JP2007332957A - Control device for vane type variable valve timing adjustment mechanism - Google Patents

Control device for vane type variable valve timing adjustment mechanism Download PDF

Info

Publication number
JP2007332957A
JP2007332957A JP2007116635A JP2007116635A JP2007332957A JP 2007332957 A JP2007332957 A JP 2007332957A JP 2007116635 A JP2007116635 A JP 2007116635A JP 2007116635 A JP2007116635 A JP 2007116635A JP 2007332957 A JP2007332957 A JP 2007332957A
Authority
JP
Japan
Prior art keywords
hydraulic
control
valve
vct
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116635A
Other languages
Japanese (ja)
Inventor
Ko Nagashima
航 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007116635A priority Critical patent/JP2007332957A/en
Publication of JP2007332957A publication Critical patent/JP2007332957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/18

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the responsiveness of variable valve timing control in a vane type variable valve timing adjustment mechanism (VCT) without posing the problem of overshoot in a control area in which a response characteristic of the VCT to current (OCV current) of a hydraulic control valve is delayed. <P>SOLUTION: An OCV target current is set at a holding current to hold an actual advance quantity at about a target advance quantity during execution of holding control. Minute displacement control (pulse excitation control) is started at points of time t1, t3 and t5 where the deviation between an actual advance quantity and a target advance quantity enters a minute displacement control area over a holding control area (determination threshold KKP) during execution of the holding control, and an oil pressure control valve is pulse-excited to drive the VCT in the direction of the target advance quantity in a pulse-like manner. According to this, when the actual advance quantity is returned to about the target advance quantity, the holding control is restored, and the OCV target current is set at the holding current to hold the actual advance quantity at the target advance quantity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ベーン式の可変バルブタイミング調整機構を目標変位角の方向に駆動するように進角室の油圧と遅角室の油圧を油圧制御弁によって制御して実変位角を目標変位角に一致させるベーン式の可変バルブタイミング調整機構の制御装置に関する発明である。   The present invention controls the hydraulic pressure of the advance chamber and the retard chamber by the hydraulic control valve so as to drive the vane type variable valve timing adjusting mechanism in the direction of the target displacement angle, thereby setting the actual displacement angle to the target displacement angle. The present invention relates to a control device for a vane type variable valve timing adjusting mechanism to be matched.

近年、車両に搭載される内燃機関(エンジン)においては、出力向上、燃費節減、排気エミッション低減等を目的として、吸気バルブや排気バルブのバルブタイミング(カム軸の変位角)を可変する可変バルブタイミング調整機構を採用したものが増加しつつある。例えば、ベーン式の可変バルブタイミング調整機構の基本的な構成は、特許文献1(特開2001−159330号公報)に示すように、エンジンのクランク軸に同期して回転するハウジングと、吸気バルブ(又は排気バルブ)のカム軸に連結されたベーンロータとを同軸状に配置し、ハウジング内に形成された複数のベーン収納室内をベーンロータ外周側のベーン(羽根部)で進角室と遅角室とに区画する。そして、各油圧室の油圧を油圧制御弁で制御して、ハウジングに対してベーンロータを相対回動させることで、クランク軸に対するカム軸の変位角(カム軸位相)を変化させて、バルブタイミングを可変制御するようにしている。
特開2001−159330号公報(第4頁〜第6頁等)
In recent years, in internal combustion engines (engines) mounted on vehicles, variable valve timing that varies the valve timing (cam shaft displacement angle) of intake valves and exhaust valves for the purpose of improving output, reducing fuel consumption, and reducing exhaust emissions. The number of machines that employ adjustment mechanisms is increasing. For example, the basic configuration of a vane type variable valve timing adjustment mechanism is, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2001-159330), a housing that rotates in synchronization with an engine crankshaft, an intake valve ( Or a vane rotor connected to a camshaft of an exhaust valve) is coaxially arranged, and a plurality of vane storage chambers formed in the housing are advanced and retarded chambers by vanes (blade portions) on the outer periphery side of the vane rotor. Divide into Then, by controlling the hydraulic pressure in each hydraulic chamber with a hydraulic control valve and rotating the vane rotor relative to the housing, the camshaft displacement angle (camshaft phase) with respect to the crankshaft is changed to change the valve timing. Variable control is performed.
JP 2001-159330 A (pages 4 to 6 etc.)

一般に、ベーン式の可変バルブタイミング調整機構(以下「VCT」という)は、油圧制御弁の電流(以下「OCV電流」という)に対するVCTの応答特性がリニアにならず、VCTを一定の位置で保持する保持電流の付近に応答性が遅くなる領域が存在する。この領域では、目標変位角と実変位角との偏差に応じてOCV電流をフィードバック制御しても、VCTの動きが鈍く、VCTを目標変位角の方向に応答良く駆動できない。   In general, the vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) does not have a linear response characteristic of the VCT with respect to the hydraulic control valve current (hereinafter referred to as “OCV current”), and holds the VCT at a fixed position. There is a region where the response is slow in the vicinity of the holding current. In this region, even if the OCV current is feedback-controlled according to the deviation between the target displacement angle and the actual displacement angle, the VCT movement is slow and the VCT cannot be driven in the direction of the target displacement angle with good response.

この対策として、フィードバックゲインを大きくしすぎると、オーバーシュートが発生して目標変位角への実変位角の収束性が悪化して、エンジンの燃焼悪化等の問題が発生する。   As a countermeasure, if the feedback gain is increased too much, an overshoot occurs and the convergence of the actual displacement angle to the target displacement angle deteriorates, causing problems such as deterioration of engine combustion.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、オーバーシュートの問題を生じることなく、VCTを従来よりも応答良く駆動できるベーン式の可変バルブタイミング調整機構の制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to control a vane variable valve timing adjustment mechanism that can drive a VCT more responsively than before without causing an overshoot problem. To provide an apparatus.

上記目的を達成するために、請求項1に係る発明は、ベーン式の可変バルブタイミング調整機構(VCT)のハウジング内に形成された複数のベーン収納室内をそれぞれベーンによって進角室と遅角室とに区画し、前記進角室の油圧と前記遅角室の油圧を制御する油圧制御弁と、前記VCTの実変位角と目標変位角との偏差に応じて前記油圧制御弁の電流を制御する制御手段とを備えたベーン式の可変バルブタイミング調整機構の制御装置において、前記油圧制御弁にパルス通電することで前記VCTを目標変位角の方向に駆動するパルス通電制御を行うようにしたものである。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (VCT). A hydraulic control valve that controls the hydraulic pressure of the advance chamber and the retard chamber, and the current of the hydraulic control valve is controlled according to the deviation between the actual displacement angle and the target displacement angle of the VCT In a control device of a vane type variable valve timing adjustment mechanism having a control means for performing pulse energization control for driving the VCT in the direction of a target displacement angle by energizing the hydraulic control valve with pulses. It is.

本発明のように、油圧制御弁にパルス通電すれば、比較的大きなパルス電流を流しても、その通電時間が微小であるため、VCT変位量(進角量・遅角量)も微小となる。このため、油圧制御弁にパルス通電すれば、オーバーシュートの問題を生じることなく、VCTを従来よりも応答良く駆動できる。   As in the present invention, if the hydraulic control valve is energized with a pulse, even if a relatively large pulse current is applied, the energization time is very small, so that the VCT displacement amount (advance amount / retard angle amount) is also minute. . For this reason, if the hydraulic control valve is energized with pulses, the VCT can be driven more responsively than before without causing the problem of overshoot.

本発明は、全ての運転領域でパルス通電制御を行うようにしても良いが、請求項2のように、油圧制御弁の電流に対するVCTの応答特性が遅くなる制御領域でパルス通電制御を実施するようにしたり、或は、請求項3のように、VCTの実変位角を目標変位角付近で微小変位させる微小変位制御領域でパルス通電制御を実施するようにすると良い。このようにすれば、従来のVCTで応答性が悪かった領域でのみパルス通電制御を実施して、それ以外の領域では従来同様の制御を行うことができる。   In the present invention, pulse energization control may be performed in the entire operation region. However, as in claim 2, the pulse energization control is performed in a control region in which the response characteristic of the VCT to the hydraulic control valve current is slow. Alternatively, or as in claim 3, it is preferable to perform the pulse energization control in a minute displacement control region in which the actual displacement angle of the VCT is minutely displaced in the vicinity of the target displacement angle. In this way, the pulse energization control can be performed only in the region where the responsiveness is poor in the conventional VCT, and the same control can be performed in the other regions.

また、請求項4のように、VCTの実変位角と目標変位角との偏差が前記微小変位制御領域(パルス通電制御領域)における当該偏差の判定しきい値よりも小さい領域を保持制御領域とし、この保持制御領域では、油圧制御弁に保持電流を流してVCTの実変位角を目標変位角に保持するようにすると良い。このようにすれば、保持制御中にVCTの実変位角と目標変位角との偏差が保持制御領域を越えて微小変位制御領域(パルス通電制御領域)に入ったときに、直ちにパルス通電制御を実施してVCTの実変位角と目標変位角との偏差を小さくすることができ、目標変位角への実変位角の収束性・保持性を向上できる。尚、保持電流は、保持制御中に学習した値を用いれば良い。   Further, as in claim 4, a region where the deviation between the actual displacement angle of the VCT and the target displacement angle is smaller than a threshold value for determining the deviation in the minute displacement control region (pulse energization control region) is defined as a holding control region. In this holding control region, it is preferable to hold the actual displacement angle of the VCT at the target displacement angle by supplying a holding current to the hydraulic control valve. In this way, during the holding control, when the deviation between the actual displacement angle of the VCT and the target displacement angle exceeds the holding control area and enters the minute displacement control area (pulse conduction control area), the pulse conduction control is immediately performed. It is possible to reduce the deviation between the actual displacement angle of the VCT and the target displacement angle, and to improve the convergence and retention of the actual displacement angle to the target displacement angle. As the holding current, a value learned during holding control may be used.

また、請求項5のように、VCTの実変位角と目標変位角との偏差が微小変位制御領域(パルス通電制御領域)における当該偏差の判定しきい値よりも大きい領域を高速制御領域とし、この高速制御領域では、VCTの実変位角と目標変位角との偏差に応じて油圧制御弁の電流をフィードバック制御及び/又はフィードフォワード制御するようにすると良い。このようにすれば、目標変位角が急激に大きく変化する過渡運転時に、実変位角と目標変位角との偏差に応じて油圧制御弁に大きな電流を連続的に通電してVCTを目標変位角の方向に高速で駆動することができる。   Further, as in claim 5, a region where the deviation between the actual displacement angle and the target displacement angle of the VCT is larger than the determination threshold value of the deviation in the minute displacement control region (pulse conduction control region) is defined as a high-speed control region. In this high-speed control region, it is preferable to perform feedback control and / or feedforward control of the current of the hydraulic control valve in accordance with the deviation between the actual displacement angle of the VCT and the target displacement angle. In this way, during transient operation in which the target displacement angle changes suddenly and greatly, a large current is continuously supplied to the hydraulic control valve in accordance with the deviation between the actual displacement angle and the target displacement angle, and the VCT is set to the target displacement angle. It can be driven at high speed in the direction of.

また、請求項6のように、パルス通電の通電時間(パルス幅)又は回数を可変することでVCT変位量(進角量・遅角量)を制御するようにすれば良い。或は、パルス通電の電流値(パルス高さ)を可変しても、VCT変位量(進角量・遅角量)を制御することができる。   Further, as in claim 6, the VCT displacement amount (advance amount / retard amount) may be controlled by varying the energization time (pulse width) or the number of times of pulse energization. Alternatively, the amount of VCT displacement (advance amount / retard amount) can be controlled even when the current value (pulse height) of pulse energization is varied.

この場合、パルス通電の通電時間・回数とVCT変位量との関係は、予め設計データ等により決めても良いが、VCTの製造ばらつきや経時変化によりVCTの応答特性にばらつきがあることを考慮して、請求項7のように、パルス通電の通電時間又は回数と、そのパルス通電により駆動されるVCT変位量との関係を学習し、その学習値に基づいてパルス通電の通電時間又は回数を設定するようにしても良い。このようにすれば、VCTの製造ばらつきや経時変化による制御誤差を排除することができる。   In this case, the relationship between the energization time / number of pulse energizations and the amount of VCT displacement may be determined in advance by design data or the like, but considering that there are variations in VCT response characteristics due to variations in VCT manufacturing and changes over time. Thus, as in claim 7, the relationship between the energization time or number of pulse energizations and the amount of VCT displacement driven by the pulse energization is learned, and the energization time or number of pulse energizations is set based on the learned value. You may make it do. In this way, it is possible to eliminate control errors due to VCT manufacturing variations and changes over time.

また、VCTに供給する油圧が低くなるほど、VCTの応答速度が低下し、油温が低くなるほど、作動油の粘性抵抗が大きくなってVCTの応答速度が低下するという特性を考慮するために、請求項8のように、パルス通電の通電時間又は回数に関する学習値を運転条件毎に学習するようにしても良い。ここで、運転条件としては、例えば、油圧や油温(粘性)を考慮すれば良い。一般に、VCTに油圧を供給するオイルポンプは、エンジンの動力によって駆動されるため、エンジン回転速度が高くなるほど、油圧が高くなるという関係がある。従って、油圧の代用情報としてエンジン回転速度を用いても良い。また、油温とエンジン温度とは相関関係があるため、油温の代用情報としてエンジン温度(冷却水温)を用いても良い。パルス通電の通電時間又は回数に関する学習値を運転条件毎に学習すれば、パルス通電制御の精度を向上できる。   Further, in order to consider the characteristic that the lower the hydraulic pressure supplied to the VCT, the lower the response speed of the VCT, and the lower the oil temperature, the larger the viscous resistance of the hydraulic oil and the lower the response speed of the VCT. As in Item 8, a learning value related to the energization time or number of pulse energizations may be learned for each operating condition. Here, as operating conditions, for example, hydraulic pressure or oil temperature (viscosity) may be considered. In general, an oil pump that supplies hydraulic pressure to the VCT is driven by engine power, and therefore, there is a relationship that the hydraulic pressure increases as the engine speed increases. Therefore, the engine rotation speed may be used as hydraulic pressure substitute information. Further, since the oil temperature and the engine temperature have a correlation, the engine temperature (cooling water temperature) may be used as substitute information for the oil temperature. If the learning value regarding the energization time or number of times of pulse energization is learned for each operating condition, the accuracy of pulse energization control can be improved.

