JP2007315297A - Combustion state determining device of internal combustion engine - Google Patents

Combustion state determining device of internal combustion engine Download PDF

Info

Publication number
JP2007315297A
JP2007315297A JP2006146069A JP2006146069A JP2007315297A JP 2007315297 A JP2007315297 A JP 2007315297A JP 2006146069 A JP2006146069 A JP 2006146069A JP 2006146069 A JP2006146069 A JP 2006146069A JP 2007315297 A JP2007315297 A JP 2007315297A
Authority
JP
Japan
Prior art keywords
ion
ignition
spark plug
voltage
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006146069A
Other languages
Japanese (ja)
Inventor
Eiji Takakuwa
栄司 高桑
Tetsuya Miwa
哲也 三輪
Shoichi Takeyama
正一 武山
Hiroaki Makino
博明 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006146069A priority Critical patent/JP2007315297A/en
Publication of JP2007315297A publication Critical patent/JP2007315297A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the determining accuracy of a combustion state, and to improve failure determining accuracy of an ignition system, while satisfying a request for reducing the cost of a spark plug. <P>SOLUTION: In a general spark plug 14, since a terminal part connected to the secondary side of an ignition coil 11 is formed of an iron-based material, a surface of its terminal part is oxidized, and an insulating oxide film is formed, and this insulating oxide film becomes the cause of causing electric continuity failure when detecting an ion current. As this countermeasure, DC ion detecting voltage charged to an ion detecting power capacitor 17 is set to 200 V or more. Thus, even when flying sparks do not exist (or before the flying sparks), the electric continuity between the spark plug 14 and the ignition coil 11 can be secured by breaking insulating performance of the insulating oxide film of a terminal part surface of the spark plug 14 by the DC ion detecting voltage of 200 V or more, and ion current detecting accuracy is improved, in its turn, the determining accuracy of the combustion state is improved, and the failure determining accuracy of the ignition system can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の燃焼室内の混合気が燃焼する際に発生するイオン電流を点火プラグを用いて検出して内燃機関の燃焼状態を判定する内燃機関の燃焼状態判定装置に関する発明である。   The present invention relates to a combustion state determination device for an internal combustion engine that detects an ionic current generated when an air-fuel mixture in a combustion chamber of the internal combustion engine burns using a spark plug to determine a combustion state of the internal combustion engine.

近年、内燃機関の燃焼状態を検出するために、例えば特許文献1(特許第3176291号公報)に示すように、点火毎に点火プラグの電極間に流れるイオン電流を検出し、そのイオン電流信号に基づいて失火、プレイグニッション、ノッキング等を検出する技術が開発されている。このイオン電流検出回路は、点火プラグに火花放電させるための点火コイルの二次側に、点火プラグの中心電極に直流(DC)イオン検出電圧を印加するためのイオン検出電源コンデンサを直列に接続し、点火時に点火プラグの電極間に流れる点火電流によってイオン検出電源コンデンサに充電し、点火後にイオン検出電源コンデンサの充電電圧を直流イオン検出電圧として点火プラグの中心電極に印加することで、燃焼室内の混合気が燃焼する際に発生するイオンを点火プラグの電極で集めて検出するようにしている。   In recent years, in order to detect the combustion state of an internal combustion engine, for example, as shown in Patent Document 1 (Japanese Patent No. 3176291), an ionic current flowing between electrodes of a spark plug is detected every ignition, and the ionic current signal is Based on this, a technique for detecting misfire, pre-ignition, knocking, etc. has been developed. In this ion current detection circuit, an ion detection power supply capacitor for applying a direct current (DC) ion detection voltage to the center electrode of the spark plug is connected in series to the secondary side of the ignition coil for causing the spark plug to spark discharge. The ignition detection power supply capacitor is charged by the ignition current flowing between the electrodes of the spark plug during ignition, and the charge voltage of the ion detection power supply capacitor is applied to the center electrode of the ignition plug as a DC ion detection voltage after ignition, Ions generated when the air-fuel mixture burns are collected and detected by the electrode of the spark plug.

このイオン電流検出回路では、図2に示すように、点火系が正常であれば、点火コイルの通電開始直後(点火信号OFF→ON切換直後)に、短い時間幅のパルス状のノイズ電流が誘起され、点火コイルの通電終了後(点火信号ON→OFF切換後)の放電終了時期に、点火コイルの二次側の残留磁気エネルギによってLC共振ノイズが発生し、その後、燃焼により発生したイオン電流の波形が現れる。   In this ion current detection circuit, as shown in FIG. 2, if the ignition system is normal, a pulsed noise current having a short time width is induced immediately after the ignition coil is energized (immediately after the ignition signal is switched from OFF to ON). LC resonance noise is generated by the residual magnetic energy on the secondary side of the ignition coil after the end of energization of the ignition coil (after the ignition signal is switched from ON to OFF), and then the ion current generated by combustion A waveform appears.

この特性に着目し、特許文献2(特許第2843194号公報)に示すように、点火コイルの通電終了直後に発生するLC共振ノイズを検出して、このLC共振ノイズの検出レベルに基づいて点火コイルの故障の有無を判定するようにしたものがある。   Focusing on this characteristic, as shown in Patent Document 2 (Japanese Patent No. 2843194), LC resonance noise generated immediately after the end of energization of the ignition coil is detected, and the ignition coil is based on the detection level of this LC resonance noise. There is one that determines whether or not there is a failure.

ところで、イオン検出電源コンデンサの充電電圧により点火プラグの中心電極に直流(DC)イオン検出電圧を印加する構成のイオン電流検出回路では、イオン電流検出出力が直流イオン検出電圧に比例して大きくなることから、必要なイオン電流検出出力レベルが得られるように直流イオン検出電圧を約50V〜150Vに設定していた。   By the way, in the ion current detection circuit configured to apply a direct current (DC) ion detection voltage to the center electrode of the spark plug by the charge voltage of the ion detection power supply capacitor, the ion current detection output increases in proportion to the DC ion detection voltage. Therefore, the DC ion detection voltage is set to about 50V to 150V so that a necessary ion current detection output level can be obtained.

一般に、特許文献3(特許第3605962号公報)に記載されているように、点火コイルと点火プラグとを接続する点火プラグの端子部(ステム部)は、一般に鉄系材料により形成されているため、その端子部の表面が酸化されて絶縁性酸化被膜が形成され、この絶縁性酸化被膜がイオン電流検出時に導通不良を生じさせる原因になる。   Generally, as described in Patent Document 3 (Japanese Patent No. 3605962), the terminal portion (stem portion) of the ignition plug that connects the ignition coil and the ignition plug is generally formed of an iron-based material. The surface of the terminal portion is oxidized to form an insulating oxide film, and this insulating oxide film causes a conduction failure when detecting an ionic current.

