JP2007315382A - Diagnostic system for anomaly in vane-type variable valve timing control mechanism - Google Patents

Diagnostic system for anomaly in vane-type variable valve timing control mechanism Download PDF

Info

Publication number
JP2007315382A
JP2007315382A JP2007112700A JP2007112700A JP2007315382A JP 2007315382 A JP2007315382 A JP 2007315382A JP 2007112700 A JP2007112700 A JP 2007112700A JP 2007112700 A JP2007112700 A JP 2007112700A JP 2007315382 A JP2007315382 A JP 2007315382A
Authority
JP
Japan
Prior art keywords
hydraulic
displacement angle
chamber
vct
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112700A
Other languages
Japanese (ja)
Inventor
Toshibumi Hayamizu
俊文 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007112700A priority Critical patent/JP2007315382A/en
Publication of JP2007315382A publication Critical patent/JP2007315382A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/18

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect at an early stage an anomaly in a drain selector valve and a check valve in a vane-type variable valve timing control mechanism provided with the check valve. <P>SOLUTION: Check valves 30, 31 are provided respectively to a hydraulic supply oil-path 28 for an advance chamber 18 and a hydraulic supply oil-path 29 for a delay angle chamber 19, and drain oil-paths 32, 33 bypassing the check valves 30, 31 respectively are provided in parallel with each other in hydraulic supply oil-paths 28, 29 of the lead angle chamber 18, the delay angle chamber 19. Drain selector valves 34, 35 are provided respectively to the drain oil-paths 32, 33. A drain selection-control function 38 for selecting the pressure oil for driving the drain selector valves 34, 35 is integrally provided to a hydraulic control valve 21 for controlling the oil pressure supplied to the chamber 18 and the chamber 19. On the basis whether or not a variation in a VCT displacement angle has exceeded a normal range in a specified period of time during a retention operation, it is determined whether an anomalous condition that the drain selector valves 34, 35, and/or check valves 30, 31 are left open, and kept unmovable or not. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ、各油圧室からの作動油の逆流を防止する逆止弁を設けたベーン式の可変バルブタイミング調整機構の異常診断装置に関する発明である。   The present invention is a vane type variable valve timing adjustment in which a check valve for preventing a backflow of hydraulic oil from each hydraulic chamber is provided in each of a hydraulic supply oil passage in an advance chamber and a hydraulic supply oil passage in a retard chamber. The invention relates to a mechanism abnormality diagnosis device.

近年、車両に搭載される内燃機関においては、出力向上、燃費節減、排気エミッション低減等を目的として、吸気バルブや排気バルブのバルブタイミング(カム軸の変位角)を可変する可変バルブタイミング装置を採用したものが増加しつつある。例えば、ベーン式の可変バルブタイミング装置の基本的な構成は、特許文献1(特開2001−159330号公報)に示すように、エンジンのクランク軸に同期して回転するハウジングと、吸気バルブ(又は排気バルブ)のカム軸に連結されたベーンロータとを同軸状に配置し、ハウジング内に形成された複数のベーン収納室内をベーンロータ外周側のベーン(羽根部)で進角室と遅角室とに区画する。そして、各油圧室の油圧を油圧制御弁で制御して、ハウジングに対してベーンロータを相対回動させることで、クランク軸に対するカム軸の変位角(カム軸位相)を変化させて、バルブタイミングを可変制御するようにしている。   In recent years, internal-combustion engines mounted on vehicles have adopted variable valve timing devices that vary the valve timing (cam shaft displacement angle) of intake valves and exhaust valves in order to improve output, reduce fuel consumption, and reduce exhaust emissions. Is increasing. For example, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2001-159330), a basic configuration of a vane type variable valve timing device includes a housing that rotates in synchronization with an engine crankshaft, and an intake valve (or The vane rotor connected to the cam shaft of the exhaust valve) is coaxially arranged, and a plurality of vane storage chambers formed in the housing are divided into an advance chamber and a retard chamber by vanes (blade portions) on the outer periphery side of the vane rotor. Partition. Then, by controlling the hydraulic pressure in each hydraulic chamber with a hydraulic control valve and rotating the vane rotor relative to the housing, the camshaft displacement angle (camshaft phase) with respect to the crankshaft is changed to change the valve timing. Variable control is performed.

このようなベーン式の可変バルブタイミング装置では、エンジン運転中に吸気バルブや排気バルブを開閉駆動するときに、吸気バルブや排気バルブからカム軸が受けるフリクショントルクの変動がベーンロータに伝わり、それによって、ベーンロータに対して遅角方向及び進角方向へのトルク変動が作用する。これにより、ベーンロータが遅角方向にトルク変動を受けると、進角室の作動油が進角室から押し出される圧力を受け、また、ベーンロータが進角方向にトルク変動を受けると、遅角室の作動油が遅角室から押し出される圧力を受けることになる。このため、油圧供給源から供給される油圧が低い低回転領域では、進角室に油圧を供給してカム軸の変位角を進角させようとしても、図3に点線で示すように、ベーンロータが上記トルク変動により遅角方向に押し戻されてしまい、目標変位角に到達するまでの応答時間が長くなってしまうという問題があった。   In such a vane type variable valve timing device, when opening and closing the intake valve and exhaust valve during engine operation, the fluctuation of the friction torque received by the camshaft from the intake valve and exhaust valve is transmitted to the vane rotor. Torque fluctuations in the retard direction and the advance direction act on the vane rotor. As a result, when the vane rotor receives torque fluctuations in the retarding direction, the hydraulic oil in the advance chamber receives pressure that is pushed out of the advance chambers, and when the vane rotor receives torque fluctuations in the advance direction, The hydraulic oil is subjected to pressure that is pushed out of the retard chamber. For this reason, in the low rotation region where the hydraulic pressure supplied from the hydraulic pressure supply source is low, even if it is attempted to advance the camshaft displacement angle by supplying hydraulic pressure to the advance chamber, as shown by the dotted line in FIG. Is pushed back in the retarded direction due to the torque fluctuation, and there is a problem that the response time until reaching the target displacement angle becomes long.

この問題を解決するために、特許文献2(特開2003−106115号公報)に示すように、遅角室の油圧供給油路と進角室の油圧供給油路にそれぞれ逆止弁を設け、ベーンロータがトルク変動を受けても遅角室や進角室からの作動油の逆流を逆止弁によって防止することで、図3に実線で示すように、可変バルブタイミング制御中にベーンロータが目標変位角の方向とは逆方向に戻されることを防止して、可変バルブタイミング制御の応答性を向上させることが考えられている。
特開2001−159330号公報(第4頁〜第6頁等) 特開2003−106115号公報(第1頁等)
In order to solve this problem, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 2003-106115), a check valve is provided in each of the hydraulic supply oil passage in the retard chamber and the hydraulic supply oil passage in the advance chamber, Even if the vane rotor is subjected to torque fluctuations, the check valve prevents the hydraulic oil from flowing backward from the retard chamber or advance chamber, and as shown by the solid line in FIG. It is considered to improve the responsiveness of the variable valve timing control by preventing it from returning in the direction opposite to the corner direction.
JP 2001-159330 A (pages 4 to 6 etc.) JP 2003-106115 A (first page, etc.)

ところで、上記特許文献2の可変バルブタイミング装置では、進角室の油圧供給油路と遅角室の油圧供給油路(油圧導入ライン)に、それぞれ逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ逆止弁をバイパスする戻りライン(油圧排出ライン)を並列に設け、各油圧室に供給する油圧を制御する油圧制御弁(スプール式電磁弁)に、各油圧室の戻りラインを開閉するライン切替弁としての機能を一体化した構成となっている。そして、この油圧制御弁の制御電流値を制御することで、各油圧室に供給する油圧を制御すると同時に、各油圧室の戻りラインの開放/閉鎖の切り替えを制御して、いずれかの油圧室の油圧を抜く必要があるときに、その油圧室の戻りラインを開放して当該戻りラインを通して油圧を速やかに抜くことができるようにしている。   By the way, in the variable valve timing device of Patent Document 2, check valves are provided in the hydraulic pressure supply oil passages of the advance chamber and the hydraulic supply oil passages (hydraulic introduction lines) of the retard chamber, and the hydraulic pressure of each hydraulic chamber is set. A return line (hydraulic discharge line) that bypasses the check valve is provided in parallel in the supply oil path, and each hydraulic chamber returns to a hydraulic control valve (spool solenoid valve) that controls the hydraulic pressure supplied to each hydraulic chamber. The function as a line switching valve that opens and closes the line is integrated. By controlling the control current value of the hydraulic control valve, the hydraulic pressure supplied to each hydraulic chamber is controlled, and at the same time, the switching of opening / closing of the return line of each hydraulic chamber is controlled. When it is necessary to release the hydraulic pressure, the return line of the hydraulic chamber is opened so that the hydraulic pressure can be quickly released through the return line.

しかしながら、上記特許文献2の可変バルブタイミング装置では、電動式可変力ソレノイドにより油圧制御弁のアーマチュアを駆動しており、カム軸方向の全長が長くなるため、搭載性が悪くなるという問題があった。   However, in the variable valve timing device of Patent Document 2, the armature of the hydraulic control valve is driven by an electric variable force solenoid, and the total length in the cam shaft direction becomes long, so that the mountability is deteriorated. .

そこで、本出願人は、逆止弁をバイパスするドレーン油路に、油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える電磁式の油圧切替弁を設ける構成の可変バルブタイミング装置を提案している。この構成では、ドレーン切替弁を小型化できると共にドレーン切替弁への電気的な配線が不要であるため、ドレーン切替弁を逆止弁と共に可変バルブタイミング調整機構の内部の狭いスペースにコンパクトに組み付けることが可能となる。また、油圧切替弁と、可変バルブタイミング装置の各油圧室に供給する油圧を制御する油圧制御弁とをカム軸に直接搭載する必要がないため、上記特許文献2のものに比べ、可変バルブタイミング装置の搭載性が改善されるという利点がある。なお、本出願人は、上記可変バルブタイミング装置を更に改良し、1つの油圧制御弁で、各ドレーン切替弁を駆動する油圧を切り替えるとともに、可変バルブタイミング装置の各油圧室に供給する油圧を制御することができる構成の可変バルブタイミング装置についても提案している。   Therefore, the applicant of the present invention is provided with a drain switching valve that is hydraulically driven in a drain oil passage that bypasses the check valve, and an electromagnetic hydraulic switching valve that switches the hydraulic pressure that drives each drain switching valve. A variable valve timing device is proposed. In this configuration, the drain switching valve can be reduced in size and electrical wiring to the drain switching valve is unnecessary, so the drain switching valve and the check valve can be assembled compactly in a narrow space inside the variable valve timing adjustment mechanism. Is possible. In addition, since it is not necessary to directly mount the hydraulic pressure switching valve and the hydraulic control valve for controlling the hydraulic pressure supplied to each hydraulic chamber of the variable valve timing device on the camshaft, the variable valve timing is higher than that of the above-mentioned Patent Document 2. There is an advantage that the mountability of the apparatus is improved. The applicant further improved the variable valve timing device, and switched the hydraulic pressure for driving each drain switching valve with one hydraulic control valve and controlled the hydraulic pressure supplied to each hydraulic chamber of the variable valve timing device. A variable valve timing device having a configuration that can be used has also been proposed.

このような可変バルブタイミング機構の開発過程で、耐久試験等で長期間運転したときに、ドレーン切替弁や逆止弁に異物が噛み込まれたりそれらの弁体が固着したりしてドレーン切替弁や逆止弁が正常に動作しなくなる異常が発生する可能性があることが判明した。このような異常は、エンジン性能を悪化させるため、できるだけ早期に検出して運転者に知らせて修理を促す必要がある。   During the development process of such a variable valve timing mechanism, when it is operated for a long period of time, such as in an endurance test, the drain switching valve or the check valve may be trapped with foreign matter or the valve body may adhere to the drain switching valve. It has been found that there is a possibility that an abnormality may occur in which the check valve does not operate normally. In order to deteriorate the engine performance, it is necessary to detect such an abnormality as early as possible and notify the driver to promote repair.

そこで、本発明の目的は、ドレーン切替弁や逆止弁が正常に動作しなくなる異常を早期に検出できるようにしたベーン式の可変バルブタイミング調整機構の異常診断装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an abnormality diagnosis device for a vane variable valve timing adjustment mechanism that can detect an abnormality in which a drain switching valve and a check valve do not operate normally at an early stage.

上記目的を達成するために、請求項1に係る発明は、ベーン式の可変バルブタイミング調整機構のハウジング内に形成された複数のベーン収納室内をそれぞれベーンによって進角室と遅角室とに区画し、少なくとも1つのベーン収納室の進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ各油圧室(「油圧室」とは「進角室」と「遅角室」のいずれかを意味する)からの作動油の逆流を防止する逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ前記逆止弁をバイパスするドレーン油路を並列に設け、各ドレーン油路にそれぞれ油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を設けたベーン式の可変バルブタイミング調整機構の異常診断装置において、前記可変バルブタイミング調整機構の変位角(以下「VCT変位角」という)を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて両方の油圧室からの作動油の逆流を防止するように前記油圧切替弁を制御すると共に、前記各油圧室の油圧を制御する油圧制御弁の制御電流を所定の保持電流に制御し、前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記油圧切替弁を制御すると共に、前記油圧制御弁の制御電流を制御して各油圧室の油圧を可変することで前記VCT変位角を目標変位角に向けて変位させる。そして、異常診断手段は、保持動作中に、所定期間内のVCT変位角の変化量に基づいて前記ドレーン切替弁及び/又は前記逆止弁が開いたまま動かない“開異常”が発生したか否かを判定するようにしている。   To achieve the above object, according to the first aspect of the present invention, a plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjusting mechanism are divided into an advance chamber and a retard chamber by the vanes, respectively. In each of the hydraulic chambers (the “hydraulic chamber” is the “advance chamber” and the “retard chamber”), the hydraulic supply fluid passage of the advance chamber and the retard chamber of the at least one vane storage chamber respectively. A check valve for preventing the backflow of hydraulic oil from each other), and a drain oil passage that bypasses the check valve is provided in parallel in the hydraulic supply oil passage of each hydraulic chamber, In the abnormality diagnosis device for a vane type variable valve timing adjustment mechanism, a drain switching valve that is driven by hydraulic pressure is provided in each drain oil passage, and a hydraulic switching valve that switches a hydraulic pressure that drives each drain switching valve is provided. During the holding operation for maintaining the displacement angle of the valve timing adjusting mechanism (hereinafter referred to as “VCT displacement angle”) at the target displacement angle, both the advance chamber side and the retard chamber side drain switching valves are closed to advance the advance chamber. The hydraulic switching valve is controlled so as to prevent the backflow of hydraulic oil from both hydraulic chambers by effectively functioning both the check valve on the side and the retard chamber side, and the hydraulic pressure in each hydraulic chamber is controlled. During the advance / retard operation in which the control current of the hydraulic control valve is controlled to a predetermined holding current and the VCT displacement angle is displaced in the advance direction or the retard direction, an advance chamber is generated according to the displacement direction. The hydraulic pressure control valve is controlled so that one of the non-return valves does not function by opening one of the drain switching valves on the side and the retard chamber side, and controlling the control current of the hydraulic control valve to By changing the hydraulic pressure in the hydraulic chamber, the VCT displacement angle is set to the target displacement angle. To displace Te. Then, the abnormality diagnosis means, during the holding operation, has an “open abnormality” occurred in which the drain switching valve and / or the check valve does not move based on the amount of change in the VCT displacement angle within a predetermined period? It is determined whether or not.

保持動作中は、進角室側と遅角室側の両方のドレーン切替弁が正常に動作すれば、両方のドレーン切替弁が閉じるため、両方の逆止弁が正常であれば、両方の逆止弁の逆流防止機能を有効に働かせることができるが、いずれか一方のドレーン切替弁(又は逆止弁)が開いたまま動かない“開異常”が発生すると、保持動作中でも、いずれか一方のドレーン切替弁(又は逆止弁)が開いたままの状態に固定される。このため、保持動作中に、いずれか一方のドレーン切替弁(又は逆止弁)が開異常になっていると、その開異常が発生している側の油圧室の油圧がドレーン切替弁(又は逆止弁)を通して漏れて低下するため、両方の油圧室の油圧のバランスが崩れて、VCT変位角を一定位置に保持できなくなり、VCT変位角の変化量が大きくなる現象が発生する。この特性に着目して、本発明は、保持動作中に、所定期間内のVCT変位角の変化量に基づいてドレーン切替弁及び/又は逆止弁の開異常の有無を判定するようにしたものであり、これによって、エンジン運転中にドレーン切替弁や逆止弁の開異常を早期に検出することができる。   During the holding operation, if both the advance angle chamber side and retard angle chamber side drain switching valves operate normally, both drain switching valves close, so if both check valves are normal, both reverse The backflow prevention function of the stop valve can be activated effectively. However, if an “open abnormality” that does not move while either drain switching valve (or check valve) is open, either The drain switching valve (or check valve) is fixed open. For this reason, if any one of the drain switching valves (or check valves) is abnormally open during the holding operation, the hydraulic pressure in the hydraulic chamber on the side where the abnormal opening occurs is reduced to the drain switching valve (or As a result of leakage through the check valve, the hydraulic pressure balance of both hydraulic chambers is lost, the VCT displacement angle cannot be held at a fixed position, and a variation in the VCT displacement angle increases. Focusing on this characteristic, the present invention determines whether or not there is an abnormal opening of the drain switching valve and / or the check valve based on the amount of change in the VCT displacement angle within a predetermined period during the holding operation. Thus, it is possible to detect an abnormal opening of the drain switching valve or the check valve early during engine operation.

この場合、保持動作中に所定期間内のVCT変位角の変化量を検出する方法は、様々な方法が考えられるが、例えば、請求項2のように、保持動作開始直後のVCT変位角と所定期間経過時のVCT変位角との差を算出し、この差に基づいてドレーン切替弁及び/又は逆止弁の開異常の有無を判定するようにしても良い。このようにすれば、保持動作開始直後のVCT変位角に対して所定期間経過時のVCT変位角が遅角方向に異常に大きくずれている場合と、進角方向に異常に大きくずれている場合とを区別して判定することができるため、ドレーン切替弁(又は逆止弁)の開異常が進角室側と遅角室側のいずれの側に発生しているかを区別して判定することができ、開異常の発生箇所を特定することができる利点がある。   In this case, there are various methods for detecting the amount of change in the VCT displacement angle within the predetermined period during the holding operation. For example, as in claim 2, the VCT displacement angle immediately after the start of the holding operation and the predetermined amount are determined. A difference from the VCT displacement angle when the period elapses may be calculated, and the presence / absence of an abnormal opening of the drain switching valve and / or the check valve may be determined based on this difference. In this case, when the VCT displacement angle after the predetermined period has deviated from the VCT displacement angle immediately after the start of the holding operation is abnormally deviated in the retarded direction and abnormally deviated in the advance direction. Therefore, it is possible to distinguish and determine whether the drain switching valve (or check valve) is open abnormally on the advanced chamber side or the retarded chamber side. There is an advantage that it is possible to specify the location where the open abnormality occurs.

例えば、保持動作中にVCT変位角が遅角方向に異常に大きくずれた場合は、ベーンに対して進角方向に油圧を作用させる進角室側のドレーン切替弁(又は逆止弁)が開異常になっていて、その進角室の油圧がドレーン切替弁(又は逆止弁)を通して漏れて低下していると判断することができる。また、保持動作中にVCT変位角が進角方向に異常に大きくずれた場合は、ベーンに対して遅角方向に油圧を作用させる遅角室側のドレーン切替弁(又は逆止弁)が開異常になっていて、その遅角室の油圧がドレーン切替弁(又は逆止弁)を通して漏れて低下していると判断することができる。   For example, if the VCT displacement angle deviates significantly in the retard direction during the holding operation, the advance chamber side drain switching valve (or check valve) that applies hydraulic pressure to the vane in the advance direction opens. It can be determined that the hydraulic pressure in the advance chamber leaks through the drain switching valve (or check valve) and decreases. Also, if the VCT displacement angle deviates significantly in the advance direction during the holding operation, the retard chamber side drain switching valve (or check valve) that applies hydraulic pressure to the vane in the retard direction opens. It can be determined that the hydraulic pressure in the retarded chamber leaks through the drain switching valve (or check valve) and decreases.

一方、進角室側と遅角室側の両方のドレーン切替弁(又は逆止弁)が共に開異常になっている場合は、保持動作中(特に油圧供給源からの供給油圧が低い低回転領域における保持動作中)に、カム軸のフリクショントルクによるVCT変位角の戻りがカム軸の回転に同期して発生するため、保持動作中にVCT変位角がカム軸の回転に同期して目標変位角を中心にして進角方向と遅角方向に交互に比較的大きく振動するという現象が発生する。   On the other hand, if both the advance angle chamber side and the retard angle chamber side drain switching valves (or check valves) are abnormally open, the holding operation is being performed (especially low supply pressure from the hydraulic supply source is low) During the holding operation in the region), the return of the VCT displacement angle due to the camshaft friction torque occurs in synchronization with the rotation of the camshaft. Therefore, during the holding operation, the VCT displacement angle synchronizes with the rotation of the camshaft. A phenomenon occurs in which vibration is relatively large alternately in the advance direction and the retard direction around the corner.

この特性を考慮して、請求項3のように、保持動作開始直後から所定期間が経過するまでのVCT変位角の最大値と最小値を検出して両者の差を算出し、この差に基づいてドレーン切替弁及び/又は逆止弁の開異常の有無を判定するようにしても良い。この場合、VCT変位角の最大値と最小値との差からVCT変位角の振動範囲の最大幅が分かるため、VCT変位角の最大値と最小値との差(振動範囲の最大幅)が正常範囲を越えていれば、進角室側と遅角室側の両方のドレーン切替弁及び/又は逆止弁が開異常になっていると判断することができる。   In consideration of this characteristic, as in claim 3, the maximum and minimum values of the VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses are detected, and the difference between them is calculated. Based on this difference Then, it may be determined whether there is an abnormal opening of the drain switching valve and / or the check valve. In this case, since the maximum width of the vibration range of the VCT displacement angle is known from the difference between the maximum value and the minimum value of the VCT displacement angle, the difference between the maximum value and the minimum value of the VCT displacement angle (maximum width of the vibration range) is normal. If it exceeds the range, it can be determined that the drain switching valve and / or the check valve on both the advance angle chamber side and the retard angle chamber side are abnormally opened.