本発明は、ベーン式のVCTであれば様々な構成のものに適用することができ、例えば、請求項9のように、少なくとも1つのベーン収納室の進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ各油圧室(「油圧室」とは「進角室」と「遅角室」のいずれかを意味する)からの作動油の逆流を防止する逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ前記逆止弁をバイパスするドレーン油路を並列に設け、各ドレーン油路にそれぞれ油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を設けた構成のVCTにも本発明を適用できる。   The present invention can be applied to various configurations as long as it is a vane type VCT. For example, as in claim 9, the hydraulic supply oil passage and the retard angle of the advance chamber of at least one vane storage chamber Check valves that prevent backflow of hydraulic fluid from each hydraulic chamber (“hydraulic chamber” means either “advance chamber” or “retard chamber”) are provided in the hydraulic supply passage of the chamber. In addition, a drain oil passage that bypasses the check valve is provided in parallel in the hydraulic supply oil passage of each hydraulic chamber, a drain switching valve that is driven by hydraulic pressure is provided in each drain oil passage, and each drain switching The present invention can also be applied to a VCT having a configuration in which a hydraulic switching valve for switching the hydraulic pressure for driving the valve is provided.

この逆止弁・ドレーン切替弁付きのVCTでは、VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン切替弁を閉じて、作動油が排出される遅角室側のドレーン切替弁を開くように前記油圧切替弁を制御し、VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン切替弁を閉じて、作動油が排出される進角室側のドレーン切替弁を開くように前記油圧切替弁を制御するようにすれば良い。このようにすれば、油圧供給源から供給される油圧が低くなる低回転領域においても、進角動作時には、ベーンロータの遅角方向へのトルク変動に対して進角室からのオイルの逆流を逆止弁により防止しながら進角室に油圧を効率良く供給して進角応答性を向上させることができ、同様に、遅角動作時には、ベーンロータの進角方向へのトルク変動に対して遅角室からのオイルの逆流を逆止弁により防止しながら遅角室に油圧を効率良く供給して遅角応答性を向上させることができる。   In this VCT with a check valve / drain switching valve, when the VCT is advanced, the drain switching valve on the advance chamber side into which hydraulic fluid flows is closed and the retard chamber on which the hydraulic oil is discharged is closed. When the hydraulic switching valve is controlled to open the drain switching valve and the VCT is retarded, the retardation switching valve on the retarding chamber side into which the hydraulic oil flows is closed and the hydraulic chamber is discharged. The hydraulic pressure switching valve may be controlled so as to open the drain switching valve on the side. In this way, even in the low rotation region where the hydraulic pressure supplied from the hydraulic pressure supply source is low, the reverse flow of oil from the advance chamber is reversed against the torque fluctuation in the retard direction of the vane rotor during the advance operation. While preventing by a stop valve, hydraulic pressure can be efficiently supplied to the advance chamber to improve the advance angle response. Similarly, during the retard operation, the retard angle against the torque fluctuation in the advance direction of the vane rotor is retarded. While preventing back flow of oil from the chamber by a check valve, the hydraulic pressure can be efficiently supplied to the retard chamber and the retard response can be improved.

また、保持制御を行う場合は、進角室と遅角室の両方のドレーン切替弁への油圧供給を共に停止することで、両方のドレーン切替弁を共に閉弁して、進角室と遅角室の両方の逆止弁を機能させる状態にすれば良い。この状態では、吸気バルブや排気バルブからカム軸が受けるトルク変動によってベーンロータに対して遅角方向及び進角方向へのトルク変動が作用しても、進角室と遅角室の両方の作動油の逆流を逆止弁により防止して、ベーンをその両側から保持する油圧が低下するのを防止して、保持安定性を向上させることができる。   In addition, when holding control is performed, both the hydraulic pressure supply to the drain switching valves in both the advance chamber and the retard chamber are stopped, so that both drain switching valves are closed, and the advance chamber and the retard chamber are both closed. What is necessary is just to make it the state which makes both check valves of a corner chamber function. In this state, even if torque fluctuations acting on the vane rotor in the retarding direction and the advancement direction act on the vane rotor due to torque fluctuations that the camshaft receives from the intake and exhaust valves, the hydraulic oil in both the advancement chamber and the retarding chamber Is prevented by a check valve, the hydraulic pressure for holding the vane from both sides is prevented from being lowered, and the holding stability can be improved.

本発明は、ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を、油圧制御弁とは別体に設けるようにしても良いし、油圧切替弁を油圧制御弁に一体化した構成としても良い。   In the present invention, the hydraulic pressure switching valve for switching the hydraulic pressure for driving the drain switching valve may be provided separately from the hydraulic pressure control valve, or the hydraulic pressure switching valve may be integrated with the hydraulic pressure control valve.

具体的には、請求項10のように、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられ、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられ、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられ、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられ、油圧で駆動される第2のドレーン切替弁と、前記進角室の油圧と前記遅角室の油圧とを制御する第1の油圧制御弁と、前記第1のドレーン切替弁と前記第2のドレーン切替弁とを駆動する油圧を制御する第2の油圧制御弁とを備えた構成としても良い。この構成では、VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン切替弁を閉じて、作動油が排出される遅角室側のドレーン切替弁を開くように前記第2の油圧制御弁を制御し、前記VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン切替弁を閉じて、作動油が排出される進角室側のドレーン切替弁を開くように前記第2の油圧制御弁を制御するようにすれば良い。   Specifically, as in claim 10, the first check valve is provided in the hydraulic supply oil passage of the advance chamber in at least one vane storage chamber and prevents the backflow of hydraulic oil from the advance chamber. A first drain switching valve that is provided in a first drain oil passage that bypasses the first check valve and is driven by hydraulic pressure, and a hydraulic supply oil passage for a retard chamber of at least one vane storage chamber Provided in a second check valve for preventing backflow of hydraulic oil from the retard chamber and a second drain oil passage that bypasses the second check valve, and is driven by hydraulic pressure. A second drain switching valve, a first hydraulic control valve for controlling the hydraulic pressure in the advance chamber and the retarded chamber, the first drain switching valve, and the second drain switching valve; It is good also as a structure provided with the 2nd hydraulic control valve which controls the hydraulic pressure to drive. In this configuration, when the VCT is advanced, the advance angle chamber side drain switching valve into which hydraulic fluid flows is closed, and the retarded chamber side drain switching valve from which hydraulic fluid is discharged is opened. When the hydraulic control valve 2 is controlled to retard the VCT, the drain switching valve on the retarding chamber side into which the hydraulic oil flows is closed, and the drain switching valve on the advanced chamber side from which the hydraulic fluid is discharged The second hydraulic control valve may be controlled so as to open.

この場合、請求項11のように、前記第1の油圧制御弁と前記第2の油圧制御弁とを独立して制御可能な構成とし、前記制御手段は、前記VCTの実変位角と目標変位角との偏差に応じて前記第1の油圧制御弁の電流を制御する第1の制御手段と、前記第2の油圧制御弁の電流を制御して、各ドレーン切替弁を駆動する油圧を制御する第2の制御手段とを含む構成としても良い。   In this case, as in the eleventh aspect, the first hydraulic control valve and the second hydraulic control valve can be controlled independently, and the control means includes the actual displacement angle of the VCT and the target displacement. The first control means for controlling the current of the first hydraulic control valve according to the deviation from the angle and the current of the second hydraulic control valve are controlled to control the hydraulic pressure for driving each drain switching valve. It is good also as a structure containing the 2nd control means to do.

或は、請求項12のように、前記第1の油圧制御弁と前記第2の油圧制御弁とを駆動する軸を一体化した構成とし、前記制御手段は、前記油圧制御弁の電流を制御することで、前記VCTの実変位角と目標変位角との偏差に応じて前記油圧制御弁を制御すると共に、前記第2の油圧制御弁を制御して、各ドレーン切替弁を駆動する油圧を制御するようにしても良い。   Alternatively, as in claim 12, the shaft for driving the first hydraulic control valve and the second hydraulic control valve is integrated, and the control means controls the current of the hydraulic control valve. Thus, the hydraulic control valve is controlled according to the deviation between the actual displacement angle and the target displacement angle of the VCT, and the second hydraulic control valve is controlled to control the hydraulic pressure for driving each drain switching valve. You may make it control.

また、請求項13のように、少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられ、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられ、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路とを備え、前記油圧制御弁には、前記第1のドレーン油路と前記第2のドレーン油路とを開放/閉鎖するドレーン油路制御機能を一体化した構成としても良い。この構成では、前記油圧制御弁を制御して、前記VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン油路を閉じて、作動油が排出される遅角室側のドレーン油路を開くように制御し、前記VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン油路を閉じて、作動油が排出される進角室側のドレーン油路を開くように制御するようにすれば良い。   Further, as in claim 13, the first check valve provided in the hydraulic pressure supply oil passage of the advance chamber in at least one vane storage chamber to prevent the backflow of hydraulic oil from the advance chamber, A first drain oil passage that bypasses the first check valve and a hydraulic supply oil passage in at least one retard chamber of the vane storage chamber are provided to prevent backflow of hydraulic oil from the retard chamber. 2 check valves and a second drain oil passage that bypasses the second check valve, and the hydraulic control valve includes the first drain oil passage and the second drain oil passage. It is good also as a structure which integrated the drain oil path control function which opens / closes. In this configuration, when the hydraulic control valve is controlled to advance the VCT, the drain oil passage on the advance chamber side into which the hydraulic oil flows is closed, and the retard chamber side from which the hydraulic oil is discharged When the VCT is controlled to open at a retarded angle, the drain oil path on the retarded chamber side through which the hydraulic oil flows is closed and the advanced chamber side drain from which the hydraulic oil is discharged is controlled. Control may be made so that the oil passage is opened.

この場合、請求項14のように、前記第1のドレーン油路に設けられ、油圧で駆動される第1のドレーン切替弁と、前記第2のドレーン油路に設けられ、油圧で駆動される第2のドレーン切替弁とを備えた構成とし、前記油圧制御弁のドレーン油路制御機能による油圧制御によって、前記第1のドレーン切替弁を開弁/閉弁することで前記第1のドレーン油路を開放/閉鎖するとともに、前記第2のドレーン切替弁を開弁/閉弁することで前記第2のドレーン油路を開放/閉鎖するようにすると良い。   In this case, as in claim 14, the first drain switching valve provided in the first drain oil passage and driven by hydraulic pressure and the second drain oil passage provided in the second drain oil passage and driven by hydraulic pressure. The first drain oil is configured to include a second drain switching valve, and the first drain switching valve is opened / closed by hydraulic control by a drain oil passage control function of the hydraulic control valve. It is preferable that the second drain oil passage is opened / closed by opening / closing the passage and opening / closing the second drain switching valve.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてベーン式の可変バルブタイミング調整機構11の構成を説明する。可変バルブタイミング調整機構11のハウジング12は、図示しない吸気側又は排気側のカム軸の外周に回動自在に支持されたスプロケットにボルト13で締め付け固定されている。これにより、エンジンのクランク軸の回転がタイミングチェーンを介してスプロケットとハウジング12に伝達され、スプロケットとハウジング12がクランク軸と同期して回転する。ハウジング12内には、ベーンロータ14が相対回動自在に収納され、このベーンロータ14がボルト15によりカム軸の一端部に締め付け固定されている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, the configuration of the vane variable valve timing adjusting mechanism 11 will be described with reference to FIG. The housing 12 of the variable valve timing adjustment mechanism 11 is fastened and fixed with bolts 13 to a sprocket that is rotatably supported on the outer periphery of an intake-side or exhaust-side camshaft (not shown). Thereby, the rotation of the crankshaft of the engine is transmitted to the sprocket and the housing 12 via the timing chain, and the sprocket and the housing 12 rotate in synchronization with the crankshaft. A vane rotor 14 is accommodated in the housing 12 so as to be relatively rotatable, and the vane rotor 14 is fastened and fixed to one end portion of the camshaft by a bolt 15.

ハウジング12の内部には、ベーンロータ14の外周部の複数のベーン17を進角方向及び遅角方向に相対回動自在に収納する複数のベーン収納室16が形成され、各ベーン収納室16が各ベーン17によって進角室18と遅角室19とに区画されている。   Inside the housing 12, a plurality of vane storage chambers 16 for storing a plurality of vanes 17 on the outer periphery of the vane rotor 14 so as to be relatively rotatable in the advance angle direction and the retard angle direction are formed. The vane 17 is divided into an advance chamber 18 and a retard chamber 19.

進角室18と遅角室19に所定圧以上の油圧が供給された状態では、進角室18と遅角室19の油圧でベーン17が保持されて、クランク軸の回転によるハウジング12の回転が油圧を介してベーンロータ14に伝達され、このベーンロータ14と一体的にカム軸が回転駆動される。エンジン運転中は、進角室18と遅角室19の油圧を油圧制御弁21で制御してハウジング12に対してベーンロータ14を相対回動させることで、クランク軸に対するカム軸の変位角(カム軸位相)を制御して吸気バルブ(又は排気バルブ)のバルブタイミングを可変する。   In a state where the hydraulic pressure of a predetermined pressure or higher is supplied to the advance chamber 18 and the retard chamber 19, the vane 17 is held by the hydraulic pressure of the advance chamber 18 and the retard chamber 19, and the housing 12 is rotated by the rotation of the crankshaft. Is transmitted to the vane rotor 14 via hydraulic pressure, and the camshaft is rotationally driven integrally with the vane rotor 14. During engine operation, the hydraulic pressure in the advance chamber 18 and the retard chamber 19 is controlled by the hydraulic control valve 21 to rotate the vane rotor 14 relative to the housing 12, so that the cam shaft displacement angle (cam The valve timing of the intake valve (or exhaust valve) is varied by controlling the axial phase.