図4(a)、(b)に示すように、点火プラグの端子部1の絶縁性酸化被膜2は、膜厚が均一ではなく、厚いところでは約5〜10μm程度の膜厚で、薄いところでは約1〜2μm程度の膜厚となることが知られている。   As shown in FIGS. 4 (a) and 4 (b), the insulating oxide film 2 of the terminal portion 1 of the spark plug is not uniform in thickness, and is thick at a thickness of about 5 to 10 μm and thin. Is known to have a film thickness of about 1-2 μm.

点火コイルの二次側に誘導された高電圧を点火プラグの電極間に印加して飛び火させる場合は、図4(a)に示すように、絶縁性酸化被膜2の膜厚が約5〜10μm程度の厚いものであっても、飛び火・放電により絶縁性酸化被膜2の絶縁性が破壊されるため、図5に示すように、直流イオン検出電圧が100V程度であっても点火プラグの端子部1と点火コイルの接続スプリング3との導通を確保することができ、燃焼によるイオン電流を検出可能である。   When a high voltage induced on the secondary side of the ignition coil is applied between the electrodes of the spark plug to cause a spark, the thickness of the insulating oxide film 2 is about 5 to 10 μm as shown in FIG. Even if it is thick, the insulation of the insulating oxide film 2 is destroyed by sparks and discharges. Therefore, as shown in FIG. 5, even if the DC ion detection voltage is about 100 V, the terminal portion of the spark plug 1 and the connection spring 3 of the ignition coil can be secured, and an ionic current due to combustion can be detected.

しかし、飛び火無し(又は飛び火前)の場合は、図4(b)に示すように、絶縁性酸化被膜2の膜厚が約1〜2μm程度の薄いものであれば、100V程度の直流イオン検出電圧でも絶縁性酸化被膜2の絶縁性が破壊されて点火プラグの端子部1と点火コイルの接続スプリング3との導通を確保することがてきるが、絶縁性酸化被膜2の膜厚が約5〜10μm程度の厚いものになると、図5に示すように、飛び火無し(又は飛び火前)の場合は、100V程度の直流イオン検出電圧では、絶縁性酸化被膜2の絶縁性が十分に破壊されず、点火プラグの端子部1と点火コイルの接続スプリング3との導通を確保できないことがあり、燃焼によるイオン電流を検出できないことがある。そのため、正常燃焼を失火と誤判定したり、点火系の故障を誤判定することがある。   However, when there is no spark (or before the spark), as shown in FIG. 4B, DC ion detection of about 100 V is possible if the thickness of the insulating oxide film 2 is as thin as about 1 to 2 μm. Even if voltage is applied, the insulating property of the insulating oxide film 2 is destroyed, and it is possible to ensure the conduction between the terminal portion 1 of the spark plug and the connection spring 3 of the ignition coil. When the thickness is about 10 μm, as shown in FIG. 5, in the case of no spark (or before the spark), the insulation property of the insulating oxide film 2 is not sufficiently destroyed with a DC ion detection voltage of about 100 V. The continuity between the terminal part 1 of the spark plug and the connection spring 3 of the ignition coil may not be ensured, and the ionic current due to combustion may not be detected. For this reason, there is a case where normal combustion is misjudged as misfire or an ignition system failure is misjudged.

この対策として、特許文献3(特許第3605962号公報)に示すように、点火プラグの端子部1の表面を耐酸化性の導電被膜(金、銀等の被膜)で被覆して、点火プラグの端子部1と点火コイルの接続スプリング3との導通(以下「点火プラグ−点火コイル間の導通」という)を確保するようにしたものがある。
特許第3176291号公報(図1等) 特許第2843194号公報(第3頁等) 特許第3605962号公報(第4頁等)
As a countermeasure, as shown in Patent Document 3 (Japanese Patent No. 3605962), the surface of the terminal portion 1 of the spark plug is covered with an oxidation-resistant conductive film (a film of gold, silver, etc.) There is one in which conduction between the terminal portion 1 and the connection spring 3 of the ignition coil (hereinafter referred to as “conduction between the ignition plug and the ignition coil”) is ensured.
Japanese Patent No. 3176291 (FIG. 1 etc.) Japanese Patent No. 2843194 (page 3, etc.) Japanese Patent No. 3605962 (page 4 etc.)

しかし、上記特許文献3のように、点火プラグの端子部1の表面を耐酸化性の導電被膜(金、銀等の被膜)で被覆して点火プラグ−点火コイル間の導通を確保する構成では、点火プラグの製造コストが増加して、点火プラグの低コスト化の要求を満たすことができない。   However, as in Patent Document 3, the surface of the terminal portion 1 of the spark plug is covered with an oxidation-resistant conductive film (a film of gold, silver, etc.) to ensure conduction between the spark plug and the ignition coil. As a result, the manufacturing cost of the spark plug increases, and the demand for reducing the cost of the spark plug cannot be satisfied.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、点火プラグの端子部の表面を耐酸化性の導電被膜で被覆しなくても、イオン電流検出時に点火プラグ−点火コイル間の導通を確保することができ、点火プラグの低コスト化の要求を満たしながら、燃焼状態の判定精度向上、点火系の故障判定精度向上を実現することができるイオン電流検出装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, the object of the present invention is to detect a spark plug at the time of detecting an ion current without covering the surface of the terminal portion of the spark plug with an oxidation-resistant conductive film. Providing an ion current detection device that can ensure conduction between ignition coils and improve combustion state determination accuracy and ignition system failure determination accuracy while satisfying the demand for lower spark plug costs There is to do.

上記目的を達成するために、請求項1に係る発明は、点火プラグに火花放電させるための点火コイルの二次側に、前記点火プラグの中心電極に直流イオン検出電圧を印加するためのイオン検出電源コンデンサを直列に接続すると共に、前記イオン検出電源コンデンサの充電電圧を直流イオン検出電圧として前記点火プラグの中心電極に印加してイオン電流を検出するイオン電流検出手段と、前記イオン電流検出手段から出力されるイオン電流信号に基づいて内燃機関の燃焼状態を判定する燃焼状態判定手段とを備えた内燃機関の燃焼状態判定装置において、前記点火コイルの二次電圧変化に起因した前記イオン電流信号の変化の有無で点火系の故障の有無を判定する点火系故障判定手段を備え、前記イオン検出電源コンデンサに充電する直流イオン検出電圧が200V以上となるように構成したものである。   In order to achieve the above object, the invention according to claim 1 is directed to ion detection for applying a DC ion detection voltage to the center electrode of the spark plug on the secondary side of the ignition coil for causing the spark plug to spark discharge. A power supply capacitor is connected in series, and a charging voltage of the ion detection power supply capacitor is applied as a DC ion detection voltage to the center electrode of the spark plug to detect an ion current, and from the ion current detection means In a combustion state determination device for an internal combustion engine comprising combustion state determination means for determining a combustion state of the internal combustion engine based on an output ion current signal, the ion current signal caused by a secondary voltage change of the ignition coil Direct current for charging the ion detection power supply capacitor with ignition system failure determination means for determining whether or not there is a failure in the ignition system based on whether or not there is a change On detection voltage is obtained by configured to be above 200V.

