant circulating in the refrigerant circulation direction upstream side of each heat exchange tube 35c is guided to the evaporation member 39. Air that becomes high temperature by exchanging heat with the refrigerant immediately after inflow can be brought into contact with the evaporating member 39, and the evaporation amount of drain water can be increased.

また、各熱交換チューブ35cの冷媒流通方向上流側以外を流通する冷媒と熱交換した空気を圧縮機37に案内するようにしたので、放熱器35に流入直後の冷媒と熱交換して高温となる空気以外の比較的低温の空気を圧縮機37に接触させることができ、圧縮機37の冷却効果を向上させることが可能となる。   In addition, since air that has exchanged heat with the refrigerant that circulates other than the upstream side in the refrigerant distribution direction of each heat exchange tube 35c is guided to the compressor 37, heat exchange with the refrigerant immediately after flowing into the radiator 35 causes the Relatively low-temperature air other than the air to be made can be brought into contact with the compressor 37, and the cooling effect of the compressor 37 can be improved.

また、放熱器35の空気流通方向下流側の熱交換チューブ35cの冷媒流通方向上流側に蒸発部材39を配置するとともに、放熱器35の空気流通方向下流側の熱交換チューブ35cの冷媒流通方向上流側以外に圧縮機37を配置し、放熱器35の空気流通方向下流側を蒸発部材39側と圧縮機37側とを仕切る仕切部材40を備えたので、簡単な構成によって放熱器35に流入直後の冷媒と熱交換して高温となる空気を蒸発部材39側に案内可能となるとともに、放熱器35に流入直後の冷媒と熱交換して高温となる空気以外の比較的低温の空気を圧縮機37側に案内可能となり、製造コストの低減を図ることが可能となる。   Further, the evaporating member 39 is arranged on the upstream side in the refrigerant flow direction of the heat exchange tube 35c on the downstream side in the air flow direction of the radiator 35, and the refrigerant flow direction upstream in the heat exchange tube 35c on the downstream side in the air flow direction of the radiator 35. Since the compressor 37 is arranged on the side other than the side and the partition member 40 is provided to partition the downstream side in the air flow direction of the radiator 35 between the evaporation member 39 side and the compressor 37 side, immediately after flowing into the radiator 35 with a simple configuration It is possible to guide the air that becomes high temperature by exchanging heat with the refrigerant to the evaporating member 39 side, and relatively low-temperature air other than the air that becomes high temperature by exchanging heat with the refrigerant just after flowing into the radiator 35 is compressor. It becomes possible to guide to the 37 side, and it becomes possible to reduce the manufacturing cost.

また、仕切部材40の蒸発部材39側の空間及び仕切部材40の圧縮機37側の空間にそれぞれ空気を流通させることが可能な一対の放熱器用送風機36を備えたので、放熱器35において冷媒を効率的に放熱させるとともに、各放熱器用送風機36によって仕切部材40の蒸発部材39側の空間及び仕切部材40の圧縮機37側の空間にそれぞれ空気を流通させることができ、ドレン水の蒸発及び圧縮機37の冷却に必要な流量の空気をそれぞれ過不足なく流通させることが可能となる。   In addition, since a pair of radiator blowers 36 capable of circulating air in the space on the evaporation member 39 side of the partition member 40 and the space on the compressor 37 side of the partition member 40 are provided, In addition to efficiently dissipating heat, each radiator fan 36 allows air to circulate through the space on the evaporation member 39 side of the partition member 40 and the space on the compressor 37 side of the partition member 40, thereby evaporating and compressing drain water. It becomes possible to distribute the air at a flow rate necessary for cooling the machine 37 without excess or deficiency.

図6は本発明の冷却装置の第2の実施形態として、所定の空調空間を除湿しながら冷房を行う空気調和装置を示すもので、空気調和装置の概略構成図である。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。   FIG. 6 shows an air conditioner that performs cooling while dehumidifying a predetermined air-conditioned space as a second embodiment of the cooling apparatus of the present invention, and is a schematic configuration diagram of the air conditioner. In addition, the same code | symbol is attached | subjected and shown to the component similar to the said embodiment.

この空気調和装置は、互いに平行に並ぶ第1の通風路51及び第2の通風路52を有し、第1の通風路51の両端はそれぞれ空調空間に連通し、第2の通風路52の両端はそれぞれ屋外に連通している。   This air conditioner has a first ventilation path 51 and a second ventilation path 52 that are arranged in parallel to each other, and both ends of the first ventilation path 51 communicate with the air-conditioned space. Both ends communicate with the outdoors.