また、いずれか1つのベーン17の両側部には、ハウジング12に対するベーンロータ14の相対回動範囲を規制するストッパ部22,23が形成され、このストッパ部22,23によってカム軸の変位角(カム軸位相)の最遅角位置と最進角位置が規制されている。また、いずれか1つのベーン17には、エンジン停止時等にカム軸の変位角を所定のロック位置でロックするためのロックピン24が設けられ、このロックピン24がハウジング12に設けられたロック穴(図示せず)に嵌り込むことで、カム軸の変位角が所定のロック位置でロックされる。このロック位置は、始動に適した位置(例えばカム軸変位角の調整可能範囲の略中間位置)に設定されている。   Further, stopper portions 22 and 23 for restricting the relative rotation range of the vane rotor 14 with respect to the housing 12 are formed on both side portions of any one vane 17, and the cam shaft displacement angle (cam) is defined by the stopper portions 22 and 23. The most retarded angle position and the most advanced angle position (axis phase) are regulated. In addition, any one vane 17 is provided with a lock pin 24 for locking the cam shaft displacement angle at a predetermined lock position when the engine is stopped, and the lock pin 24 is provided on the housing 12. By fitting into a hole (not shown), the displacement angle of the camshaft is locked at a predetermined locking position. This lock position is set to a position suitable for starting (for example, a substantially intermediate position in the adjustable range of the cam shaft displacement angle).

可変バルブタイミング調整機構11の油圧制御回路には、オイルパン26内のオイル(作動油)がオイルポンプ27により油圧制御弁21を介して供給される。この油圧制御回路は、油圧制御弁21の進角圧ポートから吐出されるオイルを複数の進角室18に供給する油圧供給油路28と、油圧制御弁21の遅角圧ポートから吐出されるオイルを複数の遅角室19に供給する油圧供給油路29とが設けられている。   Oil (operating oil) in the oil pan 26 is supplied to the hydraulic control circuit of the variable valve timing adjustment mechanism 11 by the oil pump 27 via the hydraulic control valve 21. The hydraulic control circuit is discharged from a hydraulic supply oil passage 28 that supplies oil discharged from the advance pressure port of the hydraulic control valve 21 to the plurality of advance chambers 18 and a retard pressure port of the hydraulic control valve 21. A hydraulic supply oil passage 29 for supplying oil to the plurality of retarding chambers 19 is provided.

そして、進角室18の油圧供給油路28と遅角室19の油圧供給油路29には、それぞれ各室18,19からの作動油の逆流を防止する逆止弁30,31が設けられている。本実施例では、1つのベーン収納室16の進角室18と遅角室19の油圧供給油路28,29についてのみ逆止弁30,31が設けられている。勿論、2つ以上のベーン収納室16の進角室18と遅角室19の油圧供給油路28,29にそれぞれ逆止弁30,31を設ける構成としても良い。   The hydraulic supply oil passage 28 of the advance chamber 18 and the hydraulic supply oil passage 29 of the retard chamber 19 are provided with check valves 30 and 31 for preventing backflow of hydraulic oil from the chambers 18 and 19, respectively. ing. In this embodiment, check valves 30 and 31 are provided only for the hydraulic supply oil passages 28 and 29 of the advance chamber 18 and the retard chamber 19 of one vane storage chamber 16. Of course, the check valves 30 and 31 may be provided in the hydraulic supply oil passages 28 and 29 in the advance chamber 18 and the retard chamber 19 of the two or more vane storage chambers 16, respectively.

各室18,19の油圧供給油路28,29には、それぞれ逆止弁30,31をバイパスするドレーン油路32,33が並列に設けられ、各ドレーン油路32,33には、それぞれドレーン切替弁34,35が設けられている。各ドレーン切替弁34,35は、油圧制御弁21から供給される油圧(パイロット圧)で閉弁方向に駆動されるスプール弁により構成され、油圧が加えられないときには、スプリング41,42によって開弁位置に保持される。ドレーン切替弁34,35が開弁すると、ドレーン油路32,33が開放されて、逆止弁30,31の機能が働かない状態となる。ドレーン切替弁34,35が閉弁すると、ドレーン油路32,33が閉鎖されて、逆止弁30,31の機能が有効に働く状態となり、油圧室18,19からのオイルの逆流が防止されて油圧室18,19の油圧が保持される。   Drain oil passages 32 and 33 that bypass the check valves 30 and 31 are provided in parallel in the hydraulic supply oil passages 28 and 29 of the chambers 18 and 19, respectively. The drain oil passages 32 and 33 are respectively provided with drains. Switching valves 34 and 35 are provided. Each drain switching valve 34, 35 is constituted by a spool valve that is driven in the valve closing direction by the hydraulic pressure (pilot pressure) supplied from the hydraulic control valve 21, and is opened by the springs 41, 42 when no hydraulic pressure is applied. Held in position. When the drain switching valves 34 and 35 are opened, the drain oil passages 32 and 33 are opened, and the check valves 30 and 31 do not function. When the drain switching valves 34 and 35 are closed, the drain oil passages 32 and 33 are closed, and the functions of the check valves 30 and 31 are effectively activated, so that backflow of oil from the hydraulic chambers 18 and 19 is prevented. Thus, the hydraulic pressure in the hydraulic chambers 18 and 19 is maintained.

各ドレーン切替弁34,35は、電気的な配線が不要であるため、逆止弁30,31と共に可変バルブタイミング調整機構11内部のベーンロータ14にコンパクトに組み付けられている。これにより、各油圧室18,19の近くにドレーン切替弁34,35が配置され、進角・遅角動作時に各ドレーン油路32,33を各油圧室18,19の近くで応答良く開放/閉鎖できるようになっている。   Since the drain switching valves 34 and 35 do not require electrical wiring, the drain switching valves 34 and 35 are compactly assembled together with the check valves 30 and 31 to the vane rotor 14 inside the variable valve timing adjustment mechanism 11. As a result, the drain switching valves 34 and 35 are arranged near the hydraulic chambers 18 and 19, and the drain oil passages 32 and 33 are opened with good response near the hydraulic chambers 18 and 19 during advance / retard operation. It can be closed.

一方、油圧制御弁21は、リニアソレノイド36によって駆動されるスプール弁により構成され、進角室18と遅角室19に供給する油圧を制御する進角/遅角油圧制御機能37と、各ドレーン切替弁34,35を駆動する油圧を切り替えるドレーン切替制御機能38(油圧切替弁)とが一体化されている。この油圧制御弁21のリニアソレノイド36に通電する電流値(制御デューティ)は、エンジン制御回路(以下「ECU」という)43によって制御される。   On the other hand, the hydraulic control valve 21 is constituted by a spool valve driven by a linear solenoid 36, and an advance / retarding hydraulic control function 37 for controlling the hydraulic pressure supplied to the advance chamber 18 and the retard chamber 19, and each drain. A drain switching control function 38 (hydraulic switching valve) for switching the hydraulic pressure for driving the switching valves 34 and 35 is integrated. A current value (control duty) energized to the linear solenoid 36 of the hydraulic control valve 21 is controlled by an engine control circuit (hereinafter referred to as “ECU”) 43.

このECU43は、クランク角センサ44及びカム角センサ45の出力信号に基づいて吸気バルブ(又は排気バルブ)の実バルブタイミング(実変位角)を演算すると共に、吸気圧センサ、水温センサ等のエンジン運転状態を検出する各種センサの出力に基づいて吸気バルブ(又は排気バルブ)の目標バルブタイミング(目標変位角)を演算する。そして、ECU43は、後述する図5乃至図7の各ルーチンを実行することで、実バルブタイミングを目標バルブタイミングに一致させるように可変バルブタイミング調整機構11の油圧制御弁21の制御電流を制御する。これにより、進角室18と遅角室19の油圧を制御してハウジング12に対してベーンロータ14を相対回動させることで、カム軸の変位角を変化させて実バルブタイミングを目標バルブタイミングに一致させる。   The ECU 43 calculates the actual valve timing (actual displacement angle) of the intake valve (or exhaust valve) based on the output signals of the crank angle sensor 44 and the cam angle sensor 45, and operates the engine such as an intake pressure sensor and a water temperature sensor. The target valve timing (target displacement angle) of the intake valve (or exhaust valve) is calculated based on the outputs of various sensors that detect the state. Then, the ECU 43 controls the control current of the hydraulic control valve 21 of the variable valve timing adjustment mechanism 11 so as to make the actual valve timing coincide with the target valve timing by executing the routines shown in FIGS. . As a result, the oil pressure in the advance chamber 18 and the retard chamber 19 is controlled to rotate the vane rotor 14 relative to the housing 12, thereby changing the cam shaft displacement angle and setting the actual valve timing to the target valve timing. Match.

ところで、エンジン運転中に吸気バルブや排気バルブを開閉駆動するときに、吸気バルブや排気バルブからカム軸が受けるトルク変動がベーンロータ14に伝わり、それによって、ベーンロータ14に対して遅角方向及び進角方向へのトルク変動が作用する。これにより、ベーンロータ14が遅角方向にトルク変動を受けると、進角室18の作動油が進角室18から押し出される圧力を受け、ベーンロータ14が進角方向にトルク変動を受けると、遅角室19の作動油が遅角室19から押し出される圧力を受けることになる。このため、油圧供給源であるオイルポンプ27の吐出油圧が低くなる低回転領域では、逆止弁30,31が無いと、進角室18に油圧を供給してカム軸の変位角を進角させようとしても、図3に点線で示すように、ベーンロータ14が上記トルク変動により遅角方向に押し戻されてしまい、目標変位角に到達するまでの応答時間が長くなってしまうという問題があった。   By the way, when the intake valve and the exhaust valve are driven to open and close during engine operation, the torque fluctuation received by the camshaft from the intake valve and the exhaust valve is transmitted to the vane rotor 14, thereby causing the retard direction and advance angle with respect to the vane rotor 14. Torque fluctuation in the direction acts. Thus, when the vane rotor 14 receives torque fluctuation in the retarding direction, the hydraulic oil in the advance chamber 18 receives pressure that is pushed out from the advance chamber 18, and when the vane rotor 14 receives torque fluctuation in the advance direction, the retard angle The hydraulic oil in the chamber 19 receives a pressure pushed out from the retard chamber 19. For this reason, in the low rotation region where the discharge hydraulic pressure of the oil pump 27 as the hydraulic pressure supply source is low, if there is no check valve 30, 31, the hydraulic pressure is supplied to the advance chamber 18 to advance the displacement angle of the camshaft. Even when trying to do so, as indicated by the dotted line in FIG. 3, the vane rotor 14 is pushed back in the retarded direction due to the torque fluctuation, and there is a problem that the response time until reaching the target displacement angle becomes long. .

これに対して、本実施例では、進角室18の油圧供給油路28と遅角室19の油圧供給油路29に、それぞれ各室18,19からのオイルの逆流を防止する逆止弁30,31を設けると共に、各室18,19の油圧供給油路28,29に、それぞれ逆止弁30,31をバイパスするドレーン油路32,33を並列に設け、各ドレーン油路32,33に、それぞれドレーン切替弁34,35を設けた構成となっている。これにより、図2に示すように、遅角動作、保持動作、進角動作に応じて各室18,19の油圧が次のように制御される。   On the other hand, in this embodiment, a check valve that prevents backflow of oil from the chambers 18 and 19 into the hydraulic supply oil passage 28 of the advance chamber 18 and the hydraulic supply oil passage 29 of the retard chamber 19 respectively. 30 and 31, and drain oil passages 32 and 33 that bypass the check valves 30 and 31 are provided in parallel in the hydraulic supply oil passages 28 and 29 of the chambers 18 and 19, respectively. In addition, drain switching valves 34 and 35 are provided, respectively. As a result, as shown in FIG. 2, the hydraulic pressures in the chambers 18 and 19 are controlled as follows according to the retarding operation, holding operation, and advancement operation.

[遅角動作]
実バルブタイミングを遅角側の目標バルブタイミングに向けて遅角させる遅角動作中は、進角室18のドレーン切替弁34への油圧供給を停止することで、進角室18のドレーン切替弁34を開弁して進角室18の逆止弁30を機能させない状態にすると共に、遅角室19のドレーン切替弁35へ油圧切替弁38から油圧を加えることで、遅角室19のドレーン切替弁35を閉弁して遅角室19の逆止弁31を機能させる状態にする。これにより、低油圧時でも、ベーンロータ14の進角方向へのトルク変動に対して遅角室19からのオイルの逆流を逆止弁31により防止しながら効率良く遅角室19に油圧を供給して遅角応答性を向上させる。
[Delay operation]
During the retard operation that retards the actual valve timing toward the target valve timing on the retard side, the hydraulic pressure supply to the drain switching valve 34 in the advance chamber 18 is stopped, so that the drain switching valve in the advance chamber 18 is stopped. The valve 34 is opened so that the check valve 30 of the advance chamber 18 does not function, and the hydraulic pressure is applied from the hydraulic switch valve 38 to the drain switch valve 35 of the retard chamber 19, thereby draining the retard chamber 19. The switching valve 35 is closed to make the check valve 31 of the retard chamber 19 function. As a result, even when the hydraulic pressure is low, the hydraulic pressure is efficiently supplied to the retarded angle chamber 19 while preventing the backflow of oil from the retarded angle chamber 19 by the check valve 31 against the torque fluctuation in the advanced angle direction of the vane rotor 14. To improve retardation response.