本発明者らは、点火プラグ−点火コイル間の導通性と直流イオン検出電圧との関係が飛び火の有無(前後)でどの様に変化するかを考察する試験を行ったので、その試験結果を図5に示す。この試験に用いた点火プラグは、鉄系の端子部の表面を耐酸化性の導電被膜で被覆していない一般的な点火プラグであるため、点火プラグの端子部の表面に絶縁性酸化被膜が形成されている。この試験結果から、飛び火無し(又は飛び火前)の場合でも、直流イオン検出電圧が200V以上(より好ましくは250V以上)であれば、その200V以上の直流イオン検出電圧によって端子部表面の絶縁性酸化被膜の絶縁性を破壊して点火プラグ−点火コイル間の導通性を確保できることが判明した。   The present inventors conducted a test to examine how the relationship between the continuity between the spark plug and the ignition coil and the DC ion detection voltage changes depending on the presence or absence of a spark (before and after). As shown in FIG. Since the spark plug used in this test is a general spark plug in which the surface of the iron-based terminal portion is not covered with an oxidation-resistant conductive film, an insulating oxide film is formed on the surface of the spark plug terminal portion. Is formed. From this test result, even when there is no spark (or before spark), if the DC ion detection voltage is 200 V or higher (more preferably 250 V or higher), the insulation oxidation of the surface of the terminal portion is performed by the DC ion detection voltage of 200 V or higher. It has been found that the electrical insulation between the spark plug and the ignition coil can be secured by destroying the insulation of the coating.

この試験結果から、本発明のように、イオン検出電源コンデンサに充電する直流イオン検出電圧を200V以上(より好ましくは250V以上)とすれば、鉄系材料により端子部を形成した点火プラグをその端子部の表面に耐酸化性の導電被膜を形成することなくそのまま使用しても、200V以上(より好ましくは250V以上)の直流イオン検出電圧によって端子部表面の絶縁性酸化被膜の絶縁性を破壊して点火プラグ−点火コイル間の導通を確保することができる。これにより、点火プラグの低コスト化の要求を満たしながら、イオン電流検出精度向上、ひいては、燃焼状態の判定精度向上、点火系の故障判定精度向上を実現することができる。   From this test result, as in the present invention, when the DC ion detection voltage charged to the ion detection power supply capacitor is set to 200 V or more (more preferably 250 V or more), a spark plug having a terminal portion made of an iron-based material is connected to the terminal. Even if it is used as it is without forming an oxidation-resistant conductive film on the surface of the part, the insulation property of the insulating oxide film on the surface of the terminal part is destroyed by a DC ion detection voltage of 200 V or more (more preferably 250 V or more). Thus, conduction between the spark plug and the ignition coil can be ensured. As a result, while satisfying the demand for reducing the cost of the spark plug, it is possible to improve ion current detection accuracy, and thus improve combustion state determination accuracy and ignition system failure determination accuracy.

点火コイルの二次電圧変化は、点火コイルへの通電開始直後と通電終了後の放電終了時期にそれぞれ発生し、いずれのタイミングでも、二次電圧変化に起因したイオン電流信号の変化の有無で点火系の故障の有無を判定することができる。   Changes in the secondary voltage of the ignition coil occur immediately after the start of energization of the ignition coil and at the end of discharge after the end of energization. At any timing, the ignition voltage changes depending on whether there is a change in the ion current signal due to the change in the secondary voltage. The presence or absence of a system failure can be determined.

この場合、点火コイルの通電期間中のイオン電流信号をくすぶり判定しきい値やプレイグニッション判定しきい値と比較して、点火プラグのくすぶり汚損やプレイグニッションを検出するシステムにおいては、請求項2のように、点火コイルの通電期間中の二次電圧変化に起因したイオン電流信号の変化の有無で点火系の故障の有無を判定するようにすると良い。このようにすれば、くすぶり汚損やプレイグニッションを検出する判定しきい値と同じ判定しきい値を用いて、点火コイルの通電期間中に点火系の故障の有無を判定することができる利点がある。この際、点火コイルの通電開始直後に点火系の故障の有無を判定した後、くすぶり汚損の判定を行い、その後、プレイグニッションの判定を行うようにすれば良い。   In this case, in the system for detecting smoldering contamination and pre-ignition of the spark plug by comparing the ionic current signal during the energization period of the ignition coil with the smolder determination threshold value and the pre-ignition determination threshold value, Thus, it is preferable to determine the presence or absence of a failure in the ignition system based on the presence or absence of a change in the ion current signal due to the change in the secondary voltage during the energization period of the ignition coil. In this way, there is an advantage that it is possible to determine the presence or absence of a failure of the ignition system during the energization period of the ignition coil, using the same determination threshold as the determination threshold for detecting smoldering contamination and pre-ignition. . At this time, it is only necessary to determine whether there is a failure in the ignition system immediately after the start of energization of the ignition coil, determine smoldering contamination, and then determine pre-ignition.

以下、本発明を実施するための最良の形態を具体化した一実施例を図面を用いて説明する。
まず、図1に基づいてイオン電流検出回路(イオン電流検出手段)の構成を説明する。点火コイル11の一次巻線12の一端は、バッテリ電圧が供給される電源供給端子(+B)に接続され、該一次巻線12の他端は、点火制御用のスイッチング素子(図示せず)に接続されている。点火コイル11の二次巻線13の一端は点火プラグ14に接続され、該二次巻線13の他端は、2つのツェナーダイオード15,16を介してアースに接続されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment embodying the best mode for carrying out the invention will be described with reference to the drawings.
First, the configuration of an ion current detection circuit (ion current detection means) will be described with reference to FIG. One end of the primary winding 12 of the ignition coil 11 is connected to a power supply terminal (+ B) to which battery voltage is supplied, and the other end of the primary winding 12 is connected to a switching element (not shown) for ignition control. It is connected. One end of the secondary winding 13 of the ignition coil 11 is connected to the ignition plug 14, and the other end of the secondary winding 13 is connected to the ground via two Zener diodes 15 and 16.