第1の通風路51には、第1の通風路51を流通する空気を冷却するための冷却器23と、第1の通風路51に空調空間の空気を流通させて空調空間に戻すための冷却器用送風機24とが設けられている。   The first ventilation path 51 has a cooler 23 for cooling the air flowing through the first ventilation path 51, and the air for passing the air-conditioned space through the first ventilation path 51 to return it to the conditioned space. A cooler blower 24 is provided.

第2の通風路52には、冷却器23において冷媒が吸収した熱を放出させるとともに、第2の通風路52を流通する空気を加熱するための放熱器35と、第2の通風路52に屋外の空気を流通させて屋外に排出するための一対の放熱器用送風機36と、冷却器23及び放熱器35に冷媒を流通させる圧縮機37とが設けられている。   In the second ventilation path 52, the heat absorbed by the refrigerant in the cooler 23 is released, and the radiator 35 for heating the air flowing through the second ventilation path 52 and the second ventilation path 52 A pair of radiator fans 36 for circulating outdoor air and discharging it outdoors, and a compressor 37 for circulating the refrigerant through the cooler 23 and the radiator 35 are provided.

また、この空気調和装置は、第1の通風路51を流通する空気中の水分を吸着して第2の通風路52を流通する空気中に放出させるための除湿部材としてのデシカントロータ53を備えている。デシカントロータ53は、例えばシリカゲル、ゼオライト等の吸湿剤を含んだエレメント53aを円板状に形成した部材からなり、第1の通風路51及び第2の通風路52の第1の通風路51側に亘って設けられている。また、デシカントロータ53は、図示しないモータによってエレメント53aの径方向中心を軸にエレメント53aが回転するようになっており、第1の通風路51と第2の通風路52の第1の通風路51側との間をエレメント53aが回転しながら移動するようになっている。   The air conditioner also includes a desiccant rotor 53 as a dehumidifying member for adsorbing moisture in the air flowing through the first ventilation path 51 and releasing it into the air flowing through the second ventilation path 52. ing. The desiccant rotor 53 is formed of a member in which an element 53a containing a hygroscopic agent such as silica gel or zeolite is formed in a disk shape, and the first ventilation path 51 and the second ventilation path 52 on the first ventilation path 51 side. Are provided. Further, the desiccant rotor 53 is configured such that the element 53 a is rotated about the radial center of the element 53 a by a motor (not shown), and the first ventilation path 51 and the first ventilation path 52. The element 53a moves while rotating between the side 51 and the side.

放熱器35は、デシカントロータ53の空気流通方向上流側に設けられ、流入ヘッダ35aが第2の通風路52の第1の通風路51側に配置され、流出ヘッダ35bがその反対側に配置されている。   The radiator 35 is provided on the upstream side in the air flow direction of the desiccant rotor 53, the inflow header 35a is disposed on the first ventilation path 51 side of the second ventilation path 52, and the outflow header 35b is disposed on the opposite side. ing.

各放熱器用送風機36は、第2の通風路52の流入ヘッダ35a側と流出ヘッダ35b側に並べて配置され、それぞれ屋外から第2の通風路52に放熱器35を流通する冷媒と熱交換する空気を流入させて屋外に排出するようになっている。   Each radiator blower 36 is arranged side by side on the inflow header 35 a side and the outflow header 35 b side of the second ventilation path 52, and air exchanges heat with the refrigerant flowing through the radiator 35 from the outside to the second ventilation path 52. Inflow and discharge to the outdoors.

圧縮機37は、第2の通風路52の流出ヘッダ35b側に設けられている。また、圧縮機37には、銅管、ステンレス管等の配管を介して放熱器35、膨張弁54及び冷却器23に順次接続され、冷媒循環回路が構成されている。冷媒循環回路を循環する冷媒としては、高圧側が超臨界状態となる二酸化炭素が用いられる。   The compressor 37 is provided on the outflow header 35 b side of the second ventilation path 52. Further, the compressor 37 is sequentially connected to the radiator 35, the expansion valve 54, and the cooler 23 via a pipe such as a copper pipe or a stainless steel pipe to constitute a refrigerant circulation circuit. As the refrigerant circulating in the refrigerant circuit, carbon dioxide whose high pressure side is in a supercritical state is used.