[保持動作]
実バルブタイミングを目標バルブタイミングに保持する保持動作中は、進角室18と遅角室19の両方のドレーン切替弁34,35へ油圧切替弁38から油圧を共に加えることで、両方のドレーン切替弁34,35を共に閉弁して、進角室18と遅角室19の両方の逆止弁30,31を機能させる状態にする。この状態では、吸気バルブや排気バルブからカム軸が受けるトルク変動によってベーンロータ14に対して遅角方向及び進角方向へのトルク変動が作用しても、進角室18と遅角室19の両方のオイルの逆流を逆止弁31により防止して、ベーン17をその両側から保持する油圧が低下するのを防止して、保持安定性を向上させる。
[Holding operation]
During the holding operation for maintaining the actual valve timing at the target valve timing, both the drain switching can be performed by applying hydraulic pressure from the hydraulic switching valve 38 to the drain switching valves 34 and 35 of both the advance chamber 18 and the retard chamber 19. The valves 34 and 35 are both closed so that the check valves 30 and 31 of both the advance chamber 18 and the retard chamber 19 are made to function. In this state, even if torque fluctuations acting on the vane rotor 14 in the retarding direction and the advancement direction act on the vane rotor 14 due to torque fluctuations received by the camshaft from the intake valve or the exhaust valve, The reverse flow of the oil is prevented by the check valve 31, and the hydraulic pressure for holding the vane 17 from both sides is prevented from being lowered to improve the holding stability.

[進角動作]
実バルブタイミングを進角側の目標バルブタイミングに向けて進角させる進角動作中は、進角室18のドレーン切替弁34へ油圧切替弁38から油圧を加えることで、進角室18のドレーン切替弁34を閉弁して進角室18の逆止弁30を機能させる状態にすると共に、遅角室19のドレーン切替弁35への油圧供給を停止することで、遅角室19のドレーン切替弁35を開弁して遅角室19の逆止弁31を機能させない状態にする。これにより、低油圧時でも、ベーンロータ14の遅角方向へのトルク変動に対して進角室18からのオイルの逆流を逆止弁30により防止しながら効率良く油圧を進角室18に供給して進角応答性を向上させる。
[Advance operation]
During the advance operation for advancing the actual valve timing toward the target valve timing on the advance side, the hydraulic pressure is applied from the hydraulic switch valve 38 to the drain switch valve 34 of the advance chamber 18, thereby draining the advance chamber 18. The switching valve 34 is closed to make the check valve 30 of the advance chamber 18 function, and the hydraulic pressure supply to the drain switching valve 35 of the retard chamber 19 is stopped, so that the drain of the retard chamber 19 is stopped. The switching valve 35 is opened so that the check valve 31 of the retard chamber 19 does not function. Thus, even when the hydraulic pressure is low, the hydraulic pressure is efficiently supplied to the advance chamber 18 while preventing the backflow of oil from the advance chamber 18 by the check valve 30 against the torque fluctuation in the retard angle direction of the vane rotor 14. To improve the lead angle response.

次に、可変バルブタイミング調整機構11(以下「VCT」という)の応答特性について図4を用いて説明する。図4は、油圧制御弁21(以下「OCV」という)の制御電流値とVCT応答速度との関係を測定して得られたVCT応答特性の一例を示している。   Next, response characteristics of the variable valve timing adjustment mechanism 11 (hereinafter referred to as “VCT”) will be described with reference to FIG. FIG. 4 shows an example of a VCT response characteristic obtained by measuring the relationship between the control current value of the hydraulic control valve 21 (hereinafter referred to as “OCV”) and the VCT response speed.

本実施例では、進角室18と遅角室19の両方に逆止弁30,31とドレーン切替弁34,35を設けているため、OCV電流値の変化に対してVCT応答速度がリニアに変化せず、ドレーン切替弁34,35の開弁/閉弁が切り替えられることによりVCT応答速度が2箇所で急変する。図4のVCT応答特性において、遅角側の応答性急変点は、進角室18のドレーン切替弁34が閉弁から開弁に切り替わる点であり、進角側の応答性急変点は、遅角室19のドレーン切替弁35が閉弁から開弁に切り替わる点である。保持動作は、遅角側の応答性急変点と進角側の応答性急変点との間のVCT応答速度変化の勾配が小さい領域で行われる。   In this embodiment, since the check valves 30, 31 and the drain switching valves 34, 35 are provided in both the advance chamber 18 and the retard chamber 19, the VCT response speed is linear with respect to the change in the OCV current value. The VCT response speed changes suddenly at two locations by switching the opening / closing of the drain switching valves 34 and 35 without changing. In the VCT response characteristics of FIG. 4, the responsiveness sudden change point on the retarded angle side is a point where the drain switching valve 34 of the advance chamber 18 is switched from closed to open, and the sudden response point on the advanced angle side is delayed. The drain switching valve 35 of the corner chamber 19 is switched from the closed valve to the opened valve. The holding operation is performed in a region where the gradient of the change in the VCT response speed between the responsiveness sudden change point on the retard side and the responsive sudden change point on the advance side is small.

図4に示すように、OCV電流に対するVCTの応答特性はリニアにならず、VCTを一定の位置で保持する保持電流の付近に応答性が遅くなる領域(遅角側の応答性急変点から進角側の応答性急変点との間のVCT応答速度変化の勾配が小さい領域)が存在する。この領域では、目標変位角と実変位角との偏差に応じてOCV電流をフィードバック制御しても、VCTの動きが鈍く、VCTを目標変位角の方向に応答良く駆動できない。   As shown in FIG. 4, the response characteristic of the VCT with respect to the OCV current is not linear, and the response is slow in the vicinity of the holding current that holds the VCT at a certain position (the point where the response speed suddenly changes from the retarded angle side). There is a region where the gradient of the change in the VCT response speed between the corner side sudden response change point is small. In this region, even if the OCV current is feedback-controlled according to the deviation between the target displacement angle and the actual displacement angle, the VCT movement is slow and the VCT cannot be driven in the direction of the target displacement angle with good response.

この対策として、フィードバックゲインを大きくしすぎると、オーバーシュートが発生して目標変位角への実変位角の収束性が悪化して、エンジンの燃焼悪化等の問題が発生する。   As a countermeasure, if the feedback gain is increased too much, an overshoot occurs and the convergence of the actual displacement angle to the target displacement angle deteriorates, causing problems such as deterioration of engine combustion.

そこで、本実施例では、OCV電流に対するVCTの応答特性が遅くなる領域(遅角側の応答性急変点から進角側の応答性急変点との間のVCT応答速度変化の勾配が小さい領域)では、VCTの実変位角(実進角量)を目標変位角(目標進角量)の付近で微小変位させる微小変位制御を行うときに、油圧制御弁21にパルス通電することでVCTを目標変位角の方向に駆動する“パルス通電制御”を行う。このように、油圧制御弁21にパルス通電すれば、比較的大きなパルス電流を流しても、その通電時間が微小であるため、VCT変位量(進角量・遅角量)も微小となる。このため、油圧制御弁21にパルス通電すれば、オーバーシュートの問題を生じることなく、VCTを従来よりも応答良く駆動できる。   Therefore, in this embodiment, the region where the response characteristic of the VCT to the OCV current is slow (region where the gradient of the change in the VCT response speed between the retarded sudden response point and the advanced sudden response point is small). Then, when performing minute displacement control in which the actual displacement angle (actual advance angle amount) of the VCT is minutely displaced in the vicinity of the target displacement angle (target advance angle amount), the VCT is targeted by energizing the hydraulic control valve 21 with a pulse. “Pulse energization control” is performed to drive in the direction of the displacement angle. As described above, if the hydraulic control valve 21 is energized with a pulse, even if a relatively large pulse current is applied, the energization time is very small, so that the VCT displacement amount (advance amount / retard angle amount) is also minute. For this reason, if the hydraulic control valve 21 is energized with pulses, the VCT can be driven more responsively than before without causing the problem of overshoot.

この場合、VCTの実変位角と目標変位角との偏差が微小変位制御領域(パルス通電制御領域)における当該偏差の判定しきい値よりも小さい領域を保持制御領域とし、この保持制御領域では、油圧制御弁21に保持電流を流してVCTの実変位角を目標変位角に保持する。このようにすれば、保持制御中にVCTの実変位角と目標変位角との偏差が保持制御領域を越えて微小変位制御領域(パルス通電制御領域)に入ったときに、直ちにパルス通電制御を実施してVCTの実変位角と目標変位角との偏差を小さくすることができ、目標変位角への実変位角の収束性・保持性を向上できる。尚、保持電流は、保持制御中に学習した値を用いれば良い。   In this case, a region where the deviation between the actual displacement angle and the target displacement angle of the VCT is smaller than the determination threshold value of the deviation in the minute displacement control region (pulse energization control region) is defined as a retention control region. A holding current is supplied to the hydraulic control valve 21 to hold the actual displacement angle of the VCT at the target displacement angle. In this way, during the holding control, when the deviation between the actual displacement angle of the VCT and the target displacement angle exceeds the holding control area and enters the minute displacement control area (pulse conduction control area), the pulse conduction control is immediately performed. It is possible to reduce the deviation between the actual displacement angle of the VCT and the target displacement angle, and to improve the convergence and retention of the actual displacement angle to the target displacement angle. As the holding current, a value learned during holding control may be used.

また、VCTの実変位角と目標変位角との偏差が微小変位制御領域(パルス通電制御領域)における当該偏差の判定しきい値よりも大きい領域を高速制御領域とし、この高速制御領域では、VCTの実変位角と目標変位角との偏差に応じて油圧制御弁21の電流をフィードバック制御及び/又はフィードフォワード制御する。このようにすれば、目標変位角が急激に大きく変化する過渡運転時に、実変位角と目標変位角との偏差に応じて油圧制御弁21に大きな電流を連続通電してVCTを目標変位角の方向に高速で駆動することができる。   In addition, a region where the deviation between the actual displacement angle of VCT and the target displacement angle is larger than the determination threshold value of the deviation in the minute displacement control region (pulse conduction control region) is defined as a high-speed control region. The current of the hydraulic control valve 21 is feedback controlled and / or feedforward controlled in accordance with the deviation between the actual displacement angle and the target displacement angle. In this way, during transient operation in which the target displacement angle changes rapidly and drastically, a large current is continuously supplied to the hydraulic control valve 21 in accordance with the deviation between the actual displacement angle and the target displacement angle, and VCT is set to the target displacement angle. It can be driven at high speed in the direction.

以上説明した本実施例のVCT制御は、ECU43によって図5乃至図7の各ルーチンに従って実行され、特許請求の範囲でいう制御手段としての機能が実現される。以下、これら各ルーチンの処理内容を説明する。   The VCT control of the present embodiment described above is executed by the ECU 43 according to the routines of FIGS. 5 to 7, and functions as control means in the claims are realized. The processing contents of these routines will be described below.

[VCT制御ルーチン]
図5のVCT制御ルーチンは、エンジン運転中に所定周期(例えば5ms周期)で実行される。本ルーチンが起動されると、まずステップ101で、運転条件(例えばエンジン回転速度、負荷、冷却水温等)を検出し、次のステップ102で、検出した運転条件に基づいてVCT制御実行条件が成立しているか否かを判定する。その結果、VCT制御実行条件が成立していないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。VCT制御を実行しない場合には、目標進角量VVTが0(最遅角位置)に維持される。
[VCT control routine]
The VCT control routine of FIG. 5 is executed at a predetermined cycle (for example, 5 ms cycle) during engine operation. When this routine is started, first, in step 101, operating conditions (for example, engine speed, load, cooling water temperature, etc.) are detected, and in the next step 102, VCT control execution conditions are established based on the detected operating conditions. It is determined whether or not. As a result, if it is determined that the VCT control execution condition is not satisfied, this routine is terminated without performing the subsequent processing. When the VCT control is not executed, the target advance amount VVT is maintained at 0 (most retarded position).

これに対して、上記ステップ102で、VCT制御実行条件が成立していると判定されれば、ステップ103に進み、クランク角センサ44の出力信号と、これに続いて発生するカム角センサ45の出力信号との間の位相差により実進角量VTA(最遅角位置から現在位置までの進角量)を算出し、次のステップ104で、現在の運転条件(エンジン回転速度、負荷等)に応じてマップ等から目標進角量VTTを算出する。   On the other hand, if it is determined in step 102 that the VCT control execution condition is satisfied, the process proceeds to step 103, where the output signal of the crank angle sensor 44 and the cam angle sensor 45 that is generated subsequently are output. The actual advance amount VTA (advance amount from the most retarded position to the current position) is calculated from the phase difference with the output signal, and in the next step 104, the current operating conditions (engine speed, load, etc.) Accordingly, the target advance amount VTT is calculated from a map or the like.

この後、ステップ105に進み、後述する図6のVCT制御モード判定ルーチンを実行して、現在のVCT制御モードが、保持制御、微小変位制御(パルス通電制御)、高速制御のいずれの制御モードであるかを判定する。この後、ステップ106に進み、後述する図7のOCV目標電流算出ルーチンを実行して、現在のVCT制御モードに応じてOCV目標電流iVVTを算出する。そして、次のステップ107で、油圧制御弁21(OCV)の制御電流をOCV目標電流iVVTに制御するための制御デューティを算出して本ルーチンを終了する。   Thereafter, the routine proceeds to step 105, where a VCT control mode determination routine of FIG. 6 described later is executed, and the current VCT control mode is any of the control modes of holding control, minute displacement control (pulse energization control), and high-speed control. Determine if there is. Thereafter, the routine proceeds to step 106, where an OCV target current calculation routine of FIG. 7 described later is executed to calculate the OCV target current iVVT according to the current VCT control mode. In the next step 107, the control duty for controlling the control current of the hydraulic control valve 21 (OCV) to the OCV target current iVVT is calculated, and this routine is finished.