2つのツェナーダイオード15,16は互いに逆向きに直列接続され、一方のツェナーダイオード15にイオン検出電源コンデンサ17が並列に接続され、他方のツェナーダイオード16にイオン電流検出抵抗18が並列に接続されている。点火時に点火プラグ14の電極19,20間に流れる点火電流によってイオン検出電源コンデンサ17を充電すると共に、その充電電圧(直流イオン検出電圧)をツェナーダイオード15のツェナー電圧で200V以上(より好ましくは250V以上)に規制し、点火後に、コンデンサ17の充電電圧によって点火プラグ14の電極19,20間に直流(DC)イオン検出電圧を印加することで、燃焼室内の混合気が燃焼する際に発生するイオンを点火プラグ19の電極19,20で集めて、イオン検出電源コンデンサ17に対してイオン電流を点火電流とは逆方向に流す。   The two zener diodes 15 and 16 are connected in series in opposite directions, one ionizer power supply capacitor 17 is connected in parallel to one zener diode 15, and the ion current detection resistor 18 is connected in parallel to the other zener diode 16. Yes. The ion detection power supply capacitor 17 is charged by an ignition current flowing between the electrodes 19 and 20 of the spark plug 14 at the time of ignition, and the charging voltage (DC ion detection voltage) is 200 V or more (more preferably 250 V) as the Zener voltage of the Zener diode 15. This occurs when the air-fuel mixture in the combustion chamber burns by applying a direct current (DC) ion detection voltage between the electrodes 19 and 20 of the spark plug 14 by the charging voltage of the capacitor 17 after ignition. Ions are collected by the electrodes 19 and 20 of the spark plug 19, and an ion current is passed through the ion detection power supply capacitor 17 in a direction opposite to the ignition current.

尚、イオン電流検出抵抗18と並列に接続されたツェナーダイオード16は、イオン電流検出抵抗18に生じる電圧を所定電圧(ツェナーダイオード16のツェナー電圧)以下に規制する役割を果たす。   The Zener diode 16 connected in parallel with the ion current detection resistor 18 plays a role of regulating the voltage generated in the ion current detection resistor 18 to a predetermined voltage (the Zener voltage of the Zener diode 16) or less.

このイオン電流検出回路では、イオン電流は、アース側からイオン電流検出抵抗18を通ってイオン検出電源コンデンサ17に流れ込むと共に、イオン電流検出抵抗18とイオン検出電源コンデンサ17との間の電位(イオン電流検出抵抗18に生じる電圧)が電圧検出回路22によって検出され、この電圧検出回路22からイオン電流信号がエンジン制御回路23に出力される。イオン電流検出抵抗18に生じる電圧は、イオン電流検出抵抗18を流れるイオン電流に応じて変化するため、この電位を電圧検出回路22によって検出することで、イオン電流を検出するようにしている。   In this ion current detection circuit, the ion current flows from the ground side through the ion current detection resistor 18 to the ion detection power supply capacitor 17 and at the same time, the potential (ion current) between the ion current detection resistor 18 and the ion detection power supply capacitor 17. The voltage generated in the detection resistor 18 is detected by the voltage detection circuit 22, and an ion current signal is output from the voltage detection circuit 22 to the engine control circuit 23. Since the voltage generated in the ionic current detection resistor 18 changes according to the ionic current flowing through the ionic current detection resistor 18, the ionic current is detected by detecting this potential by the voltage detection circuit 22.

エンジン運転中は、エンジン制御回路23から出力される点火信号の立ち上がり(ONタイミング)でスイッチング素子(図示せず)がオンして、バッテリから点火コイル11の一次巻線12に一次電流が流れ、その後、点火信号の立ち下がり(OFFタイミング)でスイッチング素子がオフして、一次巻線12の一次電流が遮断され、それによって、二次巻線13に高電圧が電磁誘導されて、この高電圧が点火プラグ14の電極19,20間に印加されることで、火花放電が発生する。   During engine operation, a switching element (not shown) is turned on at the rise (ON timing) of the ignition signal output from the engine control circuit 23, and a primary current flows from the battery to the primary winding 12 of the ignition coil 11, Thereafter, the switching element is turned off at the fall of the ignition signal (OFF timing), the primary current of the primary winding 12 is cut off, and thereby a high voltage is electromagnetically induced in the secondary winding 13, and this high voltage Is applied between the electrodes 19 and 20 of the spark plug 14 to generate a spark discharge.

この際、点火電流(火花放電電流)は点火プラグ14の接地電極20から中心電極19に流れ、二次巻線13を経てイオン検出電源コンデンサ17に充電され、該イオン検出電源コンデンサ17の充電完了後は、該点火電流がツェナーダイオード15,16を経てアース側に流れる。   At this time, the ignition current (spark discharge current) flows from the ground electrode 20 of the spark plug 14 to the center electrode 19 and is charged to the ion detection power supply capacitor 17 through the secondary winding 13, and the charge of the ion detection power supply capacitor 17 is completed. Thereafter, the ignition current flows to the ground side through the Zener diodes 15 and 16.

火花放電終了後は、イオン検出電源コンデンサ17の充電電圧によって点火プラグ14の電極19,20間にイオン検出電圧が印加され、混合気が燃焼する際に発生したイオンがイオン電流として点火プラグ14の電極19,20間に流れる。このイオン電流は、中心電極19から接地電極20へ流れ、更に、アース側からイオン電流検出抵抗18を通ってイオン検出電源コンデンサ17に流れる。   After the spark discharge is finished, an ion detection voltage is applied between the electrodes 19 and 20 of the spark plug 14 by the charging voltage of the ion detection power supply capacitor 17, and ions generated when the air-fuel mixture burns are converted into the ion current of the spark plug 14. It flows between the electrodes 19 and 20. This ion current flows from the center electrode 19 to the ground electrode 20, and further flows from the ground side through the ion current detection resistor 18 to the ion detection power supply capacitor 17.