また、第2の通風路52の放熱器35の空気流通方向下流側は、仕切部材40によってデシカントロータ53側と圧縮機37側に仕切られており、放熱器35の流入ヘッダ35a側を通過した空気をデシカントロータ53側に流通させ、放熱器35の流出ヘッダ35b側を通過した空気を圧縮機37側に流通させるようになっている。また、仕切部材40は、放熱器35の流入ヘッダ35a側から放熱器35の冷媒流通方向寸法の三分の一〜二分の一の位置を仕切るようになっている。   Further, the downstream side in the air flow direction of the radiator 35 in the second ventilation path 52 is partitioned by the partition member 40 into the desiccant rotor 53 side and the compressor 37 side, and has passed through the inflow header 35 a side of the radiator 35. Air is circulated to the desiccant rotor 53 side, and air that has passed through the outflow header 35b side of the radiator 35 is circulated to the compressor 37 side. Moreover, the partition member 40 partitions the position of one third to one half of the refrigerant flow direction dimension of the radiator 35 from the inflow header 35a side of the radiator 35.

以上のように構成された冷却装置において、圧縮機37から吐出された冷媒は、放熱器35を流通することにより放熱し、膨張弁54を介して冷却器23に流通することにより吸熱して圧縮機37に吸入される。   In the cooling device configured as described above, the refrigerant discharged from the compressor 37 dissipates heat by flowing through the radiator 35 and absorbs heat and compresses by flowing through the expansion valve 54 to the cooler 23. Inhaled into machine 37.

冷却器用送風機24によって第1の通風路51に吸入された空調空間の空気(RA)は、デシカントロータ53のエレメント53aに接触することにより除湿され、冷却器23において吸熱する冷媒と熱交換することにより冷却された後に空調空間に供給され(SA)、空調空間の除湿及び冷房が行われる。   The air (RA) in the air-conditioned space sucked into the first ventilation path 51 by the cooler blower 24 is dehumidified by contacting the element 53a of the desiccant rotor 53, and exchanges heat with the refrigerant that absorbs heat in the cooler 23. After being cooled, the air-conditioned space is supplied (SA), and the air-conditioned space is dehumidified and cooled.

各放熱器用送風機36によって第2の通風路52に流入した屋外の空気(OA)は、放熱器35において放熱する冷媒と熱交換することにより加熱された後に仕切部材40によって圧縮機37側とデシカントロータ53側とに分けられて流通する。仕切部材40のデシカントロータ53側を流通する高温の空気は、デシカントロータ53と接触することによりエレメント53aが吸着している水分を放出させた後、第2の通風路52から屋外に排出される(EA)。仕切部材40の圧縮機37側を流通する仕切部材40のデシカントロータ53側の空気の温度と比較して低温となる空気は、圧縮機37を冷却した後、第2の通風路52から屋外に排出される(EA)。   The outdoor air (OA) that has flowed into the second ventilation path 52 by each radiator blower 36 is heated by exchanging heat with the refrigerant that dissipates heat in the radiator 35, and then separated from the compressor 37 by the partition member 40. Divided into the rotor 53 side for distribution. The high-temperature air flowing through the desiccant rotor 53 side of the partition member 40 is discharged to the outside from the second ventilation path 52 after the moisture adsorbed by the element 53a is released by contacting the desiccant rotor 53. (EA). The air having a lower temperature than the temperature of the air on the desiccant rotor 53 side of the partition member 40 that circulates on the compressor 37 side of the partition member 40 cools the compressor 37 and then goes outside from the second ventilation path 52. It is discharged (EA).

これにより、デシカントロータ53には、仕切部材40のデシカントロータ53側を流通する高温の空気が接触するため、エレメント53aが吸着した水分を効率的に放出させることが可能となる。また、圧縮機37には、仕切部材40の圧縮機37側を流通する低温の空気が接触するため、圧縮機37の冷却を効率的に行うことが可能となる。   Thereby, since the high temperature air which distribute | circulates the desiccant rotor 53 side of the partition member 40 contacts the desiccant rotor 53, it becomes possible to discharge | release the water | moisture content which the element 53a adsorb | sucked efficiently. Moreover, since the low temperature air which distribute | circulates the compressor 37 side of the partition member 40 contacts the compressor 37, it becomes possible to cool the compressor 37 efficiently.

このように、本実施形態の冷却装置によれば、各熱交換チューブ35cの冷媒流通方向上流側を流通する冷媒と熱交換した空気をデシカントロータ53に案内するようにしたので、放熱器35に流入直後の冷媒と熱交換して高温となる空気をエレメント53aに接触させることができ、エレメント53aが吸着した水分を効率的に放出させることが可能となる。   As described above, according to the cooling device of the present embodiment, the heat exchanged with the refrigerant circulating in the refrigerant circulation direction upstream of each heat exchange tube 35c is guided to the desiccant rotor 53. Air that becomes high temperature by heat exchange with the refrigerant immediately after inflow can be brought into contact with the element 53a, and the moisture adsorbed by the element 53a can be efficiently released.