[VCT制御モード判定ルーチン]
図6のVCT制御モード判定ルーチンは、上記図5のVCT制御ルーチンのステップ105で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ201で、目標進角量VTTが0(最遅角位置)であるか否かを判定し、目標進角量VTTが0(最遅角位置)であれば、VCT制御(高速制御、微小変位制御、保持制御)を実行しないと判断して、ステップ202に進み、高速制御実行フラグXFB、微小変位制御実行フラグXPLS、保持制御実行フラグXKPを全て“0”にクリアして本ルーチンを終了する。
[VCT control mode determination routine]
The VCT control mode determination routine of FIG. 6 is a subroutine executed in step 105 of the VCT control routine of FIG. When this routine is started, it is first determined in step 201 whether or not the target advance amount VTT is 0 (most retarded position), and if the target advance amount VTT is 0 (most retarded position). For example, it is determined that the VCT control (high speed control, minute displacement control, holding control) is not executed, and the process proceeds to step 202, where all of the high speed control execution flag XFB, the minute displacement control execution flag XPLS, and the holding control execution flag XKP are set to “0”. Cleared to "" to end this routine.

一方、上記ステップ201で、目標進角量VTTが0(最遅角位置)であると判定されれば、ステップ203に進み、実進角量VTAと目標進角量VTTとの偏差の絶対値|VTA−VTT|を保持制御領域の判定しきい値KKPと比較し、この進角量偏差の絶対値|VTA−VTT|が保持制御領域の判定しきい値KKP以下であれば、現在のVCT制御モードが保持制御モードであると判断して、ステップ205に進み、高速制御実行フラグXFB及び微小変位制御実行フラグXPLSを“0”にクリアして、保持制御実行フラグXKPのみを“1”にセットして本ルーチンを終了する。   On the other hand, if it is determined in step 201 that the target advance amount VTT is 0 (most retarded position), the process proceeds to step 203 and the absolute value of the deviation between the actual advance amount VTA and the target advance amount VTT. | VTA−VTT | is compared with the determination threshold value KKP of the holding control region, and if the absolute value | VTA−VTT | of the advance amount deviation is equal to or smaller than the determination threshold value KKP of the holding control region, the current VCT It is determined that the control mode is the holding control mode, and the process proceeds to step 205 where the high speed control execution flag XFB and the minute displacement control execution flag XPLS are cleared to “0” and only the holding control execution flag XKP is set to “1”. Set and end this routine.

これに対して、上記ステップ203で、進角量偏差の絶対値|VTA−VTT|が保持制御領域の判定しきい値KKPよりも大きいと判定されれば、現在のVCT制御モードが保持制御モードではないと判断して、ステップ204に進み、進角量偏差の絶対値|VTA−VTT|を微小変位制御領域の判定しきい値KPLSと比較し、この進角量偏差の絶対値|VTA−VTT|が微小変位制御領域の判定しきい値KPLS以下である場合(つまりKKP<|VTA−VTT|≦KPLSの場合)は、現在のVCT制御モードが微小変位制御モードであると判断して、ステップ206に進み、高速制御実行フラグXFB及び保持制御実行フラグXKPを“0”にクリアして、微小変位制御実行フラグXPLSのみを“1”にセットして本ルーチンを終了する。   On the other hand, if it is determined in step 203 that the absolute value | VTA−VTT | of the advance amount deviation is larger than the determination threshold value KKP of the holding control region, the current VCT control mode is set to the holding control mode. Therefore, the process proceeds to step 204, where the absolute value | VTA−VTT | of the advance amount deviation is compared with the determination threshold value KPLS of the minute displacement control region, and the absolute value | VTA− of this advance amount deviation is determined. When VTT | is equal to or smaller than the determination threshold value KPLS of the minute displacement control region (that is, when KKP <| VTA−VTT | ≦ KPLS), it is determined that the current VCT control mode is the minute displacement control mode, Proceeding to step 206, the high speed control execution flag XFB and the holding control execution flag XKP are cleared to “0”, and only the minute displacement control execution flag XPLS is set to “1”. To end the emissions.

また、上記ステップ204で、進角量偏差の絶対値|VTA−VTT|が微小変位制御領域の判定しきい値KPLSよりも大きいと判定されれば、現在のVCT制御モードが高速制御モードであると判断して、ステップ207に進み、高速制御実行フラグXFBのみを“1”にセットし、微小変位制御実行フラグXPLS及び保持制御実行フラグXKPを“0”にクリアして本ルーチンを終了する。   If it is determined in step 204 that the absolute value | VTA−VTT | of the advance angle deviation is larger than the determination threshold value KPLS of the minute displacement control region, the current VCT control mode is the high-speed control mode. In step 207, only the high speed control execution flag XFB is set to “1”, the minute displacement control execution flag XPLS and the holding control execution flag XKP are cleared to “0”, and this routine is finished.

[OCV目標電流算出ルーチン]
図7のOCV目標電流算出ルーチンは、前記図5のVCT制御ルーチンのステップ106で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ301で、保持制御実行フラグXKP、微小変位制御実行フラグXPLS、高速制御実行フラグXFBのいずれかが“1”にセットされているか否かを判定し、これら全てのフラグが“0”であれば、VCT制御(保持制御、微小変位制御、高速制御)を実行しないと判断して、ステップ302に進み、OCV目標電流iVVTを0(最遅角位置)に維持すると共に、パルス通電時間カウンタCPLSを“0”にクリアして本ルーチンを終了する。尚、最遅角位置のOCV目標電流iVVTは、VCTが進角しない電流であれば、0以外の電流値であっても良い。
[OCV target current calculation routine]
The OCV target current calculation routine of FIG. 7 is a subroutine executed in step 106 of the VCT control routine of FIG. When this routine is started, first, at step 301, it is determined whether any one of the holding control execution flag XKP, the minute displacement control execution flag XPLS, and the high-speed control execution flag XFB is set to “1”. If all the flags are “0”, it is determined that VCT control (holding control, minute displacement control, high speed control) is not executed, and the routine proceeds to step 302 where the OCV target current iVVT is set to 0 (most retarded position). At the same time, the pulse energization time counter CPLS is cleared to “0”, and this routine ends. The OCV target current iVVT at the most retarded angle position may be a current value other than 0 as long as the VCT does not advance.

これに対して、上記ステップ301で、いずれかのフラグが“1”にセットされていると判定されれば、ステップ303に進み、保持制御実行フラグXKPが“1”で、且つパルス通電時間カウンタCPLSが“0”であるか否かを判定する。この判定結果が「Yes」であれば、ステップ304に進み、OCV目標電流iVVTを保持電流に設定して、保持制御を実行すると共に、パルス通電時間カウンタCPLSを“0”に維持する。ここで、保持電流は、保持制御中に学習した値を用いれば良い。   On the other hand, if it is determined in step 301 that one of the flags is set to “1”, the process proceeds to step 303 where the holding control execution flag XKP is “1” and the pulse energization time counter is set. It is determined whether CPLS is “0”. If the determination result is “Yes”, the process proceeds to step 304 where the OCV target current iVVT is set to the holding current, the holding control is executed, and the pulse energization time counter CPLS is maintained at “0”. Here, the value learned during the holding control may be used as the holding current.

この保持電流の学習は、例えば、保持制御中に実進角量VTAが保持制御領域を進角方向に越える挙動が何回か続けて発生すれば、保持電流学習値が適正値よりも進角方向にずれていると判断して、保持電流学習値を遅角方向に所定値補正し、実進角量VTAが保持制御領域を遅角方向に越える挙動が何回か続けて発生すれば、保持電流学習値が適正値よりも遅角方向にずれていると判断して、保持電流学習値を進角方向に所定値補正するという処理を繰り返せば良い。この保持電流学習値は、運転条件(油圧、油温又はこれらに相関する情報であるエンジン回転速度、冷却水温等)毎又は目標進角量VTTの領域毎に学習してECU43のバックアップRAM等の書き換え可能な不揮発性メモリに更新記憶するようにしても良い。   This holding current learning is performed when, for example, if the behavior in which the actual advance amount VTA exceeds the holding control region in the advance direction occurs several times during the holding control, the holding current learning value is more advanced than the appropriate value. If it is determined that the holding current learning value is corrected by a predetermined value in the retarding direction, and the actual advance amount VTA exceeds the holding control region in the retarding direction several times, It may be determined that the holding current learning value is deviated from the appropriate value in the retarding direction, and the process of correcting the holding current learning value by a predetermined value in the advance direction may be repeated. This holding current learning value is learned for each operating condition (oil pressure, oil temperature, engine rotation speed, cooling water temperature, etc., which are information correlated with these) or for each region of the target advance amount VTT, and is stored in a backup RAM of the ECU 43 or the like. Update storage may be performed in a rewritable nonvolatile memory.

一方、上記ステップ202で、「No」と判定されれば、保持制御を実行しないと判断して、ステップ305に進み、微小変位制御実行フラグXPLSが“1”にセットされているか否かを判定し、微小変位制御実行フラグXPLSが“1”であれば、次のようにして微小変位制御(パルス通電制御)を実行する。   On the other hand, if “No” is determined in step 202, it is determined that the holding control is not executed, the process proceeds to step 305, and it is determined whether or not the minute displacement control execution flag XPLS is set to “1”. If the minute displacement control execution flag XPLS is “1”, minute displacement control (pulse energization control) is executed as follows.

まず、ステップ306で、パルス通電時間カウンタCPLSが“0”であるか否かを判定し、パルス通電時間カウンタCPLSが“0”であれば、微小変位制御を開始するために、ステップ307に進み、現在の運転条件(油圧、油温又はこれらに相関する情報であるエンジン回転速度、冷却水温等)に応じてパルス通電時間カウンタCPLSの初期値を設定する。このパルス通電時間カウンタCPLSの初期値は、実進角量VTAを目標進角量VTT付近に戻すのに必要なパルス通電時間を現在の運転条件に応じて設定するための初期値であり、運転条件毎に学習してECU43の書き換え可能な不揮発性メモリに更新記憶するようにしても良い。   First, in step 306, it is determined whether or not the pulse energization time counter CPLS is “0”. If the pulse energization time counter CPLS is “0”, the process proceeds to step 307 to start minute displacement control. The initial value of the pulse energization time counter CPLS is set according to the current operating conditions (oil pressure, oil temperature or engine speed, coolant temperature, etc., which are information correlated with these). The initial value of the pulse energization time counter CPLS is an initial value for setting the pulse energization time necessary to return the actual advance angle amount VTA to the vicinity of the target advance angle amount VTT according to the current operating conditions. You may make it learn for every condition, and make it update-store in the rewritable non-volatile memory of ECU43.

上記ステップ306で、パルス通電時間カウンタCPLSが“0”でないと判定されれば、パルス通電制御実行中と判断して、ステップ308に進み、パルス通電時間カウンタCPLSを1つデクリメントしてパルス通電時間を計測する。   If it is determined in the above step 306 that the pulse energization time counter CPLS is not “0”, it is determined that the pulse energization control is being executed, and the process proceeds to step 308 where the pulse energization time counter CPLS is decremented by one and the pulse energization time is determined. Measure.

この後、ステップ309に進み、パルス通電時間カウンタCPLSのカウント値をパルス通電制御の終了判定値KPSLONと比較し、パルス通電時間カウンタCPLSのカウント値がパルス通電制御の終了判定値KPSLON以上であれば、まだパルス通電制御の終了タイミングでないと判断して、ステップ310に進み、実進角量VTAと目標進角量VTTとの大小関係からVCTの駆動方向を判定する。この際、実進角量VTAが目標進角量VTTよりも大きければ、VCTを遅角方向に駆動すると判断して、ステップ311に進み、パルス通電制御のOCV目標電流iVVTを遅角側設定値KIVTREに設定して、VCTを遅角方向に駆動する。ここで、遅角側設定値KIVTREは、例えば、遅角側限界電流値(0mA)又はそれに近い電流値に設定しても良く、或は、保持電流学習値を基準にして設定しても良い(例えば保持電流学習値よりも所定値少ない電流値に設定しても良い)。   After that, the process proceeds to step 309, where the count value of the pulse energization time counter CPLS is compared with the end energization determination value KPSLON of the pulse energization control. If the count value of the pulse energization time counter CPLS is equal to or greater than the end energization determination value KPSLON of the pulse energization control Then, it is determined that it is not the end timing of the pulse energization control, and the process proceeds to step 310, where the VCT drive direction is determined from the magnitude relationship between the actual advance angle amount VTA and the target advance angle amount VTT. At this time, if the actual advance amount VTA is larger than the target advance amount VTT, it is determined that the VCT is driven in the retard direction, and the process proceeds to Step 311 to set the OCV target current iVVT of the pulse energization control to the retard side set value. Set to KIVTRE and drive the VCT in the retard direction. Here, the retard side set value KIVTRE may be set, for example, to the retard side limit current value (0 mA) or a current value close thereto, or may be set based on the holding current learning value. (For example, it may be set to a current value smaller than the holding current learning value by a predetermined value).

一方、実進角量VTAが目標進角量VTTよりも小さければ、VCTを進角方向に駆動すると判断して、ステップ312に進み、パルス通電制御のOCV目標電流iVVTを進角側設定値KIVTADに設定して、VCTを進角方向に駆動する。ここで、進角側設定値KIVTADは、例えば、進角側限界電流値(OCV最大許容電流)又はそれに近い電流値に設定しても良く、或は、保持電流学習値を基準にして設定しても良い(例えば保持電流学習値よりも所定値多い電流値に設定しても良い)。   On the other hand, if the actual advance amount VTA is smaller than the target advance amount VTT, it is determined that the VCT is driven in the advance direction, and the process proceeds to step 312 to set the OCV target current iVVT of the pulse energization control to the advance side set value KIVTAD. And the VCT is driven in the advance direction. Here, the advance side set value KIVTAD may be set to, for example, an advance side limit current value (OCV maximum allowable current) or a current value close thereto, or set based on the holding current learning value. (For example, the current value may be set to a predetermined value larger than the holding current learning value).

その後、パルス通電時間カウンタCPLSのカウント値がパルス通電制御の終了判定値KPSLONを下回った時点(上記ステップ309で「No」と最初に判定された時点)で、パルス通電制御の終了タイミング(保持制御の復帰タイミング)と判断して、ステップ313に進み、OCV目標電流iVVTを保持電流に設定して保持制御を開始する。   Thereafter, when the count value of the pulse energization time counter CPLS falls below the pulse energization control end determination value KPSLON (the time when “No” is first determined in step 309), the end timing of the pulse energization control (holding control) ), The process proceeds to step 313, where the OCV target current iVVT is set to the holding current and the holding control is started.