また、請求項4のように、保持動作開始直後から所定期間が経過するまでのVCT変位角の最大値と最小値を検出して、保持動作中の目標変位角と前記最大値との偏差及び前記目標変位角と前記最小値との偏差を算出して、これらの2つの偏差に基づいてドレーン切替弁及び/又は逆止弁の開異常の有無を判定するようにしても良い。このようにすれば、目標変位角を基準にしてVCT変位角の進角方向の変化量(偏差)と遅角方向の変化量(偏差)とを比較して、両方向の変化量(偏差)が同程度であれば、進角室側と遅角室側の両方のドレーン切替弁(又は逆止弁)が開異常になっていると判断でき、また、片側の変化量(偏差)のみが異常に大きくなっている場合は、片側のドレーン切替弁(又は逆止弁)のみが開異常になっていると判断することができる。これにより、進角室側と遅角室側の両方の開異常と片側のみの開異常とを区別して判定することができる。   According to a fourth aspect of the present invention, the maximum value and the minimum value of the VCT displacement angle from the start of the holding operation until the predetermined period elapses are detected, and the deviation between the target displacement angle and the maximum value during the holding operation A deviation between the target displacement angle and the minimum value may be calculated, and based on these two deviations, it may be determined whether there is an abnormal opening of the drain switching valve and / or the check valve. In this way, the change amount (deviation) in the advance direction of the VCT displacement angle is compared with the change amount (deviation) in the retard direction based on the target displacement angle, and the change amount (deviation) in both directions is obtained. If it is the same level, it can be judged that the drain switching valve (or check valve) on both the advance angle chamber side and the retard angle chamber side is abnormally open, and only the change (deviation) on one side is abnormal. If it is larger, it can be determined that only the drain switching valve (or check valve) on one side is abnormally open. Thereby, it is possible to distinguish and determine the opening abnormality on both the advance chamber side and the retardation chamber side and the opening abnormality on only one side.

ところで、ドレーン切替弁が閉じたまま動かない“閉異常”が発生すると、その閉異常が発生した油圧室から作動油をドレーンする必要(油圧を抜く必要)がある制御領域でも、そのドレーンが逆止弁によって妨げられてしまうため、目標変位角の変化に追従させてVCT変位角を応答良く変化させることが困難になる。   By the way, if a “closed abnormality” that does not move while the drain switching valve is closed occurs, the drain is reversed even in the control region where it is necessary to drain hydraulic oil from the hydraulic chamber where the closed abnormality has occurred (necessary to release the hydraulic pressure). Since it is hindered by the stop valve, it becomes difficult to change the VCT displacement angle with good response by following the change of the target displacement angle.

この特性に着目して、請求項5のように、目標変位角変化時にVCT変位角の該目標変位角への収束性を判定してその収束性に基づいてドレーン切替弁が閉じたまま動かない閉異常が発生したか否かを判定するようにしても良い。このようにすれば、目標変位角変化時のVCT変位角の目標変位角への収束性が正常範囲を越えて悪化したか否かで、ドレーン切替弁の閉異常の有無を判定することができ、エンジン運転中にドレーン切替弁の閉異常を早期に検出することができる。   Focusing on this characteristic, as in claim 5, when the target displacement angle changes, the convergence of the VCT displacement angle to the target displacement angle is determined, and the drain switching valve does not move while closed based on the convergence. It may be determined whether or not a closing abnormality has occurred. In this way, whether or not the drain switching valve is closed abnormally can be determined based on whether or not the convergence of the VCT displacement angle to the target displacement angle when the target displacement angle changes has deteriorated beyond the normal range. During the engine operation, the drain switching valve closing abnormality can be detected at an early stage.

この場合、請求項6のように、目標変位角とVCT変位角との偏差が所定値以上となる状態が継続する時間を収束性を表すデータとして計測し、当該継続時間に基づいてドレーン切替弁の閉異常の有無を判定するようにしても良い。これにより、収束性を簡単に判定することができる。   In this case, as in claim 6, the time during which the state where the deviation between the target displacement angle and the VCT displacement angle is equal to or greater than a predetermined value is measured as data representing convergence, and the drain switching valve is based on the duration. It may be determined whether or not there is an abnormal closing. Thereby, convergence can be determined easily.

或は、請求項7のように、目標変位角とVCT変位角との偏差が第1の所定値以上となってから当該偏差が前記第1の所定値よりも小さい第2の所定値以下となるまでの経過時間を収束性を表すデータとして計測し、当該経過時間に基づいてドレーン切替弁の閉異常の有無を判定するようにしても良い。このようにしても、収束性を簡単に判定することができる。   Alternatively, as in claim 7, after the deviation between the target displacement angle and the VCT displacement angle becomes equal to or greater than a first predetermined value, the deviation is equal to or less than a second predetermined value that is smaller than the first predetermined value. It is also possible to measure the elapsed time up to the time as data representing convergence and determine whether or not the drain switching valve is closed abnormally based on the elapsed time. Even in this way, the convergence can be easily determined.

ところで、エンジン回転速度が低い領域では、油圧制御弁に供給する油圧(オイルポンプの吐出油圧)が低下して、VCT変位角の応答特性が低下するため、VCT変位角の目標変位角への収束性が低下することは避けられない。   By the way, in the region where the engine speed is low, the hydraulic pressure supplied to the hydraulic control valve (oil pump discharge hydraulic pressure) decreases and the response characteristic of the VCT displacement angle decreases, so the VCT displacement angle converges to the target displacement angle. It is inevitable that the sex will decline.

この点を考慮して、請求項8のように、油圧制御弁への供給油圧が所定値以上になっていることを前提条件として、VCT変位角の目標変位角への収束性を判定するようにすると良い。このようにすれば、低回転領域における低油圧時に収束性の誤判定ひいては閉異常の誤判定を未然に防止することができて、異常診断の精度・信頼性を高めることができる。   Considering this point, as in claim 8, the convergence of the VCT displacement angle to the target displacement angle is determined on the precondition that the hydraulic pressure supplied to the hydraulic control valve is a predetermined value or more. It is good to make it. In this way, it is possible to prevent misjudgment of convergence and, in turn, misjudgment of closing abnormality when the hydraulic pressure is low in the low rotation region, thereby improving the accuracy and reliability of abnormality diagnosis.

この場合、油圧制御弁への供給油圧を検出する油圧センサを設けるようにしても良いが、エンジン回転速度や油温(作動油の粘度)に応じて油圧制御弁への供給油圧(オイルポンプの吐出油圧)が変化することを考慮して、請求項9のように、油圧制御弁への供給油圧が所定値以上になっているか否かをエンジン回転速度及び/又は油温に関する情報(例えば冷却水温)に基づいて判定するようにしても良い。このようにすれば、一般にエンジン制御に用いられる情報を利用して油圧制御弁への供給油圧を推定することができるため、供給油圧を検出する油圧センサを設ける必要がなく、低コスト化の要求を満たすことができる。   In this case, a hydraulic pressure sensor that detects the hydraulic pressure supplied to the hydraulic control valve may be provided, but the hydraulic pressure supplied to the hydraulic control valve (the oil pump's pressure) depends on the engine speed and oil temperature (viscosity of hydraulic oil). In consideration of the change in the discharge hydraulic pressure), as in claim 9, whether or not the hydraulic pressure supplied to the hydraulic control valve is equal to or higher than a predetermined value is information on the engine speed and / or oil temperature (for example, cooling) It may be determined based on (water temperature). In this way, since it is possible to estimate the hydraulic pressure supplied to the hydraulic control valve using information generally used for engine control, it is not necessary to provide a hydraulic sensor for detecting the hydraulic pressure, and there is a demand for cost reduction. Can be met.

本発明は、ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を、油圧制御弁とは別体に設けるようにしても良いが、請求項10のように、油圧切替弁を油圧制御弁に一体化した構成とすると良い。これにより、部品点数削減、低コスト化、コンパクト化の要求を満たすことができる。   In the present invention, the hydraulic pressure switching valve for switching the hydraulic pressure for driving the drain switching valve may be provided separately from the hydraulic control valve. However, as in claim 10, the hydraulic pressure switching valve is integrated with the hydraulic control valve. It is better to have a structured. Thereby, the request | requirement of reduction of a number of parts, cost reduction, and compactness can be satisfy | filled.

本発明は、ベーン式の可変バルブタイミング調整機構の構成が請求項1,5とは異なる構成のものにも適用して実施できる。   The present invention can be applied to a vane type variable valve timing adjusting mechanism having a configuration different from that of the first and fifth aspects.

例えば、請求項11,15のように、ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)の少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、前記VCTへ供給する油圧を制御する第1の油圧制御弁と、前記第1及び第2のドレーン切替弁を駆動する油圧を制御する第2の油圧制御弁とが設けられた構成としても良い。この構成では、VCT変位角を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて進角室及び遅角室からの作動油の逆流を防止するように前記第2の油圧制御弁を制御すると共に、前記VCTへ供給する油圧を制御する第1の油圧制御弁の制御電流を所定の保持電流に制御する。また、前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記第2の油圧制御弁を制御すると共に、前記第1の油圧制御弁の制御電流を制御して前記VCTへ供給する油圧を可変することで前記VCT変位角を目標変位角に向けて変位させる。   For example, as in claims 11 and 15, the vane-type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) is provided in the hydraulic supply oil passage of the advance chamber in at least one vane storage chamber, A first check valve that is hydraulically driven and provided in a first drain oil passage that bypasses the first check valve and a first check valve that prevents backflow of hydraulic oil from the advance chamber A switching valve, a second check valve provided in a hydraulic pressure oil passage of the retard chamber of at least one vane storage chamber to prevent backflow of hydraulic oil from the retard chamber, and the second reverse valve A second drain switching valve that is driven by hydraulic pressure, provided in a second drain oil passage that bypasses the stop valve; a first hydraulic control valve that controls the hydraulic pressure supplied to the VCT; Second hydraulic control for controlling the hydraulic pressure for driving the second drain switching valve It may be configured to provided a valve. In this configuration, during the holding operation for maintaining the VCT displacement angle at the target displacement angle, both the advance chamber side and the retard chamber side drain switching valves are closed to both the advance chamber side and the retard chamber side. The first hydraulic pressure control valve controls the second hydraulic pressure control valve so as to effectively function the check valve to prevent the backflow of hydraulic oil from the advance angle chamber and the retard angle chamber, and also controls the hydraulic pressure supplied to the VCT. The control current of the hydraulic control valve is controlled to a predetermined holding current. Further, during the advance / retard operation for displacing the VCT displacement angle in the advance direction or the retard direction, either the advance chamber side or the retard chamber side drain switching valve according to the displacement direction And the second hydraulic control valve is controlled so that one of the check valves does not function, and the hydraulic pressure supplied to the VCT is varied by controlling the control current of the first hydraulic control valve. Thus, the VCT displacement angle is displaced toward the target displacement angle.

このような構成のVCTに対しても、前記請求項1〜10に係る発明を適用して実施できる(請求項11〜20)。   The invention according to claims 1 to 10 can be applied to the VCT having such a configuration (claims 11 to 20).

また、請求項21,25のように、VCTの少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、前記第1、第2のドレーン切替弁及び前記VCTへ供給する油圧を制御する1つの油圧制御弁とが設けられた構成としても良い。この構成では、VCT変位角を目標変位角に保持する保持動作中には、前記油圧制御弁の制御電流を所定の保持電流に制御して、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて進角室及び遅角室からの作動油の逆流を防止するように制御すると共に、前記VCTへ供給する油圧を制御する。また、前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、前記油圧制御弁の制御電流を制御して、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように制御すると共に、前記VCTへ供給する油圧を可変することで前記VCT変位角を目標変位角に向けて変位させる。   Further, as in claims 21 and 25, a first reverse for preventing the backflow of hydraulic oil from the advance chamber provided in the hydraulic supply oil passage of the advance chamber in at least one vane storage chamber of the VCT. A first drain switching valve that is driven by hydraulic pressure, provided in a first drain oil passage that bypasses the first check valve, and a hydraulic pressure in a retard chamber of at least one vane storage chamber; A second check valve provided in a supply oil passage for preventing a backflow of hydraulic oil from the retard chamber, and a second drain oil passage bypassing the second check valve; A second drain switching valve driven by hydraulic pressure, and the first and second drain switching valves and one hydraulic control valve for controlling the hydraulic pressure supplied to the VCT may be provided. In this configuration, during the holding operation for holding the VCT displacement angle at the target displacement angle, the control current of the hydraulic control valve is controlled to a predetermined holding current, so that both the advance chamber side and the retard chamber side drains are controlled. The VCT is controlled so that the check valve on both the advance chamber side and the retard chamber side functions effectively by preventing the backflow of hydraulic oil from the advance chamber and the retard chamber, by closing the switching valve. The hydraulic pressure supplied to the is controlled. Further, during the advance / retard operation for displacing the VCT displacement angle in the advance direction or the retard direction, the control current of the hydraulic control valve is controlled, and the advance chamber side is controlled according to the displacement direction. The drain switch valve on the retard chamber side is opened so that either check valve does not function, and the hydraulic pressure supplied to the VCT is varied to change the VCT displacement angle to the target displacement angle. Displace toward.

このような構成のVCTに対しても、前記請求項1〜9に係る発明を適用して実施できる(請求項21〜29)。   The invention according to claims 1 to 9 can be applied to the VCT having such a configuration (claims 21 to 29).

以下、本発明を実施するための最良の形態を具体化した4つの実施例1〜4を説明する。   Hereinafter, four Examples 1 to 4 embodying the best mode for carrying out the present invention will be described.

まず、図1に基づいてベーン式の可変バルブタイミング調整機構11の構成を説明する。可変バルブタイミング調整機構11のハウジング12は、図示しない吸気側又は排気側のカム軸の外周に回動自在に支持されたスプロケットにボルト13で締め付け固定されている。これにより、エンジンのクランク軸の回転がタイミングチェーンを介してスプロケットとハウジング12に伝達され、スプロケットとハウジング12がクランク軸と同期して回転する。ハウジング12内には、ベーンロータ14が相対回動自在に収納され、このベーンロータ14がボルト15によりカム軸の一端部に締め付け固定されている。   First, the configuration of the vane variable valve timing adjusting mechanism 11 will be described with reference to FIG. The housing 12 of the variable valve timing adjustment mechanism 11 is fastened and fixed with bolts 13 to a sprocket that is rotatably supported on the outer periphery of an intake-side or exhaust-side camshaft (not shown). Thereby, the rotation of the crankshaft of the engine is transmitted to the sprocket and the housing 12 via the timing chain, and the sprocket and the housing 12 rotate in synchronization with the crankshaft. A vane rotor 14 is accommodated in the housing 12 so as to be relatively rotatable, and the vane rotor 14 is fastened and fixed to one end portion of the camshaft by a bolt 15.

ハウジング12の内部には、ベーンロータ14の外周部の複数のベーン17を進角方向及び遅角方向に相対回動自在に収納する複数のベーン収納室16が形成され、各ベーン収納室16が各ベーン17によって進角室18と遅角室19とに区画されている。   Inside the housing 12, a plurality of vane storage chambers 16 for storing a plurality of vanes 17 on the outer periphery of the vane rotor 14 so as to be relatively rotatable in the advance angle direction and the retard angle direction are formed. The vane 17 is divided into an advance chamber 18 and a retard chamber 19.

進角室18と遅角室19に所定圧以上の油圧が供給された状態では、進角室18と遅角室19の油圧でベーン17が保持されて、クランク軸の回転によるハウジング12の回転が油圧を介してベーンロータ14に伝達され、このベーンロータ14と一体的にカム軸が回転駆動される。エンジン運転中は、進角室18と遅角室19の油圧を油圧制御弁21で制御してハウジング12に対してベーンロータ14を相対回動させることで、クランク軸に対するカム軸の変位角(カム軸位相)を制御して吸気バルブ(又は排気バルブ)のバルブタイミングを可変する。   In a state where the hydraulic pressure of a predetermined pressure or higher is supplied to the advance chamber 18 and the retard chamber 19, the vane 17 is held by the hydraulic pressure of the advance chamber 18 and the retard chamber 19, and the housing 12 is rotated by the rotation of the crankshaft. Is transmitted to the vane rotor 14 via hydraulic pressure, and the camshaft is rotationally driven integrally with the vane rotor 14. During engine operation, the hydraulic pressure in the advance chamber 18 and the retard chamber 19 is controlled by the hydraulic control valve 21 to rotate the vane rotor 14 relative to the housing 12, so that the cam shaft displacement angle (cam The valve timing of the intake valve (or exhaust valve) is varied by controlling the axial phase.

また、いずれか1つのベーン17の両側部には、ハウジング12に対するベーンロータ14の相対回動範囲を規制するストッパ部22,23が形成され、このストッパ部22,23によってカム軸の変位角(カム軸位相)の最遅角位置と最進角位置が規制されている。また、いずれか1つのベーン17には、エンジン停止時等にカム軸の変位角を所定のロック位置でロックするためのロックピン24が設けられ、このロックピン24がハウジング12に設けられたロック穴(図示せず)に嵌り込むことで、カム軸の変位角が所定のロック位置でロックされる。このロック位置は、始動に適した位置(例えばカム軸変位角の調整可能範囲の略中間位置)に設定されている。   Further, stopper portions 22 and 23 for restricting the relative rotation range of the vane rotor 14 with respect to the housing 12 are formed on both side portions of any one vane 17, and the cam shaft displacement angle (cam) is defined by the stopper portions 22 and 23. The most retarded angle position and the most advanced angle position (axis phase) are regulated. In addition, any one vane 17 is provided with a lock pin 24 for locking the cam shaft displacement angle at a predetermined lock position when the engine is stopped, and the lock pin 24 is provided on the housing 12. By fitting into a hole (not shown), the displacement angle of the camshaft is locked at a predetermined locking position. This lock position is set to a position suitable for starting (for example, a substantially intermediate position in the adjustable range of the cam shaft displacement angle).

可変バルブタイミング調整機構11の油圧制御回路には、オイルパン26内のオイル(作動油)がオイルポンプ27により油圧制御弁21を介して供給される。この油圧制御回路は、油圧制御弁21の進角圧ポートから吐出されるオイルを複数の進角室18に供給する油圧供給油路28と、油圧制御弁21の遅角圧ポートから吐出されるオイルを複数の遅角室19に供給する油圧供給油路29とが設けられている。   Oil (operating oil) in the oil pan 26 is supplied to the hydraulic control circuit of the variable valve timing adjustment mechanism 11 by the oil pump 27 via the hydraulic control valve 21. The hydraulic control circuit is discharged from a hydraulic supply oil passage 28 that supplies oil discharged from the advance pressure port of the hydraulic control valve 21 to the plurality of advance chambers 18 and a retard pressure port of the hydraulic control valve 21. A hydraulic supply oil passage 29 for supplying oil to the plurality of retarding chambers 19 is provided.

そして、進角室18の油圧供給油路28と遅角室19の油圧供給油路29には、それぞれ各室18,19からの作動油の逆流を防止する逆止弁30,31が設けられている。本実施例では、1つのベーン収納室16の進角室18と遅角室19の油圧供給油路28,29についてのみ逆止弁30,31が設けられている。勿論、2つ以上のベーン収納室16の進角室18と遅角室19の油圧供給油路28,29にそれぞれ逆止弁30,31を設ける構成としても良い。   The hydraulic supply oil passage 28 of the advance chamber 18 and the hydraulic supply oil passage 29 of the retard chamber 19 are provided with check valves 30 and 31 for preventing backflow of hydraulic oil from the chambers 18 and 19, respectively. ing. In this embodiment, check valves 30 and 31 are provided only for the hydraulic supply oil passages 28 and 29 of the advance chamber 18 and the retard chamber 19 of one vane storage chamber 16. Of course, the check valves 30 and 31 may be provided in the hydraulic supply oil passages 28 and 29 in the advance chamber 18 and the retard chamber 19 of the two or more vane storage chambers 16, respectively.

各室18,19の油圧供給油路28,29には、それぞれ逆止弁30,31をバイパスするドレーン油路32,33が並列に設けられ、各ドレーン油路32,33には、それぞれドレーン切替弁34,35が設けられている。各ドレーン切替弁34,35は、油圧制御弁21から供給される油圧(パイロット圧)で閉弁方向に駆動されるスプール弁により構成され、油圧が加えられないときには、スプリング41,42によって開弁位置に保持される。ドレーン切替弁34,35が開弁すると、ドレーン油路32,33が開放されて、逆止弁30,31の機能が働かない状態となる。ドレーン切替弁34,35が閉弁すると、ドレーン油路32,33が閉鎖されて、逆止弁30,31の機能が有効に働く状態となり、油圧室18,19からのオイルの逆流が防止されて油圧室18,19の油圧が保持される。   Drain oil passages 32 and 33 that bypass the check valves 30 and 31 are provided in parallel in the hydraulic supply oil passages 28 and 29 of the chambers 18 and 19, respectively. The drain oil passages 32 and 33 are respectively provided with drains. Switching valves 34 and 35 are provided. Each drain switching valve 34, 35 is constituted by a spool valve that is driven in the valve closing direction by the hydraulic pressure (pilot pressure) supplied from the hydraulic control valve 21, and is opened by the springs 41, 42 when no hydraulic pressure is applied. Held in position. When the drain switching valves 34 and 35 are opened, the drain oil passages 32 and 33 are opened, and the check valves 30 and 31 do not function. When the drain switching valves 34 and 35 are closed, the drain oil passages 32 and 33 are closed, and the functions of the check valves 30 and 31 are effectively activated, so that backflow of oil from the hydraulic chambers 18 and 19 is prevented. Thus, the hydraulic pressure in the hydraulic chambers 18 and 19 is maintained.

各ドレーン切替弁34,35は、電気的な配線が不要であるため、逆止弁30,31と共に可変バルブタイミング調整機構11内部のベーンロータ14にコンパクトに組み付けられている。これにより、各油圧室18,19の近くにドレーン切替弁34,35が配置され、進角・遅角動作時に各ドレーン油路32,33を各油圧室18,19の近くで応答良く開放/閉鎖できるようになっている。   Since the drain switching valves 34 and 35 do not require electrical wiring, the drain switching valves 34 and 35 are compactly assembled together with the check valves 30 and 31 to the vane rotor 14 inside the variable valve timing adjustment mechanism 11. As a result, the drain switching valves 34 and 35 are arranged near the hydraulic chambers 18 and 19, and the drain oil passages 32 and 33 are opened with good response near the hydraulic chambers 18 and 19 during advance / retard operation. It can be closed.