本実施例では、点火コイル11の二次巻線13と点火プラグ14とを接続する点火プラグ14の端子部1(図4参照)を鉄系材料により形成している。このため、端子部1の表面が酸化されて絶縁性酸化被膜2が形成されるため、直流イオン検出電圧(イオン検出電源コンデンサ17の充電電圧)が低いと、この絶縁性酸化被膜2が点火プラグ14の端子部1と点火コイル11の接続スプリング3との導通(以下「点火プラグ14−点火コイル11間の導通」という)を阻害する要因となる。   In this embodiment, the terminal portion 1 (see FIG. 4) of the spark plug 14 that connects the secondary winding 13 of the ignition coil 11 and the spark plug 14 is formed of an iron-based material. For this reason, since the surface of the terminal portion 1 is oxidized to form the insulating oxide film 2, when the DC ion detection voltage (charge voltage of the ion detection power supply capacitor 17) is low, this insulating oxide film 2 is spark plug. 14, and the connection spring 3 of the ignition coil 11 (hereinafter, referred to as “conduction between the spark plug 14 and the ignition coil 11”) are obstructed.

本発明者らは、点火プラグ14−点火コイル11間の導通性と直流イオン検出電圧との関係が飛び火の有無(前後)でどの様に変化するかを考察する試験を行ったので、その試験結果を図5に示す。この試験に用いた点火プラグ14は、鉄系の端子部1の表面を耐酸化性の導電被膜で被覆していない一般的な点火プラグであるため、点火プラグ14の端子部1の表面に絶縁性酸化被膜2が形成されている。この試験結果から、飛び火無し(又は飛び火前)の場合でも、直流イオン検出電圧が200V以上(より好ましくは250V以上)であれば、その200V以上の直流イオン検出電圧によって端子部1の表面の絶縁性酸化被膜2の絶縁性を破壊して点火プラグ14−点火コイル11間の導通性を確保できることが判明した。   The present inventors conducted a test to examine how the relationship between the continuity between the spark plug 14 and the ignition coil 11 and the DC ion detection voltage changes depending on the presence or absence of the spark (before and after). The results are shown in FIG. Since the spark plug 14 used in this test is a general spark plug in which the surface of the iron-based terminal portion 1 is not covered with an oxidation-resistant conductive film, the spark plug 14 is insulated from the surface of the terminal portion 1 of the spark plug 14. Oxide film 2 is formed. From this test result, even when there is no spark (or before the spark), if the DC ion detection voltage is 200 V or more (more preferably 250 V or more), the insulation of the surface of the terminal portion 1 by the DC ion detection voltage of 200 V or more. It has been found that the electrical conductivity between the spark plug 14 and the ignition coil 11 can be secured by destroying the insulating property of the conductive oxide film 2.

この試験結果から、本実施例では、イオン検出電源コンデンサ17に充電する直流イオン検出電圧が200V以上(より好ましくは250V以上)となるように、ツェナーダイオード15のツェナー電圧が200V以上(より好ましくは250V以上)に設定されている。   From this test result, in this example, the Zener voltage of the Zener diode 15 is 200 V or more (more preferably) so that the DC ion detection voltage charged in the ion detection power supply capacitor 17 is 200 V or more (more preferably 250 V or more). 250V or higher).

次に、イオン電流の検出波形(電圧検出回路22の出力波形)が、正常燃焼時、失火時(導通不良時)、点火系故障時どの様に変化するかを図2を用いて説明する。   Next, how the detection waveform of the ionic current (the output waveform of the voltage detection circuit 22) changes at the time of normal combustion, at the time of misfire (at the time of poor conduction), and at the time of failure of the ignition system will be described with reference to FIG.

点火系が正常であれば、点火コイル11の一次巻線12への通電開始直後(点火信号OFF→ON切換直後)に、短い時間幅のパルス状のノイズ電流が誘起され、一次巻線12への通電終了後(点火信号ON→OFF切換後)の放電終了時期に、点火コイル11の二次側の残留磁気エネルギによってLC共振ノイズが発生し、その後、燃焼により発生したイオン電流の波形が現れる。   If the ignition system is normal, a pulsed noise current having a short time width is induced immediately after the start of energization of the primary winding 12 of the ignition coil 11 (immediately after the ignition signal is switched from OFF to ON). LC discharge noise is generated by the residual magnetic energy on the secondary side of the ignition coil 11 after the end of energization (after switching the ignition signal from ON to OFF), and then the waveform of the ion current generated by combustion appears. .

一方、失火時には、一次巻線12への通電開始直後のパルス状のノイズ電流と点火後のLC共振ノイズが現れるが、燃焼によるイオン電流の波形は現れない。   On the other hand, at the time of misfire, a pulse-like noise current immediately after the start of energization of the primary winding 12 and LC resonance noise after ignition appear, but a waveform of ion current due to combustion does not appear.

また、直流イオン検出電圧が150V以下の場合は、点火プラグ14−点火コイル11間の導通が不安定であるため、一次巻線12への通電開始直後のパルス状のノイズ電流と点火後のLC共振ノイズが現れても、燃焼によるイオン電流の波形が現れないことがある。このため、正常燃焼を失火と誤判定する可能性がある。   In addition, when the DC ion detection voltage is 150 V or less, the continuity between the spark plug 14 and the ignition coil 11 is unstable, so that the pulsed noise current immediately after the start of energization of the primary winding 12 and the LC after ignition Even if resonance noise appears, the waveform of ion current due to combustion may not appear. For this reason, there is a possibility that normal combustion is erroneously determined as misfire.

また、点火コイル11の一次巻線12の断線等の点火系の故障により通電不能になった場合は、電圧検出回路22のイオン電流出力が全く出ない状態となり、燃焼によるイオン電流のみならず、点火信号ON切換直後のノイズや点火後のLC共振ノイズも検出されない状態となる。   Further, when the energization is disabled due to a failure of the ignition system such as disconnection of the primary winding 12 of the ignition coil 11, the ionic current output of the voltage detection circuit 22 is not output at all, not only the ionic current due to combustion, Noise immediately after ignition signal ON switching and LC resonance noise after ignition are not detected.

この点に着目して、本実施例では、点火コイル11の通電区間内(点火信号ON期間中)のイオン電流出力(ノイズ電流)の有無を、故障判定しきい値Vth1 を越えるイオン電流出力の時間幅(T1 ) によって判定し、このイオン電流出力時間幅(T1 ) が所定時間C1 以下であるか否かで、点火コイル11が通電不能な状態(点火系の故障)であるか否かを判定する。この場合、点火コイル11の通電不能時には、点火後のLC共振ノイズも発生しなくなるため、点火後のLC共振ノイズによるイオン電流出力の有無を判定することで、点火コイル11が通電不能な状態(点火系の故障)であるか否かを判定するようにしても良い。   Focusing on this point, in this embodiment, the presence or absence of an ionic current output (noise current) within the current-carrying section of the ignition coil 11 (during the ignition signal ON period) is determined based on the ionic current output exceeding the failure determination threshold value Vth1. Judgment is made based on the time width (T1), and it is determined whether or not the ignition coil 11 cannot be energized (ignition system failure) depending on whether or not the ion current output time width (T1) is equal to or shorter than the predetermined time C1. judge. In this case, since the LC resonance noise after ignition does not occur when the ignition coil 11 cannot be energized, it is determined that the ignition coil 11 cannot be energized by determining the presence or absence of ionic current output due to the LC resonance noise after ignition. It may be determined whether or not the ignition system is faulty).