また、上記ステップ303とステップ305で、いずれも「No」と判定されれば、現在のVCT制御モードが高速制御モード(高速制御実行フラグXFB=1)と判断して、ステップ314に進み、パルス通電時間カウンタCPLSを“0”にクリアし、次のステップ315で、VCTの実変位角VTAと目標変位角VTTとの偏差に応じてPD制御等のフィードバック制御によりOCV目標電流iVVTを設定する。   If it is determined “No” in both step 303 and step 305, it is determined that the current VCT control mode is the high-speed control mode (high-speed control execution flag XFB = 1), and the process proceeds to step 314. The energization time counter CPLS is cleared to “0”, and in the next step 315, the OCV target current iVVT is set by feedback control such as PD control in accordance with the deviation between the actual displacement angle VTA of VCT and the target displacement angle VTT.

この際、VCTの実変位角VTAと目標変位角VTTとの偏差に応じてフィードフォワード制御によりOCV目標電流iVVTを設定しても良く、勿論、フィードバック制御とフィードフォワード制御とを組み合わせてOCV目標電流iVVTを設定しても良いことは言うまでもない。   At this time, the OCV target current iVVT may be set by feedforward control according to the deviation between the actual displacement angle VTA of the VCT and the target displacement angle VTT. Of course, the OCV target current is combined by combining the feedback control and the feedforward control. It goes without saying that iVVT may be set.

以上説明した本実施例のVCT制御の一例を図8のタイムチャートを用いて説明する。図8の制御例は、実進角量VTAを目標進角量VTT付近で保持する保持制御の実行中に、実進角量VTAと目標進角量VTTとの偏差が保持制御領域(判定しきい値KKP)を越えたときの制御の挙動を示している。   An example of the VCT control of the present embodiment described above will be described with reference to the time chart of FIG. In the control example of FIG. 8, the deviation between the actual advance amount VTA and the target advance amount VTT is determined in the hold control region (determined when the hold control for holding the actual advance amount VTA near the target advance amount VTT is being executed. The control behavior when the threshold value KKP) is exceeded is shown.

保持制御の実行中は、OCV目標電流iVVTを保持電流に設定して実進角量VTAを目標進角量VTT付近に保持する。そして、この保持制御の実行中に、実進角量VTAと目標進角量VTTとの偏差が保持制御領域(判定しきい値KKP)を越えて微小変位制御領域に入った時点t1 、t3 、t5 で、保持制御実行フラグXKPが“1”から“0”に反転して保持制御を終了すると同時に、微小変位制御実行フラグXPLSが“0”から“1”に反転して微小変位制御(パルス通電制御)を開始する。   During the holding control, the OCV target current iVVT is set to the holding current, and the actual advance amount VTA is held in the vicinity of the target advance amount VTT. Then, during the execution of the holding control, when the deviation between the actual advance amount VTA and the target advance amount VTT exceeds the hold control region (determination threshold KKP) and enters the minute displacement control region, t1, t3, At t5, the holding control execution flag XKP is reversed from “1” to “0” to end the holding control, and at the same time, the minute displacement control execution flag XPLS is reversed from “0” to “1” to perform minute displacement control (pulse Start energization control).

この微小変位制御(パルス通電制御)では、実進角量VTAが目標進角量VTTよりも遅角側に判定しきい値KKP以上ずれている場合(t3 〜t4 、t5 〜t6 )は、OCV目標電流iVVTを進角側設定値KIVTADに設定して、VCTを進角方向に駆動する。また、実進角量VTAが目標進角量VTTよりも進角側に判定しきい値KKP以上ずれている場合(t1 〜t2 )は、OCV目標電流iVVTを遅角側設定値KIVTREに設定して、VCTを遅角方向に駆動する。   In this minute displacement control (pulse energization control), when the actual advance amount VTA is shifted more than the determination threshold value KKP to the retard side than the target advance amount VTT (t3 to t4, t5 to t6), the OCV The target current iVVT is set to the advance side set value KIVTAD, and the VCT is driven in the advance direction. Further, when the actual advance amount VTA is deviated from the target advance amount VTT to the advance side by the determination threshold value KKP or more (t1 to t2), the OCV target current iVVT is set to the retard side set value KIVTRE. Then, the VCT is driven in the retard direction.

この微小変位制御の開始時点(t1 、t3 、t5 )で、現在の運転条件(油圧、油温又はこれらに相関する情報であるエンジン回転速度、冷却水温等)に応じてパルス通電時間カウンタCPLSの初期値を設定し、このパルス通電時間カウンタCPLSのカウント値を所定の演算周期でデクリメントする。そして、パルス通電時間カウンタCPLSのカウント値がパルス通電制御の終了判定値KPSLONを下回った時点(t2 、t4 、t6 )で、実進角量VTAが目標進角量VTT付近に戻ったと判断して、保持制御に復帰し、OCV目標電流iVVTを保持電流に設定して実進角量VTAを目標進角量VTTに保持する。   At the start time (t1, t3, t5) of the minute displacement control, the pulse energizing time counter CPLS of the pulse energizing time counter CPLS is determined according to the current operating conditions (oil pressure, oil temperature, engine speed, coolant temperature, etc., which are information correlated with these). An initial value is set, and the count value of the pulse energization time counter CPLS is decremented at a predetermined calculation cycle. When the count value of the pulse energization time counter CPLS falls below the pulse energization control end determination value KPSLON (t2, t4, t6), it is determined that the actual advance amount VTA has returned to the vicinity of the target advance amount VTT. Returning to the holding control, the OCV target current iVVT is set to the holding current, and the actual advance angle amount VTA is held at the target advance angle amount VTT.

以上説明した本実施例によれば、VCTの実進角量VTAを目標進角量VTTの付近で微小変位させる微小変位制御を行うときに、油圧制御弁21にパルス通電してVCTを目標進角量VTTの方向にパルス的に駆動するようにしたので、オーバーシュートの問題を生じることなく、VCTを従来よりも目標進角量VTTの方向に応答良く駆動できる。   According to the present embodiment described above, when performing minute displacement control in which the actual advance angle amount VTA of the VCT is slightly displaced in the vicinity of the target advance angle amount VTT, the hydraulic control valve 21 is energized with a pulse to cause the VCT to reach the target advance amount. Since the pulse is driven in the direction of the angular amount VTT, the VCT can be driven more responsively in the direction of the target advance amount VTT than before without causing the problem of overshoot.

尚、本実施例では、パルス通電制御により実進角量VTAを目標進角量VTT付近に戻すのに必要なパルス通電時間(パルス幅)を運転条件に応じて設定するようにしたが、パルス通電の回数を運転条件に応じて設定するようにしても良い。   In this embodiment, the pulse energization time (pulse width) necessary for returning the actual advance angle amount VTA to the vicinity of the target advance angle amount VTT by the pulse energization control is set according to the operating conditions. The number of energizations may be set according to the operating conditions.

また、本発明は、OCV電流に対するVCTの応答特性が遅くなる領域(遅角側の応答性急変点から進角側の応答性急変点との間のVCT応答速度変化の勾配が小さい領域)であるか否かをOCV目標電流iVVTに基づいて判定し、VCTの応答特性が遅くなる領域と判定された場合に、実進角量VTAと目標進角量VTTとの偏差が保持制御領域(判定しきい値KKP)を越える毎に、微小変位制御(パルス通電制御)を実施するようにしても良い。   Further, the present invention is a region where the response characteristic of the VCT to the OCV current is slow (a region where the gradient of the VCT response speed change between the responsiveness sudden change point on the retarded angle side and the rapid response point on the advanced angle side is small). It is determined whether or not it exists based on the OCV target current iVVT, and when it is determined that the response characteristic of the VCT is slow, the deviation between the actual advance amount VTA and the target advance amount VTT is the holding control region (determination Every time the threshold value KKP) is exceeded, minute displacement control (pulse energization control) may be performed.

また、本発明は、ドレーン切替弁34,35を駆動する油圧を切り替える油圧切替弁38を、油圧制御弁21とは別体に設けるようにしても良いが、本実施例では、油圧切替弁38を油圧制御弁21に一体化した構成としているため、部品点数削減、低コスト化、コンパクト化の要求を満たすことができる利点がある。   Further, according to the present invention, the hydraulic pressure switching valve 38 for switching the hydraulic pressure for driving the drain switching valves 34 and 35 may be provided separately from the hydraulic control valve 21, but in this embodiment, the hydraulic pressure switching valve 38 is provided. Is integrated with the hydraulic control valve 21. Therefore, there is an advantage that requirements for reduction in the number of parts, cost reduction, and compactness can be satisfied.

本発明は、図1に示される可変バルブタイミング調整機構11の構成に限定されず、例えば、図9又は図10に示される他の実施例の可変バルブタイミング調整機構71,72に適用することもできる。   The present invention is not limited to the configuration of the variable valve timing adjusting mechanism 11 shown in FIG. 1, and may be applied to, for example, the variable valve timing adjusting mechanisms 71 and 72 of other embodiments shown in FIG. 9 or FIG. it can.

図9に示される可変バルブタイミング調整機構71においては、図1に示される可変バルブタイミング調整機構11に対して以下の点が相違している。なお、図9において図1と同等の構成部品については同じ符号を付して説明を省略する。   The variable valve timing adjusting mechanism 71 shown in FIG. 9 is different from the variable valve timing adjusting mechanism 11 shown in FIG. In FIG. 9, the same components as those in FIG.

まず、図1の油圧制御弁21は1つのリニアソレノイド36により進角/遅角油圧制御機能37とドレーン切替制御機能38とを駆動しているが、図9では、進角/遅角油圧制御機能を実現する第1の油圧制御弁37とドレーン切替制御機能を実現する第2の油圧制御弁38とにそれぞれソレノイド36,51を設け、各ソレノイド36,51をそれぞれ別のECU43,52(第1の制御手段,第2の制御手段)によって独立して制御する構成としている。一方のECU43は、VCT実変位角と目標変位角との偏差に応じて第1の油圧制御弁37の電流を制御し、他方のECU52は、第2の油圧制御弁38の電流を制御して、各ドレーン切替弁34,35を駆動する油圧を制御する。   First, the hydraulic control valve 21 in FIG. 1 drives the advance / retard hydraulic control function 37 and the drain switching control function 38 by a single linear solenoid 36. In FIG. 9, the advance / retard hydraulic control is performed. Solenoids 36 and 51 are respectively provided in the first hydraulic control valve 37 that realizes the function and the second hydraulic control valve 38 that realizes the drain switching control function, and the solenoids 36 and 51 are respectively connected to different ECUs 43 and 52 (first 1 control means and second control means). One ECU 43 controls the current of the first hydraulic control valve 37 according to the deviation between the VCT actual displacement angle and the target displacement angle, and the other ECU 52 controls the current of the second hydraulic control valve 38. The hydraulic pressure for driving the drain switching valves 34 and 35 is controlled.

ドレーン切替弁34,35については、図1では、油圧が加えられていないときには、スプリング41,42によって開弁位置に保持される、いわゆるノーマリ・オープン型(常開型)の切替弁を用いている。これに対して、図9では、油圧が加えられていないときに、スプリング41,42によって閉弁位置に保持される、いわゆるノーマリ・クローズ型(常閉型)の切替弁を用いている。またこれに伴い、ドレーン切替制御機能38も、図1ではドレーン切替弁34,35を閉弁するときに油圧を供給する構成となっているが、図9ではドレーン切替弁34,35を閉弁するときに油圧供給を停止する構成となっている。   As for the drain switching valves 34 and 35, in FIG. 1, when a hydraulic pressure is not applied, a so-called normally open type (normally open type) switching valve that is held in a valve open position by springs 41 and 42 is used. Yes. On the other hand, in FIG. 9, a so-called normally closed type (normally closed type) switching valve that is held in a closed position by springs 41 and 42 when hydraulic pressure is not applied is used. Accordingly, the drain switching control function 38 is configured to supply hydraulic pressure when the drain switching valves 34 and 35 are closed in FIG. 1, but in FIG. 9, the drain switching valves 34 and 35 are closed. In this case, the hydraulic pressure supply is stopped.

また、図1においては、ある1つのベーン17で仕切られた1つのベーン収納室16の進角室18及び遅角室19に対応する油圧供給通路28,29に逆止弁30,31及びドレーン切替弁34,35を設ける構成としているが、図9では、あるベーン収納室16の進角室18に対する油圧供給通路28と別のベーン収納室16の遅角室19に対する油圧供給通路29とに逆止弁30,31及びドレーン切替弁34,35を設けている。   Further, in FIG. 1, check valves 30 and 31 and drains are provided in the hydraulic pressure supply passages 28 and 29 corresponding to the advance chamber 18 and the retard chamber 19 of one vane storage chamber 16 partitioned by one vane 17. In FIG. 9, the switching valves 34 and 35 are provided. In FIG. 9, the hydraulic supply passage 28 for the advance chamber 18 of one vane storage chamber 16 and the hydraulic supply passage 29 for the retard chamber 19 of another vane storage chamber 16 are provided. Check valves 30 and 31 and drain switching valves 34 and 35 are provided.

この構成では、VCT変位角を目標変位角に保持する保持動作中には、進角室18側と遅角室19側の両方のドレーン切替弁34,35を閉じて進角室18側と遅角室19側の両方の逆止弁30,31を有効に機能させて進角室18及び遅角室19からの作動油の逆流を防止するように第2の油圧制御弁38を制御すると共に、可変バルブタイミング調整機構71へ供給する油圧を制御する第1の油圧制御弁37の制御電流を所定の保持電流に制御する。   In this configuration, during the holding operation for maintaining the VCT displacement angle at the target displacement angle, the drain switching valves 34 and 35 on both the advance chamber 18 side and the retard chamber 19 side are closed to retard the advance chamber 18 side. The second hydraulic control valve 38 is controlled so that both check valves 30 and 31 on the corner chamber 19 side function effectively to prevent backflow of hydraulic oil from the advance chamber 18 and the retard chamber 19. Then, the control current of the first hydraulic control valve 37 that controls the hydraulic pressure supplied to the variable valve timing adjusting mechanism 71 is controlled to a predetermined holding current.