一方、油圧制御弁21は、リニアソレノイド36によって駆動されるスプール弁により構成され、進角室18と遅角室19に供給する油圧を制御する進角/遅角油圧制御機能37と、各ドレーン切替弁34,35を駆動する油圧を切り替えるドレーン切替制御機能38とが一体化されている。この油圧制御弁21のリニアソレノイド36に通電する電流値(制御デューティ)は、エンジン制御回路(以下「ECU」という)43によって制御される。   On the other hand, the hydraulic control valve 21 is constituted by a spool valve driven by a linear solenoid 36, and an advance / retarding hydraulic control function 37 for controlling the hydraulic pressure supplied to the advance chamber 18 and the retard chamber 19, and each drain. A drain switching control function 38 for switching the hydraulic pressure for driving the switching valves 34 and 35 is integrated. A current value (control duty) energized to the linear solenoid 36 of the hydraulic control valve 21 is controlled by an engine control circuit (hereinafter referred to as “ECU”) 43.

このECU43は、クランク角センサ44及びカム角センサ45の出力信号に基づいて吸気バルブ(又は排気バルブ)の実バルブタイミング(実変位角)を演算すると共に、吸気圧センサ、水温センサ等のエンジン運転状態を検出する各種センサの出力に基づいて吸気バルブ(又は排気バルブ)の目標バルブタイミング(目標変位角)を演算する。そして、ECU43は、実バルブタイミングを目標バルブタイミングに一致させるように可変バルブタイミング調整機構11の油圧制御弁21の制御電流値をフィードバック制御(又はフィードフォワード制御)する。これにより、進角室18と遅角室19の油圧を制御してハウジング12に対してベーンロータ14を相対回動させることで、カム軸の変位角を変化させて実バルブタイミングを目標バルブタイミングに一致させる。   The ECU 43 calculates the actual valve timing (actual displacement angle) of the intake valve (or exhaust valve) based on the output signals of the crank angle sensor 44 and the cam angle sensor 45, and operates the engine such as an intake pressure sensor and a water temperature sensor. The target valve timing (target displacement angle) of the intake valve (or exhaust valve) is calculated based on the outputs of various sensors that detect the state. Then, the ECU 43 performs feedback control (or feedforward control) of the control current value of the hydraulic control valve 21 of the variable valve timing adjustment mechanism 11 so that the actual valve timing coincides with the target valve timing. As a result, the oil pressure in the advance chamber 18 and the retard chamber 19 is controlled to rotate the vane rotor 14 relative to the housing 12, thereby changing the cam shaft displacement angle and setting the actual valve timing to the target valve timing. Match.

ところで、エンジン運転中に吸気バルブや排気バルブを開閉駆動するときに、吸気バルブや排気バルブからカム軸が受けるトルク変動がベーンロータ14に伝わり、それによって、ベーンロータ14に対して遅角方向及び進角方向へのトルク変動が作用する。これにより、ベーンロータ14が遅角方向にトルク変動を受けると、進角室18の作動油が進角室18から押し出される圧力を受け、ベーンロータ14が進角方向にトルク変動を受けると、遅角室19の作動油が遅角室19から押し出される圧力を受けることになる。このため、油圧供給源であるオイルポンプ27の吐出油圧が低くなる低回転領域では、逆止弁30,31が無いと、進角室18に油圧を供給してカム軸の変位角を進角させようとしても、図3に点線で示すように、ベーンロータ14が上記トルク変動により遅角方向に押し戻されてしまい、目標変位角に到達するまでの応答時間が長くなってしまうという問題があった。   By the way, when the intake valve and the exhaust valve are driven to open and close during engine operation, the torque fluctuation received by the camshaft from the intake valve and the exhaust valve is transmitted to the vane rotor 14, thereby causing the retard direction and advance angle with respect to the vane rotor 14. Torque fluctuation in the direction acts. Thus, when the vane rotor 14 receives torque fluctuation in the retarding direction, the hydraulic oil in the advance chamber 18 receives pressure that is pushed out from the advance chamber 18, and when the vane rotor 14 receives torque fluctuation in the advance direction, the retard angle The hydraulic oil in the chamber 19 receives a pressure pushed out from the retard chamber 19. For this reason, in the low rotation region where the discharge hydraulic pressure of the oil pump 27 as the hydraulic pressure supply source is low, if there is no check valve 30, 31, the hydraulic pressure is supplied to the advance chamber 18 to advance the displacement angle of the camshaft. Even when trying to do so, as indicated by the dotted line in FIG. 3, the vane rotor 14 is pushed back in the retarded direction due to the torque fluctuation, and there is a problem that the response time until reaching the target displacement angle becomes long. .

これに対して、本実施例1では、進角室18の油圧供給油路28と遅角室19の油圧供給油路29に、それぞれ各室18,19からのオイルの逆流を防止する逆止弁30,31を設けると共に、各室18,19の油圧供給油路28,29に、それぞれ逆止弁30,31をバイパスするドレーン油路32,33を並列に設け、各ドレーン油路32,33に、それぞれドレーン切替弁34,35を設けた構成となっている。これにより、図2に示すように、遅角動作、保持動作、進角動作に応じて各室18,19の油圧が次のように制御される。   On the other hand, in the first embodiment, a check that prevents backflow of oil from the chambers 18 and 19 into the hydraulic supply oil passage 28 of the advance chamber 18 and the hydraulic supply oil passage 29 of the retard chamber 19 respectively. In addition to providing the valves 30 and 31, the hydraulic oil supply passages 28 and 29 of the chambers 18 and 19 are provided in parallel with drain oil passages 32 and 33 that bypass the check valves 30 and 31, respectively. 33 is provided with drain switching valves 34 and 35, respectively. As a result, as shown in FIG. 2, the hydraulic pressures in the chambers 18 and 19 are controlled as follows according to the retarding operation, holding operation, and advancement operation.

[遅角動作]
実バルブタイミングを遅角側の目標バルブタイミングに向けて遅角させる遅角動作中は、進角室18のドレーン切替弁34への油圧供給を停止することで、進角室18のドレーン切替弁34を開弁して進角室18の逆止弁30を機能させない状態にすると共に、遅角室19のドレーン切替弁35へ油圧制御弁21から油圧を加えることで、遅角室19のドレーン切替弁35を閉弁して遅角室19の逆止弁31を機能させる状態にする。これにより、低油圧時でも、ベーンロータ14の進角方向へのトルク変動に対して遅角室19からのオイルの逆流を逆止弁31により防止しながら効率良く遅角室19に油圧を供給して遅角応答性を向上させる。
[Delay operation]
During the retard operation that retards the actual valve timing toward the target valve timing on the retard side, the hydraulic pressure supply to the drain switching valve 34 in the advance chamber 18 is stopped, so that the drain switching valve in the advance chamber 18 is stopped. 34 is opened so that the check valve 30 of the advance chamber 18 does not function, and the hydraulic pressure is applied from the hydraulic control valve 21 to the drain switching valve 35 of the retard chamber 19, so that the drain of the retard chamber 19 is drained. The switching valve 35 is closed to make the check valve 31 of the retard chamber 19 function. As a result, even when the hydraulic pressure is low, the hydraulic pressure is efficiently supplied to the retarded angle chamber 19 while preventing the backflow of oil from the retarded angle chamber 19 by the check valve 31 against the torque fluctuation in the advanced angle direction of the vane rotor 14. To improve retardation response.

[保持動作]
実バルブタイミングを目標バルブタイミングに保持する保持動作中は、進角室18と遅角室19の両方のドレーン切替弁34,35へ油圧制御弁21から油圧を加えることで、両方のドレーン切替弁34,35を共に閉弁して、進角室18と遅角室19の両方の逆止弁30,31を機能させる状態にする。この状態では、吸気バルブや排気バルブからカム軸が受けるトルク変動によってベーンロータ14に対して遅角方向及び進角方向へのトルク変動が作用しても、進角室18と遅角室19の両方のオイルの逆流を逆止弁31により防止して、ベーン17をその両側から保持する油圧が低下するのを防止して、保持安定性を向上させる。
[Holding operation]
During the holding operation for maintaining the actual valve timing at the target valve timing, both the drain switching valves are provided by applying hydraulic pressure from the hydraulic control valve 21 to the drain switching valves 34 and 35 of both the advance chamber 18 and the retard chamber 19. Both the valves 34 and 35 are closed so that the check valves 30 and 31 of both the advance chamber 18 and the retard chamber 19 are made to function. In this state, even if torque fluctuations acting on the vane rotor 14 in the retarding direction and the advancement direction act on the vane rotor 14 due to torque fluctuations received by the camshaft from the intake valve or the exhaust valve, The reverse flow of the oil is prevented by the check valve 31, and the hydraulic pressure for holding the vane 17 from both sides is prevented from being lowered to improve the holding stability.

[進角動作]
実バルブタイミングを進角側の目標バルブタイミングに向けて進角させる進角動作中は、進角室18のドレーン切替弁34へ油圧制御弁21から油圧を加えることで、進角室18のドレーン切替弁34を閉弁して進角室18の逆止弁30を機能させる状態にすると共に、遅角室19のドレーン切替弁35への油圧供給を停止することで、遅角室19のドレーン切替弁35を開弁して遅角室19の逆止弁31を機能させない状態にする。これにより、低油圧時でも、ベーンロータ14の遅角方向へのトルク変動に対して進角室18からのオイルの逆流を逆止弁30により防止しながら効率良く油圧を進角室18に供給して進角応答性を向上させる。
[Advance operation]
During the advance operation for advancing the actual valve timing toward the target valve timing on the advance side, the hydraulic pressure is applied from the hydraulic control valve 21 to the drain switching valve 34 of the advance chamber 18, thereby draining the advance chamber 18. The switching valve 34 is closed to make the check valve 30 of the advance chamber 18 function, and the hydraulic pressure supply to the drain switching valve 35 of the retard chamber 19 is stopped, so that the drain of the retard chamber 19 is stopped. The switching valve 35 is opened so that the check valve 31 of the retard chamber 19 does not function. Thus, even when the hydraulic pressure is low, the hydraulic pressure is efficiently supplied to the advance chamber 18 while preventing the backflow of oil from the advance chamber 18 by the check valve 30 against the torque fluctuation in the retard angle direction of the vane rotor 14. To improve the lead angle response.

次に、可変バルブタイミング調整機構11の応答特性(以下「VCT応答特性」という)について図4を用いて説明する。図4は、油圧制御弁21の制御電流値(以下「OCV電流値」という)と可変バルブタイミング調整機構11の応答速度(以下「VCT応答速度」という)との関係を測定して得られたVCT応答特性の一例を示している。   Next, response characteristics (hereinafter referred to as “VCT response characteristics”) of the variable valve timing adjustment mechanism 11 will be described with reference to FIG. FIG. 4 is obtained by measuring the relationship between the control current value of the hydraulic control valve 21 (hereinafter referred to as “OCV current value”) and the response speed of the variable valve timing adjustment mechanism 11 (hereinafter referred to as “VCT response speed”). An example of a VCT response characteristic is shown.

本実施例1では、進角室18と遅角室19の両方に逆止弁30,31とドレーン切替弁34,35を設けているため、OCV電流値の変化に対してVCT応答速度がリニアに変化せず、ドレーン切替弁34,35の開弁/閉弁が切り替えられることによりVCT応答速度が2箇所で急変する。図4のVCT応答特性において、遅角側のVCT応答速度の急変点は、進角室18のドレーン切替弁34が閉弁から開弁に切り替わる点であり、進角側のVCT応答速度の急変点は、遅角室19のドレーン切替弁35が閉弁から開弁に切り替わる点である。保持動作は、遅角側のVCT応答速度急変点と進角側のVCT応答速度急変点との間のVCT応答速度変化の勾配が小さい領域で行われる。   In the first embodiment, since the check valves 30, 31 and the drain switching valves 34, 35 are provided in both the advance chamber 18 and the retard chamber 19, the VCT response speed is linear with respect to the change in the OCV current value. The VCT response speed changes suddenly at two locations by switching the opening / closing of the drain switching valves 34 and 35 without changing to the above. In the VCT response characteristics of FIG. 4, the sudden change point of the retarded VCT response speed is the point at which the drain switching valve 34 of the advance chamber 18 is switched from the closed valve to the open valve, and the sudden change in the advanced VCT response speed. The point is that the drain switching valve 35 of the retarding chamber 19 is switched from closed to open. The holding operation is performed in a region where the gradient of the VCT response speed change between the retard side VCT response speed sudden change point and the advance side VCT response speed sudden change point is small.

ところで、使用年数が長くなると、ドレーン切替弁34,35や逆止弁30,31に異物が噛み込まれたりそれらの弁体が固着したりしてドレーン切替弁34,35や逆止弁30,31が開いたまま動かない“開異常”が発生する可能性がある。このような開異常は、エンジン性能を悪化させる原因となるため、できるだけ早期に検出して運転者に知らせて修理を促す必要がある。   By the way, when the years of use become longer, foreign matter is caught in the drain switching valves 34 and 35 and the check valves 30 and 31, or those valve bodies are fixed, so that the drain switching valves 34 and 35 and the check valves 30, There is a possibility that an “open abnormality” that does not move while 31 is open may occur. Such an open abnormality causes deterioration of the engine performance, so it is necessary to detect it as early as possible and inform the driver to promote repair.

そこで、本実施例1では、次のような方法で開異常を検出する。
保持動作中は、進角室18側と遅角室19側の両方のドレーン切替弁34,35が正常に動作すれば、両方のドレーン切替弁34,35が閉じるため、両方の逆止弁30,31が正常であれば、両方の逆止弁30,31の逆流防止機能を有効に働かせることができるが、いずれか一方のドレーン切替弁34,35(又は逆止弁30,31)が開いたまま動かない開異常になると、保持動作中でも、いずれか一方のドレーン切替弁34,35(又は逆止弁30,31)が開いたままの状態に固定される。このため、保持動作中に、いずれか一方のドレーン切替弁34,35(又は逆止弁30,31)が開異常になっていると、その開異常が発生している側の油圧室18,19の油圧がドレーン切替弁34,35(又は逆止弁30,31)を通して漏れて低下するため、両方の油圧室18,19の油圧のバランスが崩れて、VCT変位角を一定位置に保持できなくなり、VCT変位角の変化量が大きくなる現象が発生する。
Therefore, in the first embodiment, the open abnormality is detected by the following method.
During the holding operation, if both the drain switching valves 34 and 35 on the advance chamber 18 side and the retard chamber 19 side operate normally, both the drain switching valves 34 and 35 are closed. , 31 can operate the check flow prevention function of both check valves 30, 31 effectively, but one of the drain switching valves 34, 35 (or check valves 30, 31) is open. If an open abnormality occurs that does not move, the drain switching valves 34 and 35 (or the check valves 30 and 31) remain open even during the holding operation. For this reason, if any one of the drain switching valves 34, 35 (or the check valves 30, 31) is abnormally open during the holding operation, the hydraulic chamber 18, Since the hydraulic pressure of 19 leaks through the drain switching valves 34 and 35 (or the check valves 30 and 31) and decreases, the hydraulic pressure balance of both the hydraulic chambers 18 and 19 is lost, and the VCT displacement angle can be held at a fixed position. A phenomenon occurs in which the amount of change in the VCT displacement angle increases.

この特性に着目して、本実施例1では、保持動作中に、所定期間内のVCT変位角の変化量が正常範囲を越えたか否かで、ドレーン切替弁34,35及び/又は逆止弁30,31が開異常になっているか否かを判定するようにしている。
この場合、保持動作中に所定期間内のVCT変位角の変化量を検出する方法は、様々な方法が考えられるが、例えば、次のような方法が考えられる。
Focusing on this characteristic, in the first embodiment, the drain switching valves 34 and 35 and / or the check valve are determined depending on whether or not the amount of change in the VCT displacement angle within a predetermined period exceeds the normal range during the holding operation. Whether or not 30 and 31 are abnormally opened is determined.
In this case, various methods can be considered as a method of detecting the amount of change in the VCT displacement angle within a predetermined period during the holding operation. For example, the following method can be considered.

[保持動作中のVCT変位角変化量の検出方法(1)]
保持動作開始直後のVCT変位角と所定期間経過時のVCT変位角との差を算出し、この差に基づいてドレーン切替弁34,35及び/又は逆止弁30,31の開異常の有無を判定する。このようにすれば、保持動作開始直後のVCT変位角に対して所定期間経過時のVCT変位角が遅角方向に異常に大きくずれている場合と、進角方向に異常に大きくずれている場合とを区別して判定して、ドレーン切替弁34,35(又は逆止弁30,31)の開異常が進角室18側と遅角室19側のいずれの側に発生しているかを区別して判定することができ、開異常の発生箇所を特定することができる。
[Detection method of change amount of VCT displacement angle during holding operation (1)]
The difference between the VCT displacement angle immediately after the start of the holding operation and the VCT displacement angle when a predetermined period has elapsed is calculated, and based on this difference, whether or not the drain switching valves 34 and 35 and / or the check valves 30 and 31 are abnormally opened is determined. judge. In this case, when the VCT displacement angle after the predetermined period has deviated from the VCT displacement angle immediately after the start of the holding operation is abnormally deviated in the retarded direction and abnormally deviated in the advance direction. And the drain switching valves 34 and 35 (or the check valves 30 and 31) are distinguished from each other on the side of the advance chamber 18 side or the retard chamber 19 side. It is possible to determine, and it is possible to specify the location where the open abnormality occurs.

例えば、図5に一点鎖線で示すように、保持動作中のVCT変位角が遅角方向に異常に大きくずれれば、ベーン17に対して進角方向に油圧を作用させる進角室18側のドレーン切替弁34(又は逆止弁30)が開異常になっていて、その進角室18の油圧がドレーン切替弁34(又は逆止弁30)を通して漏れて低下していると判断することができる。また、保持動作中のVCT変位角が進角方向に異常に大きくずれれば、ベーン17に対して遅角方向に油圧を作用させる遅角室19側のドレーン切替弁35(又は逆止弁31)が開異常になっていて、その遅角室19の油圧がドレーン切替弁35(又は逆止弁31)を通して漏れて低下していると判断することができる。   For example, as indicated by a one-dot chain line in FIG. 5, if the VCT displacement angle during the holding operation deviates significantly in the retard direction, the advance chamber 18 side that applies hydraulic pressure to the vane 17 in the advance direction will be described. It may be determined that the drain switching valve 34 (or check valve 30) is abnormally open and the hydraulic pressure in the advance chamber 18 leaks through the drain switching valve 34 (or check valve 30) and decreases. it can. Further, if the VCT displacement angle during the holding operation is abnormally greatly shifted in the advance direction, the drain switching valve 35 (or the check valve 31) on the retard chamber 19 side that applies the hydraulic pressure to the vane 17 in the retard direction. ) Is an abnormal opening, and it can be determined that the hydraulic pressure in the retard chamber 19 leaks and decreases through the drain switching valve 35 (or the check valve 31).

[保持動作中のVCT変位角変化量の検出方法(2)]
進角室18側と遅角室19側の両方のドレーン切替弁34,35(又は逆止弁30,31)が共に開異常になっている場合は、保持動作中(特にオイルポンプ27からの供給油圧が低い低回転領域における保持動作中)に、カム軸のフリクショントルクによるVCT変位角の戻りがカム軸の回転に同期して発生するため、図6に示すように、保持動作中にVCT変位角がカム軸の回転に同期して目標変位角を中心にして進角方向と遅角方向に交互に比較的大きく振動するという現象が発生する。
[Detection method of change amount of VCT displacement angle during holding operation (2)]
If both the drain switching valves 34 and 35 (or the check valves 30 and 31) on both the advance chamber 18 side and the retard chamber 19 side are abnormally open, the holding operation is being performed (particularly from the oil pump 27). Since the return of the VCT displacement angle due to the camshaft friction torque occurs in synchronization with the rotation of the camshaft during the holding operation in the low rotation region where the supply hydraulic pressure is low), as shown in FIG. A phenomenon occurs in which the displacement angle vibrates relatively large alternately in the advance direction and the retard direction around the target displacement angle in synchronization with the rotation of the camshaft.

この特性を考慮して、保持動作開始直後から所定期間が経過するまでのVCT変位角の最大値と最小値を検出して両者の差を算出し、この差に基づいてドレーン切替弁34,35及び/又は逆止弁30,31の開異常の有無を判定する。この場合、VCT変位角の最大値と最小値との差からVCT変位角の振動範囲の最大幅が分かるため、VCT変位角の最大値と最小値との差(振動範囲の最大幅)が正常範囲を越えていれば、進角室18側と遅角室19側の両方のドレーン切替弁34,35及び/又は逆止弁30,31が開異常になっていると判断することができる。   Considering this characteristic, the maximum and minimum values of the VCT displacement angle from immediately after the start of the holding operation until the elapse of a predetermined period are detected and the difference between them is calculated, and the drain switching valves 34 and 35 are calculated based on this difference. And / or the presence or absence of abnormal opening of the check valves 30 and 31 is determined. In this case, since the maximum width of the vibration range of the VCT displacement angle is known from the difference between the maximum value and the minimum value of the VCT displacement angle, the difference between the maximum value and the minimum value of the VCT displacement angle (maximum width of the vibration range) is normal. If it exceeds the range, it can be determined that the drain switching valves 34 and 35 and / or the check valves 30 and 31 on both the advance chamber 18 side and the retard chamber 19 side are abnormally opened.