更に、本実施例では、点火後、例えば1ms後(放電終了後)からATDC120℃Aまでの区間を失火検出区間に設定し、この失火検出区間のイオン電流信号を失火判定レベルVth2 と比較し、イオン電流信号が失火判定レベルVth2 を越える時間T2 が所定時間C2 以上であるか否かで、正常燃焼と失火とを判別する。   Further, in this embodiment, after ignition, for example, a section from 1 ms (after the end of discharge) to ATDC 120 ° C. is set as a misfire detection section, and the ion current signal of this misfire detection section is compared with the misfire determination level Vth2, Normal combustion and misfire are discriminated based on whether or not the time T2 when the ion current signal exceeds the misfire determination level Vth2 is equal to or longer than the predetermined time C2.

以上説明した本実施例の点火系故障判定及び失火判定は、エンジン制御回路23によって図3のダイアグ判定ルーチンに従って次のようにして実行される。   The ignition system failure determination and misfire determination of the present embodiment described above are executed by the engine control circuit 23 according to the diagnosis determination routine of FIG.

図3のダイアグ判定ルーチンは、エンジン運転中に所定周期(例えば20μs周期)で実行され、まずステップ101で、イオン電流信号I(電圧検出回路22の出力信号)を読み込み、次のステップ102で、点火コイル11の通電区間内であるか否かを判定し、点火コイル11の通電区間内であれば、ステップ103に進み、点火コイル11の通電区間内においてイオン電流信号Iがコイル通電判定しきい値Vth1 を越える時間T1 を検出する。   The diagnosis determination routine of FIG. 3 is executed at a predetermined cycle (for example, 20 μs cycle) during engine operation. First, in step 101, the ion current signal I (output signal of the voltage detection circuit 22) is read, and in the next step 102, It is determined whether or not the ignition coil 11 is within the energization section. If the ignition coil 11 is within the energization section, the process proceeds to step 103 where the ion current signal I is within the energization section of the ignition coil 11. A time T1 exceeding the value Vth1 is detected.

この後、ステップ104に進み、イオン電流信号Iがコイル通電判定しきい値Vth1 を越える時間T1 を判定しきい値C1 と比較し、この時間T1 が判定しきい値C1 を越えていれば、点火系が正常(点火コイル11への通電が正常)と判断して、ステップ105に進み、点火系故障フラグIGを“1”にセットする。   Thereafter, the routine proceeds to step 104, where the time T1 when the ionic current signal I exceeds the coil energization determination threshold value Vth1 is compared with the determination threshold value C1, and if this time T1 exceeds the determination threshold value C1, the ignition is performed. It is determined that the system is normal (energization to the ignition coil 11 is normal), the process proceeds to step 105, and the ignition system failure flag IG is set to “1”.

これに対して、上述したステップ104で、イオン電流信号Iがコイル通電判定しきい値Vth1 を越える時間T1 が判定しきい値C1 以下と判定されれば、点火系の故障(点火コイル11への通電が不能)と判断して、ステップ106に進み、点火系故障フラグIGを“0”にセットする。   On the other hand, if it is determined in step 104 described above that the time T1 when the ion current signal I exceeds the coil energization determination threshold value Vth1 is equal to or less than the determination threshold value C1, the failure of the ignition system (to the ignition coil 11) is determined. In step 106, the ignition system failure flag IG is set to "0".

この後、ステップ107に進み、点火系故障のダイアグ処理を実行して、上記点火系故障の判定結果をエンジン制御回路23のバックアップRAM等の書き換え可能な不揮発性メモリに保存し、更に、点火系の故障が検出されている場合は、運転席のインストルメントパネルの警告表示部に点火系の故障を表示したり警告ランプを点灯又は点滅させたりして運転者に警告すると共に、燃料カット等のフェイルセーフ処理を実行して、未燃焼ガスが排気系に排出されることを防止する。尚、上記ステップ102で「No」と判定された場合(つまり点火コイル11の通電区間内ではない場合)は、上記ステップ102〜106の処理を飛び越してステップ107の処理を実行する。以上説明したステップ101〜107の処理が特許請求の範囲でいう点火系故障判定手段としての役割を果たす。   Thereafter, the process proceeds to step 107, where a diagnosis process for the ignition system failure is executed, and the determination result of the ignition system failure is stored in a rewritable nonvolatile memory such as a backup RAM of the engine control circuit 23. If an engine failure is detected, a warning is displayed on the warning display on the instrument panel of the driver's seat, or a warning lamp is lit or flashed to warn the driver, such as fuel cut. A fail-safe process is performed to prevent the unburned gas from being discharged into the exhaust system. If it is determined as “No” in step 102 (that is, not within the energization section of the ignition coil 11), the processing of step 107 is executed by skipping the processing of steps 102 to 106. The processes of steps 101 to 107 described above serve as ignition system failure determination means in the claims.

この後、ステップ108に進み、失火検出区間内であるか否かを判定し、失火検出区間内であれば、ステップ109に進み、失火検出区間内においてイオン電流信号Iが失火判定レベルVth2 を越える時間T2 を検出する。   Thereafter, the process proceeds to step 108 to determine whether or not it is within the misfire detection section. If it is within the misfire detection section, the process proceeds to step 109 and the ion current signal I exceeds the misfire determination level Vth2 within the misfire detection section. Time T2 is detected.

この後、ステップ110に進み、イオン電流信号Iが失火判定レベルVth2 を越える時間T2 を判定しきい値C2 と比較し、この時間T2 が判定しきい値C2 を越えていれば、正常燃焼と判断して、ステップ111に進み、失火判定フラグMFを“1”にセットする。これに対し、上記ステップ110で、イオン電流信号Iが失火判定レベルVth2 を越える時間T2 が判定しきい値C2 以下と判定されれば、失火と判断して、ステップ112に進み、失火判定フラグMFを“0”にセットする。   Thereafter, the routine proceeds to step 110 where the time T2 when the ion current signal I exceeds the misfire determination level Vth2 is compared with the determination threshold C2, and if this time T2 exceeds the determination threshold C2, it is determined that the combustion is normal. In step 111, the misfire determination flag MF is set to “1”. On the other hand, if it is determined in step 110 that the time T2 when the ionic current signal I exceeds the misfire determination level Vth2 is equal to or less than the determination threshold value C2, it is determined that misfire has occurred, and the process proceeds to step 112, where the misfire determination flag MF Is set to “0”.

