WO2014076891A1 - Environmental testing device - Google Patents

Environmental testing device Download PDF

Info

Publication number
WO2014076891A1
WO2014076891A1 PCT/JP2013/006311 JP2013006311W WO2014076891A1 WO 2014076891 A1 WO2014076891 A1 WO 2014076891A1 JP 2013006311 W JP2013006311 W JP 2013006311W WO 2014076891 A1 WO2014076891 A1 WO 2014076891A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
storage tank
cooling
heat source
main
Prior art date
Application number
PCT/JP2013/006311
Other languages
French (fr)
Japanese (ja)
Inventor
小林 誠
Original Assignee
ナガノサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガノサイエンス株式会社 filed Critical ナガノサイエンス株式会社
Publication of WO2014076891A1 publication Critical patent/WO2014076891A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to an environmental test apparatus.
  • a constant temperature and humidity chamber (chamber) is disclosed, for example, as disclosed in Patent Document 1 in order to test the performance of a product under conditions of a predetermined temperature and a predetermined humidity.
  • an environmental test apparatus including The environmental test equipment is equipped with a refrigerator, a heater, and a humidifier.
  • the test chamber of the thermo-hygrostat surrounded by a heat insulating wall is cooled and dehumidified by the refrigerator, and heated by the heater and humidifier. It is warmed and humidified to maintain the target temperature and humidity.
  • the present invention has been made in view of such a point, and an object thereof is to stably control the temperature and humidity of the test room even if the refrigeration apparatus breaks down.
  • the first invention is directed to an environmental test apparatus including a constant temperature and humidity chamber having a test chamber and a refrigeration apparatus for cooling and dehumidifying the test chamber.
  • the refrigeration apparatus includes a main heat source unit, a preliminary heat source unit for the main heat source unit, a heat storage tank in which a heat medium is stored, and the heat medium is cooled by one of the two heat source units, and the heat storage unit.
  • the tank is supplied with a heat medium, and includes a cooling heat exchanger that cools and dehumidifies the air in the test chamber by the heat medium.
  • the heat medium in the heat storage tank is cooled and stored by the main heat source machine.
  • the heat medium in the heat storage tank and the air in the test chamber exchange heat, and the air is cooled and dehumidified.
  • the standby heat source machine is operated. Even at the time of switching from the main heat source unit to the standby heat source unit, a low-temperature heat medium is supplied from the heat storage tank to the cooling heat exchanger. Therefore, sufficient cooling capacity and dehumidifying capacity are exhibited in the cooling heat exchanger.
  • each of the heat source units includes a refrigerant circuit that performs a refrigeration cycle by connecting a compression mechanism, a condenser, an expansion mechanism, and an evaporator.
  • the heat medium in the heat storage tank is cooled.
  • the refrigerant compressed by the compression mechanism is condensed by the condenser, decompressed by the expansion mechanism, and then evaporated by exchanging heat with the heat medium in the heat storage tank. Thereby, the heat medium of a thermal storage tank is cooled.
  • the two heat source units include a thermoelectric element that cools the heat medium of the heat storage tank.
  • the heat medium in the heat storage tank absorbs heat by the heat absorption part (cooling part) of the thermoelectric element. Thereby, the heat medium of a thermal storage tank is cooled. In the thermoelectric element, the heat absorbed from the heat medium is radiated from the heat radiating part (heating part).
  • each of the heat source devices includes a plurality of the thermoelectric elements, and the thermoelectric elements sequentially perform a cooling operation for each predetermined time.
  • thermoelectric elements are sequentially operated for a predetermined time. For example, as shown in FIG. 4, only one thermoelectric element is activated from among the plurality of thermoelectric elements. And when predetermined time passes, while the thermoelectric element which was drive
  • the main heat source device for cooling the heat medium and the spare heat source device are provided, even if the main heat source device stops due to a failure or the like, the heat medium is cooled by the spare heat source device. can do. Furthermore, according to the present invention, since the heat storage tank for storing the heat medium cooled by the main heat source apparatus is provided, the low-temperature heat medium in the heat storage tank is cooled even when switching from the main heat source apparatus to the standby heat source apparatus. It can be supplied to a heat exchanger. Therefore, sufficient cooling capacity and dehumidifying capacity can be exhibited in the cooling heat exchanger. As a result, the temperature and humidity in the test chamber can be stably controlled.
  • the main heat source device and the preliminary heat source device cool the heat medium in the heat storage tank by the refrigerant circuit that performs the refrigeration cycle, and therefore, the cooling capacity for the heat medium can be sufficiently obtained. Therefore, cold heat can be sufficiently stored in the heat storage tank. As a result, the temperature and humidity in the test chamber can be controlled more stably even when switching from the main heat source unit to the standby heat source unit.
  • the main heat source device and the standby heat source device cool the heat medium in the heat storage tank by the thermoelectric element, so that the configuration of both the heat source devices and the refrigeration apparatus can be made compact.
  • the plurality of thermoelectric elements are sequentially cooled (operated) for a predetermined time in order, so that the life per thermoelectric element can be extended. Thereby, the temperature and humidity control of the test chamber can be stabilized over a long period of time.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an environmental test apparatus according to an embodiment.
  • FIG. 2 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the first embodiment.
  • FIG. 3 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the second embodiment.
  • FIG. 4 is a time chart showing the operating state of the Peltier module.
  • Embodiment 1 A first embodiment of the present invention will be described.
  • the environmental test apparatus 10 according to the present embodiment is used for, for example, a stability test of pharmaceuticals or the like, and for that purpose, the temperature and humidity in the test chamber S of the constant temperature and humidity chamber 11 (chamber) are stable within a preset range. To maintain.
  • the constant temperature and humidity chamber 11 has a substantially rectangular parallelepiped shape, and a door 12 is attached from the upper end of the front surface (the left surface in FIG. 1) to the center portion so that the door 12 can be opened and closed.
  • a door 12 is attached from the upper end of the front surface (the left surface in FIG. 1) to the center portion so that the door 12 can be opened and closed.
  • an operation panel for setting a temperature and humidity that are control targets and a display for displaying setting values and the like are arranged in the vertical direction.
  • a lattice-like air outlet 13a is opened above the partition wall 13 on the back side (right side in FIG. 1) in the test chamber S, and conditioned air whose temperature and humidity are adjusted by the air conditioner 20 is supplied to the test chamber by the fan 70. S is supplied. After this conditioned air circulates in the test chamber S, it is circulated from the air suction port 13b below the partition wall 13 to the air conditioner 20 side.
  • the air blower outlet 13a is opened in the upper part of the division
  • the opening positions of the air outlet 13a and the air inlet 13b can be set as appropriate.
  • each shelf plate 14 In the test chamber S, two shelf plates 14 are arranged vertically and a sample is placed on each shelf plate 14.
  • the number of shelves 14 and the arrangement thereof are not limited to this form, and can be set as appropriate.
  • the air outlet 13a is provided with a temperature and humidity sensor (not shown) in the constant temperature and humidity chamber 11, and the temperature, relative humidity, and absolute humidity of the air blown from the air outlet 13a according to the measured value of the temperature and humidity sensor. Is measured.
  • the location of the temperature / humidity sensor is not limited to the vicinity of the air outlet 13a, but may be provided in the vicinity of the air inlet.
  • a measurement signal from the temperature / humidity sensor is transmitted to the controller 80 disposed in the lower part of the constant temperature and humidity chamber 11.
  • the controller 80 controls the air conditioner 20 according to the measured value of the temperature / humidity sensor so that the temperature and humidity in the test chamber S are set in advance.
  • the air conditioner 20 appropriately adjusts the temperature, humidity, flow rate, and the like of the conditioned air supplied into the test chamber S through the air outlet 13a according to the control signal output from the controller 80.
  • the air conditioner 20 includes a humidifier 30, a refrigerating device 40, a heating device 60, and a fan 70.
  • the humidifier 30 includes a heater 31 and a receiving tray 32 that stores water for humidification.
  • the heater 31 heats the water for humidification with a heating amount corresponding to the supplied electric energy.
  • the tray 32 is supplied with water from a water supply tank (not shown) provided outside the test chamber S. Then, the humidifier 30 performs an operation of evaporating the water stored in the tray 32 with the heater 31 and humidifying the air to the set humidity based on the control signal output from the controller 80. Thereby, the humidifier 30 humidifies the inside of the test room S with the humidification amount according to the supplied electric energy.