一方、可変バルブタイミング調整機構71を進角動作させる場合は、作動油を流入させる進角室側のドレーン切替弁を閉じて、作動油が排出される遅角室側のドレーン切替弁を開くように第2の油圧制御弁38を制御し、可変バルブタイミング調整機構71を遅角動作させる場合は、作動油を流入させる遅角室側のドレーン切替弁を閉じて、作動油が排出される進角室側のドレーン切替弁を開くように第2の油圧制御弁38を制御する。要するに、進角・遅角動作中には、その変位方向に応じて進角室18側と遅角室19側のいずれか一方のドレーン切替弁34又は35を開いていずれか一方の逆止弁30又は31が機能しないように第2の油圧制御弁38を制御すると共に、前記第1の油圧制御弁37の制御電流を制御して可変バルブタイミング調整機構71へ供給する油圧を可変することでVCT変位角を目標変位角に向けて変位させる。
以上のように構成した図9の可変バルブタイミング調整機構71に対しても本発明を適用することができる。
On the other hand, when the variable valve timing adjusting mechanism 71 is advanced, the drain switching valve on the advance chamber side through which hydraulic oil flows is closed and the drain switching valve on the retard chamber side from which hydraulic oil is discharged is opened. When the second hydraulic control valve 38 is controlled and the variable valve timing adjusting mechanism 71 is retarded, the drain switching valve on the retard chamber side into which the hydraulic oil flows is closed and the hydraulic oil is discharged. The second hydraulic control valve 38 is controlled so as to open the drain switching valve on the corner chamber side. In short, during the advance / retard operation, either one of the advance chamber 18 side or the retard chamber 19 side drain switching valve 34 or 35 is opened according to the displacement direction, and either one of the check valves is opened. By controlling the second hydraulic control valve 38 so that 30 or 31 does not function, and by controlling the control current of the first hydraulic control valve 37 to vary the hydraulic pressure supplied to the variable valve timing adjustment mechanism 71. The VCT displacement angle is displaced toward the target displacement angle.
The present invention can also be applied to the variable valve timing adjusting mechanism 71 of FIG. 9 configured as described above.

次に、図10の可変バルブタイミング調整機構72の構成について、図1との相違点を中心に説明する。図10においても、図9と同様に図1と同等の構成部品については同じ符号が付されている。   Next, the configuration of the variable valve timing adjusting mechanism 72 in FIG. 10 will be described focusing on the differences from FIG. Also in FIG. 10, the same reference numerals are given to the same components as in FIG.

まず、図1においては進角/遅角油圧制御機能37のための油路を切換える弁とドレーン切替制御機能38のための油路を切換える弁との2つの弁を備える構成としている。これに対して、図10においては、1つの油圧制御弁60で進角/遅角油圧制御機能とドレーン切替制御機能とを達成する構成としている。また、このために油圧供給通路28,29を油圧制御弁60と逆止弁30,31との間で分岐させ、各々ドレーン切替弁34,35と接続する構成としている。   First, in FIG. 1, there are two valves, an oil path switching valve for the advance / retard hydraulic control function 37 and an oil path switching valve for the drain switching control function 38. On the other hand, in FIG. 10, a single hydraulic control valve 60 is configured to achieve the advance / retard hydraulic pressure control function and the drain switching control function. For this purpose, the hydraulic pressure supply passages 28 and 29 are branched between the hydraulic pressure control valve 60 and the check valves 30 and 31, and are connected to the drain switching valves 34 and 35, respectively.

この構成では、VCT変位角を目標変位角に保持する保持動作中には、油圧制御弁60の制御電流を所定の保持電流に制御して、進角室18側と遅角室19側の両方のドレーン切替弁34,35を閉じて進角室18側と遅角室19側の両方の逆止弁30,31を有効に機能させて進角室18及び遅角室19からの作動油の逆流を防止するように制御すると共に、可変バルブタイミング調整機構72へ供給する油圧を制御する。   In this configuration, during the holding operation for holding the VCT displacement angle at the target displacement angle, the control current of the hydraulic control valve 60 is controlled to a predetermined holding current, so that both the advance chamber 18 side and the retard chamber 19 side are controlled. The drain switching valves 34 and 35 are closed so that the check valves 30 and 31 on both the advance chamber 18 side and the retard chamber 19 side function effectively so that the hydraulic oil from the advance chamber 18 and the retard chamber 19 is discharged. Control is performed to prevent backflow, and the hydraulic pressure supplied to the variable valve timing adjustment mechanism 72 is controlled.

一方、VCT変位角を進角方向又は遅角方向に変位させる進角・遅角動作中には、油圧制御弁60の制御電流を制御して、その変位方向に応じて進角室18側と遅角室19側のいずれか一方のドレーン切替弁34又は35を開いていずれか一方の逆止弁30又は31が機能しないように制御すると共に、可変バルブタイミング調整機構72へ供給する油圧を可変することでVCT変位角を目標変位角に向けて変位させる。   On the other hand, during the advance / retard operation that displaces the VCT displacement angle in the advance direction or the retard direction, the control current of the hydraulic control valve 60 is controlled, and the advance chamber 18 side is controlled according to the displacement direction. Control is made so that either one of the check valves 30 or 31 does not function by opening one of the drain switching valves 34 or 35 on the retarding chamber 19 side, and the hydraulic pressure supplied to the variable valve timing adjusting mechanism 72 is variable. By doing so, the VCT displacement angle is displaced toward the target displacement angle.

以上のように構成した図10の可変バルブタイミング調整機構72に対しても本願発明を適用することができる。   The present invention can also be applied to the variable valve timing adjusting mechanism 72 of FIG. 10 configured as described above.

本発明の一実施例における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows roughly the variable valve timing adjustment mechanism and its hydraulic control circuit in one Example of this invention. 可変バルブタイミング調整機構の遅角動作、保持動作、進角動作を説明するための図である。It is a figure for demonstrating retardation operation | movement, holding | maintenance operation | movement, and advance angle operation | movement of a variable valve timing adjustment mechanism. 逆止弁の有無による進角作動時のVCT応答速度の相違を説明するための特性図である。It is a characteristic view for demonstrating the difference in the VCT response speed at the time of advance operation by the presence or absence of a check valve. 逆止弁付きの可変バルブタイミング調整機構の応答特性の一例を示す特性図である。It is a characteristic view which shows an example of the response characteristic of a variable valve timing adjustment mechanism with a check valve. VCT制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a VCT control routine. VCT制御モード判定ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of VCT control mode determination routine. OCV目標電流算出ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of OCV target current calculation routine. VCT制御の一例を説明するタイムチャートである。It is a time chart explaining an example of VCT control. 本発明の他の実施例(その1)における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows schematically the variable valve timing adjustment mechanism in the other Example (the 1) of this invention, and its hydraulic control circuit. 本発明の他の実施例(その2)における可変バルブタイミング調整機構とその油圧制御回路を概略的に示す図である。It is a figure which shows schematically the variable valve timing adjustment mechanism in the other Example (the 2) of this invention, and its hydraulic control circuit.

符号の説明Explanation of symbols

11…可変バルブタイミング調整機構、12…ハウジング、14…ベーンロータ、16…ベーン収納室、17…ベーン、18…進角室、19…遅角室、21…油圧制御弁、24…ロックピン、27…オイルポンプ、28,29…油圧供給油路、30,31…逆止弁、32,33…ドレーン油路、34,35…ドレーン切替弁、37…進角/遅角油圧制御機能(第1の油圧制御弁)、38…ドレーン切替制御機能(油圧切替弁,第2の油圧制御弁)、43…ECU(制御手段,第1の制御手段)、44…クランク角センサ、45…カム角センサ、52…ECU(第2の制御手段)、60…油圧制御弁、71,72…可変バルブタイミング調整機構   DESCRIPTION OF SYMBOLS 11 ... Variable valve timing adjustment mechanism, 12 ... Housing, 14 ... Vane rotor, 16 ... Vane storage chamber, 17 ... Vane, 18 ... Advance chamber, 19 ... Delay chamber, 21 ... Hydraulic control valve, 24 ... Lock pin, 27 ... Oil pump, 28, 29 ... Hydraulic supply oil passage, 30, 31 ... Check valve, 32, 33 ... Drain oil passage, 34, 35 ... Drain switching valve, 37 ... Advance / retard hydraulic control function (first Hydraulic control valve), 38 ... drain switching control function (hydraulic switching valve, second hydraulic control valve), 43 ... ECU (control means, first control means), 44 ... crank angle sensor, 45 ... cam angle sensor 52 ... ECU (second control means), 60 ... hydraulic control valve, 71, 72 ... variable valve timing adjustment mechanism

Claims (14)

ベーン式の可変バルブタイミング調整機構(以下「VCT」と表記する)のハウジング内に形成された複数のベーン収納室内をそれぞれベーンによって進角室と遅角室とに区画し、前記進角室の油圧と前記遅角室の油圧を制御する油圧制御弁と、前記VCTの実変位角と目標変位角との偏差に応じて前記油圧制御弁の電流を制御する制御手段とを備えたベーン式の可変バルブタイミング調整機構の制御装置において、
前記制御手段は、前記油圧制御弁にパルス通電することで前記VCTを目標変位角の方向に駆動するパルス通電制御を行うことを特徴とするベーン式の可変バルブタイミング調整機構の制御装置。
A plurality of vane storage chambers formed in a housing of a vane type variable valve timing adjustment mechanism (hereinafter referred to as “VCT”) are divided into an advance chamber and a retard chamber by the vanes, respectively. A vane type control valve comprising: a hydraulic control valve that controls the hydraulic pressure and the hydraulic pressure of the retard chamber; and a control unit that controls the current of the hydraulic control valve in accordance with a deviation between the actual displacement angle and the target displacement angle of the VCT. In the control device of the variable valve timing adjustment mechanism,
The control means controls the vane type variable valve timing adjustment mechanism to perform pulse energization control for driving the VCT in a direction of a target displacement angle by energizing the hydraulic control valve with pulses.
前記制御手段は、前記油圧制御弁の電流に対する前記VCTの応答特性が遅くなる制御領域で前記パルス通電制御を実施することを特徴とする請求項1に記載のベーン式の可変バルブタイミング調整機構の制御装置。   2. The vane variable valve timing adjustment mechanism according to claim 1, wherein the control unit performs the pulse energization control in a control region in which a response characteristic of the VCT with respect to a current of the hydraulic control valve becomes slow. Control device. 前記制御手段は、前記VCTの実変位角を目標変位角付近で微小変位させる微小変位制御領域で前記パルス通電制御を実施することを特徴とする請求項1又は2に記載のベーン式の可変バルブタイミング調整機構の制御装置。   The vane variable valve according to claim 1 or 2, wherein the control means performs the pulse energization control in a minute displacement control region in which the actual displacement angle of the VCT is minutely displaced in the vicinity of a target displacement angle. Control device for timing adjustment mechanism. 前記制御手段は、前記VCTの実変位角と目標変位角との偏差が前記微小変位制御領域における当該偏差の判定しきい値よりも小さい領域を保持制御領域とし、この保持制御領域では、前記油圧制御弁に保持電流を流して前記VCTの実変位角を目標変位角に保持することを特徴とする請求項3に記載のベーン式の可変バルブタイミング調整機構の制御装置。   The control means sets a region in which the deviation between the actual displacement angle of the VCT and the target displacement angle is smaller than a threshold value for determining the deviation in the minute displacement control region as the holding control region. 4. The control device for a vane type variable valve timing adjusting mechanism according to claim 3, wherein a holding current is supplied to the control valve to hold the actual displacement angle of the VCT at a target displacement angle. 前記制御手段は、前記VCTの実変位角と目標変位角との偏差が前記微小変位制御領域における当該偏差の判定しきい値よりも大きい領域を高速制御領域とし、この高速制御領域では、前記VCTの実変位角と目標変位角との偏差に応じて前記油圧制御弁の電流をフィードバック制御及び/又はフィードフォワード制御することを特徴とする請求項3又は4に記載のベーン式の可変バルブタイミング調整機構の制御装置。   The control means sets a region in which a deviation between the actual displacement angle and the target displacement angle of the VCT is larger than a determination threshold value of the deviation in the minute displacement control region as a high-speed control region. 5. The vane type variable valve timing adjustment according to claim 3, wherein the current of the hydraulic control valve is feedback-controlled and / or feedforward-controlled in accordance with a deviation between an actual displacement angle and a target displacement angle. Control device for the mechanism. 前記制御手段は、前記パルス通電の通電時間又は回数を可変することでVCT変位量を制御することを特徴とする請求項1乃至5のいずれかに記載のベーン式の可変バルブタイミング調整機構の制御装置。   6. The control of a vane type variable valve timing adjusting mechanism according to claim 1, wherein the control means controls the amount of VCT displacement by varying the energization time or number of times of the pulse energization. apparatus. 前記制御手段は、前記パルス通電の通電時間又は回数と、そのパルス通電により駆動されるVCT変位量との関係を学習し、その学習値に基づいて前記パルス通電の通電時間又は回数を設定することを特徴とする請求項6に記載のベーン式の可変バルブタイミング調整機構の制御装置。   The control means learns the relationship between the energization time or number of times of pulse energization and the amount of VCT displacement driven by the pulse energization, and sets the energization time or number of times of pulse energization based on the learned value. The control device for a vane type variable valve timing adjusting mechanism according to claim 6. 前記制御手段は、前記学習値を運転条件毎に学習することを特徴とする請求項7に記載のベーン式の可変バルブタイミング調整機構の制御装置。   The control device of the vane type variable valve timing adjusting mechanism according to claim 7, wherein the control means learns the learning value for each operating condition. 少なくとも1つのベーン収納室の進角室の油圧供給油路と遅角室の油圧供給油路に、それぞれ各油圧室(「油圧室」とは「進角室」と「遅角室」のいずれかを意味する)からの作動油の逆流を防止する逆止弁を設けると共に、各油圧室の油圧供給油路に、それぞれ前記逆止弁をバイパスするドレーン油路を並列に設け、各ドレーン油路にそれぞれ油圧で駆動されるドレーン切替弁を設けると共に、各ドレーン切替弁を駆動する油圧を切り替える油圧切替弁を設け、
前記制御手段は、前記VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン切替弁を閉じて、作動油が排出される遅角室側のドレーン切替弁を開くように前記油圧切替弁を制御し、前記VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン切替弁を閉じて、作動油が排出される進角室側のドレーン切替弁を開くように前記油圧切替弁を制御することを特徴とする請求項1乃至8のいずれかに記載のベーン式の可変バルブタイミング調整機構の制御装置。
In each of the hydraulic chambers (the “hydraulic chamber” is either the “advance chamber” or the “retard chamber”), the hydraulic supply fluid passage of the advance chamber and the retard chamber of the at least one vane storage chamber are respectively provided. A check valve that prevents backflow of hydraulic oil from the hydraulic oil supply line, and a drain oil path that bypasses the check valve is provided in parallel in each hydraulic chamber oil supply path. In addition to providing a drain switching valve that is driven by hydraulic pressure on the road, a hydraulic switching valve that switches the hydraulic pressure that drives each drain switching valve is provided,
When the VCT is advanced, the control means closes the advance chamber side drain switching valve through which hydraulic oil flows in and opens the retarded chamber side drain switching valve from which hydraulic fluid is discharged. When the hydraulic switching valve is controlled to retard the VCT, the drain switching valve on the retarding chamber side into which the hydraulic oil flows is closed, and the drain switching valve on the advanced chamber side through which the hydraulic fluid is discharged. 9. The control device for a vane type variable valve timing adjustment mechanism according to claim 1, wherein the hydraulic pressure switching valve is controlled to open.
少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられ、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路に設けられ、油圧で駆動される第1のドレーン切替弁と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられ、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路に設けられ、油圧で駆動される第2のドレーン切替弁と、
前記進角室の油圧と前記遅角室の油圧とを制御する第1の油圧制御弁と、
前記第1のドレーン切替弁と前記第2のドレーン切替弁とを駆動する油圧を制御する第2の油圧制御弁とを備え、
前記制御手段は、前記VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン切替弁を閉じて、作動油が排出される遅角室側のドレーン切替弁を開くように前記第2の油圧制御弁を制御し、前記VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン切替弁を閉じて、作動油が排出される進角室側のドレーン切替弁を開くように前記第2の油圧制御弁を制御することを特徴とする請求項1乃至8のいずれかに記載のベーン式の可変バルブタイミング調整機構の制御装置。
A first check valve that is provided in a hydraulic pressure supply oil passage of the advance chamber in at least one vane storage chamber and that prevents backflow of hydraulic oil from the advance chamber, and bypasses the first check valve. A first drain switching valve provided in the first drain oil passage and driven by hydraulic pressure, and provided in a hydraulic supply oil passage in the retard chamber of the at least one vane storage chamber, and hydraulic oil from the retard chamber A second check valve for preventing the backflow of the second check valve, a second drain switching valve provided in a second drain oil passage that bypasses the second check valve, and driven hydraulically,
A first hydraulic control valve that controls the hydraulic pressure of the advance chamber and the hydraulic pressure of the retard chamber;
A second hydraulic control valve that controls a hydraulic pressure that drives the first drain switching valve and the second drain switching valve;
When the VCT is advanced, the control means closes the advance chamber side drain switching valve through which hydraulic oil flows in and opens the retarded chamber side drain switching valve from which hydraulic fluid is discharged. When the second hydraulic control valve is controlled and the VCT is retarded, the retard chamber side drain switching valve for allowing the hydraulic oil to flow in is closed, and the advance chamber side drain from which the hydraulic oil is discharged. The control device for a vane type variable valve timing adjusting mechanism according to any one of claims 1 to 8, wherein the second hydraulic control valve is controlled so as to open a switching valve.
前記第1の油圧制御弁と前記第2の油圧制御弁とは独立して制御可能な構成であり、
前記制御手段は、前記VCTの実変位角と目標変位角との偏差に応じて前記第1の油圧制御弁の電流を制御する第1の制御手段と、前記第2の油圧制御弁の電流を制御して、各ドレーン切替弁を駆動する油圧を制御する第2の制御手段とを含むことを特徴とする請求項10に記載のベーン式の可変バルブタイミング調整機構の制御装置。
The first hydraulic control valve and the second hydraulic control valve are controllable independently,
The control means includes a first control means for controlling a current of the first hydraulic control valve in accordance with a deviation between an actual displacement angle and a target displacement angle of the VCT, and a current of the second hydraulic control valve. 11. The control device for a vane type variable valve timing adjusting mechanism according to claim 10, further comprising second control means for controlling and controlling a hydraulic pressure for driving each drain switching valve.
前記第1の油圧制御弁と前記第2の油圧制御弁とを駆動する軸が一体化されており、
前記制御手段は、前記油圧制御弁の電流を制御することで、前記VCTの実変位角と目標変位角との偏差に応じて前記油圧制御弁を制御すると共に、前記第2の油圧制御弁を制御して、各ドレーン切替弁を駆動する油圧を制御することを特徴とする請求項10に記載のベーン式の可変バルブタイミング調整機構の制御装置。
A shaft for driving the first hydraulic control valve and the second hydraulic control valve is integrated,
The control means controls the hydraulic control valve according to a deviation between an actual displacement angle of the VCT and a target displacement angle by controlling a current of the hydraulic control valve, and controls the second hydraulic control valve. 11. The control device for a vane type variable valve timing adjusting mechanism according to claim 10, wherein the control device controls the hydraulic pressure for driving each drain switching valve.
少なくとも1つのベーン収納室内の進角室の油圧供給油路に設けられ、前記進角室からの作動油の逆流を防止する第1の逆止弁と、前記第1の逆止弁をバイパスする第1のドレーン油路と、少なくとも1つのベーン収納室の遅角室の油圧供給油路に設けられ、前記遅角室からの作動油の逆流を防止する第2の逆止弁と、前記第2の逆止弁をバイパスする第2のドレーン油路とを備え、
前記油圧制御弁には、前記第1のドレーン油路と前記第2のドレーン油路とを開放/閉鎖するドレーン油路制御機能が一体化されており、
前記制御手段は、前記油圧制御弁を制御して、前記VCTを進角動作させる場合は、作動油を流入させる進角室側のドレーン油路を閉じて、作動油が排出される遅角室側のドレーン油路を開くように制御し、前記VCTを遅角動作させる場合は、作動油を流入させる遅角室側のドレーン油路を閉じて、作動油が排出される進角室側のドレーン油路を開くように制御することを特徴とする請求項1乃至8のいずれかに記載のベーン式の可変バルブタイミング調整機構の制御装置。
A first check valve that is provided in a hydraulic pressure supply oil passage of the advance chamber in at least one vane storage chamber and that prevents backflow of hydraulic oil from the advance chamber, and bypasses the first check valve. A second check valve provided in a first drain oil passage, a hydraulic supply oil passage in a retard chamber of at least one vane storage chamber, and preventing backflow of hydraulic oil from the retard chamber; A second drain oil passage that bypasses the two check valves,
The hydraulic control valve is integrated with a drain oil passage control function for opening / closing the first drain oil passage and the second drain oil passage,
When the control means controls the hydraulic control valve to advance the VCT, the control chamber closes the drain oil passage on the advance chamber side into which the hydraulic oil flows and delays the hydraulic chamber to discharge the hydraulic oil. When the VCT is operated to be retarded by closing the drain oil passage on the side of the advance chamber, the drain oil passage on the side of the retard chamber that allows the hydraulic oil to flow in is closed and the hydraulic oil is discharged. The control device for a vane type variable valve timing adjustment mechanism according to any one of claims 1 to 8, wherein the drain oil passage is controlled to open.
前記第1のドレーン油路に設けられ、油圧で駆動される第1のドレーン切替弁と、前記第2のドレーン油路に設けられ、油圧で駆動される第2のドレーン切替弁とを備え、
前記油圧制御弁のドレーン油路制御機能による油圧制御によって、前記第1のドレーン切替弁を開弁/閉弁することで前記第1のドレーン油路を開放/閉鎖するとともに、前記第2のドレーン切替弁を開弁/閉弁することで前記第2のドレーン油路を開放/閉鎖することを特徴とする請求項13に記載のベーン式の可変バルブタイミング調整機構の制御装置。
A first drain switching valve provided in the first drain oil passage and driven by hydraulic pressure; and a second drain switching valve provided in the second drain oil passage and driven by hydraulic pressure;
The first drain oil passage is opened / closed by opening / closing the first drain switching valve by hydraulic control by the drain oil passage control function of the hydraulic control valve, and the second drain is opened. 14. The control device for a vane type variable valve timing adjusting mechanism according to claim 13, wherein the second drain oil passage is opened / closed by opening / closing a switching valve.
JP2007116635A 2006-05-19 2007-04-26 Control device for vane type variable valve timing adjustment mechanism Pending JP2007332957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116635A JP2007332957A (en) 2006-05-19 2007-04-26 Control device for vane type variable valve timing adjustment mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140891 2006-05-19
JP2007116635A JP2007332957A (en) 2006-05-19 2007-04-26 Control device for vane type variable valve timing adjustment mechanism

Publications (1)

Publication Number Publication Date
JP2007332957A true JP2007332957A (en) 2007-12-27

Family

ID=38932644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116635A Pending JP2007332957A (en) 2006-05-19 2007-04-26 Control device for vane type variable valve timing adjustment mechanism

Country Status (1)

Country Link
JP (1) JP2007332957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053856A (en) * 2008-07-28 2010-03-11 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2011179385A (en) * 2010-02-26 2011-09-15 Toyota Motor Corp Flow control valve and valve timing control device having the same for internal combustion engine
JP2013538981A (en) * 2010-10-04 2013-10-17 ボーグワーナー インコーポレーテッド Variable camshaft timing mechanism with default mode
JP5360511B2 (en) * 2009-03-25 2013-12-04 アイシン精機株式会社 Valve timing control device
WO2013187284A1 (en) * 2012-06-14 2013-12-19 アイシン精機株式会社 Valve timing controller
KR101905960B1 (en) * 2016-07-13 2018-10-08 현대자동차주식회사 Stability Control method of Middle Phase type Continuously Variable Valve Timing System and Stability Control system thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053856A (en) * 2008-07-28 2010-03-11 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP5360511B2 (en) * 2009-03-25 2013-12-04 アイシン精機株式会社 Valve timing control device
JP2011179385A (en) * 2010-02-26 2011-09-15 Toyota Motor Corp Flow control valve and valve timing control device having the same for internal combustion engine
JP2013538981A (en) * 2010-10-04 2013-10-17 ボーグワーナー インコーポレーテッド Variable camshaft timing mechanism with default mode
WO2013187284A1 (en) * 2012-06-14 2013-12-19 アイシン精機株式会社 Valve timing controller
JP2013256929A (en) * 2012-06-14 2013-12-26 Aisin Seiki Co Ltd Valve open/close timing controller
CN104350244A (en) * 2012-06-14 2015-02-11 爱信精机株式会社 Valve timing controller
US9243522B2 (en) 2012-06-14 2016-01-26 Aisin Seiki Kabushiki Kaisha Valve timing controller
CN104350244B (en) * 2012-06-14 2016-08-24 爱信精机株式会社 Valve opening/closing timing control device
KR101905960B1 (en) * 2016-07-13 2018-10-08 현대자동차주식회사 Stability Control method of Middle Phase type Continuously Variable Valve Timing System and Stability Control system thereof
US10309272B2 (en) 2016-07-13 2019-06-04 Hyundai Motor Company Control method and system for stability of intermediate phase continuously variable valve timing system

Similar Documents

Publication Publication Date Title
US7845321B2 (en) Controller for vane-type variable timing adjusting mechanism
US7434554B2 (en) Controller for vane-type variable valve timing adjusting mechanism
KR100429346B1 (en) Valve timing control system for internal combustion engine
US6755165B2 (en) Valve control apparatus and method for internal combustion engine
JP4225186B2 (en) Valve timing control device for internal combustion engine
JP4978542B2 (en) Valve timing control device and valve timing control system
JP2009167811A (en) Valve timing adjusting device
JP2008031973A (en) Variable valve timing control device for internal combustion engine
JP2007332957A (en) Control device for vane type variable valve timing adjustment mechanism
US20070028874A1 (en) Mapping temperature compensation limits for PWM control of VCT phasers
KR20040002593A (en) Control method for transitions between open and closed loop operation in electronic vct controls
JP2007315379A (en) Control device for vane-type variable valve timing adjusting mechanism
US7398751B2 (en) Control device for engine valve and control system for engine
JP2007332956A (en) Control device for vane type variable valve timing adjustment mechanism
JP4752696B2 (en) Control device for internal combustion engine
JP2008008283A (en) Control device of vane type variable valve timing adjusting mechanism
JP2008008286A (en) Control device of vane type variable valve timing adjusting mechanism
JP2009222029A (en) Variable cam phase internal combustion engine
JP2007278304A (en) Variable valve timing control device for internal combustion engine
US20070283925A1 (en) Controller for vane-type variable valve timing adjusting mechanism
JP2010255497A (en) Variable valve timing control device for internal combustion engine
JP2007315380A (en) Diagnosis system for vane-type variable valve timing adjusting mechanism
JP4831098B2 (en) Valve timing adjustment device
JP4507417B2 (en) Variable valve operating device for internal combustion engine
JP2009221983A (en) Valve timing adjuster