この後、ステップ113に進み、失火ダイアグ処理を実行して、上記失火判定結果をエンジン制御回路23の書き換え可能な不揮発性メモリに保存して、本ルーチンを終了する。尚、上記ステップ108で「No」と判定された場合(つまり失火検出区間内ではない場合)は、上記ステップ109〜112の処理を飛び越してステップ113の処理を実行して本ルーチンを終了する。上記ステップ108〜113の処理が特許請求の範囲でいう燃焼状態判定手段としての役割を果たす。   Thereafter, the process proceeds to step 113, the misfire diagnosis process is executed, the misfire determination result is stored in the rewritable nonvolatile memory of the engine control circuit 23, and this routine is finished. If “No” is determined in step 108 (that is, not in the misfire detection section), the process of steps 109 to 112 is skipped, the process of step 113 is executed, and this routine is terminated. The processing of the above steps 108 to 113 serves as a combustion state determination means in the claims.

尚、点火コイル11の通電区間内でイオン電流信号Iをくすぶり判定しきい値やプレイグニッション判定しきい値と比較して、点火プラグ14のくすぶり汚損やプレイグニッションを検出するようにしても良い。このようにすれば、点火コイル11の通電区間内で、点火系故障判定とくすぶり判定とプレイグニッション判定を行う際に、同一の判定しきい値Vth1 を用いてこれら3種類の判定を行うことができる利点がある。この際、点火コイル14の通電開始直後に点火系の故障の有無を判定した後、くすぶり汚損の判定を行い、その後、プレイグニッションの判定を行うようにすれば良い。   Note that the smoldering contamination and pre-ignition of the ignition plug 14 may be detected by comparing the ion current signal I with the smolder determination threshold value and the pre-ignition determination threshold value within the energization interval of the ignition coil 11. In this way, when performing the ignition system failure determination, the smoldering determination, and the preignition determination within the energization section of the ignition coil 11, these three types of determinations can be performed using the same determination threshold value Vth1. There are advantages you can do. At this time, it is only necessary to determine whether there is a failure in the ignition system immediately after the start of energization of the ignition coil 14, determine smoldering contamination, and then determine pre-ignition.

以上説明した本実施例によれば、図5に示す直流イオン検出電圧に対する点火プラグ14−点火コイル11間の導通特性を考慮して、イオン検出電源コンデンサ17に充電する直流イオン検出電圧が200V以上(より好ましくは250V以上)となるように構成したので、鉄系材料により端子部1を形成した点火プラグ14をその端子部1の表面に耐酸化性の導電被膜を形成することなくそのまま使用しても、200V以上(より好ましくは250V以上)の直流イオン検出電圧によって端子部1表面の絶縁性酸化被膜2の絶縁性を破壊して点火プラグ14−点火コイル11間の導通を確保することができ、点火プラグ14の低コスト化の要求を満たしながら、イオン電流検出精度向上、ひいては、燃焼状態の判定精度向上、点火系の故障判定精度向上を実現することができる。   According to the present embodiment described above, the DC ion detection voltage for charging the ion detection power supply capacitor 17 is 200 V or more in consideration of the conduction characteristics between the spark plug 14 and the ignition coil 11 with respect to the DC ion detection voltage shown in FIG. (More preferably 250 V or more), the spark plug 14 in which the terminal portion 1 is formed of an iron-based material is used as it is without forming an oxidation-resistant conductive film on the surface of the terminal portion 1. However, the insulation between the insulating oxide film 2 on the surface of the terminal portion 1 can be destroyed by a DC ion detection voltage of 200 V or higher (more preferably 250 V or higher) to ensure conduction between the spark plug 14 and the ignition coil 11. It is possible to improve the ion current detection accuracy while meeting the demand for cost reduction of the spark plug 14, and hence the combustion state determination accuracy, failure of the ignition system It is possible to realize a constant accuracy.

また、本発明は、端子部1の表面に塗料でプラグタイプ識別用のマーキングが施されている点火プラグを使用しても良く、この場合でも、200V以上(より好ましくは250V以上)の直流イオン検出電圧によってマーキング塗膜の絶縁性を破壊して点火プラグ−点火コイル間の導通を確保することができる。この場合、マーキング塗膜の膜厚を10μm以下とすることが望ましい。   Further, the present invention may use a spark plug in which the surface of the terminal portion 1 is marked with a plug type identification mark with a paint, and in this case as well, a DC ion of 200 V or more (more preferably 250 V or more) is used. The insulating property of the marking coating film can be destroyed by the detection voltage, and conduction between the spark plug and the ignition coil can be ensured. In this case, it is desirable that the thickness of the marking coating film be 10 μm or less.

その他、本発明は、イオン電流検出回路の構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications within a range not departing from the gist, such as appropriately changing the configuration of the ion current detection circuit.

本発明の一実施例におけるイオン電流検出回路の構成を示す電気回路図である。It is an electric circuit diagram which shows the structure of the ion current detection circuit in one Example of this invention. イオン電流の検出波形(電圧検出回路22の出力波形)が、正常燃焼時、失火時(導通不良時)、点火系故障時どの様に変化するかを説明するタイムチャートである。It is a time chart explaining how the detection waveform of the ionic current (the output waveform of the voltage detection circuit 22) changes at the time of normal combustion, at the time of misfire (at the time of poor conduction), and at the time of failure of the ignition system. ダイアグ判定ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a diagnosis determination routine. (a)は飛び火後の導通回復モードを説明する図であり、(b)は飛び火無しの導通回復モードを説明する図である。(A) is a figure explaining the conduction | electrical_connection recovery mode after a spark, (b) is a figure explaining the conduction | electrical_connection recovery mode without a spark. 点火プラグ−点火コイル間の導通性と直流イオン検出電圧との関係が飛び火の有無(前後)でどの様に変化するかを考察する試験の結果を説明する図である。It is a figure explaining the result of the test which considers how the relationship between the electrical continuity between a spark plug and an ignition coil and DC ion detection voltage changes with the presence or absence (before and after) of a spark.