  • the refrigeration apparatus 40 performs an operation of cooling the circulated air to the dew point temperature calculated based on the set temperature and the set humidity based on the control signal output from the controller 80. As a result, the necessary amount of water at the set temperature and set humidity is ensured.
  • the configuration of the refrigeration apparatus 40 will be described in detail later.
  • the heating device 60 performs an operation of raising the air cooled by the refrigeration device 40 to a set temperature based on the control signal output from the controller 80. Thereby, the heating device 60 heats the inside of the test chamber S with a heating amount corresponding to the supplied power amount.
  • the fan 70 operates so as to circulate conditioned air conditioned by the humidifying device 30, the refrigeration device 40, and the heating device 60 into the test chamber S.
  • the air in the test chamber S is circulated by the fan 70, the humidifier 30, the refrigeration device 40, and the heating device 60 are operated as necessary, and the temperature and humidity in the test chamber S are detected by the temperature and humidity sensor.
  • the temperature and humidity in the test chamber S are stably maintained within a preset range.
  • the refrigeration apparatus 40 includes a main refrigerant circuit 41 a, a preliminary refrigerant circuit 41 b, a heat storage tank 50, and a heat medium circuit 51.
  • the main refrigerant circuit 41a constitutes a main heat source unit
  • the spare refrigerant circuit 41b constitutes a spare heat source unit of the main heat source unit
  • both refrigerant circuits 41a and 41b have the same circuit configuration.
  • compressors 42a, 42b compression mechanism
  • condensers 43a, 43b expansion valves 44a, 44b (expansion mechanism)
  • evaporators 45a, 45b are connected in order. Closed circuit.
  • Each refrigerant circuit 41a, 41b is configured to perform a vapor compression refrigeration cycle by circulating the refrigerant.
  • the heat storage tank 50 stores brine as a heat medium.
  • the heat storage tank 50 is connected to the evaporators 45a and 45b of the refrigerant circuits 41a and 41b, and the brine is cooled by the evaporators 45a and 45b. And the heat storage tank 50 stores the cold of brine.
  • the heat medium circuit 51 is provided with a cooling heat exchanger 54 in which brine circulates between the heat storage tank 50 and the circulation path 52.
  • the circulation path 52 is provided with a pump 53 for circulating the brine.
  • the cooling heat exchanger 54 is configured to exchange heat between the brine and the air in the test chamber S taken in by the fan 70. That is, in the cooling heat exchanger 54, the air in the test chamber S is cooled and dehumidified by heat exchange with the brine.
  • either the main refrigerant circuit 41a or the auxiliary refrigerant circuit 41b is operated. Further, the main refrigerant circuit 41a is operated with priority, and the auxiliary refrigerant circuit 41b is operated when the main refrigerant circuit 41a becomes inoperable due to a failure or the like.
  • each refrigerant circuit 41a, 41b when the compressors 42a, 42b are driven, the refrigerant is compressed by the compressors 42a, 42b and discharged.
  • the discharged refrigerant is condensed by exchanging heat with, for example, air in the condensers 43a and 43b.
  • the condensed refrigerant is decompressed to a predetermined pressure by the expansion valves 44a and 44b and then flows to the evaporators 45a and 45b.
  • the evaporators 45a and 45b the refrigerant evaporates by exchanging heat with the brine in the heat storage tank 50, and the brine is cooled.
  • the heat storage tank 50 the cold energy of the cooled brine is stored.
  • the brine circulates between the heat storage tank 50 and the cooling heat exchanger 54.
  • the cooling heat exchanger 54 the low-temperature brine supplied from the heat storage tank 50 exchanges heat with the air in the test chamber S. Thereby, the air of the test room S is cooled to the dew point temperature calculated based on the set temperature and the set humidity. Note that the heat-exchanged brine returns to the heat storage tank 50 again.
  • the auxiliary refrigerant circuit 41b is operated. At the time of switching from the main refrigerant circuit 41a to the spare refrigerant circuit 41b, brine is continuously supplied from the heat storage tank 50 to the cooling heat exchanger 54. Immediately after switching to the auxiliary refrigerant circuit 41b (that is, immediately after starting the auxiliary refrigerant circuit 41b), the cooling capacity in the evaporator 45b of the auxiliary refrigerant circuit 41b is not sufficient. Therefore, immediately after the start of the auxiliary refrigerant circuit 41b, the cooling capacity for the brine of the heat storage tank 50 is reduced.
  • the cold heat of the brine is sufficiently stored in the heat storage tank 50, it is possible to supply a sufficiently low-temperature brine to the cooling heat exchanger 54 even immediately after the standby refrigerant circuit 41b is activated. Thereby, the cooling capacity in the cooling heat exchanger 54 can be sufficiently maintained.
  • Embodiment 1- since the refrigeration apparatus 40 is provided with the main refrigerant circuit 41a for cooling the brine and the auxiliary refrigerant circuit 41b, even if the main refrigerant circuit 41a stops due to a failure or the like, the auxiliary refrigerant circuit 41b The brine can be cooled. Furthermore, since the heat storage tank 50 for storing the brine cooled by the main refrigerant circuit 41a is provided, a sufficiently low-temperature brine in the heat storage tank 50 is provided even when switching from the main refrigerant circuit 41a to the auxiliary refrigerant circuit 41b. The cooling heat exchanger 54 can be supplied. Therefore, sufficient cooling capacity and dehumidifying capacity can be maintained in the cooling heat exchanger 54. As a result, the temperature and humidity in the test chamber S can be stably controlled.
  • the refrigeration apparatus 40 is inflated, and the spare circuit (preliminary refrigerant circuit 41b) is provided only for the refrigerant circuit on the primary side, so that the spare apparatus for the entire refrigeration apparatus
  • the refrigeration apparatus 40 can be made more compact than the case where the refrigeration apparatus is provided.
  • Embodiment 2 A second embodiment of the present invention will be described.
  • the present embodiment is obtained by changing the configuration of the refrigeration apparatus 40 in the first embodiment.
  • the refrigeration apparatus 40 of the present embodiment includes a main Peltier module 46a and a spare Peltier instead of the first embodiment provided with the main refrigerant circuit 41a and the spare refrigerant circuit 41b.
  • a module 46b is provided.
  • the main Peltier module 46a constitutes a main heat source machine
  • the spare Peltier module 46b constitutes a spare heat source machine.
  • the refrigeration apparatus 40 includes a plurality of main Peltier modules 46a and spare Peltier modules 46b (three in this embodiment as an example).
  • Each Peltier module 46 a, 46 b has Peltier elements 47 a, 47 b (thermoelectric elements) and aluminum jackets 48 a, 48 b, and is attached to the outer wall surface of the heat storage tank 50.
  • a heat absorbing part (cooling part) and a heat radiating part (heating part) are formed.
  • the jackets 48a and 48b are attached to the outer wall surface of the heat storage tank 50 so that the brine in the heat storage tank 50 circulates inside.
  • the brine flowing through the jackets 48a, 48b is absorbed by the heat absorbing portions of the Peltier elements 47a, 47b and cooled. Thereby, the brine of the heat storage tank 50 is cooled.
  • one of the main Peltier module 46a and the spare Peltier module 46b is operated. Also, the main Peltier module 46a is operated with priority, and the spare Peltier module 46b is operated when the main Peltier module 46a becomes inoperable due to a failure or the like.
  • a sufficiently low-temperature brine in the heat storage tank 50 can be supplied to the cooling heat exchanger 54. Therefore, sufficient cooling capacity and dehumidifying capacity can be maintained in the cooling heat exchanger 54. As a result, the temperature and humidity in the test chamber S can be stably controlled.
  • the refrigeration apparatus 40 can be made compact.
  • each main Peltier module 46a sequentially performs a cooling operation for a predetermined time ta.
  • a mode in which all three main Peltier modules 46a are operated simultaneously but also a mode in which each main Peltier module 46a sequentially performs a cooling operation for a predetermined time ta.
  • the first main Peltier module 46a set in advance among the three main Peltier modules 46a is operated.
  • the first main Peltier module 46a that has been operating is stopped, while another second main Peltier module 46a is operated.
  • the second main Peltier module 46a that has been operating is stopped, while another third main Peltier module 46a is operated.
  • the third main Peltier module 46a that has been operating stops, while the first first main Peltier module 46a is operated again. In this way, each main Peltier module 46a is operated in turn for a predetermined time ta. By operating in this way, the lifetime per Peltier element 47a can be extended. Thereby, the temperature and humidity control of the test chamber S can be stabilized over a long period of time.
  • the spare Peltier module 46b can be operated similarly.
  • the size of the test chamber S is not particularly limited. That is, it may be configured to include a constant temperature and humidity chamber having the test chamber S as a room of a size that allows an operator to enter and exit.
  • the present invention is useful for the environmental test apparatus 10 including a refrigeration apparatus for cooling and dehumidifying the test chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The cooling device (40) of an environmental testing device is equipped with: a principal cooling circuit (41a) and an auxiliary cooling circuit (41b); a heat storage tank (50) for storing brine and cooling the brine using one of the evaporators (45a, 45b) in the two coolant circuits (41a, 41b); and a cooling-heat exchanger (54) for cooling and dehumidifying the air in a testing chamber by using the brine, and to which the brine from the heat storage tank (50) is supplied.