また、各熱交換チューブ35cの冷媒流通方向上流側以外を流通する冷媒と熱交換した空気を圧縮機37に案内するようにしたので、放熱器35に流入直後の冷媒と熱交換して高温となる空気以外の比較的低温の空気を圧縮機37に接触させることができ、圧縮機37の冷却効果を向上させることが可能となる。   In addition, since air that has exchanged heat with the refrigerant that circulates other than the upstream side in the refrigerant distribution direction of each heat exchange tube 35c is guided to the compressor 37, heat exchange with the refrigerant immediately after flowing into the radiator 35 causes the Relatively low-temperature air other than the air to be made can be brought into contact with the compressor 37, and the cooling effect of the compressor 37 can be improved.

また、放熱器35の空気流通方向下流側の熱交換チューブ35cの冷媒流通方向上流側にデシカントロータ53を配置するとともに、放熱器35の空気流通方向下流側の熱交換チューブ35cの冷媒流通方向上流側以外に圧縮機37を配置し、放熱器35の空気流通方向下流側をデシカントロータ53側と圧縮機37側とを仕切る仕切部材40を備えたので、簡単な構成によって放熱器35に流入直後の冷媒と熱交換して高温となる空気をデシカントロータ53側に案内可能となるとともに、放熱器35に流入直後の冷媒と熱交換して高温となる空気以外の比較的低温の空気を圧縮機37側に案内可能となり、製造コストの低減を図ることが可能となる。   In addition, a desiccant rotor 53 is disposed upstream of the heat exchange tube 35c on the downstream side in the air flow direction of the radiator 35 in the refrigerant flow direction, and upstream of the heat exchange tube 35c on the downstream side in the air flow direction of the radiator 35. Since the compressor 37 is disposed on the side other than the side and the partition member 40 is provided to partition the desiccant rotor 53 side and the compressor 37 side on the downstream side in the air flow direction of the radiator 35, immediately after flowing into the radiator 35 with a simple configuration It becomes possible to guide the air that becomes high temperature by exchanging heat with the refrigerant to the desiccant rotor 53 side, and relatively low-temperature air other than the air that becomes high temperature by exchanging heat with the refrigerant just after flowing into the radiator 35 is compressed by the compressor. It becomes possible to guide to the 37 side, and it becomes possible to reduce the manufacturing cost.

また、仕切部材40のデシカントロータ53側の空間及び仕切部材40の圧縮機37側の空間にそれぞれ空気を流通させることが可能な一対の放熱器用送風機36を備えたので、放熱器35において冷媒を効率的に放熱させるとともに、各放熱器用送風機36によって仕切部材40のデシカントロータ53側の空間及び仕切部材40の圧縮機37側の空間にそれぞれ空気を流通させることができ、デシカントロータ53の再生及び圧縮機37の冷却に必要な流量の空気をそれぞれ過不足なく流通させることが可能となる。   In addition, since a pair of radiator blowers 36 capable of circulating air are provided in the space on the desiccant rotor 53 side of the partition member 40 and the space on the compressor 37 side of the partition member 40, the refrigerant is supplied to the radiator 35. In addition to efficiently dissipating heat, each radiator blower 36 can distribute air to the space on the side of the desiccant rotor 53 of the partition member 40 and the space on the side of the compressor 37 of the partition member 40, It becomes possible to circulate air at a flow rate necessary for cooling the compressor 37 without excess or deficiency.

尚、前記第1及び第2の実施形態では、放熱器35を、流入ヘッダ35a及び流出ヘッダ35bと、両端側が各ヘッダ35a,35bに接続された複数の熱交換チューブ35cと、各熱交換チューブ35cの間に設けられた放熱フィン35dとから構成したものを示したが、例えば図7及び図8に示すように、冷媒と熱交換する空気の流通方向に並べて設けられた複数の熱交換ユニット61を有し、空気流通方向下流側に位置する熱交換ユニット61から空気流通方向上流側に位置する熱交換ユニット61に向かって冷媒を流通させる対向流型の熱交換器を放熱器60として用いてもよい。   In the first and second embodiments, the radiator 35 includes an inflow header 35a and an outflow header 35b, a plurality of heat exchange tubes 35c whose both ends are connected to the headers 35a and 35b, and each heat exchange tube. Although the thing comprised from the radiation fin 35d provided between 35c was shown, as shown, for example in FIG.7 and FIG.8, the several heat exchange unit provided side by side in the distribution direction of the air which heat-exchanges with a refrigerant | coolant The counterflow type heat exchanger which has 61 and distribute | circulates a refrigerant | coolant toward the heat exchange unit 61 located in the air circulation direction upstream from the heat exchange unit 61 located in the air circulation direction downstream is used as the heat radiator 60. May be.