[保持動作中のVCT変位角変化量の検出方法(3)]
保持動作開始直後から所定期間が経過するまでのVCT変位角の最大値と最小値を検出して、保持動作中の目標変位角と前記最大値との偏差及び前記目標変位角と前記最小値との偏差を算出して、これらの2つの偏差に基づいてドレーン切替弁34,35及び/又は逆止弁30,31の開異常の有無を判定する。このようにすれば、目標変位角を基準にしてVCT変位角の進角方向の変化量(偏差)と遅角方向の変化量(偏差)とを比較して、両方向の変化量(偏差)が同程度であれば、進角室18側と遅角室19側の両方のドレーン切替弁34,35(又は逆止弁30,31)が開異常になっていると判断でき、また、片側の変化量(偏差)のみが異常に大きくなっている場合は、片側のドレーン切替弁34,35(又は逆止弁30,31)のみが開異常になっていると判断することができる。これにより、進角室18側と遅角室19側の両方の開異常と片側のみの開異常とを区別して判定することができる。
[Method of detecting change amount of VCT displacement angle during holding operation (3)]
The maximum value and the minimum value of the VCT displacement angle from the start of the holding operation until the predetermined period elapses are detected, the deviation between the target displacement angle and the maximum value during the holding operation, the target displacement angle and the minimum value, And determining whether or not the drain switching valves 34 and 35 and / or the check valves 30 and 31 are open abnormally based on these two deviations. In this way, the change amount (deviation) in the advance direction of the VCT displacement angle is compared with the change amount (deviation) in the retard direction based on the target displacement angle, and the change amount (deviation) in both directions is obtained. If the degree is the same, it can be determined that the drain switching valves 34 and 35 (or the check valves 30 and 31) on both the advance chamber 18 side and the retard chamber 19 side are abnormally opened, When only the amount of change (deviation) is abnormally large, it can be determined that only one of the drain switching valves 34 and 35 (or the check valves 30 and 31) is abnormally opened. Thereby, it is possible to distinguish and determine the opening abnormality on both the advance chamber 18 side and the retardation chamber 19 side and the opening abnormality on only one side.

以下の説明では、説明の便宜上、「逆止弁」と「ドレーン切替弁」との組み合わせを「逆止弁機構」と表記し、「逆止弁及び/又はドレーン切替弁の開異常」を「逆止弁機構の開異常」と表記する。   In the following description, for convenience of explanation, the combination of “check valve” and “drain switching valve” is referred to as “check valve mechanism”, and “opening abnormality of check valve and / or drain switching valve” is “ It is written as “Check valve mechanism open abnormality”.

本実施例1では、ECU43によって図7乃至図9の異常診断ルーチンを実行することで、上記3つのVCT変位角変化量の検出方法(1)〜(3)を組み合わせて保持動作中の所定期間のVCT変位角変化量を判定してドレーン切替弁34,35及び/又は逆止弁30,31の開異常の有無を次のようにして判定する。   In the first embodiment, the ECU 43 executes the abnormality diagnosis routines of FIGS. 7 to 9 to combine the above three VCT displacement angle change detection methods (1) to (3) for a predetermined period during the holding operation. The amount of change in the VCT displacement angle is determined to determine whether the drain switching valves 34 and 35 and / or the check valves 30 and 31 are open abnormally as follows.

図7乃至図9の異常診断ルーチンは、エンジン運転中にエンジン回転速度の演算タイミング毎(例えば4気筒エンジンであれば180℃A毎)に実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、現在のエンジン運転条件(エンジン回転速度、吸気圧等)に応じた目標変位角vvttgt(目標バルブタイミング)をマップ等により演算する。この後、ステップ102に進み、現在のVCT変位角vvtと目標変位角vvttgtとの偏差が小さくなるようにOCV電流値(制御デューティdutyvvt)をフィードバック制御(F/B制御)する。   The abnormality diagnosis routines of FIGS. 7 to 9 are executed at every engine rotation speed calculation timing (for example, every 180 ° C. for a 4-cylinder engine) during engine operation, and serve as abnormality diagnosis means in the claims. Play a role. When this routine is started, first, at step 101, a target displacement angle vvttgt (target valve timing) corresponding to the current engine operating conditions (engine speed, intake pressure, etc.) is calculated from a map or the like. Thereafter, the process proceeds to step 102, where the OCV current value (control duty duty vvt) is feedback-controlled (F / B control) so that the deviation between the current VCT displacement angle vvt and the target displacement angle vvttgt becomes small.

この後、ステップ103に進み、異常診断実行中フラグxvvtchkが異常診断実行中でないことを意味する“0”にクリアされているか否かを判定し、異常診断実行中フラグxvvtchkが“1”にセットされていれば、異常診断実行中であると判断して、ステップ105の判定処理に進む。   Thereafter, the process proceeds to step 103, where it is determined whether or not the abnormality diagnosis execution flag xvvtchk is cleared to “0” which means that the abnormality diagnosis is not being executed, and the abnormality diagnosis execution flag xvvtchk is set to “1”. If so, it is determined that an abnormality diagnosis is being performed, and the process proceeds to the determination process of step 105.

これに対して、上記ステップ103で、異常診断実行中フラグxvvtchkが“0”にクリアされていると判定されれば、異常診断実行中ではないと判断して、ステップ104に進み、現在の目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値|vvttgt−vvt|が保持動作判定しきい値K1以下(例えば1deg以下)であるか否かを判定する。その結果、当該偏差の絶対値|vvttgt−vvt|が保持動作判定しきい値K1よりも大きいと判定されれば、保持動作実行条件が成立していないと判断して、ステップ106に進み、異常診断実行中フラグxvvtchkを“0”にクリアして、図8のステップ117に進む。   On the other hand, if it is determined in step 103 that the abnormality diagnosis in progress flag xvvtchk is cleared to “0”, it is determined that the abnormality diagnosis is not in progress, and the process proceeds to step 104, where the current target is set. It is determined whether or not the absolute value | vvttgt−vvt | of the deviation between the displacement angle vvttgt and the VCT displacement angle vvt is equal to or less than the holding operation determination threshold value K1 (for example, 1 deg or less). As a result, if it is determined that the absolute value | vvttgt−vvt | of the deviation is larger than the holding operation determination threshold value K1, it is determined that the holding operation execution condition is not satisfied, and the process proceeds to step 106, where an abnormality is detected. The diagnostic execution flag xvvtchk is cleared to “0”, and the process proceeds to step 117 in FIG.

一方、上記ステップ104で、現在の目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値|vvttgt−vvt|が保持動作判定しきい値K1以下と判定されれば、ステップ105に進み、異常診断実行条件が成立しているか否かを、例えば次の条件(1) 〜(3) を全て満たすか否かで判定する。
(1) エンジン回転速度が所定回転速度以上であること
(2) エンジンの油温(又は冷却水温)が所定温度以上であること
(3) オイルポンプ27の吐出油圧が所定値以上になっていること
On the other hand, if it is determined in step 104 that the absolute value | vvttgt−vvt | of the deviation between the current target displacement angle vvttgt and the VCT displacement angle vvt is equal to or smaller than the holding operation determination threshold value K1, the process proceeds to step 105, where an abnormality occurs. Whether the diagnosis execution condition is satisfied is determined by, for example, whether all of the following conditions (1) to (3) are satisfied.
(1) The engine speed is higher than the specified speed
(2) The engine oil temperature (or cooling water temperature) is higher than the specified temperature.
(3) The discharge hydraulic pressure of the oil pump 27 is not less than a predetermined value.

これら3つの条件(1) 〜(3) のうちのいずれか1つでも満たさない条件があれば、異常診断実行条件が不成立となり、ステップ106に進み、異常診断実行中フラグxvvtchkを“0”にクリアして、図8のステップ117に進む。   If any one of the three conditions (1) to (3) is not satisfied, the abnormality diagnosis execution condition is not established, and the process proceeds to step 106, where the abnormality diagnosis execution flag xvvtchk is set to “0”. Clear and go to step 117 of FIG.

また、上記ステップ105で、上記3つの条件(1) 〜(3) を全て満たして異常診断実行条件が成立していると判定されれば、ステップ107に進み、予め学習された保持デューティ(保持電流)を読み出して保持動作を開始すると同時に異常診断処理を開始する。   If it is determined in step 105 that all of the above three conditions (1) to (3) are satisfied and the abnormality diagnosis execution condition is satisfied, the process proceeds to step 107 and the previously learned holding duty (holding) Current) is read and the holding operation is started, and at the same time, the abnormality diagnosis process is started.

尚、保持デューティの学習は、保持動作の実行毎に所定の保持デューティ学習条件が成立すれば、その都度、保持デューティの学習値を更新するようにしても良いし、保持デューティの学習頻度をこれよりも少なくするようにしても良い。また、目標変位角vvttgtの領域毎(又はエンジン運転領域毎)に保持デューティを学習しても良いし、勿論、全ての目標変位角vvttgt(又は全てのエンジン運転領域)に共通する1つの保持デューティを学習するようにしても良い。このようにして学習した保持デューティは、ECU43のバックアップRAM等の書き換え可能な不揮発性メモリに更新記憶される。   In the holding duty learning, the learning value of the holding duty may be updated each time a predetermined holding duty learning condition is satisfied every time the holding operation is executed, or the learning frequency of the holding duty may be updated. You may make it less. Further, the holding duty may be learned for each region of the target displacement angle vvttgt (or for each engine operation region). Of course, one holding duty common to all the target displacement angles vvttgt (or all the engine operation regions). You may be made to learn. The learned holding duty is updated and stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 43.

そして、次のステップ108で、異常診断実行中フラグxvvtchkが“0”であるか否かを判定し、異常診断実行中フラグxvvtchkが“1”にセットされていれば、異常診断実行中であると判断して、ステップ109〜112の異常診断開始時の初期化処理を飛び越して図8のステップ113の判定処理に進む。   In the next step 108, it is determined whether or not the abnormality diagnosis execution flag xvvtchk is “0”. If the abnormality diagnosis execution flag xvvtchk is set to “1”, the abnormality diagnosis is being executed. Therefore, the initialization process at the start of the abnormality diagnosis in steps 109 to 112 is skipped, and the process proceeds to the determination process in step 113 of FIG.

これに対して、上記ステップ105で、異常診断実行条件成立と判定され、且つ、上記ステップ108で、異常診断実行中フラグxvvtchkが“0”であると判定された場合は、異常診断開始時(保持動作開始時)と判断して、ステップ109〜112の異常診断開始時の初期化処理を実行する。   On the other hand, if it is determined in step 105 that the abnormality diagnosis execution condition is satisfied and it is determined in step 108 that the abnormality diagnosis execution flag xvvtchk is “0”, the abnormality diagnosis is started ( At the start of the holding operation, initialization processing at the start of abnormality diagnosis in steps 109 to 112 is executed.

この異常診断開始時の初期化処理では、まずステップ109で、異常診断実行時間カウンタcvvtretを0に初期化する。この異常診断実行時間カウンタcvvtretは、本ルーチンとは別の時間同期処理ににより異常診断開始後(保持動作開始後)の経過時間をカウントするタイムカウンタである。そして、次のステップ110で、現在のVCT変位角vvtを異常診断開始時(保持動作開始時)のVCT変位角vvtret0として記憶する。この後、ステップ111に進み、VCT変位角最小値vvtminの初期値とVCT変位角最大値vvtmaxの初期値としてそれぞれ現在の目標変位角vvttgtを記憶した後、ステップ112に進み、異常診断実行中フラグxvvtchkを異常診断実行中を意味する“1”にセットして図8のステップ113の判定処理に進む。   In the initialization process at the time of starting abnormality diagnosis, first, at step 109, the abnormality diagnosis execution time counter cvvtret is initialized to zero. This abnormality diagnosis execution time counter cvvtret is a time counter that counts the elapsed time after the abnormality diagnosis is started (after the holding operation is started) by time synchronization processing different from this routine. In the next step 110, the current VCT displacement angle vvt is stored as the VCT displacement angle vvtret0 at the start of abnormality diagnosis (at the start of the holding operation). Thereafter, the process proceeds to step 111, where the current target displacement angle vvttgt is stored as the initial value of the VCT displacement angle minimum value vvtmin and the initial value of the VCT displacement angle maximum value vvtmax. xvvtchk is set to “1” which means that abnormality diagnosis is being executed, and the process proceeds to the determination process in step 113 of FIG.

そして、図8のステップ113では、VCT変位角最小値vvtminの記憶値と現在のVCT変位角vvtとを比較して、現在のVCT変位角vvtの方がVCT変位角最小値vvtminの記憶値よりも小さければ、ステップ114に進み、現在のVCT変位角vvtをVCT変位角最小値vvtminとして更新記憶するが、現在のVCT変位角vvtがVCT変位角最小値vvtminの記憶値以上であれば、VCT変位角最小値vvtminの記憶値は更新しない。異常診断期間中に、上記ステップ113、114の処理を繰り返すことで、異常診断期間中のVCT変位角最小値vvtminが更新記憶される。   Then, in step 113 of FIG. 8, the stored value of VCT displacement angle minimum value vvtmin is compared with the current VCT displacement angle vvt, and the current VCT displacement angle vvt is more than the stored value of VCT displacement angle minimum value vvtmin. If the current VCT displacement angle vvt is not less than the stored value of the VCT displacement angle minimum value vvtmin, the process proceeds to step 114 where the current VCT displacement angle vvt is updated and stored as the VCT displacement angle minimum value vvtmin. The stored value of the minimum displacement angle value vvtmin is not updated. By repeating the processes of steps 113 and 114 during the abnormality diagnosis period, the VCT displacement angle minimum value vvtmin during the abnormality diagnosis period is updated and stored.

この後、ステップ115に進み、VCT変位角最大値vvtmaxの記憶値と現在のVCT変位角vvtとを比較して、現在のVCT変位角vvtの方がVCT変位角最大値vvtmaxの記憶値よりも大きければ、ステップ116に進み、現在のVCT変位角vvtをVCT変位角最大値vvtmaxとして更新記憶するが、現在のVCT変位角vvtがVCT変位角最大値vvtmaxの記憶値以下であれば、VCT変位角最大値vvtmaxの記憶値は更新しない。異常診断期間中に、上記ステップ115、116の処理を繰り返すことで、異常診断期間中のVCT変位角最大値vvtmaxが更新記憶される。   Thereafter, the routine proceeds to step 115, where the stored value of the VCT displacement angle maximum value vvtmax is compared with the current VCT displacement angle vvt, and the current VCT displacement angle vvt is greater than the stored value of the VCT displacement angle maximum value vvtmax. If it is larger, the process proceeds to step 116, where the current VCT displacement angle vvt is updated and stored as the VCT displacement angle maximum value vvtmax. If the current VCT displacement angle vvt is less than or equal to the stored value of the VCT displacement angle maximum value vvtmax, the VCT displacement The stored value of the maximum angle value vvtmax is not updated. By repeating the processes of steps 115 and 116 during the abnormality diagnosis period, the VCT displacement angle maximum value vvtmax during the abnormality diagnosis period is updated and stored.

そして、次のステップ117で、異常診断実行中フラグxvvtchkが“1”にセットされているか否かを判定し、“1”にセットされていなければ、異常診断実行中ではないと判断して、そのまま本ルーチンを終了する。   Then, in the next step 117, it is determined whether or not the abnormality diagnosis execution flag xvvtchk is set to “1”. If it is not set to “1”, it is determined that the abnormality diagnosis is not being executed, This routine is finished as it is.

一方、上記ステップ117で、異常診断実行中フラグxvvtchkが“1”にセットされていると判定されれば、異常診断実行中と判断して、ステップ118に進み、異常診断実行時間カウンタcvvtretで計測した異常診断実行時間(異常診断開始からの経過時間)が所定時間K2以上(例えば3000ms以上)になったか否かを判定し、所定時間K2に達していなければ、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 117 that the abnormality diagnosis execution flag xvvtchk is set to “1”, it is determined that abnormality diagnosis is being executed, the process proceeds to step 118, and is measured by the abnormality diagnosis execution time counter cvvtret. It is determined whether or not the abnormality diagnosis execution time (elapsed time from the start of abnormality diagnosis) has reached a predetermined time K2 or more (for example, 3000 ms or more). If the predetermined time K2 has not been reached, this routine is terminated.

その後、異常診断実行時間カウンタcvvtretの計測時間が所定時間K2に達した時点で、ステップ119で「Yes」と判定されてステップ119に進み、異常診断開始時のVCT変位角vvtret0と現時点(異常診断終了時)のVCT変位角vvtとの偏差を算出して、この偏差を第1異常診断用偏差dvvtdg1として記憶する。
dvvtdg1=vvtret0−vvt
Thereafter, when the measurement time of the abnormality diagnosis execution time counter cvvtret reaches the predetermined time K2, it is determined “Yes” in step 119, and the process proceeds to step 119, where the VCT displacement angle vvtret0 at the time of abnormality diagnosis start and the current time (abnormal diagnosis) The deviation from the VCT displacement angle vvt at the time of completion is calculated, and this deviation is stored as a first abnormality diagnosis deviation dvvtdg1.
dvvtdg1 = vvtret0-vvt

この第1異常診断用偏差dvvtdg1は、異常診断開始時のVCT変位角vvtret0に対して異常診断終了時のVCT変位角vvtが遅角/進角のいずれの方向にどれだけ変化したかを表す異常診断パラメータであり、プラス値であれば、遅角方向に変化したことを表し、マイナス値であれば、進角方向に変化したことを表す。   This first abnormality diagnostic deviation dvvtdg1 is an abnormality that indicates how much the VCT displacement angle vvt at the end of the abnormality diagnosis changes in the retarded / advanced direction with respect to the VCT displacement angle vvtret0 at the beginning of the abnormality diagnosis. It is a diagnostic parameter. If it is a positive value, it indicates that it has changed in the retard direction, and if it is a negative value, it indicates that it has changed in the advance direction.

この後、ステップ120に進み、異常診断中のVCT変位角最大値vvtmaxとVCT変位角最小値vvtminとの偏差を算出して、この偏差を第2異常診断用偏差dvvtdg2として記憶する。
dvvtdg2=vvtmax−vvtmin
この第2異常診断用偏差dvvtdg2は、異常診断中のVCT変位角vvtの振動範囲の最大幅を表す異常診断パラメータとなる。
Thereafter, the process proceeds to step 120, where a deviation between the maximum VCT displacement angle value vvtmax and the minimum VCT displacement angle value vvtmin during abnormality diagnosis is calculated, and this deviation is stored as a second abnormality diagnosis deviation dvvtdg2.
dvvtdg2 = vvtmax−vvtmin
The second abnormality diagnosis deviation dvvtdg2 is an abnormality diagnosis parameter representing the maximum width of the vibration range of the VCT displacement angle vvt during abnormality diagnosis.

そして、次のステップ121で、異常診断中のVCT変位角最大値vvtmaxと現在(異常診断中)の目標変位角vvttgtとの偏差(vvtmax−vvttgt)を算出すると共に、VCT変位角最小値vvtminと現在(異常診断中)の目標変位角vvttgtとの偏差(vvtmin−vvttgt)を算出し、これら2つの偏差を加算した値の絶対値を第3異常診断用偏差dvvtdg3として記憶する。
dvvtdg3
=|(vvtmax−vvttgt)+(vvtmin−vvttgt)|
In the next step 121, a deviation (vvtmax-vvttgt) between the maximum VCT displacement angle value vvtmax during abnormality diagnosis and the current (abnormal diagnosis) target displacement angle vvttgt is calculated, and the minimum VCT displacement angle value vvtmin is calculated. A deviation (vvtmin−vvttgt) from the current (during abnormality diagnosis) target displacement angle vvttgt is calculated, and an absolute value of a value obtained by adding these two deviations is stored as a third abnormality diagnosis deviation dvvtdg3.
dvvtdg3
= | (Vvtmax−vvttgt) + (vvtmin−vvttgt) |

この第3異常診断用偏差dvvtdg3は、異常診断中のVCT変位角vvtの振動範囲が目標変位角vvttgtを中心にした振動範囲から進角又は遅角方向にどの程度ずれているかを評価する異常診断パラメータとなる。図3に示すように、異常診断中のVCT変位角vvtの振動範囲の中心が目標変位角vvttgtに近い場合は、一方の偏差(vvtmax−vvttgt)がプラス値となり、他方の偏差(vvtmin−vvttgt)がマイナス値となり、且つ、両方の偏差の絶対値が近い値となるため、第3異常診断用偏差dvvtdg3が0に近い値となる。従って、この第3異常診断用偏差dvvtdg3が大きくなるほど、異常診断中のVCT変位角vvtの振動範囲が遅角又は進角方向に大きくずれていることを意味する。この第3異常診断用偏差dvvtdg3と前記第2異常診断用偏差dvvtdg2は、進角室18側と遅角室19側の両方の逆止弁機構の開異常と片側の逆止弁機構のみの開異常とを区別して判定するのに用いられる。   This third abnormality diagnostic deviation dvvtdg3 is an abnormality diagnosis that evaluates how much the vibration range of the VCT displacement angle vvt under abnormality diagnosis deviates from the vibration range centered on the target displacement angle vvttgt in the advance angle or retard angle direction. It becomes a parameter. As shown in FIG. 3, when the center of the vibration range of the VCT displacement angle vvt during abnormality diagnosis is close to the target displacement angle vvttgt, one deviation (vvtmax−vvttgt) becomes a positive value and the other deviation (vvtmin−vvttgt) ) Is a negative value, and the absolute values of both deviations are close to each other, so that the third abnormality diagnosis deviation dvvtdg3 is close to 0. Therefore, as the third abnormality diagnostic deviation dvvtdg3 increases, it means that the vibration range of the VCT displacement angle vvt during the abnormality diagnosis is greatly shifted in the retarded or advanced direction. The third abnormality diagnostic deviation dvvtdg3 and the second abnormality diagnostic deviation dvvtdg2 indicate that the check valve mechanisms on both the advance chamber 18 side and the retard chamber 19 side are opened abnormally and only one check valve mechanism is opened. It is used to distinguish and distinguish between abnormalities.

この後、図9のステップ122に進み、第3異常診断用偏差dvvtdg3が所定値K3(例えば1deg)よりも小さいか否かを判定し、第3異常診断用偏差dvvtdg3が所定値K3以上であれば、異常診断中のVCT変位角vvtの振動範囲が遅角又は進角方向に大きくずれているため、進角室18側と遅角室19側の両方の逆止弁機構が開異常になった状態ではないと判断して、ステップ124に進み、両逆止弁機構開異常フラグxwopenfailを“0”にクリアする。   Thereafter, the process proceeds to step 122 in FIG. 9 to determine whether or not the third abnormality diagnostic deviation dvvtdg3 is smaller than a predetermined value K3 (for example, 1 deg), and if the third abnormality diagnostic deviation dvvtdg3 is equal to or larger than the predetermined value K3. For example, since the vibration range of the VCT displacement angle vvt during the abnormality diagnosis is greatly shifted in the retard angle or advance direction, the check valve mechanisms on both the advance chamber 18 side and the retard chamber 19 side become open abnormal. If it is determined that the state is not, the routine proceeds to step 124, where the both check valve mechanism opening abnormality flag xwofail is cleared to "0".

これに対して、上記ステップ122で、第3異常診断用偏差dvvtdg3が所定値K3よりも小さいと判定されれば、ステップ123に進み、第2異常診断用偏差dvvtdg2が所定値K4(例えば7deg)よりも小さいか否かを判定する。その結果、第2異常診断用偏差dvvtdg2が所定値K4以上であると判定されれば、異常診断中のVCT変位角vvtの振動範囲の最大幅が正常範囲を越えているため、進角室18側と遅角室19側の両方の逆止弁機構が共に開異常になった状態であると判断して、ステップ125に進み、両逆止弁機構開異常フラグxwopenfailを“1”にセットした後、ステップ132に進み、異常診断処理済みフラグxdiagendを異常診断処理終了を意味する“1”にセットして本ルーチンを終了する。この異常診断処理済みフラグxdiagendは、ECU43への電源投入時の初期化処理により、“0”にクリアされ、その後のエンジン運転中に上述した開異常判定処理が実行されたか否かを判定するのに用いられる。   On the other hand, if it is determined in step 122 that the third abnormality diagnostic deviation dvvtdg3 is smaller than the predetermined value K3, the process proceeds to step 123, where the second abnormality diagnostic deviation dvvtdg2 is a predetermined value K4 (for example, 7 deg). Or less. As a result, if it is determined that the second abnormality diagnosis deviation dvvtdg2 is equal to or greater than the predetermined value K4, the maximum width of the vibration range of the VCT displacement angle vvt during abnormality diagnosis exceeds the normal range, and therefore the advance chamber 18 It is determined that both of the check valve mechanisms on the side and the retarded angle chamber 19 side are in an open abnormality state, the process proceeds to step 125, and both the check valve mechanism open abnormality flag xwofail is set to "1". Thereafter, the routine proceeds to step 132, where the abnormality diagnosis processed flag xdiagend is set to “1” which means the abnormality diagnosis processing is ended, and this routine is ended. This abnormality diagnosis process completed flag xdiagend is cleared to “0” by the initialization process at the time of power-on to the ECU 43, and it is determined whether or not the above-described opening abnormality determination process is executed during the engine operation. Used for.

一方、上記ステップ122で、第3異常診断用偏差dvvtdg3が所定値K3よりも小さいと判定され、且つ、上記ステップ123で、第2異常診断用偏差dvvtdg2が所定値K4よりも小さいと判定されれば、両方の逆止弁機構が開異常になった状態ではないと判断して、ステップ124に進み、両逆止弁機構開異常フラグxwopenfailを“0”にクリアする。   On the other hand, in step 122, it is determined that the third abnormality diagnostic deviation dvvtdg3 is smaller than the predetermined value K3, and in step 123, it is determined that the second abnormality diagnostic deviation dvvtdg2 is smaller than the predetermined value K4. For example, it is determined that both check valve mechanisms are not in an open abnormality state, and the routine proceeds to step 124, where both check valve mechanism open abnormality flags xwofail are cleared to "0".

要するに、第3異常診断用偏差dvvtdg3が所定値K3よりも小さく且つ第2異常診断用偏差dvvtdg2が所定値K4以上の場合(つまりVCT変位角vvtが目標変位角vvttgt付近を中心にして振動してその振動範囲の最大幅が正常範囲を越えている場合)のみ、両方の逆止弁機構が共に開異常になった状態であると判断して、ステップ125に進み、両逆止弁機構開異常フラグxwopenfailを“1”にセットし、これ以外の場合は、両逆止弁機構開異常フラグxwopenfailを“0”にクリアする。   In short, when the third abnormality diagnostic deviation dvvtdg3 is smaller than the predetermined value K3 and the second abnormality diagnostic deviation dvvtdg2 is equal to or larger than the predetermined value K4 (that is, the VCT displacement angle vvt vibrates around the target displacement angle vvttgt). Only when the maximum width of the vibration range exceeds the normal range), it is determined that both check valve mechanisms are both in an abnormal open state, and the process proceeds to step 125, where both check valve mechanism open abnormalities are detected. The flag xwopenfail is set to “1”. In other cases, the both check valve mechanism opening abnormality flag xwopenfail is cleared to “0”.

この後、ステップ126に進み、第1異常診断用偏差dvvtdg1が所定値K5以上(例えば5deg以上)であるか否かを判定し、第1異常診断用偏差dvvtdg1が所定値K5以上であれば、異常診断開始時のVCT変位角vvtret0に対して異常診断終了時のVCT変位角vvtが進角方向に異常に大きく変化しているため、進角室18側の逆止弁機構が開異常になっていると判断して、ステップ127に進み、進角室側逆止弁機構開異常フラグxadvfailを“1”にセットする。一方、第1異常診断用偏差dvvtdg1が所定値K5未満であれば、ステップ128に進み、進角室側逆止弁機構開異常フラグxadvfailを“0”にクリアする。   Thereafter, the process proceeds to step 126, where it is determined whether or not the first abnormality diagnostic deviation dvvtdg1 is equal to or greater than a predetermined value K5 (for example, 5 deg or greater). If the first abnormality diagnostic deviation dvvtdg1 is equal to or greater than the predetermined value K5, Since the VCT displacement angle vvt at the end of the abnormality diagnosis changes abnormally in the advance direction with respect to the VCT displacement angle vvtret0 at the start of the abnormality diagnosis, the check valve mechanism on the advance chamber 18 side becomes abnormally open. In step 127, the advance angle chamber side check valve mechanism opening abnormality flag xadvfail is set to "1". On the other hand, if the first abnormality diagnostic deviation dvvtdg1 is less than the predetermined value K5, the routine proceeds to step 128, where the advance chamber side check valve mechanism opening abnormality flag xadvfail is cleared to “0”.

この後、ステップ129に進み、第1異常診断用偏差dvvtdg1が所定値K6以下(例えば−5deg以下)であるか否かを判定し、第1異常診断用偏差dvvtdg1が所定値K5以下であれば、異常診断終了時のVCT変位角vvtが異常診断開始時のVCT変位角vvtret0から遅角方向に異常に大きく変化しているため、遅角室19側の逆止弁機構が開異常になっていると判断して、ステップ130に進み、遅角室側逆止弁機構開異常フラグxretfailを“1”にセットする。一方、第1異常診断用偏差dvvtdg1が所定値K6よりも大きい場合は、ステップ131に進み、遅角室側逆止弁機構開異常フラグxretfailを“0”にクリアする。
この後、ステップ132に進み、異常診断処理済みフラグxdiagendを異常診断処理終了を意味する“1”にセットして本ルーチンを終了する。
Thereafter, the process proceeds to step 129, in which it is determined whether or not the first abnormality diagnostic deviation dvvtdg1 is equal to or smaller than a predetermined value K6 (for example, −5 deg or smaller), and if the first abnormality diagnostic deviation dvvtdg1 is equal to or smaller than the predetermined value K5. Since the VCT displacement angle vvt at the end of the abnormality diagnosis has changed abnormally greatly from the VCT displacement angle vvtret0 at the start of the abnormality diagnosis in the retard direction, the check valve mechanism on the retard chamber 19 side becomes abnormally open. In step 130, the retard chamber side check valve mechanism opening abnormality flag xretfail is set to "1". On the other hand, when the first abnormality diagnosis deviation dvvtdg1 is larger than the predetermined value K6, the routine proceeds to step 131, where the retarded chamber side check valve mechanism opening abnormality flag xretfail is cleared to “0”.
Thereafter, the routine proceeds to step 132, where the abnormality diagnosis processing completed flag xdiagend is set to "1" which means the completion of the abnormality diagnosis processing, and this routine is ended.

以上説明した本実施例1の異常診断の一例が図5及び図6のタイムチャートに示されている。この図5及び図6の例では、時刻t1 で、目標変位角vvttgtが進角方向に変化し、それに追従して、VCT変位角vvtが進角方向に変化するようにF/B制御される。これにより、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値以下になって、所定の保持動作実行条件が成立した時点t2 で、保持動作を開始すると同時に異常診断処理を開始する。この保持動作(異常診断)の実行中は、油圧制御弁21の制御デューティdutyvvtを予め学習された保持デューティに維持すると共に、目標変位角vvttgtを一定に維持する。   An example of the abnormality diagnosis of the first embodiment described above is shown in the time charts of FIGS. In the example of FIGS. 5 and 6, the F / B control is performed so that the target displacement angle vvttgt changes in the advance direction at time t1, and the VCT displacement angle vvt changes in the advance direction following the change. . As a result, the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt becomes equal to or smaller than the predetermined value, and at the time t2 when the predetermined holding operation execution condition is satisfied, the holding operation is started and the abnormality diagnosis process is started at the same time. To do. During the execution of the holding operation (abnormality diagnosis), the control duty dutyvvt of the hydraulic control valve 21 is maintained at the previously learned holding duty, and the target displacement angle vvttgt is maintained constant.

図5の例では、進角室18側の逆止弁機構が開いたまま動かない開異常が発生した時のVCT変位角vvtの挙動が一点鎖線で示されている。進角室18側の逆止弁機構が開異常になると、その開異常が発生している進角室18の油圧が逆止弁機構を通して漏れて低下するため、遅角室19の油圧が進角室18の油圧よりも高くなってVCT変位角vvtが遅角方向にずれる現象が発生する。   In the example of FIG. 5, the behavior of the VCT displacement angle vvt when an opening abnormality that does not move while the check valve mechanism on the advance angle chamber 18 side is open is indicated by a one-dot chain line. When the check valve mechanism on the advance angle chamber 18 side becomes abnormally open, the hydraulic pressure in the advance angle chamber 18 in which the open error has occurred leaks through the check valve mechanism and decreases. A phenomenon occurs in which the hydraulic pressure of the corner chamber 18 becomes higher and the VCT displacement angle vvt shifts in the retarded direction.

このため、進角室18側の逆止弁機構の開異常が発生している場合は、異常診断終了時t3 において、異常診断中のVCT変位角vvtの遅角方向の変化量を評価する異常診断パラメータである第1異常診断用偏差dvvtdg1(=vvtret0−vvt)が所定値K5以上(例えば5deg以上)となり、進角室18側の逆止弁機構が開異常になっていると判定されて、進角室側逆止弁機構開異常フラグxadvfailが“1”にセットされる。この場合は、異常診断中のVCT変位角vvtの振動範囲が進角又は遅角方向にどの程度ずれているかを評価する異常診断パラメータである第3異常診断用偏差dvvtdg3が所定値K3以上(例えば1deg以上)となるため、進角室18側と遅角室19側の両方の逆止弁機構が開異常になった状態ではないと判断される。   For this reason, if an opening abnormality of the check valve mechanism on the advance angle chamber 18 side has occurred, an abnormality that evaluates the amount of change in the retard direction of the VCT displacement angle vvt during the abnormality diagnosis at the time t3 when the abnormality diagnosis ends. The first abnormality diagnosis deviation dvvtdg1 (= vvtret0-vvt), which is a diagnostic parameter, is equal to or greater than a predetermined value K5 (for example, 5 deg or greater), and it is determined that the check valve mechanism on the advance chamber 18 side is abnormally open. The advance chamber side check valve mechanism opening abnormality flag xadvfail is set to “1”. In this case, a third abnormality diagnosis deviation dvvtdg3, which is an abnormality diagnosis parameter for evaluating how much the vibration range of the VCT displacement angle vvt during abnormality diagnosis is shifted in the advance or retard direction, is a predetermined value K3 or more (for example, Therefore, it is determined that the check valve mechanisms on both the advance chamber 18 side and the retard chamber 19 side are not in an abnormal opening state.

図6の例では、進角室18側と遅角室19側の両方の逆止弁機構が共に開異常になっている時のVCT変位角vvtの挙動が示されている。両方の逆止弁機構が共に開異常になっていると、保持動作中に、カム軸のフリクショントルクによるVCT変位角vvtの戻りがカム軸の回転に同期して発生するため、保持動作中にVCT変位角vvtがカム軸の回転に同期して目標変位角vvttgtを中心にして進角方向と遅角方向に交互に比較的大きく振動するという現象が発生する。   In the example of FIG. 6, the behavior of the VCT displacement angle vvt when both the check valve mechanisms on the advance chamber 18 side and the retard chamber 19 side are abnormally open is shown. If both check valve mechanisms are abnormally open, the return of the VCT displacement angle vvt due to the camshaft friction torque occurs during the holding operation in synchronization with the rotation of the camshaft. A phenomenon occurs in which the VCT displacement angle vvt vibrates relatively large alternately in the advance direction and the retard direction about the target displacement angle vvttgt in synchronization with the rotation of the camshaft.

このため、両方の逆止弁機構が共に開異常になっている場合は、異常診断中のVCT変位角vvtの振動範囲が進角又は遅角方向にどの程度ずれているかを評価する異常診断パラメータである第3異常診断用偏差dvvtdg3が所定値K3(例えば1deg)よりも小さくなり、且つ、異常診断中のVCT変位角vvtの振動範囲の最大幅を表す異常診断パラメータである第2異常診断用偏差dvvtdg2が所定値K4以上(例えば7deg以上)となるため、両方の逆止弁機構が共に開異常になった状態であると判定されて、両逆止弁機構開異常フラグxwopenfailが“1”にセットされる。   Therefore, when both check valve mechanisms are abnormally open, an abnormality diagnosis parameter for evaluating how much the vibration range of the VCT displacement angle vvt during abnormality diagnosis is shifted in the advance or retard direction. The third abnormality diagnosis deviation dvvtdg3 is smaller than a predetermined value K3 (for example, 1 deg), and is a second abnormality diagnosis parameter which is an abnormality diagnosis parameter representing the maximum width of the vibration range of the VCT displacement angle vvt during abnormality diagnosis. Since the deviation dvvtdg2 is equal to or greater than a predetermined value K4 (for example, 7 deg or greater), it is determined that both check valve mechanisms are in an open abnormality state, and both check valve mechanism open abnormality flag xwofenfail is “1”. Set to

以上説明した本実施例1によれば、保持動作開始後の所定期間(異常診断期間)のVCT変位角vvtの変化量を評価する異常診断パラメータである第1異常診断用偏差dvvtdg1(=vvtret0−vvt)が正常範囲を越えたか否かで、進角室18側や遅角室19側の逆止弁機構が開異常になっているか否かを判定するようにしたので、エンジン運転中に進角室18側や遅角室19側の逆止弁機構の開異常を早期に検出することができる。   According to the first embodiment described above, the first abnormality diagnosis deviation dvvtdg1 (= vvtret0−) which is an abnormality diagnosis parameter for evaluating the amount of change in the VCT displacement angle vvt during a predetermined period (abnormality diagnosis period) after the holding operation is started. (vvt) exceeds the normal range, it is determined whether the check valve mechanism on the advance chamber 18 side or the retard chamber 19 side is abnormally open. An abnormal opening of the check valve mechanism on the corner chamber 18 side or the retard chamber 19 side can be detected at an early stage.

しかも、本実施例1では、異常診断中のVCT変位角最大値vvtmaxとVCT変位角最小値vvtminとの偏差(VCT変位角vvtの振動範囲の最大幅)を、第2異常診断用偏差dvvtdg2として算出すると共に、異常診断中のVCT変位角最大値vvtmaxと目標変位角vvttgtとの偏差(vvtmax−vvttgt)を算出すると共に、VCT変位角最小値vvtminと目標変位角vvttgtとの偏差(vvtmin−vvttgt)を算出し、これら2つの偏差を加算した値の絶対値を第3異常診断用偏差dvvtdg3として算出し、これら第2異常診断用偏差dvvtdg2と第3異常診断用偏差dvvtdg3を、異常診断中のVCT変位角vvtの変化量・振動範囲を評価する異常診断パラメータとして用いるようにしたので、両方の逆止弁機構の開異常と片側の逆止弁機構のみの開異常とを区別して判定することができる。   Moreover, in the first embodiment, the deviation between the maximum VCT displacement angle value vvtmax and the minimum VCT displacement angle value vvtmin during abnormality diagnosis (maximum width of the vibration range of the VCT displacement angle vvt) is used as the second abnormality diagnosis deviation dvvtdg2. And calculating a deviation (vvtmax−vvttgt) between the maximum VCT displacement angle value vvtmax and the target displacement angle vvttgt during abnormality diagnosis, and a deviation (vvtmin−vvttgt) between the minimum VCT displacement angle value vvtmin and the target displacement angle vvttgt. ) And the absolute value of the sum of these two deviations is calculated as a third abnormality diagnosis deviation dvvtdg3, and the second abnormality diagnosis deviation dvvtdg2 and the third abnormality diagnosis deviation dvvtdg3 are calculated. An abnormality diagnosis parameter for evaluating a change amount / vibration range of the VCT displacement angle vvt; Since as adapted to use Te, can be determined by distinguishing between opening abnormality of the check valve mechanism opens anomalies and one side of both of the check valve mechanism only.

尚、異常診断中のVCT変位角最大値vvtmaxと目標変位角vvttgtとの偏差(vvtmax−vvttgt)を所定値と比較したり、異常診断中のVCT変位角最小値vvtminと目標変位角vvttgtとの偏差(vvtmin−vvttgt)を所定値と比較することで、異常診断中のVCT変位角vvtの変化量・振動範囲が正常範囲内であるか否かを判定するようにしても良い。   The deviation (vvtmax−vvttgt) between the maximum VCT displacement angle value vvtmax and the target displacement angle vvttgt during abnormality diagnosis is compared with a predetermined value, or the minimum VCT displacement angle value vvtmin and target displacement angle vvttgt during abnormality diagnosis are compared. By comparing the deviation (vvtmin−vvttgt) with a predetermined value, it may be determined whether or not the change amount / vibration range of the VCT displacement angle vvt during abnormality diagnosis is within the normal range.

また、本実施例1では、保持動作開始時に同時に異常診断処理を開始するようにしたが、保持動作開始開始から所定時間経過後に異常診断処理を開始するようにしても良い。
また、本発明は、ドレーン切替弁34,35を駆動する油圧を切り替える油圧切替弁を、油圧制御弁21とは別体に設けるようにしても良いが、本実施例1では、油圧切替弁を油圧制御弁21に一体化した構成としているため、部品点数削減、低コスト化、コンパクト化の要求を満たすことができる利点がある。
In the first embodiment, the abnormality diagnosis process is started simultaneously with the start of the holding operation. However, the abnormality diagnosis process may be started after a predetermined time has elapsed from the start of the holding operation.
Further, according to the present invention, a hydraulic pressure switching valve for switching the hydraulic pressure for driving the drain switching valves 34 and 35 may be provided separately from the hydraulic pressure control valve 21, but in the first embodiment, the hydraulic pressure switching valve is provided. Since the configuration is integrated with the hydraulic control valve 21, there is an advantage that the demands for reduction in the number of parts, cost reduction, and compactness can be satisfied.

ところで、ドレーン切替弁34,35が閉じたまま動かない“閉異常”が発生すると、その閉異常が発生した油圧室18,19からオイルをドレーンする必要(油圧を抜く必要)がある制御領域でも、そのドレーンが逆止弁30,31によって妨げられてしまうため、目標変位角vvttgtの変化に追従させてVCT変位角vvtを応答良く変化させることが困難になる。   By the way, when a “close abnormality” occurs in which the drain switching valves 34 and 35 are closed, the oil is required to be drained from the hydraulic chambers 18 and 19 in which the close abnormality has occurred (necessary to release the hydraulic pressure). Since the drain is obstructed by the check valves 30 and 31, it becomes difficult to change the VCT displacement angle vvt with good response by following the change of the target displacement angle vvttgt.

この特性に着目して、図10乃至図12に示す本発明の実施例2では、目標変位角vvttgtの変化時に、VCT変位角vvtの目標変位角vvttgtへの収束性を判定してその収束性に基づいてドレーン切替弁34,35が閉じたまま動かない閉異常が発生したか否かを判定するようにしている。   Focusing on this characteristic, in the second embodiment of the present invention shown in FIGS. 10 to 12, when the target displacement angle vvttgt changes, the convergence of the VCT displacement angle vvt to the target displacement angle vvttgt is determined and the convergence is achieved. On the basis of this, it is determined whether or not a closing abnormality has occurred in which the drain switching valves 34 and 35 are not moved while being closed.

本実施例2では、目標変位角vvttgtの変化時に、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上(例えば4deg以上)となる状態が継続する時間cvvtchkcを収束性を表すデータとして計測し、この時間cvvtchkcが閉異常判定しきい値K8(例えば3000ms)を越えたか否かで、ドレーン切替弁34,35が閉異常になっているか否かを判定する。この際、目標変位角vvttgtに対してVCT変位角vvtが遅角方向にずれた状態が続けば、遅角室19側のドレーン切替弁35の閉異常(遅角室19のドレーンが出来ないために進角しにくくなる異常)と判定し、VCT変位角vvtが進角方向にずれた状態が続けば、遅角室19側のドレーン切替弁35の閉異常(進角室18のドレーンが出来ないために遅角しにくくなる異常)と判定する。   In the second embodiment, when the target displacement angle vvttgt changes, the time cvvtchkc in which the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt continues to be a predetermined value K7 or more (for example, 4 deg or more) is converged. Whether or not the drain switching valves 34 and 35 are abnormally closed is determined based on whether or not the time cvvtchkc exceeds a closing abnormality determination threshold value K8 (for example, 3000 ms). At this time, if the state where the VCT displacement angle vvt is shifted in the retarded direction with respect to the target displacement angle vvttgt continues, the drain switching valve 35 on the retard chamber 19 side is closed abnormally (because the retard chamber 19 cannot be drained). If the VCT displacement angle vvt continues to deviate in the advance direction, the drain switch valve 35 on the retard chamber 19 side is closed abnormally (the drain of the advance chamber 18 can be drained). Therefore, it is determined that the abnormality is difficult to retard.

以上説明した本実施例2の異常診断処理は、ECU43によって図10及び図11の異常診断ルーチンに従って実行される。本ルーチンは、エンジン運転中にエンジン回転速度の演算タイミング毎(例えば4気筒エンジンであれば180℃A毎)に実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本ルーチンが起動されると、まずステップ201で、現在のエンジン運転条件(エンジン回転速度、吸気圧等)に応じた目標変位角vvttgt(目標バルブタイミング)をマップ等により演算する。この後、ステップ202に進み、現在のVCT変位角vvtと目標変位角vvttgtとの偏差が小さくなるようにOCV電流値(制御デューティdutyvvt)をフィードバック制御(F/B制御)する。   The abnormality diagnosis process of the second embodiment described above is executed by the ECU 43 according to the abnormality diagnosis routines of FIGS. This routine is executed at every engine rotation speed calculation timing (for example, every 180 ° C. A for a four-cylinder engine) during engine operation, and serves as an abnormality diagnosis means in the claims. When this routine is started, first, in step 201, a target displacement angle vvttgt (target valve timing) corresponding to the current engine operating conditions (engine speed, intake pressure, etc.) is calculated using a map or the like. Thereafter, the routine proceeds to step 202, where the OCV current value (control duty duty vvt) is feedback-controlled (F / B control) so that the deviation between the current VCT displacement angle vvt and the target displacement angle vvttgt becomes small.

この後、ステップ203に進み、保持動作中であるか否かを判定し、保持動作中であれば、異常診断実行条件が成立せず、ステップ212に進み、収束時間カウンタcvvtchkcを“0”に初期化すると共に、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgを共に“0”にクリアして本ルーチンを終了する。   Thereafter, the process proceeds to step 203 to determine whether or not the holding operation is being performed. If the holding operation is being performed, the abnormality diagnosis execution condition is not satisfied, the process proceeds to step 212 and the convergence time counter cvvtchkc is set to “0”. At the same time, the advance angle deviation detection flag xadvjdg and the retard angle deviation detection flag xretjdg are both cleared to “0”, and this routine ends.

これに対して、上記ステップ203で、保持動作中でないと判定されれば、ステップ204に進み、現在の目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値|vvttgt−vvt|が所定値K7(例えば4deg)よりも大きいか否かを判定し、この偏差の絶対値|vvttgt−vvt|が所定値K7以下であれば、VCT変位角vvtの目標変位角vvttgtへの収束性が正常範囲内であると判断して、ステップ212に進み、収束時間カウンタcvvtchkcを初期化すると共に、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgを共にクリアして本ルーチンを終了する。   On the other hand, if it is determined in step 203 that the holding operation is not being performed, the process proceeds to step 204 where the absolute value | vvttgt-vvt | of the deviation between the current target displacement angle vvttgt and the VCT displacement angle vvt is a predetermined value. If it is determined whether or not the absolute value | vvttgt-vvt | of the deviation is equal to or smaller than a predetermined value K7, the convergence of the VCT displacement angle vvt to the target displacement angle vvttgt is in the normal range. In step 212, the convergence time counter cvvtchkc is initialized, the advance deviation detection flag xadvjdg and the retard deviation detection flag xretjdg are both cleared, and this routine is terminated.

また、上記ステップ204で、偏差の絶対値|vvttgt−vvt|が所定値K7よりも大きいと判定されれば、ステップ205に進み、異常診断実行条件が成立しているか否かを、例えば次の条件(1) 〜(3) を全て満たすか否かで判定する。
(1) エンジン回転速度が所定回転速度以上であること
(2) エンジンの油温(又は冷却水温)が所定温度以上であること
(3) オイルポンプ27の吐出油圧が所定値以上になっていること
If it is determined in step 204 that the absolute value | vvttgt−vvt | of the deviation is larger than the predetermined value K7, the process proceeds to step 205 to determine whether or not the abnormality diagnosis execution condition is satisfied, for example: Judgment is made based on whether all the conditions (1) to (3) are satisfied.
(1) The engine speed is higher than the specified speed
(2) The engine oil temperature (or cooling water temperature) is higher than the specified temperature.
(3) The discharge hydraulic pressure of the oil pump 27 is not less than a predetermined value.

これら3つの条件(1) 〜(3) のうちのいずれか1つでも満たさない条件があれば、異常診断実行条件が不成立となり、ステップ212に進み、収束時間カウンタcvvtchkcを初期化すると共に、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgを共にクリアして本ルーチンを終了する。   If any one of the three conditions (1) to (3) is not satisfied, the abnormality diagnosis execution condition is not satisfied, and the process proceeds to step 212, the convergence time counter cvvtchkc is initialized, and the process proceeds. Both the angular deviation detection flag xadvjdg and the retardation deviation detection flag xretjdg are cleared, and this routine ends.

一方、上記ステップ205で、上記3つの条件(1) 〜(3) が全て満たされて異常診断実行条件が成立していると判定されれば、ステップ206に進み、現在の目標変位角vvttgtとVCT変位角vvtとの偏差(vvttgt−vvt)がプラス値であるか否かを判定し、この偏差(vvttgt−vvt)がプラス値であれば、現在のVCT変位角vvtが目標変位角vvttgtに対して遅角方向にずれていると判断して、ステップ207に進み、前回のVCT変位角vvtの遅角側のずれ方向を記憶する遅角ずれ検出フラグxretjdgが“0”であるか否か(つまり前回のVCT変位角vvtのずれ方向が進角方向であるか否か)を判定する。その結果、遅角ずれ検出フラグxretjdgが“0”と判定されれば、VCT変位角vvtのずれ方向が前回の進角方向から遅角方向に反転したと判断して、ステップ209に進み、収束時間カウンタcvvtchkcを初期化すると共に、遅角ずれ検出フラグxretjdgを“1”にセットしてステップ211に進む。   On the other hand, if it is determined in step 205 that all three conditions (1) to (3) are satisfied and the abnormality diagnosis execution condition is satisfied, the process proceeds to step 206, where the current target displacement angle vvttgt and It is determined whether or not the deviation (vvttgt−vvt) from the VCT displacement angle vvt is a positive value. If the deviation (vvttgt−vvt) is a positive value, the current VCT displacement angle vvt is set to the target displacement angle vvttgt. On the other hand, it is determined that there is a shift in the retard angle direction, and the process proceeds to step 207 where it is determined whether or not the retard shift detection flag xretjdg that stores the shift direction on the retard side of the previous VCT displacement angle vvt is “0”. That is, it is determined whether or not the deviation direction of the previous VCT displacement angle vvt is the advance direction. As a result, if it is determined that the retard shift detection flag xretjdg is “0”, it is determined that the shift direction of the VCT displacement angle vvt is reversed from the previous advance direction to the retard direction, and the process proceeds to Step 209 to converge. The time counter cvvtchkc is initialized, and the retardation shift detection flag xretjdg is set to “1”, and the process proceeds to step 211.

尚、上記ステップ207で「No」と判定されれば、VCT変位角vvtのずれ方向が今回も前回と同じ遅角方向と判断して、上記ステップ209の処理を飛び越えてステップ211に進む。   If “No” is determined in step 207, it is determined that the deviation direction of the VCT displacement angle vvt is the same retarding direction as in the previous time, and the process of step 209 is skipped and the process proceeds to step 211.

これに対して、上記ステップ206で、現在の目標変位角vvttgtとVCT変位角vvtとの偏差(vvttgt−vvt)が0以下(マイナス値)であると判定されれば、現在のVCT変位角vvtが目標変位角vvttgtに対して進角方向にずれていると判断して、ステップ208に進み、前回のVCT変位角vvtの進角側のずれ方向を記憶する進角ずれ検出フラグxadvjdgが“0”であるか否か(つまり前回のVCT変位角vvtのずれ方向が遅角方向であるか否か)を判定する。その結果、進角ずれ検出フラグxadvjdgが“0”と判定されれば、VCT変位角vvtのずれ方向が前回の遅角方向から進角方向に反転したと判断して、ステップ210に進み、収束時間カウンタcvvtchkcを初期化すると共に、進角ずれ検出フラグxadvjdgを“1”にセットしてステップ211に進む。   On the other hand, if it is determined in step 206 that the deviation (vvttgt−vvt) between the current target displacement angle vvttgt and the VCT displacement angle vvt is 0 or less (minus value), the current VCT displacement angle vvt Is advanced in the advance direction with respect to the target displacement angle vvttgt, the process proceeds to step 208, and the advance angle detection flag xadvjdg that stores the advance direction shift direction of the previous VCT displacement angle vvt is “0”. (That is, whether or not the previous deviation direction of the VCT displacement angle vvt is the retard direction). As a result, if the advance angle shift detection flag xadvjdg is determined to be “0”, it is determined that the shift direction of the VCT displacement angle vvt is reversed from the previous retard direction to the advance direction, and the process proceeds to step 210 to converge. The time counter cvvtchkc is initialized and the advance deviation detection flag xadvjdg is set to “1”, and the process proceeds to step 211.

尚、上記ステップ208で「No」と判定されれば、VCT変位角vvtのずれ方向が今回も前回と同じ進角方向と判断して、上記ステップ210の処理を飛び越えてステップ211に進む。   If “No” is determined in step 208, it is determined that the deviation direction of the VCT displacement angle vvt is the same advance direction as the previous time, and the process of step 210 is skipped and the process proceeds to step 211.

このステップ211では、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgが両方とも“1”であるか否かを判定し、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgが両方とも“1”であれば、進角方向のずれと遅角方向のずれが1演算サイクルで反転したと判断して、ステップ212に進み、収束時間カウンタcvvtchkcを初期化すると共に、進角ずれ検出フラグxadvjdgと遅角ずれ検出フラグxretjdgを共にクリアして本ルーチンを終了する。   In this step 211, it is determined whether or not both of the advance deviation detection flag xadvjdg and the retardation deviation detection flag xretjdg are “1”, and both the advance deviation detection flag xadvjdg and the retardation deviation detection flag xretjdg are “1”. If “1”, it is determined that the shift in the advance angle direction and the shift in the retard angle direction are reversed in one calculation cycle, the process proceeds to step 212, the convergence time counter cvvtchkc is initialized, and the advance angle shift detection flag xadvjdg And the retardation shift detection flag xretjdg are both cleared and this routine is terminated.

上記ステップ211で「No」と判定されれば、VCT変位角vvtのずれ方向が反転していないと判断して、図12のステップ213に進み、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上(例えば4deg以上)となる状態が継続する時間を計測する収束時間カウンタcvvtchkcの計測時間が閉異常判定しきい値K8(例えば3000ms)を越えたか否かで、いずれかのドレーン切替弁34,35が閉異常になっているか否かを判定する。この収束時間カウンタcvvtchkcは、本ルーチンとは別の時間同期処理ににより異常診断開始後(収束性の計測開始後)の経過時間をカウントするタイムカウンタであり、上記ステップ209、210、212のいずれかで初期化される。   If “No” is determined in Step 211, it is determined that the deviation direction of the VCT displacement angle vvt is not reversed, and the process proceeds to Step 213 in FIG. 12, where the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt is determined. Depending on whether or not the measurement time of the convergence time counter cvvtchkc that measures the time during which the absolute value of the value is equal to or greater than a predetermined value K7 (for example, 4 degrees or more) has exceeded the closed abnormality determination threshold K8 (for example, 3000 ms) It is determined whether or not the drain switching valves 34 and 35 are abnormally closed. This convergence time counter cvvtchkc is a time counter that counts the elapsed time after the start of abnormality diagnosis (after the start of convergence measurement) by time synchronization processing different from this routine. It is initialized with.

このステップ213で、収束時間カウンタcvvtchkcの計測時間が閉異常判定しきい値K8に達していないと判定されれば、そのまま本ルーチンを終了する。その後、収束時間カウンタcvvtchkcの計測時間が閉異常判定しきい値K8を越えた時点で、いずれかのドレーン切替弁34,35が閉異常になっていると判断して、ステップ214に進み、遅角ずれ検出フラグxretjdgが“1”であるか否かで、VCT変位角vvtのずれ方向が遅角方向であるか否かを判定する。その結果、遅角ずれ検出フラグxretjdgが“1”(VCT変位角vvtのずれ方向が遅角方向)と判定されれば、遅角室19側のドレーン切替弁35の閉異常(遅角室19のドレーンが出来ないために進角しにくくなる異常)と判断して、ステップ215に進み、遅角室側ドレーン切替弁閉異常フラグxretchkfを“1”にセットする。   If it is determined in step 213 that the measurement time of the convergence time counter cvvtchkc has not reached the closing abnormality determination threshold value K8, the present routine is terminated. Thereafter, when the measurement time of the convergence time counter cvvtchkc exceeds the closing abnormality determination threshold value K8, it is determined that one of the drain switching valves 34, 35 has a closing abnormality, the process proceeds to step 214, and the processing is delayed. It is determined whether or not the deviation direction of the VCT displacement angle vvt is the retard direction depending on whether or not the angular deviation detection flag xretjdg is “1”. As a result, if it is determined that the retard shift detection flag xretjdg is “1” (the shift direction of the VCT displacement angle vvt is the retard direction), the drain switching valve 35 on the retard chamber 19 side is closed abnormally (retard chamber 19). Therefore, the process proceeds to step 215 and sets the retarded chamber side drain switching valve closing abnormality flag xretchkf to “1”.

一方、上記ステップ214で、遅角ずれ検出フラグxretjdgが“0”(VCT変位角vvtのずれ方向が進角方向)と判定されれば、進角室18側のドレーン切替弁34の閉異常(進角室18のドレーンが出来ないために遅角しにくくなる異常)と判断して、ステップ216に進み、進角室側ドレーン切替弁閉異常フラグxadvchkfを“1”にセットする。   On the other hand, if it is determined in step 214 that the retardation shift detection flag xretjdg is “0” (the shift direction of the VCT displacement angle vvt is the advance direction), the drain switching valve 34 on the advance chamber 18 side is closed abnormally ( In step 216, the advance chamber side drain switching valve closing abnormality flag xadvchkf is set to "1".

この後、ステップ217に進み、遅角室側ドレーン切替弁閉異常フラグxretchkfと進角室側ドレーン切替弁閉異常フラグxadvchkfの両方が“1”であるか否かを判定し、「No」であればそのまま本ルーチンを終了し、「Yes」であれば、進角室18側と遅角室19側の両方のドレーン切替弁34,35が閉異常になっていると判断して、ステップ218に進み、両ドレーン切替弁閉異常フラグxchkvalvefを“1”にセットして本ルーチンを終了する。   Thereafter, the process proceeds to step 217, where it is determined whether or not both the retarded chamber side drain switching valve closing abnormality flag xretchkf and the advanced chamber side drain switching valve closing abnormality flag xadvchkf are “1”. If it is “Yes”, it is determined that the drain switching valves 34 and 35 on both the advance chamber 18 side and the retard chamber 19 side are abnormally closed, and step 218 is performed. Then, the two drain switching valve closing abnormality flag xchkvalvef is set to “1”, and this routine is finished.

以上説明した本実施例2の異常診断の一例が図10のタイムチャートに示されている。この図10の例では、時刻t1 で、目標変位角vvttgtが進角方向に変化し、それに追従して、VCT変位角vvtが進角方向に変化するようにF/B制御される。このような目標変位角vvttgtの進角方向への変化により、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7(例えば4deg)以上となって異常診断実行条件が成立した時点t2 で、収束時間カウンタcvvtchkcの計時動作を開始し、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上となる状態が継続する時間を計測する。   An example of the abnormality diagnosis of the second embodiment described above is shown in the time chart of FIG. In the example of FIG. 10, the F / B control is performed so that the target displacement angle vvttgt changes in the advance direction at time t1, and the VCT displacement angle vvt changes in the advance direction following the change. Due to the change in the advance direction of the target displacement angle vvttgt, the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt becomes equal to or greater than a predetermined value K7 (for example, 4 deg), and the abnormality diagnosis execution condition is satisfied. At time t2, the time counting operation of the convergence time counter cvvtchkc is started, and the time during which the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt is equal to or greater than the predetermined value K7 is measured.

進角動作中は、遅角室19側のドレーン切替弁35を開弁して遅角室19からオイルをドレーンして遅角室19の油圧を低下させつつ、進角室18にオイルを充填して進角室18の油圧を上昇させることで、VCT変位角vvtを目標変位角vvttgtに応答良く収束させるように制御する。従って、進角動作中に、遅角室19側のドレーン切替弁35が正常に開弁すれば、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上となる状態が継続する時間(収束時間カウンタcvvtchkcの計測時間t2 〜t3 )は、閉異常判定しきい値K8よりも短くなるため、遅角室側ドレーン切替弁閉異常フラグxretchkfは“0”に維持される。   During the advance operation, the drain switching valve 35 on the retard chamber 19 side is opened to drain oil from the retard chamber 19 to reduce the hydraulic pressure in the retard chamber 19 and fill the advance chamber 18 with oil. Then, the hydraulic pressure of the advance chamber 18 is increased to control the VCT displacement angle vvt to converge with the target displacement angle vvttgt with good response. Therefore, if the drain switching valve 35 on the retard chamber 19 side is normally opened during the advance operation, the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt is greater than or equal to the predetermined value K7. Since the continuing time (measurement time t2 to t3 of the convergence time counter cvvtchkc) becomes shorter than the closing abnormality determination threshold value K8, the retarded chamber side drain switching valve closing abnormality flag xretchkf is maintained at “0”.

これに対して、遅角室19側のドレーン切替弁35の閉異常が発生すると、遅角室19のドレーンが出来ないために進角しにくくなることから、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上となる状態が継続する時間(収束時間カウンタcvvtchkcの計測時間)が長くなり、その継続時間が閉異常判定しきい値K8を越えた時点t4 で、遅角室19側のドレーン切替弁35の閉異常が発生していると判断されて遅角室側ドレーン切替弁閉異常フラグxretchkfが“1”にセットされる。   On the other hand, if an abnormal closing of the drain switching valve 35 on the retard chamber 19 side occurs, it becomes difficult to advance because the drain of the retard chamber 19 cannot be made, so the target displacement angle vvttgt and the VCT displacement angle vvt. The time during which the state where the absolute value of the deviation is equal to or greater than the predetermined value K7 continues (measurement time of the convergence time counter cvvtchkc) is long, and at the time t4 when the duration exceeds the closing abnormality determination threshold value K8. It is determined that a closing abnormality of the drain switching valve 35 on the corner chamber 19 side has occurred, and the retarding chamber side drain switching valve closing abnormality flag xretchkf is set to “1”.

以上説明した本実施例2によれば、目標変位角vvttgtの変化時に、目標変位角vvttgtとVCT変位角vvtとの偏差の絶対値が所定値K7以上となる状態が継続する時間cvvtchkcを収束性を表すデータとして計測し、この時間cvvtchkcが閉異常判定しきい値K8を越えたか否かで、ドレーン切替弁34,35の閉異常が発生しているか否かを判定するようにしたので、エンジン運転中にドレーン切替弁34,35の閉異常を早期に検出することができる。   According to the second embodiment described above, when the target displacement angle vvttgt changes, the time cvvtchkc during which the absolute value of the deviation between the target displacement angle vvttgt and the VCT displacement angle vvt continues to be equal to or greater than the predetermined value K7 is converged. Therefore, it is determined whether or not the drain switching valves 34 and 35 are closed abnormally depending on whether or not the time cvvtchkc exceeds the closing abnormality determination threshold value K8. It is possible to detect an abnormal closing of the drain switching valves 34 and 35 at an early stage during operation.

ところで、エンジン回転速度が低い領域では、油圧制御弁21に供給する油圧(オイルポンプ27の吐出油圧)が低下して、VCT変位角の応答特性が低下するため、VCT変位角の目標変位角への収束性が低下することは避けられない。   By the way, in the region where the engine speed is low, the hydraulic pressure supplied to the hydraulic control valve 21 (discharge hydraulic pressure of the oil pump 27) decreases and the response characteristic of the VCT displacement angle decreases, so that the VCT displacement angle reaches the target displacement angle. It is inevitable that the convergence of the will decrease.

この点を考慮して、本実施例2では、油圧制御弁21への供給油圧が所定値以上になっていることを前提条件(異常診断実行条件の1つ)として、VCT変位角の目標変位角への収束性を判定するようにしたので、低回転領域における低油圧時に収束性の誤判定ひいては閉異常の誤判定を未然に防止することができて、異常診断の精度・信頼性を高めることができる。   In consideration of this point, in the second embodiment, assuming that the hydraulic pressure supplied to the hydraulic control valve 21 is equal to or greater than a predetermined value (one of the abnormality diagnosis execution conditions), the target displacement of the VCT displacement angle is set. Since the convergence to the corner is judged, it is possible to prevent misjudgment of convergence when the hydraulic pressure is low in the low rotation range, and thus erroneous judgment of closing abnormality, and improve the accuracy and reliability of abnormality diagnosis. be able to.

この場合、油圧制御弁21への供給油圧を検出する油圧センサを設けるようにしても良いが、エンジン回転速度や油温(作動油の粘度)に応じて油圧制御弁21への供給油圧(オイルポンプ27の吐出油圧)が変化することを考慮して、本実施例2では、油圧制御弁21への供給油圧が所定値以上になっているか否かをエンジン回転速度及び/又は油温に関する情報(例えば冷却水温)に基づいて判定するようにしている。このようにすれば、一般にエンジン制御に用いられる情報を利用して油圧制御弁21への供給油圧を推定することができるため、供給油圧を検出する油圧センサを設ける必要がなく、低コスト化の要求を満たすことができる。   In this case, a hydraulic pressure sensor for detecting the hydraulic pressure supplied to the hydraulic control valve 21 may be provided, but the hydraulic pressure supplied to the hydraulic control valve 21 (oil) according to the engine rotation speed and the oil temperature (viscosity of hydraulic oil). In consideration of the change in the discharge hydraulic pressure of the pump 27, in the second embodiment, whether or not the hydraulic pressure supplied to the hydraulic control valve 21 is equal to or higher than a predetermined value is related to the engine speed and / or the oil temperature. The determination is made based on (for example, cooling water temperature). In this way, since it is possible to estimate the hydraulic pressure supplied to the hydraulic control valve 21 using information generally used for engine control, it is not necessary to provide a hydraulic pressure sensor for detecting the hydraulic pressure, and the cost can be reduced. Can meet the demand.

尚、本実施例2では、目標変位角変化時の目標変位角とVCT変位角との偏差(絶対値)が所定値K7以上となる状態が継続する時間を収束性を表すデータとして計測するようにしたが、目標変位角変化時の目標変位角とVCT変位角との偏差(絶対値)が第1の所定値以上となってから当該偏差(絶対値)が前記第1の所定値よりも小さい第2の所定値以下となるまでの経過時間を収束性を表すデータとして計測し、当該経過時間に基づいてドレーン切替弁34,35の閉異常の有無を判定するようにしても良い。   In the second embodiment, the time during which the deviation (absolute value) between the target displacement angle and the VCT displacement angle when the target displacement angle changes is equal to or greater than the predetermined value K7 is measured as data representing convergence. However, after the deviation (absolute value) between the target displacement angle and the VCT displacement angle when the target displacement angle changes becomes equal to or greater than the first predetermined value, the deviation (absolute value) is greater than the first predetermined value. The elapsed time until it becomes smaller than the second predetermined value or less may be measured as data representing convergence, and based on the elapsed time, it may be determined whether or not the drain switching valves 34 and 35 are closed abnormally.

その他、本発明は、実施例1の異常診断処理と実施例2の異常診断処理とを組み合わせて実施するようにしたり、或は、可変バルブタイミング調整機構11の構成を適宜変更しても良い。以下、可変バルブタイミング調整機構11の構成を変更した実施例3,4について説明する。   In addition, the present invention may be implemented by combining the abnormality diagnosis process of the first embodiment and the abnormality diagnosis process of the second embodiment, or the configuration of the variable valve timing adjusting mechanism 11 may be changed as appropriate. Hereinafter, Examples 3 and 4 in which the configuration of the variable valve timing adjusting mechanism 11 is changed will be described.

図13に示される本発明の実施例3の可変バルブタイミング調整機構71においては、図1に示される可変バルブタイミング調整機構11に対して以下の点が相違している。なお、図13において図1と同等の構成部品については同じ符号を付して説明を省略する。   The variable valve timing adjusting mechanism 71 according to the third embodiment of the present invention shown in FIG. 13 is different from the variable valve timing adjusting mechanism 11 shown in FIG. In FIG. 13, the same components as those in FIG.

まず、図1の油圧制御弁21は1つのリニアソレノイド36により進角/遅角油圧制御機能37とドレーン切替制御機能38とを駆動しているが、図13では、進角/遅角油圧制御機能を実現する第1の油圧制御弁37とドレーン切替制御機能を実現する第2の油圧制御弁38とにそれぞれソレノイド36,51を設け、各ソレノイド36,51をそれぞれ別のECU43,52で制御する構成としている。   First, the hydraulic control valve 21 in FIG. 1 drives the advance / retard hydraulic control function 37 and the drain switching control function 38 by a single linear solenoid 36, but in FIG. 13, the advance / retard hydraulic control. Solenoids 36 and 51 are provided in the first hydraulic control valve 37 for realizing the function and the second hydraulic control valve 38 for realizing the drain switching control function, respectively, and the solenoids 36 and 51 are controlled by separate ECUs 43 and 52, respectively. It is configured to do.

ドレーン切替弁34,35については、図1では、油圧が加えられていないときには、スプリング41,42によって開弁位置に保持される、いわゆるノーマリ・オープン型(常開型)の切替弁を用いている。これに対して、図13では、油圧が加えられていないときに、スプリング41,42によって閉弁位置に保持される、いわゆるノーマリ・クローズ型(常閉型)の切替弁を用いている。またこれに伴い、ドレーン切替制御機能38も、図1ではドレーン切替弁34,35を閉弁するときに油圧を供給する構成となっているが、図13ではドレーン切替弁34,35を閉弁するときに油圧供給を停止する構成となっている。   As for the drain switching valves 34 and 35, in FIG. 1, when a hydraulic pressure is not applied, a so-called normally open type (normally open type) switching valve that is held in a valve open position by springs 41 and 42 is used. Yes. On the other hand, in FIG. 13, a so-called normally closed type (normally closed type) switching valve that is held in the closed position by the springs 41 and 42 when hydraulic pressure is not applied is used. Accordingly, the drain switching control function 38 is configured to supply hydraulic pressure when the drain switching valves 34 and 35 are closed in FIG. 1, but in FIG. 13, the drain switching valves 34 and 35 are closed. In this case, the hydraulic pressure supply is stopped.

また、図1においては、ある1つのベーン17で仕切られた1つのベーン収納室16の進角室18及び遅角室19に対応する油圧供給通路28,29に逆止弁30,31及びドレーン切替弁34,35を設ける構成としているが、図13では、あるベーン収納室16の進角室18に対する油圧供給通路28と別のベーン収納室16の遅角室19に対する油圧供給通路29とに逆止弁30,31及びドレーン切替弁34,35を設けている。   Further, in FIG. 1, check valves 30 and 31 and drains are provided in the hydraulic pressure supply passages 28 and 29 corresponding to the advance chamber 18 and the retard chamber 19 of one vane storage chamber 16 partitioned by one vane 17. In the configuration shown in FIG. 13, the switching valves 34 and 35 are provided. In FIG. 13, the hydraulic supply passage 28 for the advance chamber 18 of one vane storage chamber 16 and the hydraulic supply passage 29 for the retard chamber 19 of another vane storage chamber 16 are provided. Check valves 30 and 31 and drain switching valves 34 and 35 are provided.

この構成では、VCT変位角を目標変位角に保持する保持動作中には、進角室18側と遅角室19側の両方のドレーン切替弁34,35を閉じて進角室18側と遅角室19側の両方の逆止弁30,31を有効に機能させて進角室18及び遅角室19からの作動油の逆流を防止するように第2の油圧制御弁38を制御すると共に、可変バルブタイミング調整機構71へ供給する油圧を制御する第1の油圧制御弁37の制御電流を所定の保持電流に制御する。   In this configuration, during the holding operation for maintaining the VCT displacement angle at the target displacement angle, the drain switching valves 34 and 35 on both the advance chamber 18 side and the retard chamber 19 side are closed to retard the advance chamber 18 side. The second hydraulic control valve 38 is controlled so that both check valves 30 and 31 on the corner chamber 19 side function effectively to prevent backflow of hydraulic oil from the advance chamber 18 and the retard chamber 19. Then, the control current of the first hydraulic control valve 37 that controls the hydraulic pressure supplied to the variable valve timing adjusting mechanism 71 is controlled to a predetermined holding current.

一方、VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室18側と遅角室19側のいずれか一方のドレーン切替弁34又は35を開いていずれか一方の逆止弁30又は31が機能しないように第2の油圧制御弁38を制御すると共に、前記第1の油圧制御弁37の制御電流を制御して可変バルブタイミング調整機構71へ供給する油圧を可変することでVCT変位角を目標変位角に向けて変位させる。   On the other hand, during the advance / retard operation for displacing the VCT displacement angle in the advance direction or the retard direction, either the advance chamber 18 side or the retard chamber 19 side is switched according to the displacement direction. The second hydraulic control valve 38 is controlled so that either the check valve 30 or 31 does not function by opening the valve 34 or 35, and the control current of the first hydraulic control valve 37 is controlled to be variable. By varying the hydraulic pressure supplied to the valve timing adjustment mechanism 71, the VCT displacement angle is displaced toward the target displacement angle.

以上のように構成した図13の可変バルブタイミング調整機構71に対しても本発明を適用することができる。   The present invention can also be applied to the variable valve timing adjusting mechanism 71 of FIG. 13 configured as described above.

次に、図14に示される本発明の実施例4の可変バルブタイミング調整機構72の構成について、図1との相違点を中心に説明する。図14においても、図13と同様に図1と同等の構成部品については同じ符号が付されている。   Next, the configuration of the variable valve timing adjusting mechanism 72 according to the fourth embodiment of the present invention shown in FIG. 14 will be described focusing on differences from FIG. Also in FIG. 14, the same reference numerals are given to the same components as in FIG.

まず、図1においては進角/遅角油圧制御機能37のための油路を切換える弁とドレーン切替制御機能38のための油路を切換える弁との2つの弁を備える構成としている。これに対して、図14においては、1つの油圧制御弁60で進角/遅角油圧制御機能とドレーン切替制御機能とを達成する構成としている。また、このために油圧供給通路28,29を油圧制御弁60と逆止弁30,31との間で分岐させ、各々ドレーン切替弁34,35と接続する構成としている。   First, in FIG. 1, there are two valves, an oil path switching valve for the advance / retard hydraulic control function 37 and an oil path switching valve for the drain switching control function 38. On the other hand, in FIG. 14, a single hydraulic control valve 60 is configured to achieve the advance / retard hydraulic pressure control function and the drain switching control function. For this purpose, the hydraulic pressure supply passages 28 and 29 are branched between the hydraulic pressure control valve 60 and the check valves 30 and 31, and are connected to the drain switching valves 34 and 35, respectively.

この構成では、VCT変位角を目標変位角に保持する保持動作中には、油圧制御弁60の制御電流を所定の保持電流に制御して、進角室18側と遅角室19側の両方のドレーン切替弁34,35を閉じて進角室18側と遅角室19側の両方の逆止弁30,31を有効に機能させて進角室18及び遅角室19からの作動油の逆流を防止するように制御すると共に、可変バルブタイミング調整機構72へ供給する油圧を制御する。   In this configuration, during the holding operation for holding the VCT displacement angle at the target displacement angle, the control current of the hydraulic control valve 60 is controlled to a predetermined holding current, so that both the advance chamber 18 side and the retard chamber 19 side are controlled. The drain switching valves 34 and 35 are closed so that the check valves 30 and 31 on both the advance chamber 18 side and the retard chamber 19 side function effectively so that the hydraulic oil from the advance chamber 18 and the retard chamber 19 is discharged. Control is performed to prevent backflow, and the hydraulic pressure supplied to the variable valve timing adjustment mechanism 72 is controlled.

一方、VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、油圧制御弁60の制御電流を制御して、その変位方向に応じて進角室18側と遅角室19側のいずれか一方のドレーン切替弁34又は35を開いていずれか一方の逆止弁30又は31が機能しないように制御すると共に、可変バルブタイミング調整機構72へ供給する油圧を可変することでVCT変位角を目標変位角に向けて変位させる。   On the other hand, during the advance / retard operation that displaces the VCT displacement angle in the advance direction or the retard direction, the control current of the hydraulic control valve 60 is controlled, and the advance chamber 18 side is controlled according to the displacement direction. Control is made so that either one of the check valves 30 or 31 does not function by opening one of the drain switching valves 34 or 35 on the retarding chamber 19 side, and the hydraulic pressure supplied to the variable valve timing adjusting mechanism 72 is variable. By doing so, the VCT displacement angle is displaced toward the target displacement angle.

以上のように構成した図14の可変バルブタイミング調整機構72に対しても本願発明を適用することができる。   The present invention can also be applied to the variable valve timing adjusting mechanism 72 of FIG. 14 configured as described above.

本発明の実施例1における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows roughly the variable valve timing adjustment mechanism in Example 1 of this invention, and its hydraulic control circuit. 可変バルブタイミング調整機構の遅角動作、保持動作、進角動作を説明するための図である。It is a figure for demonstrating retardation operation | movement, holding | maintenance operation | movement, and advance angle operation | movement of a variable valve timing adjustment mechanism. 逆止弁の有無による進角作動時のVCT応答速度の相違を説明するための特性図である。It is a characteristic view for demonstrating the difference in the VCT response speed at the time of advance operation by the presence or absence of a check valve. 逆止弁付きの可変バルブタイミング調整機構の応答特性の一例を示す特性図である。It is a characteristic view which shows an example of the response characteristic of a variable valve timing adjustment mechanism with a check valve. 本発明の実施例1における異常診断方法を説明するタイムチャートである(その1)。It is a time chart explaining the abnormality diagnosis method in Example 1 of the present invention (part 1). 本発明の実施例1における異常診断方法を説明するタイムチャートである(その2)。It is a time chart explaining the abnormality diagnosis method in Example 1 of the present invention (the 2). 本発明の実施例1の異常診断ルーチンの処理の流れを説明するフローチャートである(その1)。It is a flowchart explaining the flow of a process of the abnormality diagnosis routine of Example 1 of this invention (the 1). 本発明の実施例1の異常診断ルーチンの処理の流れを説明するフローチャートである(その2)。It is a flowchart explaining the flow of a process of the abnormality diagnosis routine of Example 1 of this invention (the 2). 本発明の実施例1の異常診断ルーチンの処理の流れを説明するフローチャートである(その3)。It is a flowchart explaining the flow of a process of the abnormality diagnosis routine of Example 1 of this invention (the 3). 本発明の実施例2における異常診断方法を説明するタイムチャートである。It is a time chart explaining the abnormality diagnosis method in Example 2 of this invention. 本発明の実施例2の異常診断ルーチンの処理の流れを説明するフローチャートである(その1)。It is a flowchart explaining the flow of a process of the abnormality diagnosis routine of Example 2 of this invention (the 1). 本発明の実施例2の異常診断ルーチンの処理の流れを説明するフローチャートである(その2)。It is a flowchart explaining the flow of a process of the abnormality diagnosis routine of Example 2 of this invention (the 2). 本発明の実施例3における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows roughly the variable valve timing adjustment mechanism in Example 3 of this invention, and its hydraulic control circuit. 本発明の実施例4における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows roughly the variable valve timing adjustment mechanism in Example 4 of this invention, and its hydraulic control circuit.

符号の説明Explanation of symbols

11…可変バルブタイミング調整機構、12…ハウジング、14…ベーンロータ、16…ベーン収納室、17…ベーン、18…進角室、19…遅角室、21…油圧制御弁、24…ロックピン、27…オイルポンプ、28,29…油圧供給油路、30,31…逆止弁、32,33…ドレーン油路、34,35…ドレーン切替弁、37…進角/遅角油圧制御機能(第1の油圧制御弁)、38…ドレーン切替制御機能(第2の油圧制御弁)、43…ECU(異常診断手段)、60…油圧制御弁、71,72…可変バルブタイミング調整機構(VCT)   DESCRIPTION OF SYMBOLS 11 ... Variable valve timing adjustment mechanism, 12 ... Housing, 14 ... Vane rotor, 16 ... Vane storage chamber, 17 ... Vane, 18 ... Advance chamber, 19 ... Delay chamber, 21 ... Hydraulic control valve, 24 ... Lock pin, 27 ... Oil pump, 28, 29 ... Hydraulic supply oil passage, 30, 31 ... Check valve, 32, 33 ... Drain oil passage, 34, 35 ... Drain switching valve, 37 ... Advance / retard hydraulic control function (first Hydraulic control valve), 38 ... drain switching control function (second hydraulic control valve), 43 ... ECU (abnormality diagnosis means), 60 ... hydraulic control valve, 71, 72 ... variable valve timing adjustment mechanism (VCT)

Claims (29)

ベーン式の可変バルブタイミング調整機構のハウジング内に形成された複数のベーン収納室内をそれぞれベーンによって進角室と遅角室とに区画し、少なくとも1つのベーン収納室の進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ各油圧室(「油圧室」とは「進角室」と「遅角室」のいずれかを意味する)からの作動油の逆流を防止する逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ前記逆止弁をバイパスするドレーン油路を並列に設け、各ドレーン油路にそれぞれ油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を設け、
前記可変バルブタイミング調整機構の変位角(以下「VCT変位角」という)を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて両方の油圧室からの作動油の逆流を防止するように前記油圧切替弁を制御すると共に、前記各油圧室の油圧を制御する油圧制御弁の制御電流を所定の保持電流に制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記油圧切替弁を制御すると共に、前記油圧制御弁の制御電流を制御して各油圧室の油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるベーン式の可変バルブタイミング調整機構の異常診断装置において、
前記保持動作中に、所定期間内のVCT変位角の変化量に基づいて前記ドレーン切替弁及び/又は前記逆止弁が開いたまま動かない開異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in the housing of the vane type variable valve timing adjusting mechanism are divided into advance chambers and retard chambers by the vanes, respectively, and hydraulic supply oil for the advance chamber of at least one vane storage chamber Prevents backflow of hydraulic fluid from each hydraulic chamber ("hydraulic chamber" means either "advanced chamber" or "retarded chamber") in the hydraulic supply oil path of the passage and retarded chamber In addition to providing a check valve, a drain oil passage that bypasses the check valve is provided in parallel in each of the hydraulic supply oil passages of each hydraulic chamber, and a drain switching valve that is hydraulically driven is provided in each drain oil passage. A hydraulic switching valve that switches the hydraulic pressure that drives each drain switching valve;
During the holding operation for holding the displacement angle of the variable valve timing adjustment mechanism (hereinafter referred to as “VCT displacement angle”) at the target displacement angle, the advancement chamber side and retarding chamber side drain switching valves are closed to advance. The hydraulic switching valve is controlled so that the check valves on both the corner chamber side and the retard chamber side function effectively to prevent the backflow of hydraulic oil from both hydraulic chambers, and the hydraulic pressure of each hydraulic chamber The control current of the hydraulic control valve that controls the pressure is controlled to a predetermined holding current,
During advance / retard operation to displace the VCT displacement angle in the advance direction or retard direction, either the advance chamber side or the retard chamber side open the drain switching valve according to the displacement direction. The hydraulic switching valve is controlled so that one of the check valves does not function, and the control current of the hydraulic control valve is controlled to vary the hydraulic pressure in each hydraulic chamber, thereby setting the VCT displacement angle to the target displacement. In the abnormality diagnosis device of the vane type variable valve timing adjustment mechanism that is displaced toward the corner,
An abnormality diagnosing means for determining whether or not an opening abnormality has occurred during the holding operation, in which the drain switching valve and / or the check valve remains open based on a change amount of the VCT displacement angle within a predetermined period. An abnormality diagnosis device for a vane type variable valve timing adjustment mechanism characterized by comprising:
前記異常診断手段は、前記保持動作開始直後のVCT変位角と前記所定期間経過時のVCT変位角との差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項1に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means calculates a difference between a VCT displacement angle immediately after the start of the holding operation and a VCT displacement angle when the predetermined period has elapsed, and based on this difference, opens the drain switching valve and / or the check valve. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 1, wherein presence / absence of abnormality is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して両者の差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項1に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and calculates a difference between them, and based on this difference, the drain switching valve and 2. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 1, wherein presence / absence of an opening abnormality of the check valve is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して、前記保持動作中の目標変位角と前記最大値との偏差及び前記目標変位角と前記最小値との偏差を算出して、これらの2つの偏差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項1に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and a deviation between the target displacement angle and the maximum value during the holding operation and The deviation between the target displacement angle and the minimum value is calculated, and based on these two deviations, it is determined whether there is an abnormal opening of the drain switching valve and / or the check valve. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 1. ベーン式の可変バルブタイミング調整機構のハウジング内に形成された複数のベーン収納室内をそれぞれベーンによって進角室と遅角室とに区画し、少なくとも1つのベーン収納室の進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ各油圧室(「油圧室」とは「進角室」と「遅角室」のいずれかを意味する)からの作動油の逆流を防止する逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ前記逆止弁をバイパスするドレーン油路を並列に設け、各ドレーン油路にそれぞれ油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を設け、
前記可変バルブタイミング調整機構の変位角(以下「VCT変位角」という)を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて両方の油圧室からの作動油の逆流を防止するように前記油圧切替弁を制御すると共に、前記各油圧室の油圧を制御する油圧制御弁の制御電流を所定の保持電流に制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記油圧切替弁を制御すると共に、前記油圧制御弁の制御電流を制御して各油圧室の油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるベーン式の可変バルブタイミング調整機構の異常診断装置において、
目標変位角変化時に前記VCT変位角の該目標変位角への収束性を判定してその収束性に基づいて前記ドレーン切替弁が閉じたまま動かない閉異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in the housing of the vane type variable valve timing adjusting mechanism are divided into advance chambers and retard chambers by the vanes, respectively, and hydraulic supply oil for the advance chamber of at least one vane storage chamber Prevents backflow of hydraulic fluid from each hydraulic chamber ("hydraulic chamber" means either "advanced chamber" or "retarded chamber") in the hydraulic supply oil path of the passage and retarded chamber In addition to providing a check valve, a drain oil passage that bypasses the check valve is provided in parallel in each of the hydraulic supply oil passages of each hydraulic chamber, and a drain switching valve that is hydraulically driven is provided in each drain oil passage. A hydraulic switching valve that switches the hydraulic pressure that drives each drain switching valve;
During the holding operation for holding the displacement angle of the variable valve timing adjustment mechanism (hereinafter referred to as “VCT displacement angle”) at the target displacement angle, the advancement chamber side and retarding chamber side drain switching valves are closed to advance. The hydraulic switching valve is controlled so that the check valves on both the corner chamber side and the retard chamber side function effectively to prevent the backflow of hydraulic oil from both hydraulic chambers, and the hydraulic pressure of each hydraulic chamber The control current of the hydraulic control valve that controls the pressure is controlled to a predetermined holding current,
During advance / retard operation to displace the VCT displacement angle in the advance direction or retard direction, either the advance chamber side or the retard chamber side open the drain switching valve according to the displacement direction. The hydraulic switching valve is controlled so that one of the check valves does not function, and the control current of the hydraulic control valve is controlled to vary the hydraulic pressure in each hydraulic chamber, thereby setting the VCT displacement angle to the target displacement. In the abnormality diagnosis device of the vane type variable valve timing adjustment mechanism that is displaced toward the corner,
An abnormality that determines whether or not the VCT displacement angle converges to the target displacement angle when the target displacement angle changes, and whether or not a closing abnormality in which the drain switching valve does not move is generated based on the convergence. An abnormality diagnosing device for a vane type variable valve timing adjusting mechanism, characterized by comprising a diagnostic means.
前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が所定値以上となる状態が継続する時間を前記収束性を表すデータとして計測し、当該継続時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項5に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing unit measures, as data representing the convergence, a time during which a state in which a deviation between the target displacement angle and the VCT displacement angle is a predetermined value or more continues, and based on the duration, the drain switching valve 6. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 5, wherein the presence or absence of a closing abnormality is determined. 前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が第1の所定値以上となってから当該偏差が前記第1の所定値よりも小さい第2の所定値以下となるまでの経過時間を前記収束性を表すデータとして計測し、当該経過時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項5に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means until the deviation becomes equal to or smaller than a second predetermined value smaller than the first predetermined value after the deviation between the target displacement angle and the VCT displacement angle becomes equal to or larger than a first predetermined value. 6. The vane type variable valve timing adjustment according to claim 5, wherein the elapsed time is measured as data representing the convergence and whether or not the drain switching valve is closed abnormally is determined based on the elapsed time. Mechanism abnormality diagnosis device. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっていることを前提条件として前記収束性を判定することを特徴とする請求項5乃至7のいずれかに記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The vane according to any one of claims 5 to 7, wherein the abnormality diagnosis means determines the convergence on the precondition that a hydraulic pressure supplied to the hydraulic control valve is equal to or greater than a predetermined value. Abnormality diagnosis device of variable valve timing adjustment mechanism of the type. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっているか否かをエンジン回転速度及び/又は油温に関する情報に基づいて判定することを特徴とする請求項8に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   9. The abnormality diagnosis unit according to claim 8, wherein whether or not a hydraulic pressure supplied to the hydraulic control valve is equal to or higher than a predetermined value is determined based on information related to an engine speed and / or an oil temperature. An abnormality diagnosis device for the vane variable valve timing adjustment mechanism. 前記油圧切替弁は、前記油圧制御弁に一体化されていることを特徴とする請求項1乃至9のいずれかに記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   10. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 1, wherein the hydraulic pressure switching valve is integrated with the hydraulic pressure control valve. ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)のハウジング内に形成された複数のベーン収納室内がそれぞれベーンによって進角室と遅角室とに区画されており、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、
前記VCTへ供給する油圧を制御する第1の油圧制御弁と、
前記第1及び第2のドレーン切替弁を駆動する油圧を制御する第2の油圧制御弁とが設けられており、
前記VCTの変位角を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて進角室及び遅角室からの作動油の逆流を防止するように前記第2の油圧制御弁を制御すると共に、前記VCTへ供給する油圧を制御する第1の油圧制御弁の制御電流を所定の保持電流に制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記第2の油圧制御弁を制御すると共に、前記第1の油圧制御弁の制御電流を制御して前記VCTへ供給する油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるベーン式の可変バルブタイミング調整機構の異常診断装置において、
前記保持動作中に、所定期間内のVCT変位角の変化量に基づいて前記ドレーン切替弁及び/又は前記逆止弁が開いたまま動かない開異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) are each divided into an advance chamber and a retard chamber by the vanes, and at least one A first check valve provided in a hydraulic supply oil passage of the advance chamber in the vane storage chamber for preventing the backflow of hydraulic oil from the advance chamber, and a first bypassing the first check valve The hydraulic oil from the retard chamber provided in the hydraulic supply oil passage of the first drain switching valve that is hydraulically driven and the retard chamber of the at least one vane storage chamber A second check valve for preventing back flow of the oil, a second drain switching valve driven by hydraulic pressure, provided in a second drain oil passage that bypasses the second check valve,
A first hydraulic control valve that controls the hydraulic pressure supplied to the VCT;
A second hydraulic control valve for controlling the hydraulic pressure for driving the first and second drain switching valves is provided,
During the holding operation for maintaining the displacement angle of the VCT at the target displacement angle, both the advance chamber side and the retard chamber side drain switching valves are closed to check both the advance chamber side and the retard chamber side. A first hydraulic pressure that controls the second hydraulic pressure control valve to control the hydraulic pressure supplied to the VCT and to control the second hydraulic pressure control valve so that the valve functions effectively to prevent the backflow of hydraulic oil from the advance angle chamber and the retard angle chamber. Control the control current of the control valve to a predetermined holding current,
During advance / retard operation to displace the VCT displacement angle in the advance direction or retard direction, either the advance chamber side or the retard chamber side open the drain switching valve according to the displacement direction. And controlling the second hydraulic control valve so that one of the check valves does not function, and controlling the control current of the first hydraulic control valve to vary the hydraulic pressure supplied to the VCT. In the abnormality diagnosis device for a vane-type variable valve timing adjustment mechanism that displaces the VCT displacement angle toward the target displacement angle,
An abnormality diagnosing means for determining whether or not an opening abnormality has occurred during the holding operation, in which the drain switching valve and / or the check valve remains open based on a change amount of the VCT displacement angle within a predetermined period. An abnormality diagnosis device for a vane type variable valve timing adjustment mechanism characterized by comprising:
前記異常診断手段は、前記保持動作開始直後のVCT変位角と前記所定期間経過時のVCT変位角との差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項11に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means calculates a difference between a VCT displacement angle immediately after the start of the holding operation and a VCT displacement angle when the predetermined period has elapsed, and based on this difference, opens the drain switching valve and / or the check valve. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 11, wherein presence / absence of abnormality is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して両者の差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項11に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and calculates a difference between them, and based on this difference, the drain switching valve and The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 11, wherein presence / absence of an opening abnormality of the check valve is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して、前記保持動作中の目標変位角と前記最大値との偏差及び前記目標変位角と前記最小値との偏差を算出して、これらの2つの偏差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項11に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and a deviation between the target displacement angle and the maximum value during the holding operation and The deviation between the target displacement angle and the minimum value is calculated, and based on these two deviations, it is determined whether there is an abnormal opening of the drain switching valve and / or the check valve. 11. An abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to 11, ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)のハウジング内に形成された複数のベーン収納室内がそれぞれベーンによって進角室と遅角室とに区画されており、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、
前記VCTへ供給する油圧を制御する第1の油圧制御弁と、
前記第1及び第2のドレーン切替弁を駆動する油圧を制御する第2の油圧制御弁とが設けられており、
前記VCTの変位角を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて進角室及び遅角室からの作動油の逆流を防止するように前記第2の油圧制御弁を制御すると共に、前記VCTへ供給する油圧を制御する第1の油圧制御弁の制御電流を所定の保持電流に制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記第2の油圧制御弁を制御すると共に、前記第1の油圧制御弁の制御電流を制御して前記VCTへ供給する油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるベーン式の可変バルブタイミング調整機構の異常診断装置において、
目標変位角変化時に前記VCT変位角の該目標変位角への収束性を判定してその収束性に基づいて前記ドレーン切替弁が閉じたまま動かない閉異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) are each divided into an advance chamber and a retard chamber by the vanes, and at least one A first check valve provided in a hydraulic supply oil passage of the advance chamber in the vane storage chamber for preventing the backflow of hydraulic oil from the advance chamber, and a first bypassing the first check valve The hydraulic oil from the retard chamber provided in the hydraulic supply oil passage of the first drain switching valve that is hydraulically driven and the retard chamber of the at least one vane storage chamber A second check valve for preventing back flow of the oil, a second drain switching valve driven by hydraulic pressure, provided in a second drain oil passage that bypasses the second check valve,
A first hydraulic control valve that controls the hydraulic pressure supplied to the VCT;
A second hydraulic control valve for controlling the hydraulic pressure for driving the first and second drain switching valves is provided,
During the holding operation for maintaining the displacement angle of the VCT at the target displacement angle, both the advance chamber side and the retard chamber side drain switching valves are closed to check both the advance chamber side and the retard chamber side. A first hydraulic pressure that controls the second hydraulic pressure control valve to control the hydraulic pressure supplied to the VCT and to control the second hydraulic pressure control valve so that the valve functions effectively to prevent the backflow of hydraulic oil from the advance angle chamber and the retard angle chamber. Control the control current of the control valve to a predetermined holding current,
During advance / retard operation to displace the VCT displacement angle in the advance direction or retard direction, either the advance chamber side or the retard chamber side open the drain switching valve according to the displacement direction. And controlling the second hydraulic control valve so that one of the check valves does not function, and controlling the control current of the first hydraulic control valve to vary the hydraulic pressure supplied to the VCT. In the abnormality diagnosis device for a vane-type variable valve timing adjustment mechanism that displaces the VCT displacement angle toward the target displacement angle,
An abnormality that determines whether or not the VCT displacement angle converges to the target displacement angle when the target displacement angle changes, and whether or not a closing abnormality in which the drain switching valve does not move is generated based on the convergence. An abnormality diagnosing device for a vane type variable valve timing adjusting mechanism, characterized by comprising a diagnostic means.
前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が所定値以上となる状態が継続する時間を前記収束性を表すデータとして計測し、当該継続時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項15に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing unit measures, as data representing the convergence, a time during which a state in which a deviation between the target displacement angle and the VCT displacement angle is a predetermined value or more continues, and based on the duration, the drain switching valve 16. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 15, wherein the presence or absence of a closing abnormality is determined. 前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が第1の所定値以上となってから当該偏差が前記第1の所定値よりも小さい第2の所定値以下となるまでの経過時間を前記収束性を表すデータとして計測し、当該経過時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項15に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means until the deviation becomes equal to or smaller than a second predetermined value smaller than the first predetermined value after the deviation between the target displacement angle and the VCT displacement angle becomes equal to or larger than a first predetermined value. 16. The vane type variable valve timing adjustment according to claim 15, wherein the elapsed time is measured as data representing the convergence and whether or not the drain switching valve is closed abnormally is determined based on the elapsed time. Mechanism abnormality diagnosis device. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっていることを前提条件として前記収束性を判定することを特徴とする請求項15乃至17のいずれかに記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   18. The vane according to claim 15, wherein the abnormality diagnosis unit determines the convergence on the precondition that a hydraulic pressure supplied to the hydraulic control valve is equal to or greater than a predetermined value. Abnormality diagnosis device of variable valve timing adjustment mechanism of the type. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっているか否かをエンジン回転速度及び/又は油温に関する情報に基づいて判定することを特徴とする請求項18に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   19. The abnormality diagnosing means determines whether or not the hydraulic pressure supplied to the hydraulic control valve is equal to or higher than a predetermined value based on information related to an engine speed and / or oil temperature. An abnormality diagnosis device for the vane variable valve timing adjustment mechanism. 前記第1の油圧制御弁と前記第2の油圧制御弁とを駆動する軸が一体化されていることを特徴とする請求項11乃至19のいずれかに記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The vane type variable valve timing adjusting mechanism according to any one of claims 11 to 19, wherein a shaft for driving the first hydraulic control valve and the second hydraulic control valve is integrated. Abnormality diagnosis device. ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)のハウジング内に形成された複数のベーン収納室内がそれぞれベーンによって進角室と遅角室とに区画されており、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、
前記第1、第2のドレーン切替弁及び前記VCTへ供給する油圧を制御する一つの油圧制御弁とが設けられており、
前記VCTの変位角を目標変位角に保持する保持動作中には、前記油圧制御弁の制御電流を所定の保持電流に制御し、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて進角室及び遅角室からの作動油の逆流を防止するように制御すると共に、前記VCTへ供給する油圧を制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、前記油圧制御弁の制御電流を制御して、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように制御すると共に、前記VCTへ供給する油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるように制御するベーン式の可変バルブタイミング調整機構の異常診断装置において、
前記保持動作中に、所定期間内のVCT変位角の変化量に基づいて前記ドレーン切替弁及び/又は前記逆止弁が開いたまま動かない開異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) are each divided into an advance chamber and a retard chamber by the vanes, and at least one A first check valve provided in a hydraulic supply oil passage of the advance chamber in the vane storage chamber for preventing the backflow of hydraulic oil from the advance chamber, and a first bypassing the first check valve The hydraulic oil from the retard chamber provided in the hydraulic supply oil passage of the first drain switching valve that is hydraulically driven and the retard chamber of the at least one vane storage chamber A second check valve for preventing back flow of the oil, a second drain switching valve driven by hydraulic pressure, provided in a second drain oil passage that bypasses the second check valve,
A first hydraulic control valve that controls the first and second drain switching valves and the hydraulic pressure supplied to the VCT;
During the holding operation of holding the displacement angle of the VCT at the target displacement angle, the control current of the hydraulic control valve is controlled to a predetermined holding current, and the drain switching valves on both the advance chamber side and the retard chamber side are turned on. Control is performed so that the check valves on both the advance angle chamber side and the retard angle chamber side are effectively functioned to prevent the backflow of hydraulic oil from the advance angle chamber and the retard angle chamber, and supplied to the VCT. Control the hydraulic pressure,
During the advance / retard operation for displacing the VCT displacement angle in the advance direction or the retard direction, the control current of the hydraulic control valve is controlled, and the advance chamber side and the retard angle are controlled according to the displacement direction. Either one of the chamber side drain switching valves is opened so that either one of the check valves does not function, and the hydraulic pressure supplied to the VCT is varied to direct the VCT displacement angle to the target displacement angle. In the abnormality diagnosis device of the vane type variable valve timing adjustment mechanism that is controlled to be displaced by
An abnormality diagnosing means for determining whether or not an opening abnormality has occurred during the holding operation, in which the drain switching valve and / or the check valve remains open based on a change amount of the VCT displacement angle within a predetermined period. An abnormality diagnosis device for a vane type variable valve timing adjustment mechanism characterized by comprising:
前記異常診断手段は、前記保持動作開始直後のVCT変位角と前記所定期間経過時のVCT変位角との差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項21に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means calculates a difference between a VCT displacement angle immediately after the start of the holding operation and a VCT displacement angle when the predetermined period has elapsed, and based on this difference, opens the drain switching valve and / or the check valve. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 21, wherein the presence or absence of abnormality is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して両者の差を算出し、この差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項21に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and calculates a difference between them, and based on this difference, the drain switching valve and The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 21, wherein the presence / absence of an opening abnormality of the check valve is determined. 前記異常診断手段は、前記保持動作開始直後から前記所定期間が経過するまでのVCT変位角の最大値と最小値を検出して、前記保持動作中の目標変位角と前記最大値との偏差及び前記目標変位角と前記最小値との偏差を算出して、これらの2つの偏差に基づいて前記ドレーン切替弁及び/又は前記逆止弁の開異常の有無を判定することを特徴とする請求項21に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosis means detects a maximum value and a minimum value of a VCT displacement angle from immediately after the start of the holding operation until the predetermined period elapses, and a deviation between the target displacement angle and the maximum value during the holding operation and The deviation between the target displacement angle and the minimum value is calculated, and based on these two deviations, it is determined whether there is an abnormal opening of the drain switching valve and / or the check valve. The abnormality diagnosis device for a vane type variable valve timing adjustment mechanism according to claim 21. ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)のハウジング内に形成された複数のベーン収納室内がそれぞれベーンによって進角室と遅角室とに区画されており、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられた、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられた、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられた、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられた、油圧で駆動される第2のドレーン切替弁と、
前記第1、第2のドレーン切替弁及び前記VCTへ供給する油圧を制御する一つの油圧制御弁とが設けられており、
前記VCTの変位角を目標変位角に保持する保持動作中には、進角室側と遅角室側の両方のドレーン切替弁を閉じて進角室側と遅角室側の両方の逆止弁を有効に機能させて両方の油圧室からの作動油の逆流を防止するように前記油圧切替弁を制御すると共に、前記各油圧室の油圧を制御する油圧制御弁の制御電流を所定の保持電流に制御し、
前記VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、その変位方向に応じて進角室側と遅角室側のいずれか一方のドレーン切替弁を開いていずれか一方の逆止弁が機能しないように前記油圧切替弁を制御すると共に、前記油圧制御弁の制御電流を制御して各油圧室の油圧を可変することで前記VCT変位角を目標変位角に向けて変位させるベーン式の可変バルブタイミング調整機構の異常診断装置において、
目標変位角変化時に前記VCT変位角の該目標変位角への収束性を判定してその収束性に基づいて前記ドレーン切替弁が閉じたまま動かない閉異常が発生したか否かを判定する異常診断手段を備えていることを特徴とするベーン式の可変バルブタイミング調整機構の異常診断装置。
A plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) are each divided into an advance chamber and a retard chamber by the vanes, and at least one A first check valve provided in a hydraulic supply oil passage of the advance chamber in the vane storage chamber for preventing the backflow of hydraulic oil from the advance chamber, and a first bypassing the first check valve The hydraulic oil from the retard chamber provided in the hydraulic supply oil passage of the first drain switching valve that is hydraulically driven and the retard chamber of the at least one vane storage chamber A second check valve for preventing back flow of the oil, a second drain switching valve driven by hydraulic pressure, provided in a second drain oil passage that bypasses the second check valve,
A first hydraulic control valve that controls the first and second drain switching valves and the hydraulic pressure supplied to the VCT;
During the holding operation for maintaining the displacement angle of the VCT at the target displacement angle, both the advance chamber side and the retard chamber side drain switching valves are closed to check both the advance chamber side and the retard chamber side. The hydraulic switching valve is controlled so that the valve functions effectively to prevent backflow of hydraulic oil from both hydraulic chambers, and the control current of the hydraulic control valve that controls the hydraulic pressure of each hydraulic chamber is held at a predetermined level. Control to current,
During advance / retard operation to displace the VCT displacement angle in the advance direction or retard direction, either the advance chamber side or the retard chamber side open the drain switching valve according to the displacement direction. The hydraulic switching valve is controlled so that one of the check valves does not function, and the control current of the hydraulic control valve is controlled to vary the hydraulic pressure in each hydraulic chamber, thereby setting the VCT displacement angle to the target displacement. In the abnormality diagnosis device of the vane type variable valve timing adjustment mechanism that is displaced toward the corner,
An abnormality that determines whether or not the VCT displacement angle converges to the target displacement angle when the target displacement angle changes, and whether or not a closing abnormality in which the drain switching valve does not move is generated based on the convergence. An abnormality diagnosing device for a vane type variable valve timing adjusting mechanism, characterized by comprising a diagnostic means.
前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が所定値以上となる状態が継続する時間を前記収束性を表すデータとして計測し、当該継続時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項25に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing unit measures, as data representing the convergence, a time during which a state in which a deviation between the target displacement angle and the VCT displacement angle is a predetermined value or more continues, and based on the duration, the drain switching valve 26. The abnormality diagnosis apparatus for a vane type variable valve timing adjustment mechanism according to claim 25, wherein the presence or absence of a closing abnormality is determined. 前記異常診断手段は、前記目標変位角と前記VCT変位角との偏差が第1の所定値以上となってから当該偏差が前記第1の所定値よりも小さい第2の所定値以下となるまでの経過時間を前記収束性を表すデータとして計測し、当該経過時間に基づいて前記ドレーン切替弁の閉異常の有無を判定することを特徴とする請求項25に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The abnormality diagnosing means until the deviation becomes equal to or smaller than a second predetermined value smaller than the first predetermined value after the deviation between the target displacement angle and the VCT displacement angle becomes equal to or larger than a first predetermined value. 26. The vane-type variable valve timing adjustment according to claim 25, wherein the elapsed time is measured as data representing the convergence, and whether or not the drain switching valve is closed abnormally is determined based on the elapsed time. Mechanism abnormality diagnosis device. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっていることを前提条件として前記収束性を判定することを特徴とする請求項25乃至27のいずれかに記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   The vane according to any one of claims 25 to 27, wherein the abnormality diagnosis means determines the convergence on the precondition that a hydraulic pressure supplied to the hydraulic control valve is equal to or greater than a predetermined value. Abnormality diagnosis device of variable valve timing adjustment mechanism of the type. 前記異常診断手段は、前記油圧制御弁への供給油圧が所定値以上になっているか否かをエンジン回転速度及び/又は油温に関する情報に基づいて判定することを特徴とする請求項28に記載のベーン式の可変バルブタイミング調整機構の異常診断装置。   29. The abnormality diagnosis unit according to claim 28, wherein the abnormality diagnosis unit determines whether or not a hydraulic pressure supplied to the hydraulic control valve is equal to or higher than a predetermined value based on information related to an engine speed and / or an oil temperature. An abnormality diagnosis device for the vane variable valve timing adjustment mechanism.
JP2007112700A 2006-04-27 2007-04-23 Diagnostic system for anomaly in vane-type variable valve timing control mechanism Pending JP2007315382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112700A JP2007315382A (en) 2006-04-27 2007-04-23 Diagnostic system for anomaly in vane-type variable valve timing control mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006122763 2006-04-27
JP2007112700A JP2007315382A (en) 2006-04-27 2007-04-23 Diagnostic system for anomaly in vane-type variable valve timing control mechanism

Publications (1)

Publication Number Publication Date
JP2007315382A true JP2007315382A (en) 2007-12-06

Family

ID=38849458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112700A Pending JP2007315382A (en) 2006-04-27 2007-04-23 Diagnostic system for anomaly in vane-type variable valve timing control mechanism

Country Status (1)

Country Link
JP (1) JP2007315382A (en)

Similar Documents

Publication Publication Date Title
US6405697B2 (en) Valve characteristic control apparatus of internal combustion engine and methods of controlling valve characteristics
US6330870B1 (en) Variable valve timing control system
US6505586B1 (en) Variable valve timing control apparatus and method for engines
US20070251477A1 (en) Diagnosis system for vane-type variable valve timing controller
JP4122797B2 (en) Valve control device for internal combustion engine
US7845321B2 (en) Controller for vane-type variable timing adjusting mechanism
KR100429346B1 (en) Valve timing control system for internal combustion engine
JP5257629B2 (en) Variable valve timing control device for internal combustion engine
JP4978542B2 (en) Valve timing control device and valve timing control system
JP4264983B2 (en) Variable valve timing control device for internal combustion engine
US10495522B2 (en) System and method for engine oil temperature estimation
JP4609455B2 (en) Variable valve mechanism control device for internal combustion engine
JP2003003869A (en) Abnormality judging device for variable valve timing mechanism
JP2007332957A (en) Control device for vane type variable valve timing adjustment mechanism
JP2009222025A (en) Variable cam phase internal combustion engine
JP2007315379A (en) Control device for vane-type variable valve timing adjusting mechanism
JP2001164908A (en) Variable valve timing control device for internal combustion engine
JP2007332956A (en) Control device for vane type variable valve timing adjustment mechanism
JP2001152888A (en) Variable valve-timing control device of internal combustion engine
JP3756327B2 (en) Diagnosis device for hydraulic variable valve timing mechanism
JP2007315382A (en) Diagnostic system for anomaly in vane-type variable valve timing control mechanism
JP2009222029A (en) Variable cam phase internal combustion engine
JP2007315380A (en) Diagnosis system for vane-type variable valve timing adjusting mechanism
JP2008008283A (en) Control device of vane type variable valve timing adjusting mechanism
US20070283925A1 (en) Controller for vane-type variable valve timing adjusting mechanism