Description

環境試験装置Environmental test equipment
  本発明は、環境試験装置に関するものである。 The present invention relates to an environmental test apparatus.
  従来より、医薬品等の安定性試験では、所定の温度および所定の湿度の条件下における製品の性能を試験するために、例えば特許文献1に開示されているように、恒温恒湿槽(チャンバ)を備えた環境試験装置が知られている。環境試験装置では、冷凍機や加熱機、加湿機が設けられており、断熱壁で囲まれた恒温恒湿槽の試験室内が、冷凍機によって冷却除湿されると共に、加熱機および加湿機によって加温加湿されて、目標温湿度に維持される。 Conventionally, in a stability test for pharmaceuticals and the like, a constant temperature and humidity chamber (chamber) is disclosed, for example, as disclosed in Patent Document 1 in order to test the performance of a product under conditions of a predetermined temperature and a predetermined humidity. There is known an environmental test apparatus including The environmental test equipment is equipped with a refrigerator, a heater, and a humidifier. The test chamber of the thermo-hygrostat surrounded by a heat insulating wall is cooled and dehumidified by the refrigerator, and heated by the heater and humidifier. It is warmed and humidified to maintain the target temperature and humidity.
特開平7-140061号公報JP 7-140061 A
  ところで、上述したような環境試験装置では、冷凍機による冷却除湿作用が温湿度制御に大きく寄与しているため、冷凍機が故障すると温湿度制御を行うことができなくなり、装置を一旦停止しなければならない。そこで、予備の冷凍機を設けて、主の冷凍機が故障した際には予備の冷凍機を運転することが考えられる。しかしながら、この場合、主の冷凍機から予備の冷凍機への切り換え時に冷却除湿作用が低下してしまうため、試験室内の温湿度が大幅に乱れるという問題があった。 By the way, in the environmental test apparatus as described above, since the cooling and dehumidifying action by the refrigerator greatly contributes to the temperature and humidity control, if the refrigerator breaks down, the temperature and humidity control cannot be performed, and the apparatus must be temporarily stopped. I must. Therefore, it is conceivable to provide a spare refrigerator and operate the spare refrigerator when the main refrigerator fails. However, in this case, there is a problem that the temperature and humidity in the test chamber is greatly disturbed because the cooling and dehumidifying action is reduced when switching from the main refrigerator to the spare refrigerator.
  本発明は、かかる点に鑑みてなされたものであり、その目的は、冷凍装置が故障しても試験室の温湿度を安定して制御することにある。 The present invention has been made in view of such a point, and an object thereof is to stably control the temperature and humidity of the test room even if the refrigeration apparatus breaks down.
  第1の発明は、試験室を有する恒温恒湿槽と、前記試験室内を冷却および除湿する冷凍装置とを備えた環境試験装置を対象としている。そして、前記冷凍装置は、主熱源機と、該主熱源機の予備熱源機と、熱媒体が貯留され、該熱媒体が前記両熱源機の何れか一方によって冷却される蓄熱槽と、該蓄熱槽の熱媒体が供給され、該熱媒体によって前記試験室内の空気を冷却および除湿する冷却熱交換器とを備えている。 The first invention is directed to an environmental test apparatus including a constant temperature and humidity chamber having a test chamber and a refrigeration apparatus for cooling and dehumidifying the test chamber. The refrigeration apparatus includes a main heat source unit, a preliminary heat source unit for the main heat source unit, a heat storage tank in which a heat medium is stored, and the heat medium is cooled by one of the two heat source units, and the heat storage unit. The tank is supplied with a heat medium, and includes a cooling heat exchanger that cools and dehumidifies the air in the test chamber by the heat medium.
  第1の発明では、主熱源機によって蓄熱槽の熱媒体が冷却されて蓄熱される。そして、冷却熱交換器において蓄熱槽の熱媒体と試験室内の空気とが熱交換し、空気が冷却および除湿される。ここで、主熱源機が故障等によって停止すると、予備熱源機が運転される。この主熱源機から予備熱源機への切換時においても、蓄熱槽から低温の熱媒体が冷却熱交換器に供給される。したがって、冷却熱交換器で十分な冷却能力および除湿能力が発揮される。 In the first invention, the heat medium in the heat storage tank is cooled and stored by the main heat source machine. In the cooling heat exchanger, the heat medium in the heat storage tank and the air in the test chamber exchange heat, and the air is cooled and dehumidified. Here, when the main heat source machine stops due to a failure or the like, the standby heat source machine is operated. Even at the time of switching from the main heat source unit to the standby heat source unit, a low-temperature heat medium is supplied from the heat storage tank to the cooling heat exchanger. Therefore, sufficient cooling capacity and dehumidifying capacity are exhibited in the cooling heat exchanger.
  第2の発明は、前記第1の発明において、前記両熱源機が、圧縮機構と凝縮器と膨張機構と蒸発器とが接続されて冷凍サイクルを行う冷媒回路を有し、前記蒸発器で前記蓄熱槽の熱媒体を冷却するものである。 According to a second invention, in the first invention, each of the heat source units includes a refrigerant circuit that performs a refrigeration cycle by connecting a compression mechanism, a condenser, an expansion mechanism, and an evaporator. The heat medium in the heat storage tank is cooled.
  第2の発明では、冷媒回路において、圧縮機構で圧縮された冷媒が凝縮器で凝縮し、膨張機構で減圧された後、蒸発器で蓄熱槽の熱媒体と熱交換して蒸発する。これにより、蓄熱槽の熱媒体が冷却される。 In the second invention, in the refrigerant circuit, the refrigerant compressed by the compression mechanism is condensed by the condenser, decompressed by the expansion mechanism, and then evaporated by exchanging heat with the heat medium in the heat storage tank. Thereby, the heat medium of a thermal storage tank is cooled.
  第3の発明は、前記第1の発明において、前記両熱源機が、前記蓄熱槽の熱媒体を冷却する熱電素子を有しているものである。 According to a third aspect of the present invention, in the first aspect, the two heat source units include a thermoelectric element that cools the heat medium of the heat storage tank.
  第3の発明では、蓄熱槽の熱媒体が熱電素子の吸熱部(冷却部)によって吸熱される。これにより、蓄熱槽の熱媒体が冷却される。熱電素子では、熱媒体から吸熱した熱が放熱部(加熱部)から放熱される。 In the third invention, the heat medium in the heat storage tank absorbs heat by the heat absorption part (cooling part) of the thermoelectric element. Thereby, the heat medium of a thermal storage tank is cooled. In the thermoelectric element, the heat absorbed from the heat medium is radiated from the heat radiating part (heating part).
  第4の発明は、前記第3の発明において、前記両熱源機は、前記熱電素子を複数有し、前記熱電素子が順次所定時間ずつ冷却動作を行うように構成されているものである。 According to a fourth aspect of the present invention, in the third aspect of the present invention, each of the heat source devices includes a plurality of the thermoelectric elements, and the thermoelectric elements sequentially perform a cooling operation for each predetermined time.
  第4の発明では、熱電素子が順番に所定時間ずつ運転される。例えば図4に示すように、複数の熱電素子のうち1つの熱電素子のみが起動する。そして、所定時間が経過すると、運転していた熱電素子は停止する一方、別の熱電素子が起動する。この運転サイクルが複数の熱電素子において行われる。 In the fourth invention, the thermoelectric elements are sequentially operated for a predetermined time. For example, as shown in FIG. 4, only one thermoelectric element is activated from among the plurality of thermoelectric elements. And when predetermined time passes, while the thermoelectric element which was drive | operating will stop, another thermoelectric element will start. This operation cycle is performed in a plurality of thermoelectric elements.
  以上説明したように、本発明によれば、熱媒体を冷却する主熱源機とその予備熱源機を設けるようにしたため、主熱源機が故障等によって停止しても予備熱源機で熱媒体を冷却することができる。さらに本発明によれば、主熱源機によって冷却された熱媒体を貯留する蓄熱槽を設けるようにしたため、主熱源機から予備熱源機への切換時においても、蓄熱槽の低温の熱媒体を冷却熱交換器に供給することができる。したがって、冷却熱交換器において十分な冷却能力および除湿能力を発揮させることが可能である。その結果、試験室内の温湿度を安定して制御することができる。 As described above, according to the present invention, since the main heat source device for cooling the heat medium and the spare heat source device are provided, even if the main heat source device stops due to a failure or the like, the heat medium is cooled by the spare heat source device. can do. Furthermore, according to the present invention, since the heat storage tank for storing the heat medium cooled by the main heat source apparatus is provided, the low-temperature heat medium in the heat storage tank is cooled even when switching from the main heat source apparatus to the standby heat source apparatus. It can be supplied to a heat exchanger. Therefore, sufficient cooling capacity and dehumidifying capacity can be exhibited in the cooling heat exchanger. As a result, the temperature and humidity in the test chamber can be stably controlled.
  また、第2の発明によれば、主熱源機および予備熱源機が、冷凍サイクルを行う冷媒回路によって蓄熱槽の熱媒体を冷却するため、その熱媒体に対する冷却能力を十分に稼ぐことができる。そのため、蓄熱槽に冷熱を十分に蓄えることができる。その結果、主熱源機から予備熱源機への切換時においても、試験室内の温湿度を一層安定して制御することができる。 Further, according to the second invention, the main heat source device and the preliminary heat source device cool the heat medium in the heat storage tank by the refrigerant circuit that performs the refrigeration cycle, and therefore, the cooling capacity for the heat medium can be sufficiently obtained. Therefore, cold heat can be sufficiently stored in the heat storage tank. As a result, the temperature and humidity in the test chamber can be controlled more stably even when switching from the main heat source unit to the standby heat source unit.
  また、第3の発明によれば、主熱源機および予備熱源機が、熱電素子によって蓄熱槽の熱媒体を冷却するため、両熱源機ひいては冷凍装置の構成をコンパクトにすることができる。 Further, according to the third invention, the main heat source device and the standby heat source device cool the heat medium in the heat storage tank by the thermoelectric element, so that the configuration of both the heat source devices and the refrigeration apparatus can be made compact.
  また、第4の発明によれば、複数の熱電素子を順番に所定時間ずつ冷却動作させる(運転する)ようにしたので、熱電素子1つ当たりの寿命を延ばすことができる。これにより、試験室の温湿度制御を長期間に亘って安定化させることができる。 In addition, according to the fourth invention, the plurality of thermoelectric elements are sequentially cooled (operated) for a predetermined time in order, so that the life per thermoelectric element can be extended. Thereby, the temperature and humidity control of the test chamber can be stabilized over a long period of time.
図1は、実施形態に係る環境試験装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a schematic configuration of an environmental test apparatus according to an embodiment. 図2は、実施形態1に係る冷凍装置の構成を示す配管系統図である。FIG. 2 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the first embodiment. 図3は、実施形態2に係る冷凍装置の構成を示す配管系統図である。FIG. 3 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the second embodiment. 図4は、ペルチェモジュールの運転状態を示すタイムチャートである。FIG. 4 is a time chart showing the operating state of the Peltier module.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《実施形態1》
  本発明の実施形態1について説明する。本実施形態に係る環境試験装置10は、例えば、医薬品等の安定性試験に使用され、そのために恒温恒湿槽11(チャンバ)の試験室S内の温度および湿度を予め設定した範囲内に安定的に維持する。
Embodiment 1
A first embodiment of the present invention will be described. The environmental test apparatus 10 according to the present embodiment is used for, for example, a stability test of pharmaceuticals or the like, and for that purpose, the temperature and humidity in the test chamber S of the constant temperature and humidity chamber 11 (chamber) are stable within a preset range. To maintain.
  図1に示すように、恒温恒湿槽11は、外形が略直方体形状をなし、前面(図1において左側の面)の上端から中央部にかけて、扉12が開閉可能に取り付けられている。扉12の前面には、図示しないが、制御目標となる温度および湿度の設定等を行うための操作盤と、設定値等を表示するディスプレイとが上下方向に並んで配設されている。 As shown in FIG. 1, the constant temperature and humidity chamber 11 has a substantially rectangular parallelepiped shape, and a door 12 is attached from the upper end of the front surface (the left surface in FIG. 1) to the center portion so that the door 12 can be opened and closed. On the front surface of the door 12, although not shown, an operation panel for setting a temperature and humidity that are control targets and a display for displaying setting values and the like are arranged in the vertical direction.
  試験室S内の奥側(図1において右側)の区画壁13の上部には格子状の空気吹出口13aが開口され、空調装置20によって温度および湿度を調整した調和空気がファン70によって試験室S内に供給される。この調和空気は、試験室S内を流通した後、区画壁13の下部の空気吸込口13bから空調装置20側に循環される。 A lattice-like air outlet 13a is opened above the partition wall 13 on the back side (right side in FIG. 1) in the test chamber S, and conditioned air whose temperature and humidity are adjusted by the air conditioner 20 is supplied to the test chamber by the fan 70. S is supplied. After this conditioned air circulates in the test chamber S, it is circulated from the air suction port 13b below the partition wall 13 to the air conditioner 20 side.
  なお、本実施形態では、試験室S内の奥側の区画壁13の上部に空気吹出口13aが、下部に空気吸込口13bがそれぞれ開口した形態について説明しているが、あくまでも一例であり、空気吹出口13aおよび空気吸込口13bの開口位置は適宜設定することができる。 In addition, in this embodiment, although the air blower outlet 13a is opened in the upper part of the division | segmentation wall 13 of the back | inner side in the test room S, and the air suction inlet 13b is each opened in the lower part, it is an example to the last, The opening positions of the air outlet 13a and the air inlet 13b can be set as appropriate.
  試験室S内には、2枚の棚板14が上下に並んで配設されており、各棚板14の上に試料が載置される。なお、棚板14の枚数およびその配置は、この形態に限定するものではなく、適宜設定することができる。 In the test chamber S, two shelf plates 14 are arranged vertically and a sample is placed on each shelf plate 14. The number of shelves 14 and the arrangement thereof are not limited to this form, and can be set as appropriate.
  空気吹出口13aには、恒温恒湿槽11に温湿度センサ(図示省略)が配設され、温湿度センサの計測値によって、空気吹出口13aから吹き出される空気の温度、相対湿度および絶対湿度が測定される。なお、温湿度センサの配設位置は、空気吹出口13aの近傍に限られず、空気吸込口の近傍に配設してもよい。温湿度センサからの計測信号は、恒温恒湿槽11の下部に配設されている制御器80に送信される。制御器80は、試験室S内の温度および湿度が予め設定した状態となるように、温湿度センサの計測値に応じて空調装置20を制御する。 The air outlet 13a is provided with a temperature and humidity sensor (not shown) in the constant temperature and humidity chamber 11, and the temperature, relative humidity, and absolute humidity of the air blown from the air outlet 13a according to the measured value of the temperature and humidity sensor. Is measured. The location of the temperature / humidity sensor is not limited to the vicinity of the air outlet 13a, but may be provided in the vicinity of the air inlet. A measurement signal from the temperature / humidity sensor is transmitted to the controller 80 disposed in the lower part of the constant temperature and humidity chamber 11. The controller 80 controls the air conditioner 20 according to the measured value of the temperature / humidity sensor so that the temperature and humidity in the test chamber S are set in advance.
  空調装置20は、制御器80から出力された制御信号に応じて、空気吹出口13aを経て試験室S内に供給する調和空気の温度、湿度、流量等が適切に調整される。空調装置20は、加湿装置30、冷凍装置40、加熱装置60およびファン70を備えている。 The air conditioner 20 appropriately adjusts the temperature, humidity, flow rate, and the like of the conditioned air supplied into the test chamber S through the air outlet 13a according to the control signal output from the controller 80. The air conditioner 20 includes a humidifier 30, a refrigerating device 40, a heating device 60, and a fan 70.
  加湿装置30は、ヒータ31と、加湿用の水を貯留する受け皿32とを備えている。ヒータ31は、供給された電力量に応じた加熱量で加湿用の水を加熱する。受け皿32には、試験室Sの外部に設けられた図示しない給水タンクから水が供給される。そして、加湿装置30は、制御器80から出力された制御信号に基づいて、受け皿32に貯留された水をヒータ31で蒸発させ、空気を設定湿度に加湿する動作を行う。これにより、加湿装置30は、供給された電力量に応じた加湿量で試験室S内を加湿する。 The humidifier 30 includes a heater 31 and a receiving tray 32 that stores water for humidification. The heater 31 heats the water for humidification with a heating amount corresponding to the supplied electric energy. The tray 32 is supplied with water from a water supply tank (not shown) provided outside the test chamber S. Then, the humidifier 30 performs an operation of evaporating the water stored in the tray 32 with the heater 31 and humidifying the air to the set humidity based on the control signal output from the controller 80. Thereby, the humidifier 30 humidifies the inside of the test room S with the humidification amount according to the supplied electric energy.
  冷凍装置40は、制御器80から出力された制御信号に基づいて、循環される空気を、設定温度および設定湿度に基づいて算出された露点温度まで冷却する動作を行う。これにより、設定温度および設定湿度における必要な水分量を確保するようにしている。冷凍装置40の構成については後で詳述する。 The refrigeration apparatus 40 performs an operation of cooling the circulated air to the dew point temperature calculated based on the set temperature and the set humidity based on the control signal output from the controller 80. As a result, the necessary amount of water at the set temperature and set humidity is ensured. The configuration of the refrigeration apparatus 40 will be described in detail later.
  加熱装置60は、制御器80から出力された制御信号に基づいて、冷凍装置40で冷却された空気を設定温度に上昇させる動作を行う。これにより、加熱装置60は、供給された電力量に応じた加熱量で試験室S内を加熱する。 The heating device 60 performs an operation of raising the air cooled by the refrigeration device 40 to a set temperature based on the control signal output from the controller 80. Thereby, the heating device 60 heats the inside of the test chamber S with a heating amount corresponding to the supplied power amount.
  ファン70は、加湿装置30、冷凍装置40、加熱装置60で調和された調和空気を試験室S内に循環させるように動作する。このように、ファン70により試験室S内の空気を循環させ、必要に応じて加湿装置30、冷凍装置40、加熱装置60をそれぞれ動作させ、温湿度センサにより試験室S内の温湿度を検出してフィードバック制御することで、試験室S内の温度および湿度を予め設定した範囲内に安定的に維持する。 The fan 70 operates so as to circulate conditioned air conditioned by the humidifying device 30, the refrigeration device 40, and the heating device 60 into the test chamber S. In this way, the air in the test chamber S is circulated by the fan 70, the humidifier 30, the refrigeration device 40, and the heating device 60 are operated as necessary, and the temperature and humidity in the test chamber S are detected by the temperature and humidity sensor. By performing feedback control, the temperature and humidity in the test chamber S are stably maintained within a preset range.
  -冷凍装置の構成-
  図2に示すように、本実施形態に係る冷凍装置40は、主冷媒回路41aと、その予備冷媒回路41bと、蓄熱槽50と、熱媒体回路51とを備えている。
-Configuration of refrigeration equipment-
As shown in FIG. 2, the refrigeration apparatus 40 according to the present embodiment includes a main refrigerant circuit 41 a, a preliminary refrigerant circuit 41 b, a heat storage tank 50, and a heat medium circuit 51.
  主冷媒回路41aは主熱源機を構成し、予備冷媒回路41bは主熱源機の予備熱源機を構成しており、両冷媒回路41a,41bは互いに同様の回路構成となっている。具体的に、各冷媒回路41a,41bは、圧縮機42a,42b(圧縮機構)と、凝縮器43a,43bと、膨張弁44a,44b(膨張機構)と、蒸発器45a,45bとが順に接続された閉回路である。各冷媒回路41a,41bは、冷媒が循環して蒸気圧縮式の冷凍サイクルを行うように構成されている。 The main refrigerant circuit 41a constitutes a main heat source unit, the spare refrigerant circuit 41b constitutes a spare heat source unit of the main heat source unit, and both refrigerant circuits 41a and 41b have the same circuit configuration. Specifically, in each refrigerant circuit 41a, 41b, compressors 42a, 42b (compression mechanism), condensers 43a, 43b, expansion valves 44a, 44b (expansion mechanism), and evaporators 45a, 45b are connected in order. Closed circuit. Each refrigerant circuit 41a, 41b is configured to perform a vapor compression refrigeration cycle by circulating the refrigerant.
  蓄熱槽50は、熱媒体であるブラインが貯留されている。蓄熱槽50は、各冷媒回路41a,41bの蒸発器45a,45bが接続されており、蒸発器45a,45bによってブラインが冷却されるようになっている。そして、蓄熱槽50はブラインの冷熱が蓄熱されるようになっている。 The heat storage tank 50 stores brine as a heat medium. The heat storage tank 50 is connected to the evaporators 45a and 45b of the refrigerant circuits 41a and 41b, and the brine is cooled by the evaporators 45a and 45b. And the heat storage tank 50 stores the cold of brine.
  熱媒体回路51は、蓄熱槽50との間で循環路52を通じてブラインが循環する冷却熱交換器54が設けられている。循環路52には、ブラインを循環させるためのポンプ53が設けられている。冷却熱交換器54は、ブラインとファン70によって取り込まれた試験室Sの空気とが熱交換するように構成されている。つまり、冷却熱交換器54では、試験室Sの空気がブラインとの熱交換によって冷却および除湿されるようになっている。 The heat medium circuit 51 is provided with a cooling heat exchanger 54 in which brine circulates between the heat storage tank 50 and the circulation path 52. The circulation path 52 is provided with a pump 53 for circulating the brine. The cooling heat exchanger 54 is configured to exchange heat between the brine and the air in the test chamber S taken in by the fan 70. That is, in the cooling heat exchanger 54, the air in the test chamber S is cooled and dehumidified by heat exchange with the brine.
  -冷凍装置の運転動作-
  冷凍装置40では、主冷媒回路41aおよび予備冷媒回路41bのうち何れか一方が運転される。また、主冷媒回路41aが優先して運転され、主冷媒回路41aが故障等によって運転不可となった場合に予備冷媒回路41bが運転される。
-Operation of refrigeration equipment-
In the refrigeration apparatus 40, either the main refrigerant circuit 41a or the auxiliary refrigerant circuit 41b is operated. Further, the main refrigerant circuit 41a is operated with priority, and the auxiliary refrigerant circuit 41b is operated when the main refrigerant circuit 41a becomes inoperable due to a failure or the like.
  各冷媒回路41a,41bでは、圧縮機42a,42bが駆動されると、冷媒が圧縮機42a,42bで圧縮されて吐出される。この吐出冷媒は、凝縮器43a,43bで例えば空気と熱交換して凝縮する。凝縮した冷媒は、膨張弁44a,44bで所定圧力まで減圧された後、蒸発器45a,45bへ流れる。蒸発器45a,45bでは、冷媒が蓄熱槽50のブラインと熱交換して蒸発し、ブラインが冷却される。蓄熱槽50では、冷却されたブラインの冷熱が蓄熱される。 In each refrigerant circuit 41a, 41b, when the compressors 42a, 42b are driven, the refrigerant is compressed by the compressors 42a, 42b and discharged. The discharged refrigerant is condensed by exchanging heat with, for example, air in the condensers 43a and 43b. The condensed refrigerant is decompressed to a predetermined pressure by the expansion valves 44a and 44b and then flows to the evaporators 45a and 45b. In the evaporators 45a and 45b, the refrigerant evaporates by exchanging heat with the brine in the heat storage tank 50, and the brine is cooled. In the heat storage tank 50, the cold energy of the cooled brine is stored.
  熱媒体回路51では、ポンプ53が駆動されると、蓄熱槽50と冷却熱交換器54との間でブラインが循環する。冷却熱交換器54では、蓄熱槽50から供給された低温のブラインが試験室Sの空気と熱交換する。これにより、試験室Sの空気が、設定温度および設定湿度に基づいて算出された露点温度まで冷却される。なお、熱交換したブラインは再び蓄熱槽50に戻る。 In the heat medium circuit 51, when the pump 53 is driven, the brine circulates between the heat storage tank 50 and the cooling heat exchanger 54. In the cooling heat exchanger 54, the low-temperature brine supplied from the heat storage tank 50 exchanges heat with the air in the test chamber S. Thereby, the air of the test room S is cooled to the dew point temperature calculated based on the set temperature and the set humidity. Note that the heat-exchanged brine returns to the heat storage tank 50 again.
  上述した運転時において、主冷媒回路41aが故障等によって運転不可となると、予備冷媒回路41bに運転される。この主冷媒回路41aから予備冷媒回路41bへの切換時においては、継続して、蓄熱槽50から冷却熱交換器54にブラインが供給され続ける。予備冷媒回路41bに切り換えた直後(即ち、予備冷媒回路41bの起動直後)では、予備冷媒回路41bの蒸発器45bにおける冷却能力が十分ではない。そのため、予備冷媒回路41bの起動直後は、蓄熱槽50のブラインに対する冷却能力が低下する。ところが、蓄熱槽50ではブラインの冷熱が十分に蓄熱されているため、予備冷媒回路41bの起動直後でも、十分に低温なブラインを冷却熱交換器54へ供給することができる。これにより、冷却熱交換器54における冷却能力を十分に維持することができる。 During the operation described above, if the main refrigerant circuit 41a becomes inoperable due to a failure or the like, the auxiliary refrigerant circuit 41b is operated. At the time of switching from the main refrigerant circuit 41a to the spare refrigerant circuit 41b, brine is continuously supplied from the heat storage tank 50 to the cooling heat exchanger 54. Immediately after switching to the auxiliary refrigerant circuit 41b (that is, immediately after starting the auxiliary refrigerant circuit 41b), the cooling capacity in the evaporator 45b of the auxiliary refrigerant circuit 41b is not sufficient. Therefore, immediately after the start of the auxiliary refrigerant circuit 41b, the cooling capacity for the brine of the heat storage tank 50 is reduced. However, since the cold heat of the brine is sufficiently stored in the heat storage tank 50, it is possible to supply a sufficiently low-temperature brine to the cooling heat exchanger 54 even immediately after the standby refrigerant circuit 41b is activated. Thereby, the cooling capacity in the cooling heat exchanger 54 can be sufficiently maintained.
  -実施形態1の効果-
  本実施形態によれば、冷凍装置40では、ブラインを冷却する主冷媒回路41aとその予備冷媒回路41bとを設けるようにしたため、主冷媒回路41aが故障等によって停止しても予備冷媒回路41bによってブラインを冷却することができる。さらに、主冷媒回路41aによって冷却されたブラインを貯留する蓄熱槽50を設けるようにしたので、主冷媒回路41aから予備冷媒回路41bへの切換時においても、蓄熱槽50の十分に低温なブラインを冷却熱交換器54に供給することができる。したがって、冷却熱交換器54において十分な冷却能力および除湿能力を維持することができる。その結果、試験室S内の温湿度を安定して制御することができる。
-Effect of Embodiment 1-
According to the present embodiment, since the refrigeration apparatus 40 is provided with the main refrigerant circuit 41a for cooling the brine and the auxiliary refrigerant circuit 41b, even if the main refrigerant circuit 41a stops due to a failure or the like, the auxiliary refrigerant circuit 41b The brine can be cooled. Furthermore, since the heat storage tank 50 for storing the brine cooled by the main refrigerant circuit 41a is provided, a sufficiently low-temperature brine in the heat storage tank 50 is provided even when switching from the main refrigerant circuit 41a to the auxiliary refrigerant circuit 41b. The cooling heat exchanger 54 can be supplied. Therefore, sufficient cooling capacity and dehumidifying capacity can be maintained in the cooling heat exchanger 54. As a result, the temperature and humidity in the test chamber S can be stably controlled.
  また、本実施形態によれば、冷凍装置40を間膨式として、その一次側である冷媒回路についてのみ予備の回路(予備冷媒回路41b)を設けるようにしているので、冷凍装置全体の予備装置を設ける場合に比べて、冷凍装置40のコンパクト化を図ることができる。 Further, according to the present embodiment, the refrigeration apparatus 40 is inflated, and the spare circuit (preliminary refrigerant circuit 41b) is provided only for the refrigerant circuit on the primary side, so that the spare apparatus for the entire refrigeration apparatus The refrigeration apparatus 40 can be made more compact than the case where the refrigeration apparatus is provided.
 《実施形態2》
  本発明の実施形態2について説明する。本実施形態は、前記実施形態1において冷凍装置40の構成を変更したものである。具体的には、図3に示すように、本実施形態の冷凍装置40は、前期実施形態1が主冷媒回路41aおよび予備冷媒回路41bを設けたのに代えて、主ペルチェモジュール46aおよび予備ペルチェモジュール46bを設けるようにした。
<< Embodiment 2 >>
A second embodiment of the present invention will be described. The present embodiment is obtained by changing the configuration of the refrigeration apparatus 40 in the first embodiment. Specifically, as shown in FIG. 3, the refrigeration apparatus 40 of the present embodiment includes a main Peltier module 46a and a spare Peltier instead of the first embodiment provided with the main refrigerant circuit 41a and the spare refrigerant circuit 41b. A module 46b is provided.
  本実施形態の冷凍装置40では、主ペルチェモジュール46aが主熱源機を構成し、予備ペルチェモジュール46bが予備熱源機を構成している。冷凍装置40は、主ペルチェモジュール46aおよび予備ペルチェモジュール46bをそれぞれ複数(本実施形態では、一例として3つずつ)有している。各ペルチェモジュール46a,46bは、ペルチェ素子47a,47b(熱電素子)と、アルミニウム製のジャケット48a,48bとを有し、蓄熱槽50の外壁面に取り付けられている。 In the refrigeration apparatus 40 of the present embodiment, the main Peltier module 46a constitutes a main heat source machine, and the spare Peltier module 46b constitutes a spare heat source machine. The refrigeration apparatus 40 includes a plurality of main Peltier modules 46a and spare Peltier modules 46b (three in this embodiment as an example). Each Peltier module 46 a, 46 b has Peltier elements 47 a, 47 b (thermoelectric elements) and aluminum jackets 48 a, 48 b, and is attached to the outer wall surface of the heat storage tank 50.
  ペルチェ素子47a,47bは、通電すると、吸熱部(冷却部)と放熱部(加熱部)とが形成される。ジャケット48a,48bは、蓄熱槽50の外壁面に取り付けられて、内部を蓄熱槽50内のブラインが流通するように構成されている。各ペルチェモジュール46a,46bでは、ジャケット48a,48b内を流通するブラインがペルチェ素子47a,47bの吸熱部によって吸熱されて冷却される。これにより、蓄熱槽50のブラインが冷却される。 When the Peltier elements 47a and 47b are energized, a heat absorbing part (cooling part) and a heat radiating part (heating part) are formed. The jackets 48a and 48b are attached to the outer wall surface of the heat storage tank 50 so that the brine in the heat storage tank 50 circulates inside. In each Peltier module 46a, 46b, the brine flowing through the jackets 48a, 48b is absorbed by the heat absorbing portions of the Peltier elements 47a, 47b and cooled. Thereby, the brine of the heat storage tank 50 is cooled.
  本実施形態の冷凍装置40では、主ペルチェモジュール46aおよび予備ペルチェモジュール46bのうち何れか一方が運転される。また、主ペルチェモジュール46aが優先して運転され、その主ペルチェモジュール46aが故障等によって運転不可となった場合に予備ペルチェモジュール46bが運転される。 In the refrigeration apparatus 40 of the present embodiment, one of the main Peltier module 46a and the spare Peltier module 46b is operated. Also, the main Peltier module 46a is operated with priority, and the spare Peltier module 46b is operated when the main Peltier module 46a becomes inoperable due to a failure or the like.
  そして、本実施形態においても、主ペルチェモジュール46aから予備ペルチェモジュール46bへの切換時において、蓄熱槽50の十分に低温なブラインを冷却熱交換器54に供給することができる。したがって、冷却熱交換器54において十分な冷却能力および除湿能力を維持することができる。その結果、試験室S内の温湿度を安定して制御することができる。 And also in this embodiment, at the time of switching from the main Peltier module 46a to the spare Peltier module 46b, a sufficiently low-temperature brine in the heat storage tank 50 can be supplied to the cooling heat exchanger 54. Therefore, sufficient cooling capacity and dehumidifying capacity can be maintained in the cooling heat exchanger 54. As a result, the temperature and humidity in the test chamber S can be stably controlled.
  また、本実施形態によれば、各ペルチェモジュール46a,46bは比較的小型であるため、冷凍装置40のコンパクト化を図ることができる。 Further, according to the present embodiment, since the Peltier modules 46a and 46b are relatively small, the refrigeration apparatus 40 can be made compact.
  また、本実施形態の冷凍装置40では、3つの主ペルチェモジュール46aを全て同時に運転させる形態だけでなく、各主ペルチェモジュール46aが順次所定時間taずつ冷却動作を行う形態であってもよい。具体的には、図4に示すように、先ず、3つの主ペルチェモジュール46aのうち、予め設定した第1主ペルチェモジュール46aのみが運転される。その運転開始から所定時間taが経過すると、運転していた第1主ペルチェモジュール46aは停止する一方、別の第2主ペルチェモジュール46aが運転される。その運転開始から所定時間taが経過すると、運転していた第2主ペルチェモジュール46aは停止する一方、別の第3主ペルチェモジュール46aが運転される。その運転開始から所定時間taが経過すると、運転していた第3主ペルチェモジュール46aは停止する一方、最初の第1主ペルチェモジュール46aが再び運転される。このように、各主ペルチェモジュール46aが順番に所定時間taずつ運転される。このように運転することで、ペルチェ素子47a1つ当たりの寿命を延ばすことができる。これにより、試験室Sの温湿度制御を長期間に亘って安定化させることができる。なお、予備ペルチェモジュール46bについても同様に運転させることができる。 Further, in the refrigeration apparatus 40 of the present embodiment, not only a mode in which all three main Peltier modules 46a are operated simultaneously, but also a mode in which each main Peltier module 46a sequentially performs a cooling operation for a predetermined time ta. Specifically, as shown in FIG. 4, only the first main Peltier module 46a set in advance among the three main Peltier modules 46a is operated. When a predetermined time ta elapses from the start of the operation, the first main Peltier module 46a that has been operating is stopped, while another second main Peltier module 46a is operated. When a predetermined time ta has elapsed from the start of the operation, the second main Peltier module 46a that has been operating is stopped, while another third main Peltier module 46a is operated. When a predetermined time ta has elapsed from the start of the operation, the third main Peltier module 46a that has been operating stops, while the first first main Peltier module 46a is operated again. In this way, each main Peltier module 46a is operated in turn for a predetermined time ta. By operating in this way, the lifetime per Peltier element 47a can be extended. Thereby, the temperature and humidity control of the test chamber S can be stabilized over a long period of time. The spare Peltier module 46b can be operated similarly.
 《その他の実施形態》
  前記実施形態の環境試験装置10では、内部に試験室Sを有する恒温恒湿槽11を備えた構成について説明したが、試験室Sの大きさは特に限定するものではない。つまり、作業者が出入りできる大きさの部屋としての試験室Sを有する恒温恒湿室を備えた構成であっても構わない。
<< Other Embodiments >>
In the environmental test apparatus 10 of the above embodiment, the configuration including the constant temperature and humidity chamber 11 having the test chamber S therein has been described, but the size of the test chamber S is not particularly limited. That is, it may be configured to include a constant temperature and humidity chamber having the test chamber S as a room of a size that allows an operator to enter and exit.
  本発明は、試験室を冷却および除湿する冷凍装置を備えた環境試験装置10について有用である。 The present invention is useful for the environmental test apparatus 10 including a refrigeration apparatus for cooling and dehumidifying the test chamber.
10    環境試験装置
11    恒温恒湿槽
40    冷凍装置
41a   主冷媒回路(主熱源機)
41b   予備冷媒回路(予備熱源機)
42a,42b   圧縮機(圧縮機構)
43a,43b   凝縮器
44a,44b   膨張弁(膨張機構)
45a,45b   蒸発器
46a   主ペルチェモジュール(主熱源機)
46b   予備ペルチェモジュール(予備熱源機)
47a,47b   ペルチェ素子(熱電素子)
50    蓄熱槽
54    冷却熱交換器
S     試験室
DESCRIPTION OF SYMBOLS 10 Environmental test apparatus 11 Constant temperature and humidity tank 40 Refrigeration apparatus 41a Main refrigerant circuit (main heat source machine)
41b Preliminary refrigerant circuit (preliminary heat source machine)
42a, 42b Compressor (compression mechanism)
43a, 43b Condensers 44a, 44b Expansion valves (expansion mechanism)
45a, 45b Evaporator 46a Main Peltier module (main heat source)
46b Spare Peltier module (spare heat source)
47a, 47b Peltier elements (thermoelectric elements)
50 Heat storage tank 54 Cooling heat exchanger S Test room

Claims (4)

  1.   試験室を有する恒温恒湿槽と、前記試験室内を冷却および除湿する冷凍装置とを備えた環境試験装置であって、
      前記冷凍装置は、主熱源機と、該主熱源機の予備熱源機と、熱媒体が貯留され、該熱媒体が前記両熱源機の何れか一方によって冷却される蓄熱槽と、該蓄熱槽の熱媒体が供給され、該熱媒体によって前記試験室内の空気を冷却および除湿する冷却熱交換器とを備えている
    ことを特徴とする環境試験装置。
    An environmental test apparatus comprising a constant temperature and humidity chamber having a test chamber and a refrigeration apparatus for cooling and dehumidifying the test chamber,
    The refrigeration apparatus includes a main heat source unit, a preliminary heat source unit for the main heat source unit, a heat storage tank in which a heat medium is stored, and the heat medium is cooled by one of the two heat source units, An environmental test apparatus comprising a cooling heat exchanger to which a heat medium is supplied and that cools and dehumidifies the air in the test chamber by the heat medium.
  2.   請求項1において、
      前記両熱源機は、圧縮機構と凝縮器と膨張機構と蒸発器とが接続されて冷凍サイクルを行う冷媒回路を有し、前記蒸発器で前記蓄熱槽の熱媒体を冷却する
    ことを特徴とする環境試験装置。
    In claim 1,
    The both heat source units include a refrigerant circuit that performs a refrigeration cycle by connecting a compression mechanism, a condenser, an expansion mechanism, and an evaporator, and cools the heat medium in the heat storage tank by the evaporator. Environmental test equipment.
  3.   請求項1において、
      前記両熱源機は、前記蓄熱槽の熱媒体を冷却する熱電素子を有している
    ことを特徴とする環境試験装置。
    In claim 1,
    The both heat source units have a thermoelectric element that cools the heat medium of the heat storage tank.
  4.   請求項3において、
      前記両熱源機は、前記熱電素子を複数有し、前記熱電素子が順次所定時間ずつ冷却動作を行うように構成されている
    ことを特徴とする環境試験装置。
    In claim 3,
    The both heat source devices include a plurality of the thermoelectric elements, and the thermoelectric elements are configured to sequentially perform a cooling operation for each predetermined time.
PCT/JP2013/006311 2012-11-15 2013-10-24 Environmental testing device WO2014076891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-251278 2012-11-15
JP2012251278A JP2014098521A (en) 2012-11-15 2012-11-15 Environment testing device

Publications (1)

Publication Number Publication Date
WO2014076891A1 true WO2014076891A1 (en) 2014-05-22

Family

ID=50730828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006311 WO2014076891A1 (en) 2012-11-15 2013-10-24 Environmental testing device

Country Status (2)

Country Link
JP (1) JP2014098521A (en)
WO (1) WO2014076891A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195111A1 (en) * 2015-06-05 2016-12-08 伸和コントロールズ株式会社 Environmental testing device
CN110618223A (en) * 2018-06-18 2019-12-27 株式会社岛津制作所 Device with sample temperature adjusting function
US10656110B2 (en) 2016-01-26 2020-05-19 Shinwa Controls Co., Ltd. Temperature control system, temperature control device and refrigeration device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005855B2 (en) * 2017-10-19 2022-01-24 新星冷蔵工業株式会社 Cooling system and how to modify the cooling system
JP7179266B1 (en) 2021-06-10 2022-11-29 アンプレックス株式会社 Highly efficient cooling control method using multiple Peltier elements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310243A (en) * 1988-06-08 1989-12-14 Yuzo Tada Cooler-heater
JPH05106924A (en) * 1991-10-16 1993-04-27 Mayekawa Mfg Co Ltd Cooling system
JPH06241513A (en) * 1993-02-22 1994-08-30 Matsushita Electric Works Ltd Ventilator using solar cell
JPH07140061A (en) * 1993-11-12 1995-06-02 Graphtec Corp Thermostatic bath
JPH09219475A (en) * 1996-02-09 1997-08-19 Hitachi Denshi Ltd Feeding circuit of electron cooling element
JPH09310351A (en) * 1996-05-23 1997-12-02 Shimizu Corp Method and apparatus for drainage of low level spring water
JPH11352460A (en) * 1998-06-10 1999-12-24 Pfu Ltd Liquid crystal back light circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310243A (en) * 1988-06-08 1989-12-14 Yuzo Tada Cooler-heater
JPH05106924A (en) * 1991-10-16 1993-04-27 Mayekawa Mfg Co Ltd Cooling system
JPH06241513A (en) * 1993-02-22 1994-08-30 Matsushita Electric Works Ltd Ventilator using solar cell
JPH07140061A (en) * 1993-11-12 1995-06-02 Graphtec Corp Thermostatic bath
JPH09219475A (en) * 1996-02-09 1997-08-19 Hitachi Denshi Ltd Feeding circuit of electron cooling element
JPH09310351A (en) * 1996-05-23 1997-12-02 Shimizu Corp Method and apparatus for drainage of low level spring water
JPH11352460A (en) * 1998-06-10 1999-12-24 Pfu Ltd Liquid crystal back light circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195111A1 (en) * 2015-06-05 2016-12-08 伸和コントロールズ株式会社 Environmental testing device
JPWO2016195111A1 (en) * 2015-06-05 2018-05-24 伸和コントロールズ株式会社 Environmental test equipment
EP3306228A4 (en) * 2015-06-05 2019-04-17 Shinwa Controls Co., Ltd. Environmental testing device
US10330556B2 (en) 2015-06-05 2019-06-25 Shinwa Controls Co., Ltd. Environmental testing device
US10656110B2 (en) 2016-01-26 2020-05-19 Shinwa Controls Co., Ltd. Temperature control system, temperature control device and refrigeration device
CN110618223A (en) * 2018-06-18 2019-12-27 株式会社岛津制作所 Device with sample temperature adjusting function

Also Published As

Publication number Publication date
JP2014098521A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2014076891A1 (en) Environmental testing device
AU2012313765B2 (en) Humidity Control Apparatus
JP5983451B2 (en) Heating system
JP5830602B2 (en) Combined dual refrigeration cycle equipment
WO2013190747A1 (en) Environmental testing device
KR101203206B1 (en) Refrigeration and air-conditioning laboratory apparatus
JP4783048B2 (en) Constant temperature and humidity device
JP2009216357A (en) Temperature controlled bath
JP5831466B2 (en) Heating system
KR101176440B1 (en) Air-conditioning system for rack of computer room
JP2006297964A (en) Air-conditioner for railroad vehicle
KR20170138703A (en) Air conditioner system and its control method
JP2013127343A (en) Desiccant ventilation fan
KR20130090133A (en) Air conditoner
JP2009133544A (en) Air conditioning system
JP2013185762A (en) Refrigerant cycle device
JP2013040694A (en) Refrigeration device
JP2005326121A (en) Air conditioner
JP2008190793A (en) Air conditioner
JP2010281502A (en) Humidifier
KR100911221B1 (en) Air conditioning system for communication equipment and controlling method thereof
KR20210011171A (en) Heat pump system for vehicle
JP2012207816A (en) Air conditioner
KR101378532B1 (en) Eco-friendly air conditioner
KR102241684B1 (en) Refrigeration system with single unit cooler and spare refrigeration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855263

Country of ref document: EP

Kind code of ref document: A1