この熱交換ユニット61は、互いに間隔をおいて設けられた一対のヘッダ61aと、両端側が各ヘッダ61aに接続された複数の熱交換チューブ61bと、各熱交換チューブ61bの間に設けられた放熱フィン61cとからなる。   The heat exchange unit 61 includes a pair of headers 61a provided at a distance from each other, a plurality of heat exchange tubes 61b whose opposite ends are connected to the headers 61a, and heat dissipation provided between the heat exchange tubes 61b. It consists of fins 61c.

この放熱器60は、空気流通方向の最下流側に位置する熱交換ユニット61の一方のヘッダ61aに冷媒流入口61dが設けられ、空気流通方向の最上流側に位置する熱交換ユニット61の一方のヘッダ61aに冷媒流出口61eが設けられている。また、各熱交換ユニット61は、空気流通方向下流側に位置する熱交換ユニット61の冷媒流出側のヘッダ61aと隣り合う空気流通方向上流側に位置する熱交換ユニット61の冷媒流入側のヘッダ61aが連結管61fによって連結され、下流側に位置する熱交換ユニット61から上流側に位置する熱交換ユニット61に向かって冷媒が流通するようになっている。   This radiator 60 is provided with a refrigerant inlet 61d in one header 61a of the heat exchange unit 61 located on the most downstream side in the air circulation direction, and one of the heat exchange units 61 located on the most upstream side in the air circulation direction. The header 61a is provided with a refrigerant outlet 61e. In addition, each heat exchange unit 61 includes a header 61a on the refrigerant inflow side of the heat exchange unit 61 located on the upstream side in the air circulation direction adjacent to the header 61a on the refrigerant outflow side of the heat exchange unit 61 located on the downstream side in the air circulation direction. Are connected by a connecting pipe 61f so that the refrigerant flows from the heat exchange unit 61 located on the downstream side toward the heat exchange unit 61 located on the upstream side.

以上のように構成された放熱器60において、最下流側に位置する熱交換ユニット61の各熱交換チューブ61bの冷媒流通方向上流側を流通する冷媒と熱交換した空気を蒸発部材39またはデシカントロータ53に案内することにより、放熱器60に流入直後の冷媒と熱交換して高温となる空気を有効に利用することが可能となる。   In the heat radiator 60 configured as described above, the air exchanged with the refrigerant circulating in the refrigerant flow direction upstream side of each heat exchange tube 61b of the heat exchange unit 61 located on the most downstream side is the evaporating member 39 or the desiccant rotor. By guiding to 53, it becomes possible to effectively utilize the air that is heated by exchanging heat with the refrigerant immediately after flowing into the radiator 60.

この場合、放熱器60の空気流通方向最下流側に位置する熱交換ユニット61の圧縮機から吐出された冷媒が流入するヘッダ61a側から熱交換ユニット61の冷媒流通方向寸法の三分の一〜二分の一の位置の空気流通方向下流側を仕切部材40によって仕切ることにより、放熱器60を流通する冷媒と熱交換して高温となる空気のみを蒸発部材39側またはデシカントロータ53側に流通させることができ、蒸発部材39におけるドレン水の蒸発またはデシカントロータ53における吸着した水分の放出を効率的に行うことが可能となる。   In this case, one-third of the refrigerant flow direction dimension of the heat exchange unit 61 from the header 61a side into which the refrigerant discharged from the compressor of the heat exchange unit 61 located on the most downstream side in the air flow direction of the radiator 60 flows. By partitioning the downstream side in the air flow direction of the half position by the partition member 40, only the air that becomes high temperature by exchanging heat with the refrigerant flowing through the radiator 60 is allowed to flow to the evaporation member 39 side or the desiccant rotor 53 side. Accordingly, it is possible to efficiently evaporate the drain water in the evaporating member 39 or release the adsorbed water in the desiccant rotor 53.

また、前記第1及び第2の実施形態では、各放熱器用送風機36を放熱器35の空気流通方向下流側に配置するようにしたものを示したが、各放熱器用送風機36を放熱器35の空気流通方向上流側に配置するようにしてもよい。   In the first and second embodiments, the radiator fans 36 are arranged on the downstream side in the air flow direction of the radiator 35. However, the radiator fans 36 are disposed on the radiator 35. You may make it arrange | position to the air distribution direction upstream.