符号の説明Explanation of symbols

1…端子部、2…絶縁性酸化被膜、3…接続スプリング、11…点火コイル、12…一次巻線、13…二次巻線、14…点火プラグ、15,16…ツェナーダイオード、17…イオン検出電源コンデンサ、18…イオン電流検出抵抗、19…中心電極、20…接地電極、22…電圧検出回路、23…エンジン制御回路(点火系故障判定手段,燃焼状態判定手段)   DESCRIPTION OF SYMBOLS 1 ... Terminal part, 2 ... Insulating oxide film, 3 ... Connection spring, 11 ... Ignition coil, 12 ... Primary winding, 13 ... Secondary winding, 14 ... Spark plug, 15, 16 ... Zener diode, 17 ... Ion Detection power supply capacitor, 18 ... ion current detection resistor, 19 ... center electrode, 20 ... ground electrode, 22 ... voltage detection circuit, 23 ... engine control circuit (ignition system failure determination means, combustion state determination means)

Claims (2)

点火プラグに火花放電させるための点火コイルの二次側に直列に接続され、前記点火プラグの中心電極に直流イオン検出電圧を印加するためのイオン検出電源コンデンサと、
前記イオン検出電源コンデンサの充電電圧を直流イオン検出電圧として前記点火プラグの中心電極に印加してイオン電流を検出するイオン電流検出手段と、
前記イオン電流検出手段から出力されるイオン電流信号に基づいて内燃機関の燃焼状態を判定する燃焼状態判定手段とを備えた内燃機関の燃焼状態判定装置において、
前記点火コイルの二次電圧変化に起因した前記イオン電流信号の変化の有無で点火系の故障の有無を判定する点火系故障判定手段を備え、
前記イオン検出電源コンデンサに充電する直流イオン検出電圧が200V以上となるように構成されていることを特徴とする内燃機関の燃焼状態判定装置。
An ion detection power supply capacitor connected in series to the secondary side of an ignition coil for causing a spark discharge to the spark plug, and applying a DC ion detection voltage to the center electrode of the spark plug;
An ion current detection means for detecting an ion current by applying a charging voltage of the ion detection power supply capacitor as a DC ion detection voltage to a center electrode of the spark plug;
A combustion state determination device for an internal combustion engine, comprising: a combustion state determination unit that determines a combustion state of the internal combustion engine based on an ion current signal output from the ion current detection unit;
Ignition system failure determination means for determining the presence or absence of an ignition system failure based on the presence or absence of a change in the ion current signal due to a change in the secondary voltage of the ignition coil,
A combustion state determination device for an internal combustion engine, characterized in that a DC ion detection voltage for charging the ion detection power supply capacitor is 200 V or more.
前記点火系故障判定手段は、前記点火コイルの通電期間中の二次電圧変化に起因した前記イオン電流信号の変化の有無で点火系の故障の有無を判定することを特徴とする請求項1に記載の内燃機関の燃焼状態判定装置。   The ignition system failure determination means determines whether or not there is a failure in the ignition system based on whether or not the ion current signal has changed due to a change in secondary voltage during the energization period of the ignition coil. The combustion state determination apparatus of the internal combustion engine as described.
JP2006146069A 2006-05-26 2006-05-26 Combustion state determining device of internal combustion engine Pending JP2007315297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146069A JP2007315297A (en) 2006-05-26 2006-05-26 Combustion state determining device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146069A JP2007315297A (en) 2006-05-26 2006-05-26 Combustion state determining device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007315297A true JP2007315297A (en) 2007-12-06

Family

ID=38849389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146069A Pending JP2007315297A (en) 2006-05-26 2006-05-26 Combustion state determining device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007315297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116303A1 (en) * 2008-03-17 2009-09-24 ダイハツ工業株式会社 Method for judging combustion state of internal combustion
CN103840372A (en) * 2012-11-19 2014-06-04 日本特殊陶业株式会社 Method of manufacturing spark plug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303940A (en) * 1999-04-21 2000-10-31 Ngk Spark Plug Co Ltd Combustion state detecting device for internal combustion engine
JP2001107832A (en) * 1999-10-07 2001-04-17 Mitsubishi Electric Corp Combustion condition detecting device for internal combustion engine
JP2002089426A (en) * 2000-09-18 2002-03-27 Ngk Spark Plug Co Ltd Misfiring detector for internal combustion engine
JP2003286933A (en) * 2002-03-26 2003-10-10 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303940A (en) * 1999-04-21 2000-10-31 Ngk Spark Plug Co Ltd Combustion state detecting device for internal combustion engine
JP2001107832A (en) * 1999-10-07 2001-04-17 Mitsubishi Electric Corp Combustion condition detecting device for internal combustion engine
JP2002089426A (en) * 2000-09-18 2002-03-27 Ngk Spark Plug Co Ltd Misfiring detector for internal combustion engine
JP2003286933A (en) * 2002-03-26 2003-10-10 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116303A1 (en) * 2008-03-17 2009-09-24 ダイハツ工業株式会社 Method for judging combustion state of internal combustion
EP2253833A4 (en) * 2008-03-17 2017-07-19 Daihatsu Motor Co., Ltd. Method for judging combustion state of internal combustion
CN103840372A (en) * 2012-11-19 2014-06-04 日本特殊陶业株式会社 Method of manufacturing spark plug

Similar Documents

Publication Publication Date Title
JP2004156602A (en) Circuit for measuring ionization current in combustion chamber of internal combustion engine
JP2002250267A (en) Ignition device for internal combustion engine
JPH05149230A (en) Knocking detecting device for internal combustion engine
JP2008144657A (en) Ignition device for internal combustion engine ignition control system
JPH09195913A (en) Combustion state detecting device of internal combustion engine
JP4483708B2 (en) Ignition system abnormality detection device for internal combustion engine
JP2009221850A (en) Igniter with ion current detection function
JP2007315297A (en) Combustion state determining device of internal combustion engine
JP2006077762A (en) Ion current detecting device for internal combustion engine
JP4535278B2 (en) Ion current detector
JP2007315296A (en) Ion current detecting device
JPWO2019130462A1 (en) Ignition system for internal combustion engine
JP4352223B2 (en) Ignition system for capacitor discharge internal combustion engine
JP6070470B2 (en) Ignition device
JP6437039B2 (en) Ignition device for internal combustion engine
JP2008261304A (en) Ion current detection device for internal combustion engine
JP3084673B1 (en) Ignition circuit having misfire detection function for internal combustion engine
JPH0584459B2 (en)
JP2007309098A (en) Ignition coil for internal combustion engine
JP2002054547A (en) Misfire detector of internal combustion engine
JPWO2016063430A1 (en) Misfire detection method for internal combustion engine
JP4169266B2 (en) Ignition device for internal combustion engine
JP6427427B2 (en) Igniter
JP2914772B2 (en) Sensor for secondary circuit of ignition circuit of internal combustion engine
US20220275783A1 (en) Electronic device and control system of an ignition coil in an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A02