本発明の第1の実施形態を示すショーケースの全体斜視図1 is an overall perspective view of a showcase showing a first embodiment of the present invention. ショーケースの側面断面図Side cross-sectional view of showcase 機械室の平面図Plan view of machine room 放熱器の全体斜視図Overall perspective view of radiator 放熱器の流入ヘッダ側からの左右方向の位置と、その位置における冷媒と熱交換した後の空気の温度との関係を示す図The figure which shows the relationship between the position of the left-right direction from the inflow header side of a radiator, and the temperature of the air after heat-exchange with the refrigerant | coolant in the position 本発明の第2の実施形態を示す空気調和装置の概略構成図The schematic block diagram of the air conditioning apparatus which shows the 2nd Embodiment of this invention その他の例を示す放熱器の全体斜視図Overall perspective view of heat radiator showing other examples その他の例を示す放熱器の全体斜視図Overall perspective view of heat radiator showing other examples

符号の説明Explanation of symbols

30…機械室、35…放熱器、35a…流入ヘッダ、35b…流出ヘッダ、35c…熱交換チューブ、36…放熱器用送風機、37…圧縮機、39…蒸発部材、40…仕切部材、52…第2の通風路、53…デシカントロータ、60…放熱器、61…熱交換ユニット、61a…ヘッダ、61b…熱交換チューブ。   DESCRIPTION OF SYMBOLS 30 ... Machine room, 35 ... Radiator, 35a ... Inflow header, 35b ... Outflow header, 35c ... Heat exchange tube, 36 ... Radiator for radiator, 37 ... Compressor, 39 ... Evaporating member, 40 ... Partition member, 52nd 2 ventilation paths, 53 ... desiccant rotor, 60 ... radiator, 61 ... heat exchange unit, 61a ... header, 61b ... heat exchange tube.

Claims (14)

超臨界状態の冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、冷却対象の冷却によって生じるドレン水を蒸発させる蒸発部材とを備えた冷却装置において、
前記蒸発部材を、放熱器の冷媒流通方向上流側の空気流通方向下流側に配置した
ことを特徴とする冷却装置。
A radiator that dissipates the refrigerant in the supercritical state, a compressor that compresses the refrigerant that is circulated through the radiator, a blower that circulates air that exchanges heat with the refrigerant that circulates through the radiator, and drain water generated by cooling the cooling target In a cooling device comprising an evaporation member that evaporates
The cooling device, wherein the evaporating member is arranged on the downstream side in the air circulation direction on the upstream side in the refrigerant circulation direction of the radiator.
前記圧縮機を、放熱器の冷媒流通方向上流側以外の空気流通方向下流側に配置した
ことを特徴とする請求項1記載の冷却装置。
The cooling device according to claim 1, wherein the compressor is disposed on the downstream side in the air circulation direction other than the upstream side in the refrigerant circulation direction of the radiator.
前記放熱器の冷媒流通方向上流側の冷媒と熱交換した空気を蒸発部材に案内する空気案内手段を備えた
ことを特徴とする請求項1または2記載の冷却装置。
The cooling device according to claim 1 or 2, further comprising air guide means for guiding air exchanged with the refrigerant upstream of the radiator in the refrigerant flow direction to the evaporating member.
前記空気案内手段を、放熱器の空気流通方向下流側を蒸発部材側と圧縮機側とに仕切る仕切部材によって構成した
ことを特徴とする請求項3記載の冷却装置。
The cooling device according to claim 3, wherein the air guide means is configured by a partition member that partitions the downstream side in the air flow direction of the radiator into an evaporation member side and a compressor side.
前記送風機を、仕切部材の蒸発部材側及び圧縮機側の空間にそれぞれ空気を流通させる一対の送風機から構成した
ことを特徴とする請求項4記載の冷却装置。
The cooling device according to claim 4, wherein the blower is configured by a pair of blowers that allow air to circulate through spaces on the evaporation member side and the compressor side of the partition member.
前記仕切部材を、放熱器の冷媒流通方向上流側から放熱器の外形寸法の三分の一から二分の一の位置の空気流通方向下流側を仕切るように設けた
ことを特徴とする請求項4または5記載の冷却装置。
5. The partition member is provided so as to partition the downstream side in the air circulation direction at a position that is one third to one half of the external dimension of the radiator from the upstream side in the refrigerant circulation direction of the radiator. Or the cooling device of 5.
前記放熱器を、空気と熱交換する冷媒を流通させる複数の熱交換チューブと、各熱交換チューブの冷媒流通方向上流側の端部が接続され、冷媒が流入する上流側ヘッダと、各熱交換チューブの冷媒流通方向下流側の端部が接続され、各熱交換チューブにおいて空気と熱交換した冷媒が流入する下流側ヘッダとからなる熱交換ユニットを空気流通方向に複数配置し、圧縮機から吐出された冷媒が空気流通方向の最下流側の熱交換ユニットから順次隣り合う空気流通方向上流側の熱交換ユニットに流通するように各熱交換ユニットを接続することにより構成した
ことを特徴とする請求項1乃至6の何れか一項に記載の冷却装置。
A plurality of heat exchange tubes that circulate a refrigerant that exchanges heat with air through the radiator, an upstream header into which the refrigerant flows in an upstream side of each heat exchange tube, and a heat exchanger tube. A plurality of heat exchange units are arranged in the air flow direction and connected to the downstream end of the tube in the refrigerant flow direction, and each of the heat exchange tubes is composed of a downstream header into which the refrigerant heat-exchanged with air flows and discharged from the compressor. Each of the heat exchange units is connected so that the refrigerated refrigerant flows from the heat exchange unit at the most downstream side in the air flow direction to the heat exchange unit at the upstream side in the adjacent air flow direction. Item 7. The cooling device according to any one of Items 1 to 6.
超臨界状態の冷媒を放熱させる放熱器と、放熱器に流通させる冷媒を圧縮する圧縮機と、放熱器を流通する冷媒と熱交換する空気を流通させる送風機と、所定空間内に供給する空気中の水分を吸着し、吸着した水分を放熱器によって加熱された空気によって放出させる除湿部材とを備えた冷却装置において、
前記除湿部材を、放熱器の冷媒流通方向上流側の空気流通方向下流側に配置した
ことを特徴とする冷却装置。
A radiator that dissipates heat in the supercritical state, a compressor that compresses the refrigerant that circulates in the radiator, a blower that circulates air that exchanges heat with the refrigerant that circulates in the radiator, and the air that is supplied into the predetermined space In a cooling device comprising a dehumidifying member that adsorbs moisture and releases the adsorbed moisture by air heated by a radiator,
The said dehumidification member has been arrange | positioned in the air distribution direction downstream of the refrigerant | coolant distribution direction upstream of a heat radiator. The cooling device characterized by the above-mentioned.
前記圧縮機を、放熱器の冷媒流通方向上流側以外の空気流通方向下流側に配置した
ことを特徴とする請求項8記載の冷却装置。
The cooling device according to claim 8, wherein the compressor is arranged on the downstream side in the air circulation direction other than the upstream side in the refrigerant circulation direction of the radiator.
前記放熱器の冷媒流通方向上流側の冷媒と熱交換した空気を除湿部材に案内する空気案内手段を備えた
ことを特徴とする請求項8または9記載の冷却装置。
The cooling device according to claim 8 or 9, further comprising air guide means for guiding the air heat-exchanged with the refrigerant on the upstream side in the refrigerant flow direction of the radiator to the dehumidifying member.
前記空気案内手段を、放熱器の空気流通方向下流側を除湿部材と圧縮機側とに仕切る仕切部材によって構成した
ことを特徴とする請求項10記載の冷却装置。
The cooling device according to claim 10, wherein the air guiding means is configured by a partition member that partitions the downstream side in the air flow direction of the radiator into a dehumidifying member and a compressor side.
前記送風機を、仕切部材の除湿部材側及び圧縮機側の空間にそれぞれ空気を流通させる一対の送風機から構成した
ことを特徴とする請求項11記載の冷却装置。
The cooling device according to claim 11, wherein the blower is configured by a pair of blowers that allow air to circulate through spaces on the dehumidifying member side and the compressor side of the partition member.
前記仕切部材を、放熱器の冷媒流通方向上流側から放熱器の外形寸法の三分の一から二分の一の位置の空気流通方向下流側を仕切るように設けた
ことを特徴とする請求項11または12記載の冷却装置。
The partition member is provided so as to partition from the upstream side in the refrigerant flow direction of the radiator to the downstream side in the air flow direction at a position one third to one half of the external dimension of the radiator. Or the cooling device of 12.
前記放熱器を、空気と熱交換する冷媒を流通させる複数の熱交換チューブと、各熱交換チューブの冷媒流通方向上流側の端部が接続され、冷媒が流入する上流側ヘッダと、各熱交換チューブの冷媒流通方向下流側の端部が接続され、各熱交換チューブにおいて空気と熱交換した冷媒が流入する下流側ヘッダとからなる熱交換ユニットを空気流通方向に複数配置し、圧縮機から吐出された冷媒が空気流通方向の最下流側の熱交換ユニットから順次隣り合う空気流通方向上流側の熱交換ユニットに流通するように各熱交換ユニットを接続することにより構成した
ことを特徴とする請求項8乃至13の何れか一項に記載の冷却装置。
A plurality of heat exchange tubes that circulate a refrigerant that exchanges heat with air through the radiator, an upstream header into which the refrigerant flows in an upstream side of each heat exchange tube, and a heat exchanger tube. A plurality of heat exchange units are arranged in the air flow direction and connected to the downstream end of the tube in the refrigerant flow direction, and each of the heat exchange tubes is composed of a downstream header into which the refrigerant that has exchanged heat with the air flows and discharged from the compressor. Each of the heat exchange units is connected so that the refrigerated refrigerant flows from the heat exchange unit at the most downstream side in the air flow direction to the heat exchange unit at the upstream side in the adjacent air flow direction. Item 14. The cooling device according to any one of Items 8 to 13.
JP2006147803A 2006-05-29 2006-05-29 Cooling system Expired - Fee Related JP4901303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147803A JP4901303B2 (en) 2006-05-29 2006-05-29 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147803A JP4901303B2 (en) 2006-05-29 2006-05-29 Cooling system

Publications (2)

Publication Number Publication Date
JP2007315720A true JP2007315720A (en) 2007-12-06
JP4901303B2 JP4901303B2 (en) 2012-03-21

Family

ID=38849733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147803A Expired - Fee Related JP4901303B2 (en) 2006-05-29 2006-05-29 Cooling system

Country Status (1)

Country Link
JP (1) JP4901303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070465A (en) * 2017-10-06 2019-05-09 東芝ライフスタイル株式会社 refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122077A (en) * 1980-02-29 1981-09-25 Toshiba Corp Cleaning device of electronic copier
JP2001174191A (en) * 1999-12-20 2001-06-29 Zexel Valeo Climate Control Corp Heat exchanger
JP2003097883A (en) * 2001-07-19 2003-04-03 Fujitsu General Ltd Refrigerator
JP2003130391A (en) * 2001-10-18 2003-05-08 Sanyo Electric Co Ltd Air conditioner
JP2004085105A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2004270997A (en) * 2003-03-06 2004-09-30 Sanyo Electric Co Ltd Drain water evaporating device
JP2005074090A (en) * 2003-09-02 2005-03-24 Sanden Corp Showcase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122077A (en) * 1980-02-29 1981-09-25 Toshiba Corp Cleaning device of electronic copier
JP2001174191A (en) * 1999-12-20 2001-06-29 Zexel Valeo Climate Control Corp Heat exchanger
JP2003097883A (en) * 2001-07-19 2003-04-03 Fujitsu General Ltd Refrigerator
JP2003130391A (en) * 2001-10-18 2003-05-08 Sanyo Electric Co Ltd Air conditioner
JP2004085105A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2004270997A (en) * 2003-03-06 2004-09-30 Sanyo Electric Co Ltd Drain water evaporating device
JP2005074090A (en) * 2003-09-02 2005-03-24 Sanden Corp Showcase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070465A (en) * 2017-10-06 2019-05-09 東芝ライフスタイル株式会社 refrigerator
JP7117093B2 (en) 2017-10-06 2022-08-12 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP4901303B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP3864982B2 (en) Air conditioning system
JP4169747B2 (en) Air conditioner
JP5037838B2 (en) Air conditioner
JP2009275955A (en) Desiccant air-conditioning device
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP2015064171A (en) Dehumidification and ventilation device
JP2006343088A (en) Air conditioner
JP5575029B2 (en) Desiccant ventilation fan
JP4654073B2 (en) Refrigeration air conditioning system
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP4296187B2 (en) Desiccant air conditioner
WO2014076891A1 (en) Environmental testing device
JP4901303B2 (en) Cooling system
JP2008170137A (en) Dehumidifying air conditioner
JP3879762B2 (en) Humidity control device
TW202103774A (en) Dehumidifier achieving desirable results in both dehumidification amount of an evaporator and heat dissipation efficiency of a condenser
JP2006057883A (en) Refrigerating/air-conditioning system
JP4317498B2 (en) Air conditioner
JP2005326121A (en) Air conditioner
JP5811729B2 (en) Air conditioning system
JP2000171057A (en) Dehumidification air-conditioning system
JP2006038288A (en) Refrigeration air conditioning system
JP2008309427A (en) Refrigerator
JP5311734B2 (en) Air conditioner
JP2000171058A (en) Dehumidifying air conditioner and air conditioner system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees