JP2007314390A - Manufacturing method of silicon single crystal - Google Patents

Manufacturing method of silicon single crystal Download PDF

Info

Publication number
JP2007314390A
JP2007314390A JP2006147621A JP2006147621A JP2007314390A JP 2007314390 A JP2007314390 A JP 2007314390A JP 2006147621 A JP2006147621 A JP 2006147621A JP 2006147621 A JP2006147621 A JP 2006147621A JP 2007314390 A JP2007314390 A JP 2007314390A
Authority
JP
Japan
Prior art keywords
chamber
single crystal
silicon single
pressure
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147621A
Other languages
Japanese (ja)
Other versions
JP4650345B2 (en
Inventor
Hiroshi Morita
洋 森田
Shuichi Inami
修一 稲見
Takeshi Nakamura
中村  剛
Yasuhiro Kogure
康弘 小暮
Ken Hamada
建 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006147621A priority Critical patent/JP4650345B2/en
Publication of JP2007314390A publication Critical patent/JP2007314390A/en
Application granted granted Critical
Publication of JP4650345B2 publication Critical patent/JP4650345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a silicon single crystal giving void restraining effect by hydrogen addition along the whole length of an ingot and yet free in grown-in defect at a high yield. <P>SOLUTION: In this manufacturing method of a silicon single crystal, a silicon melt 13 is stored in a quartz crucible 12 placed in the chamber 11 of a silicon single crystal pulling unit 10, and a silicon single crystal ingot 14 is pulled from the silicon melt 13 stored in the quartz crucible 12 while inside the chamber 11 is kept in an inactive gas atmosphere for hydrogen addition. To restrain the introduction of oxygen dissolved in the silicon melt 13 into the ingot 14, the pressure in the chamber 11 is varied according to the crystal length of the pulled ingot 14, when the pressure in the chamber 11 is raised, the hydrogen concentration in the atmospheric gas in the chamber 11 is lowered, and when the pressure in the chamber 11 is lowered, the hydrogen concentration in the atmospheric gas is raised. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコン融液からシリコン単結晶を引上げるシリコン単結晶の製造方法に関するものである。   The present invention relates to a method for producing a silicon single crystal that pulls the silicon single crystal from a silicon melt.

シリコン単結晶の製造方法には、CZ法と呼ばれる単結晶引上げ方法が広く工業的に採用されている。CZ法は、石英るつぼ内に充填した多結晶シリコンを加熱ヒータで加熱溶融した後、この融液の表面に種結晶を浸し、シリコン融液に浸した種結晶と石英るつぼを回転させつつ種結晶を上方に引上げることによって種結晶と同一の結晶方位をもつ単結晶を育成する方法である。
CZ法により育成されたシリコン単結晶には、半導体集積回路を製造する工程において歩留まりを低下させる原因となる数種類のGrown−in欠陥が生じることが知られている。Grown−in欠陥の代表的なものとしては、酸化膜耐圧特性等を劣化させる原因となるパーティクル(Crystal Originated Particle、以下、COPという。)や或いはリーク特性等を劣化させる原因となる転位クラスタ(侵入型転位(Interstitial-type Large Dislocation)、転位ピットとも呼ばれる)がある。このため、半導体集積回路を製造するために用いられるシリコンウェーハからCOP及び転位クラスタを減少させることが必要となっている。
As a method for producing a silicon single crystal, a single crystal pulling method called a CZ method is widely employed industrially. In the CZ method, after polycrystalline silicon filled in a quartz crucible is heated and melted with a heater, a seed crystal is immersed in the surface of the melt, and the seed crystal immersed in the silicon melt and the quartz crucible are rotated while the seed crystal is rotated. Is a method for growing a single crystal having the same crystal orientation as that of the seed crystal.
It is known that a silicon single crystal grown by the CZ method has several types of grown-in defects that cause a decrease in yield in the process of manufacturing a semiconductor integrated circuit. As a typical Grown-in defect, particles (Crystal Originated Particles, hereinafter referred to as COP) that cause deterioration of the breakdown voltage characteristics of the oxide film, or dislocation clusters (intrusion) that cause deterioration of the leakage characteristics, etc. Type dislocation (also called dislocation pit). For this reason, it is necessary to reduce COPs and dislocation clusters from a silicon wafer used for manufacturing a semiconductor integrated circuit.

これらGrown−in欠陥を低減するためのシリコン単結晶育成方法の改善方法として、シリコン単結晶インゴットの引上げ速度及び凝固直後の結晶内温度分布を制御する方法が知られている。図2に示すように、一般に、インゴットを速い速度で引上げる(V/G大)と、インゴット内部に空孔優勢領域[V]が形成される。この空孔優勢領域[V]には、空孔型点欠陥の凝集体が支配的に存在し、熱処理を施すとCOPが発生する。また、インゴットを遅い速度で引上げる(V/G小)と、インゴット内部に格子間シリコン領域[I]が形成される。この格子間シリコン領域[I]には格子間シリコン型点欠陥の凝集体が支配的に存在し、熱処理を施すと転位クラスタが発生する。このため、インゴットを最適な引上げ速度で引上げることにより、上記点欠陥の凝集体が存在せず、Grown−in欠陥フリー領域[P]からなるインゴットを製造できるようになっている。しかし、この方法ではGrown−in欠陥フリーのシリコン単結晶インゴットを育成可能なV/Gの範囲(以下、マージンという。)が非常に狭く、マージンを広げることが必要となっている。
このため、COPを減少させ、かつマージンを広げる方法として、インゴット引上げ中にチャンバ内のアルゴンガス等の不活性ガス雰囲気中に水素ガスを体積比3%〜0.1ppm連続的に添加することで、後工程の熱処理によりCOPとなる空孔型点欠陥の生成及びそのサイズを低減して、Grown−in欠陥フリー領域[P]を拡大させるシリコン単結晶の製造方法が提案されている(特許文献1参照)。一般的に、水素は微量で結晶成長中の過冷却度を大きくする効果がある。このため、凝固の相変態に伴うエンタルピーギャップが小さくなり、非平衡な空孔型点欠陥の導入量が減少する。また、凝固温度が下がると固液界面の温度も下がり、平衡な空孔型点欠陥の導入量も減少する。この結果、結晶の冷却中に生じる過飽和な空孔型点欠陥の導入量を減少できる。更に、水素はシリコン結晶中での拡散係数が高く、空孔型点欠陥と結合し空孔型点欠陥同士の凝集を阻害する効果も期待できる。これらの作用により、空孔型点欠陥を低減でき、後工程の熱処理によりCOPとなってもその生成及びそのサイズが酸化膜耐圧特性等を劣化させる原因とならないシリコン単結晶を製造することができる。この結果、マージンを広げることができる。
特開2000−281491号(請求項1、請求項2、請求項3、[0012]〜[0014]、[0021]〜[0023]、[0025]、[0026])
As a method for improving the silicon single crystal growth method for reducing these grown-in defects, a method for controlling the pulling rate of the silicon single crystal ingot and the temperature distribution in the crystal immediately after solidification is known. As shown in FIG. 2, generally, when the ingot is pulled up at a high speed (large V / G), a hole dominant region [V] is formed inside the ingot. In this vacancy dominant region [V], agglomerates of vacancy-type point defects exist predominantly, and COP is generated when heat treatment is performed. When the ingot is pulled up at a low speed (V / G small), an interstitial silicon region [I] is formed inside the ingot. Aggregates of interstitial silicon type point defects exist predominantly in the interstitial silicon region [I], and dislocation clusters are generated when heat treatment is performed. Therefore, by pulling up the ingot at an optimum pulling rate, the above-mentioned point defect aggregates do not exist, and an ingot composed of the grown-in defect free region [P] can be manufactured. However, in this method, the V / G range (hereinafter referred to as margin) in which a grown-in defect-free silicon single crystal ingot can be grown is very narrow, and it is necessary to widen the margin.
For this reason, as a method of reducing COP and expanding the margin, hydrogen gas is continuously added to an inert gas atmosphere such as argon gas in the chamber during pulling up of the ingot by 3% to 0.1 ppm by volume. In addition, a method for producing a silicon single crystal that expands the grown-in defect free region [P] by reducing the generation and size of vacancy-type point defects that become COPs by a post-process heat treatment has been proposed (Patent Literature). 1). Generally, hydrogen is effective in increasing the degree of supercooling during crystal growth in a small amount. For this reason, the enthalpy gap accompanying the phase transformation of solidification is reduced, and the amount of non-equilibrium vacancy-type point defects introduced is reduced. In addition, when the solidification temperature is lowered, the temperature at the solid-liquid interface is also lowered, and the amount of introduced vacancy-type point defects is also reduced. As a result, it is possible to reduce the amount of supersaturated vacant point defects introduced during the cooling of the crystal. Furthermore, hydrogen has a high diffusion coefficient in the silicon crystal, and can be expected to combine with vacancy-type point defects to inhibit aggregation of vacancy-type point defects. By these actions, it is possible to reduce the vacancy-type point defects, and it is possible to manufacture a silicon single crystal whose generation and size do not cause deterioration of the oxide film breakdown voltage characteristics and the like even if it becomes COP by a subsequent heat treatment. . As a result, the margin can be increased.
JP-A-2000-281491 (Claim 1, Claim 2, Claim 3, [0012] to [0014], [0021] to [0023], [0025], [0026])

しかし、特許文献1に記載されたマージンを広げる方法では、引上げの際にチャンバ内雰囲気中に水素を添加しても、チャンバ内圧力を低くするときに引上げた箇所ではマージンが狭くなる傾向があり、Grown−in欠陥フリーのシリコン単結晶の歩留まりが低下するという問題があった。特に、シリコン単結晶インゴットの直径が大きくなるにつれこの傾向が顕著であった。
本発明の目的は、シリコン単結晶インゴットの全長にわたって水素添加による空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶が得られるシリコン単結晶の製造方法を提供することにある。
However, in the method of widening the margin described in Patent Document 1, even if hydrogen is added to the atmosphere in the chamber at the time of pulling, the margin tends to be narrow at the portion pulled when the pressure in the chamber is lowered. There is a problem that the yield of the grown-in defect-free silicon single crystal is lowered. In particular, this tendency was conspicuous as the diameter of the silicon single crystal ingot increased.
An object of the present invention is to provide a method for producing a silicon single crystal which can obtain a vacancy suppression effect by hydrogen addition over the entire length of the silicon single crystal ingot and can obtain a grown-in defect-free silicon single crystal with a high yield. It is in.

請求項1に係る発明は、図1に示すように、シリコン単結晶引上げ装置10のチャンバ11内に設置された石英るつぼ12にシリコン融液13を貯留し、チャンバ11内を水素添加の不活性ガス雰囲気に維持しながら、石英るつぼ12に貯留したシリコン融液13からシリコン単結晶インゴット14を引上げるシリコン単結晶の製造方法の改良である。
その特徴ある構成は、シリコン融液13に溶け込んだ酸素のシリコン単結晶インゴット14中への導入を抑制するために、引上げるシリコン単結晶インゴット14の結晶長に応じてチャンバ11内圧力を変化させ、チャンバ内圧力を上昇させるときには、チャンバ11内雰囲気ガス中の水素濃度を低くし、チャンバ内圧力を低下させるときには、チャンバ内雰囲気ガス中の水素濃度を高くするところにある。
この請求項1に記載されたシリコン単結晶の製造方法では、チャンバ内圧力の変化に合わせてチャンバ内雰囲気ガス中の水素濃度を変化させることで、チャンバ内圧力の変化によりシリコン融液13に対する水素の溶解度が変化しても、シリコン融液13中に溶け込む水素分子の量、つまりシリコン単結晶インゴット14中の水素濃度が極端に高く又は極端に低くならず、安定したマージンを確保できる。この結果、シリコン単結晶インゴット14の全長にわたって水素添加による空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶を製造できる。
In the invention according to claim 1, as shown in FIG. 1, the silicon melt 13 is stored in a quartz crucible 12 installed in the chamber 11 of the silicon single crystal pulling apparatus 10, and the chamber 11 is inactivated by hydrogenation. This is an improvement of the silicon single crystal manufacturing method in which the silicon single crystal ingot 14 is pulled up from the silicon melt 13 stored in the quartz crucible 12 while maintaining the gas atmosphere.
The characteristic structure is that the pressure in the chamber 11 is changed according to the crystal length of the silicon single crystal ingot 14 to be pulled up in order to suppress the introduction of oxygen dissolved in the silicon melt 13 into the silicon single crystal ingot 14. When increasing the pressure in the chamber, the hydrogen concentration in the atmospheric gas in the chamber 11 is lowered, and when reducing the pressure in the chamber, the hydrogen concentration in the atmospheric gas in the chamber is increased.
In the method for producing a silicon single crystal according to the first aspect, the hydrogen concentration in the atmospheric gas in the chamber is changed in accordance with the change in the pressure in the chamber, whereby the hydrogen with respect to the silicon melt 13 is changed by the change in the chamber pressure. The amount of hydrogen molecules dissolved in the silicon melt 13, that is, the hydrogen concentration in the silicon single crystal ingot 14 is not extremely high or extremely low, and a stable margin can be secured. As a result, an effect of suppressing vacancies by hydrogenation can be obtained over the entire length of the silicon single crystal ingot 14, and a grown-in defect-free silicon single crystal can be manufactured with a high yield.

請求項2に係る発明は、請求項1に係る発明であって、更にチャンバ内圧力とチャンバ内雰囲気ガス中の水素濃度との関係が次の式(1)を満たすことを特徴とする。
P×p=一定 ……(1)
但し、Pはチャンバ内圧力を、pはチャンバ内雰囲気ガス中の水素濃度を示す。
この請求項2に記載されたシリコン単結晶の製造方法では、チャンバ内圧力とチャンバ内雰囲気ガス中の水素濃度との関係を上記の式(1)を満たすことにより、水素濃度を必要以上に高くすることなく、シリコン単結晶インゴット14中の水素濃度を一定範囲内の値にすることができ、安定したマージンを確保できる。この結果、シリコン単結晶インゴット14の全長にわたって一定範囲内の値の水素添加による所定量の空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶を製造できる。
The invention according to claim 2 is the invention according to claim 1, wherein the relationship between the pressure in the chamber and the hydrogen concentration in the atmospheric gas in the chamber satisfies the following expression (1).
P × p = constant (1)
However, P shows the pressure in a chamber and p shows the hydrogen concentration in atmospheric gas in a chamber.
In the silicon single crystal manufacturing method described in claim 2, the relationship between the pressure in the chamber and the hydrogen concentration in the atmospheric gas in the chamber satisfies the above formula (1), so that the hydrogen concentration is increased more than necessary. Without this, the hydrogen concentration in the silicon single crystal ingot 14 can be set to a value within a certain range, and a stable margin can be secured. As a result, a predetermined amount of vacancy suppression effect can be obtained by adding hydrogen within a certain range over the entire length of the silicon single crystal ingot 14, and a grown-in defect-free silicon single crystal can be manufactured with a high yield.

以上述べたように、本発明によれば、引上げるシリコン単結晶インゴットの結晶長に応じてチャンバ内圧力を変化させ、チャンバ内圧力を上昇させるときには、チャンバ内雰囲気ガス中の水素濃度を低くし、チャンバ内圧力を低下させるときには、チャンバ内雰囲気ガス中の水素濃度を高くする。これにより、シリコン融液に対する水素の溶解度が変化してもシリコン単結晶インゴット中の水素濃度が極端に高く又は極端に低くならないため、安定したマージンを確保できる。この結果、シリコン単結晶インゴットの全長にわたって水素添加による空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶を製造できる。   As described above, according to the present invention, when the pressure in the chamber is changed according to the crystal length of the silicon single crystal ingot to be pulled up and the pressure in the chamber is increased, the hydrogen concentration in the atmospheric gas in the chamber is lowered. When reducing the pressure in the chamber, the hydrogen concentration in the atmospheric gas in the chamber is increased. Thereby, even if the solubility of hydrogen in the silicon melt changes, the hydrogen concentration in the silicon single crystal ingot does not become extremely high or extremely low, so that a stable margin can be secured. As a result, the effect of suppressing vacancies by hydrogenation can be obtained over the entire length of the silicon single crystal ingot, and a grown-in defect-free silicon single crystal can be produced with a high yield.

次に本発明を実施するための最良の形態を説明する。
図1に示すように、本発明のシリコン単結晶の製造方法は、シリコン単結晶引上げ装置10のチャンバ11内に設置された石英るつぼ12にシリコン融液13を貯留し、チャンバ11内を水素添加のアルゴンで、不活性ガス雰囲気に維持しながら、石英るつぼ12に貯留したシリコン融液13からシリコン単結晶インゴット14を引上げる方法である。シリコン融液13に溶け込んだ酸素のシリコン単結晶インゴット14中への導入を抑制するために、シリコン単結晶インゴット14の引上げ時にシリコン単結晶インゴット14の結晶長に応じてチャンバ11内圧力を変化させる。チャンバ内圧力を上昇させるときには、チャンバ11内雰囲気ガス中の水素濃度を低くし、チャンバ内圧力を低下させるときには、チャンバ内雰囲気ガス中の水素濃度を高くする。
シリコン単結晶インゴット14の引上げ中、チャンバ内の雰囲気ガス中に添加された水素分子はシリコン融液13に溶け込み、シリコン結晶が固化するに伴ってシリコン単結晶インゴット14に取り込まれる。
Next, the best mode for carrying out the present invention will be described.
As shown in FIG. 1, the silicon single crystal manufacturing method of the present invention stores a silicon melt 13 in a quartz crucible 12 installed in a chamber 11 of a silicon single crystal pulling apparatus 10 and hydrogenates the chamber 11. The silicon single crystal ingot 14 is pulled up from the silicon melt 13 stored in the quartz crucible 12 while maintaining an inert gas atmosphere with argon. In order to suppress introduction of oxygen dissolved in the silicon melt 13 into the silicon single crystal ingot 14, the pressure in the chamber 11 is changed according to the crystal length of the silicon single crystal ingot 14 when the silicon single crystal ingot 14 is pulled up. . When the pressure in the chamber is increased, the hydrogen concentration in the atmospheric gas in the chamber 11 is decreased, and when the pressure in the chamber is decreased, the hydrogen concentration in the atmospheric gas in the chamber is increased.
During the pulling of the silicon single crystal ingot 14, hydrogen molecules added to the atmospheric gas in the chamber dissolve in the silicon melt 13 and are taken into the silicon single crystal ingot 14 as the silicon crystal solidifies.

チャンバ内雰囲気ガス中の水素濃度が一定である場合、シリコン単結晶インゴット14の引上げ中にチャンバ内圧力を変化させると、シリコン融液13中に溶け込む水素分子の量、即ちシリコン融液13中の水素濃度は、ヘンリーの法則に従い、チャンバ内雰囲気ガス中に含まれる水素分子の量、即ちチャンバ内雰囲気ガス中の水素分圧に比例して変化する。ヘンリーの法則とは、「一定温度で一定量の溶媒に溶解する気体の質量は、気体の圧力に比例する。」というものである。具体的には、シリコン単結晶インゴット14の引上げ中、単純にチャンバ内圧力を上昇させた場合には、チャンバ内圧力に比例してチャンバ内雰囲気ガス全圧とともに水素分圧も上昇するため、シリコン融液13に対する水素の溶解度も上昇する。このため、シリコン融液13中に溶け込む水素分子の量及びこのシリコン融液13より引上げるシリコン単結晶インゴット14中の水素濃度も高くなる。この結果、水素添加による空孔抑制効果を十分に発揮させることができ、図2に示すマージンを広げることができる。しかし、水素濃度が過剰に高くなった場合、水素欠陥と呼ばれる不良が発生する可能性が高くなる。即ち、水素を含む不活性ガス雰囲気中で空孔が優勢となる条件下でCZ結晶を育成するとき、水素濃度が高くなると水素欠陥と呼ばれる大きさ数μm〜数十μmの空孔の凝集体と考えられる巨大空洞ができ(E.Iino、K.Takano、M.Kimura、H.Yamagishi:Material Science and Engineering B36(1996)146−149及びT.H.Wang、T.F.Ciszk、and T.Schuyler:J.Cryst.Growth 109(1991)155−161)、格子間シリコンが優勢となる条件下では、格子間シリコンの凝集体と考えられる転位対である格子間シリコン型の水素欠陥ができることが知られている(Y.Sugit:Jpn.J.Appl.Phys 4(1965)p962)。従って、結晶中の水素濃度が過剰に高くならないように、チャンバ内雰囲気ガス中の水素濃度を制御しなければならない。   When the hydrogen concentration in the atmospheric gas in the chamber is constant, if the pressure in the chamber is changed while the silicon single crystal ingot 14 is pulled up, the amount of hydrogen molecules dissolved in the silicon melt 13, that is, in the silicon melt 13. The hydrogen concentration varies in proportion to the amount of hydrogen molecules contained in the atmospheric gas in the chamber, that is, the partial pressure of hydrogen in the atmospheric gas in the chamber, according to Henry's law. Henry's law is that "the mass of a gas dissolved in a certain amount of solvent at a certain temperature is proportional to the pressure of the gas." Specifically, when the chamber internal pressure is simply increased during the pulling of the silicon single crystal ingot 14, the hydrogen partial pressure increases with the total atmospheric pressure in the chamber in proportion to the chamber internal pressure. The solubility of hydrogen in the melt 13 also increases. For this reason, the amount of hydrogen molecules dissolved in the silicon melt 13 and the hydrogen concentration in the silicon single crystal ingot 14 pulled up from the silicon melt 13 are also increased. As a result, the effect of suppressing vacancies by hydrogen addition can be sufficiently exerted, and the margin shown in FIG. 2 can be widened. However, if the hydrogen concentration becomes excessively high, there is a high possibility that defects called hydrogen defects will occur. That is, when a CZ crystal is grown under conditions in which vacancies predominate in an inert gas atmosphere containing hydrogen, an agglomerate of vacancies having a size of several μm to several tens of μm, called hydrogen defects, when the hydrogen concentration increases. (E. Iino, K. Takano, M. Kimura, H. Yamagishi: Material Science and Engineering B36 (1996) 146-149 and T. H. Wang, TF Cizk, and T Schuyler: J. Cryst. Growth 109 (1991) 155-161), under conditions where interstitial silicon is dominant, interstitial silicon-type hydrogen defects, which are dislocation pairs considered to be aggregates of interstitial silicon, can be formed. (Y. Sugit: Jpn. J. Appl. Phys 4 (1965) p962). Therefore, the hydrogen concentration in the atmospheric gas in the chamber must be controlled so that the hydrogen concentration in the crystal does not become excessively high.

一方、チャンバ内雰囲気ガス中の水素濃度が一定であって、チャンバ内圧力を低下させた場合には、チャンバ内圧力に比例して、チャンバ内雰囲気ガス全圧とともに水素分圧も低下するため、シリコン融液13に対する水素の溶解度も低下する。このため、シリコン融液13中に溶け込む水素分子の量及びこのシリコン融液13より引上げるシリコン単結晶インゴット14中の水素濃度も低くなる。この結果、水素添加による空孔抑制効果を十分に発揮させることができず、図2に示すマージンが狭くなる。   On the other hand, when the hydrogen concentration in the atmospheric gas in the chamber is constant and the pressure in the chamber is reduced, the hydrogen partial pressure is reduced together with the atmospheric pressure in the chamber in proportion to the pressure in the chamber. The solubility of hydrogen in the silicon melt 13 also decreases. For this reason, the amount of hydrogen molecules dissolved in the silicon melt 13 and the hydrogen concentration in the silicon single crystal ingot 14 pulled up from the silicon melt 13 are also reduced. As a result, the effect of suppressing vacancies due to hydrogen addition cannot be sufficiently exhibited, and the margin shown in FIG. 2 becomes narrow.

そこで本発明では、チャンバ内雰囲気ガス中の水素濃度をチャンバ内圧力と反比例するように設定する。即ちチャンバ内圧力を低下させた場合には、チャンバ内雰囲気ガス中の水素濃度を高くする操作を行い、雰囲気ガス全圧に占める水素分圧の割合を増加させることで、シリコン融液13に対する水素の溶解度を上昇させる。このため、シリコン融液13中に溶け込む水素分子の量及びこのシリコン融液13より引上げるシリコン単結晶インゴット14中の水素濃度も高くなり、水素添加による空孔抑制効果を十分に発揮させることができ、図2に示すマージンを広げることができる。また、チャンバ内圧力及び水素濃度を必要以上に高くすることなく、シリコン単結晶インゴット14中の水素濃度を一定範囲内の値にすることができ、安定したマージンを確保できる。一方、チャンバ内圧力を上昇させた場合には、チャンバ内雰囲気ガス中の水素濃度を低くする操作を行い水素欠陥発生を抑制する。
この結果、シリコン単結晶インゴット14の全長にわたって水素添加による空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶を製造できる。
Therefore, in the present invention, the hydrogen concentration in the atmospheric gas in the chamber is set to be inversely proportional to the pressure in the chamber. That is, when the pressure in the chamber is lowered, an operation for increasing the hydrogen concentration in the atmospheric gas in the chamber is performed, and the ratio of the hydrogen partial pressure to the total atmospheric gas pressure is increased, so that the hydrogen relative to the silicon melt 13 is increased. Increase the solubility of. For this reason, the amount of hydrogen molecules dissolved in the silicon melt 13 and the hydrogen concentration in the silicon single crystal ingot 14 pulled up from the silicon melt 13 are also increased, and the effect of suppressing vacancies by hydrogen addition can be sufficiently exhibited. The margin shown in FIG. 2 can be widened. Further, the hydrogen concentration in the silicon single crystal ingot 14 can be set to a value within a certain range without increasing the pressure in the chamber and the hydrogen concentration more than necessary, and a stable margin can be secured. On the other hand, when the pressure in the chamber is increased, an operation for lowering the hydrogen concentration in the atmospheric gas in the chamber is performed to suppress the generation of hydrogen defects.
As a result, an effect of suppressing vacancies by hydrogenation can be obtained over the entire length of the silicon single crystal ingot 14, and a grown-in defect-free silicon single crystal can be manufactured with a high yield.

具体的には、図3及び図4の実線に示すように、チャンバ内圧力とチャンバ内雰囲気ガス中の水素濃度との関係が次の式(1)を満たすようにシリコン単結晶を製造する。   Specifically, as shown by the solid lines in FIGS. 3 and 4, a silicon single crystal is manufactured so that the relationship between the pressure in the chamber and the hydrogen concentration in the atmospheric gas in the chamber satisfies the following formula (1).

P×p=一定 ……(1)
但し、Pはチャンバ内圧力を、pはチャンバ内雰囲気ガス中の水素濃度を示す。
シリコン単結晶インゴット14引上げ中のチャンバ内圧力は所望の結晶酸素濃度によって異なるため、一概には言えないが、一般的には3〜13kPa(20〜100torr)程度の範囲内の値が用いられることが多い。また、チャンバ内雰囲気ガス中の水素濃度のとりうる値は10vol%以下、好ましくは3〜6vol%である。この範囲内において、チャンバ内圧力(P)とチャンバ内雰囲気ガス中の水素濃度(p)の積を一定とする。これによってシリコン融液13に溶け込んだ酸素のシリコン単結晶インゴット14中への導入を十分抑制し、インゴット内部の空孔抑制効果を十分に発揮させるとともに、シリコン単結晶中の水素欠陥を防止する。
P × p = constant (1)
However, P shows the pressure in a chamber and p shows the hydrogen concentration in atmospheric gas in a chamber.
Since the pressure in the chamber during pulling of the silicon single crystal ingot 14 varies depending on the desired crystal oxygen concentration, it cannot be generally stated, but generally a value in the range of about 3 to 13 kPa (20 to 100 torr) is used. There are many. The possible value of the hydrogen concentration in the atmospheric gas in the chamber is 10 vol% or less, preferably 3 to 6 vol%. Within this range, the product of the pressure in the chamber (P) and the hydrogen concentration (p) in the atmospheric gas in the chamber is made constant. As a result, the introduction of oxygen dissolved in the silicon melt 13 into the silicon single crystal ingot 14 is sufficiently suppressed, and the effect of suppressing vacancies inside the ingot is sufficiently exhibited, and hydrogen defects in the silicon single crystal are prevented.

この結果、シリコン単結晶インゴット14の全長にわたって一定範囲内の値の水素添加による所定量の空孔抑制効果が得られるとともに、高い歩留まりでGrown−in欠陥フリーのシリコン単結晶を製造できる。   As a result, a predetermined amount of vacancy suppression effect can be obtained by adding hydrogen within a certain range over the entire length of the silicon single crystal ingot 14, and a grown-in defect-free silicon single crystal can be manufactured with a high yield.

次に、本発明の実施例を比較例とともに詳しく説明する。
<実施例>
この実施例に用いられる図1に示すシリコン単結晶引上げ装置10では、チャンバ11内の中心位置にシリコン融液13を貯留する石英るつぼ12が設けられる。石英るつぼ12の外側には黒鉛からなるサセプタ30が設けられる。石英るつぼ12及びサセプタ30は支軸15により支持される。支軸15は石英るつぼ12を回転させるとともに昇降させるるつぼ駆動手段16に接続される。石英るつぼ12の外周部には、加熱ヒータ17と保温筒18が同心円状に配置され、石英るつぼ12内には加熱ヒータ17によりボロンが添加された多結晶シリコンが融解されたシリコン融液13が収容されている。チャンバ11の上端には、円筒状のプルチャンバ19が接続され、このプルチャンバ19の上端にはシード引上げ手段(図示せず)が設けられ、このシード引上げ手段に接続されたワイヤーケーブル20の先端には種結晶21が装着される。ワイヤケーブル20を下降して種結晶21をシリコン融液13に接触させた後、ワイヤケーブル20を上昇しながら回転させることにより、この種結晶21の下端からシリコン単結晶インゴット14が育成される。更にチャンバ11内には育成されるシリコン単結晶インゴット14を囲むように熱遮蔽部材22が配置される。熱遮蔽部材22は下方に向かうに従って細くなるコーン部22aと、コーン部に連設され外方に張り出すフランジ部22bと、フランジ部22bを保温筒18上に載置するためのリング板22cとから構成されている。
また、プルチャンバ19及びチャンバ11内には、供給ガス流量調整弁23を有するガス供給パイプ24と排出ガス流量調整弁25を有するガス排出パイプ26が設けられている。水素添加の不活性ガスはパイプ24を通ってプルチャンバ19及びチャンバ11内に入り、シリコン単結晶インゴット14やシリコン融液13の表面を流通した後、パイプ26から排出される。更に、チャンバ11の外側の左右には磁界印加装置(図示せず)が配置され、シリコン融液13の対流を制御するようになっている。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example>
In the silicon single crystal pulling apparatus 10 shown in FIG. 1 used in this embodiment, a quartz crucible 12 for storing the silicon melt 13 is provided at the center position in the chamber 11. A susceptor 30 made of graphite is provided outside the quartz crucible 12. The quartz crucible 12 and the susceptor 30 are supported by the support shaft 15. The support shaft 15 is connected to a crucible driving means 16 that rotates and lifts the quartz crucible 12. A heater 17 and a heat retaining cylinder 18 are concentrically arranged on the outer periphery of the quartz crucible 12, and a silicon melt 13 in which polycrystalline silicon to which boron is added by the heater 17 is melted in the quartz crucible 12. Contained. A cylindrical pull chamber 19 is connected to the upper end of the chamber 11. A seed pulling means (not shown) is provided at the upper end of the pull chamber 19, and a wire cable 20 connected to the seed pulling means is connected to the tip of the wire cable 20. A seed crystal 21 is mounted. After the wire cable 20 is lowered and the seed crystal 21 is brought into contact with the silicon melt 13, the wire single crystal ingot 14 is grown from the lower end of the seed crystal 21 by rotating the wire cable 20 while ascending. Further, a heat shielding member 22 is disposed in the chamber 11 so as to surround the silicon single crystal ingot 14 to be grown. The heat shield member 22 has a cone portion 22a that becomes thinner as it goes downward, a flange portion 22b that is connected to the cone portion and projects outward, and a ring plate 22c for placing the flange portion 22b on the heat retaining cylinder 18. It is composed of
Further, a gas supply pipe 24 having a supply gas flow rate adjustment valve 23 and a gas discharge pipe 26 having an exhaust gas flow rate adjustment valve 25 are provided in the pull chamber 19 and the chamber 11. The hydrogen-added inert gas enters the pull chamber 19 and the chamber 11 through the pipe 24, flows through the surfaces of the silicon single crystal ingot 14 and the silicon melt 13, and is then discharged from the pipe 26. Further, magnetic field application devices (not shown) are arranged on the left and right sides of the chamber 11 so as to control the convection of the silicon melt 13.

この実施例では上記シリコン単結晶引上げ装置10を用いて、シリコン融液13から直径300mmのシリコン単結晶インゴット14をチャンバ11内で引上げて育成した。
引上げ速度に関しては図2に示すGrown−in欠陥がフリーとなる領域[P]にインゴット14全体が入るように複数のパターンを設定した。引上げ速度のすべてのパターンにおいて、単結晶の引上げ時のチャンバ11内圧力とチャンバ11内雰囲気ガス中の水素濃度との間にP×p=一定という関係を維持した。チャンバ内圧力(torr)とチャンバ内雰囲気ガス中の水素濃度(vol%)の積が約250となるように、チャンバ内圧力を約4〜9kPa(30〜70torr)の範囲内で変化させ、不活性ガス中の水素濃度を3.5〜8.5vol%の範囲内で変化させるように添加する不活性ガスと水素の混合ガスを流した。不活性ガスとしては、アルゴンを用いた。


具体的なチャンバ内圧力の履歴を図3に、チャンバ内雰囲気ガス中の水素濃度の履歴を図4の実線aにそれぞれ示す。インゴット14の結晶長が200mmになるまでの間は、チャンバ内圧力を約6kPa(50torr)と一定にし、水素濃度を5%と一定にした。その後、結晶長が長くなるにつれ、チャンバ内圧力を徐々に低下させ、結晶長が400mmになる時点で、チャンバ内圧力が約4kPa(30torr)になるようにした。この間、水素濃度をこのチャンバ内圧力の変化に合わせて徐々に高くし、結晶長が400mmになる時点で、8.3vol%になるようにした。その後、結晶長が1100mmになるまでチャンバ内圧力を約4kPa(30torr)に、また水素濃度を8.3vol%に、それぞれ一定に保持した。結晶長が1100mmになった後、チャンバ内圧力を再び徐々に上昇させるとともに水素濃度をこのチャンバ内圧力の変化に合わせて徐々に低くした。その後のチャンバ内圧力と水素濃度は図3及び図4の実線aに示すようにそれぞれ変化させた。
In this example, the silicon single crystal ingot 14 having a diameter of 300 mm was pulled from the silicon melt 13 and grown in the chamber 11 using the silicon single crystal pulling apparatus 10.
With respect to the pulling speed, a plurality of patterns were set so that the entire ingot 14 entered the region [P] where the Grown-in defect shown in FIG. 2 was free. In all the pulling speed patterns, a relationship of P × p = constant was maintained between the pressure in the chamber 11 when the single crystal was pulled and the hydrogen concentration in the atmospheric gas in the chamber 11. The chamber pressure is changed within a range of about 4 to 9 kPa (30 to 70 torr) so that the product of the chamber pressure (torr) and the hydrogen concentration (vol%) in the atmospheric gas in the chamber is about 250. A mixed gas of an inert gas and hydrogen to be added was flowed so as to change the hydrogen concentration in the active gas within a range of 3.5 to 8.5 vol%. Argon was used as the inert gas.


A specific history of the pressure in the chamber is shown in FIG. 3, and a history of the hydrogen concentration in the atmospheric gas in the chamber is shown by a solid line a in FIG. Until the crystal length of the ingot 14 reached 200 mm, the pressure inside the chamber was kept constant at about 6 kPa (50 torr), and the hydrogen concentration was kept constant at 5%. Thereafter, as the crystal length increased, the pressure in the chamber was gradually decreased, and when the crystal length reached 400 mm, the pressure in the chamber was about 4 kPa (30 torr). During this period, the hydrogen concentration was gradually increased in accordance with the change in the pressure in the chamber, and was adjusted to 8.3 vol% when the crystal length reached 400 mm. Thereafter, the pressure inside the chamber was kept constant at about 4 kPa (30 torr) and the hydrogen concentration was kept constant at 8.3 vol% until the crystal length reached 1100 mm. After the crystal length became 1100 mm, the pressure in the chamber was gradually increased again and the hydrogen concentration was gradually lowered in accordance with the change in the pressure in the chamber. Thereafter, the pressure in the chamber and the hydrogen concentration were changed as indicated by the solid line a in FIGS.

<比較例>
図4の一点鎖線bに示すようにチャンバ内雰囲気ガス中に占める水素濃度の割合の履歴を5vol%に固定し、かつ図2に示す領域[P]にインゴット全体が入るように引上げ速度に関して複数のパターンを設定したこと。これ以外は、実施例と同様に、シリコン単結晶インゴットを複数本育成した。
<Comparative example>
As shown by the one-dot chain line b in FIG. 4, the history of the ratio of the hydrogen concentration in the atmospheric gas in the chamber is fixed to 5 vol%, and a plurality of pulling speeds are set so that the entire ingot enters the region [P] shown in FIG. Set the pattern. Other than this, a plurality of silicon single crystal ingots were grown in the same manner as in the examples.

<比較試験及び評価>
実施例及び比較例で得られたそれぞれのGrown−in欠陥フリーの複数本のシリコン単結晶インゴットをすべて結晶軸方向に縦割りし、その断面を観察した。
<Comparison test and evaluation>
All of the plurality of single-crystal silicon ingots free from grown-in defects obtained in the examples and comparative examples were vertically divided in the crystal axis direction, and the cross sections thereof were observed.

実施例の引上げにおいて、複数のパターンの引上げ速度のうち、最も引上げ速度を低くしてインゴット全体がGrown−in欠陥フリーとなったときの結晶長に応じた引上げ速度のパターンを図5の実線a1に示す。また最も引上げ速度を高くしてインゴット全体がGrown−in欠陥フリーとなったときの結晶長に応じた引上げ速度のパターンを図5の実線a2に示す。 In the pulling of the embodiment, the pulling speed pattern corresponding to the crystal length when the pulling speed is the lowest among the pulling speeds of the plurality of patterns and the entire ingot becomes Grown-in defect free is shown by the solid line a in FIG. Shown in 1 . Further illustrating the pattern of a pulling rate corresponding to the crystal length when the entire ingot by increasing the highest pulling rate becomes Grown-in defect-free solid a 2 in FIG.

同様に、比較例において、複数のパターンの引上げ速度のうち、最も引上げ速度を低くしてインゴット全体がGrown−in欠陥フリーとなったときの結晶長に応じた引上げ速度のパターンを図5の破線b1に示す。また最も引上げ速度を高くしてインゴット全体がGrown−in欠陥フリーとなったときの結晶長に応じた引上げ速度のパターンを図5の破線b2に示す。 Similarly, in the comparative example, the pulling speed pattern corresponding to the crystal length when the pulling speed is the lowest among the pulling speeds of the plurality of patterns and the entire ingot becomes Grown-in defect free is shown by the broken line in FIG. It is shown in b 1. Further illustrating the pattern of a pulling rate corresponding to the crystal length when the entire ingot by increasing the highest pulling rate becomes Grown-in defect-free dashed b 2 in FIG.

図5から明らかなように、比較例のマージンBに対して実施例のマージンAは広いことが判明した。   As is apparent from FIG. 5, the margin A of the example is wider than the margin B of the comparative example.

本発明の実施形態のシリコン単結晶引上げ装置を示す縦断面図である。It is a longitudinal section showing a silicon single crystal pulling device of an embodiment of the present invention. 引上げ速度変量試験の結晶縦断面図で観察される典型的な欠陥分布を模式的に示した図である。It is the figure which showed typically the typical defect distribution observed with the crystal longitudinal cross-sectional view of a pulling rate variable test. チャンバ内圧力と結晶長との関係を示すグラフである。It is a graph which shows the relationship between the pressure in a chamber, and crystal length. チャンバ内雰囲気ガス中における水素濃度と結晶長との関係を示すグラフである。It is a graph which shows the relationship between the hydrogen concentration in the atmospheric gas in a chamber, and crystal length. Grown−in欠陥フリー結晶の育成に係る引上げ速度と結晶長との関係を示すグラフである。It is a graph which shows the relationship between the pulling speed which concerns on the growth of a Grown-in defect free crystal | crystallization, and crystal length.

符号の説明Explanation of symbols

10 シリコン単結晶引上げ装置
11 チャンバ
12 石英るつぼ
13 シリコン融液
14 シリコン単結晶インゴット
DESCRIPTION OF SYMBOLS 10 Silicon single crystal pulling apparatus 11 Chamber 12 Quartz crucible 13 Silicon melt 14 Silicon single crystal ingot

Claims (2)

シリコン単結晶引上げ装置(10)のチャンバ(11)内に設置された石英るつぼ(12)にシリコン融液(13)を貯留し、前記チャンバ(11)内を水素添加の不活性ガス雰囲気に維持しながら、前記石英るつぼ(12)に貯留したシリコン融液(13)からシリコン単結晶インゴット(14)を引上げるシリコン単結晶の製造方法において、
前記シリコン融液(13)に溶け込んだ酸素のシリコン単結晶インゴット(14)中への導入を抑制するために前記引上げるシリコン単結晶インゴット(14)の結晶長に応じてチャンバ(11)内圧力を変化させ、前記チャンバ内圧力を上昇させるときには、チャンバ(11)内雰囲気ガス中の水素濃度を低くし、前記チャンバ内圧力を低下させるときには、チャンバ内雰囲気ガス中の水素濃度を高くする
ことを特徴とするシリコン単結晶の製造方法。
The silicon melt (13) is stored in the quartz crucible (12) installed in the chamber (11) of the silicon single crystal pulling device (10), and the inside of the chamber (11) is maintained in an inert gas atmosphere with hydrogen addition. While, in the method for producing a silicon single crystal that pulls up the silicon single crystal ingot (14) from the silicon melt (13) stored in the quartz crucible (12),
The internal pressure of the chamber (11) according to the crystal length of the silicon single crystal ingot (14) pulled up to suppress the introduction of oxygen dissolved in the silicon melt (13) into the silicon single crystal ingot (14). When the pressure in the chamber is increased and the atmospheric pressure in the chamber (11) is increased, the hydrogen concentration in the atmospheric gas in the chamber (11) is decreased, and when the pressure in the chamber is decreased, the hydrogen concentration in the atmospheric gas in the chamber is increased. A method for producing a silicon single crystal.
チャンバ内圧力とチャンバ内雰囲気ガス中の水素濃度との関係が次の式(1)を満たす請求項1記載のシリコン単結晶の製造方法。
P×p=一定 ……(1)
但し、Pはチャンバ内圧力を、pはチャンバ内雰囲気ガス中の水素濃度を示す。
The method for producing a silicon single crystal according to claim 1, wherein the relationship between the pressure in the chamber and the hydrogen concentration in the atmospheric gas in the chamber satisfies the following formula (1).
P × p = constant (1)
However, P shows the pressure in a chamber and p shows the hydrogen concentration in atmospheric gas in a chamber.
JP2006147621A 2006-05-29 2006-05-29 Method for producing silicon single crystal Active JP4650345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147621A JP4650345B2 (en) 2006-05-29 2006-05-29 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147621A JP4650345B2 (en) 2006-05-29 2006-05-29 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2007314390A true JP2007314390A (en) 2007-12-06
JP4650345B2 JP4650345B2 (en) 2011-03-16

Family

ID=38848603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147621A Active JP4650345B2 (en) 2006-05-29 2006-05-29 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4650345B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763326B2 (en) 2006-12-20 2010-07-27 United Technologies Corporation Photocurable maskant composition and method of use
KR101127499B1 (en) * 2009-03-02 2012-03-23 주식회사 엘지실트론 Method for controlling oxygen concentration of silicon crystal ingot
CN114959880A (en) * 2022-05-27 2022-08-30 西安奕斯伟材料科技有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing single crystal silicon rods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239089A (en) * 1987-11-30 1989-09-25 Toshiba Corp Process for production of compound semiconductor single crystal and apparatus therefor
JPH11189495A (en) * 1997-12-26 1999-07-13 Sumitomo Metal Ind Ltd Silicon single crystal and its production
JP2000281491A (en) * 1999-03-26 2000-10-10 Nippon Steel Corp Silicon semiconductor substrate and its production
JP2001335396A (en) * 2000-03-24 2001-12-04 Wacker Siltronic G Fuer Halbleitermaterialien Ag Silicon semiconductor disk doped with hydrogen and its production method
JP2004182525A (en) * 2002-12-03 2004-07-02 Sumitomo Mitsubishi Silicon Corp Method of supplying gaseous hydrogen in growth of silicon single crystal
JP2004217460A (en) * 2003-01-14 2004-08-05 Sumitomo Mitsubishi Silicon Corp Method of producing hydrogen-doped silicon single crystal
WO2006022296A1 (en) * 2004-08-25 2006-03-02 Sumco Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239089A (en) * 1987-11-30 1989-09-25 Toshiba Corp Process for production of compound semiconductor single crystal and apparatus therefor
JPH11189495A (en) * 1997-12-26 1999-07-13 Sumitomo Metal Ind Ltd Silicon single crystal and its production
JP2000281491A (en) * 1999-03-26 2000-10-10 Nippon Steel Corp Silicon semiconductor substrate and its production
JP2001335396A (en) * 2000-03-24 2001-12-04 Wacker Siltronic G Fuer Halbleitermaterialien Ag Silicon semiconductor disk doped with hydrogen and its production method
JP2004182525A (en) * 2002-12-03 2004-07-02 Sumitomo Mitsubishi Silicon Corp Method of supplying gaseous hydrogen in growth of silicon single crystal
JP2004217460A (en) * 2003-01-14 2004-08-05 Sumitomo Mitsubishi Silicon Corp Method of producing hydrogen-doped silicon single crystal
WO2006022296A1 (en) * 2004-08-25 2006-03-02 Sumco Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763326B2 (en) 2006-12-20 2010-07-27 United Technologies Corporation Photocurable maskant composition and method of use
KR101127499B1 (en) * 2009-03-02 2012-03-23 주식회사 엘지실트론 Method for controlling oxygen concentration of silicon crystal ingot
CN114959880A (en) * 2022-05-27 2022-08-30 西安奕斯伟材料科技有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing single crystal silicon rods
CN114959880B (en) * 2022-05-27 2024-02-13 西安奕斯伟材料科技股份有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing monocrystalline silicon rod

Also Published As

Publication number Publication date
JP4650345B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4797477B2 (en) Method for producing silicon single crystal
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JPWO2007013189A1 (en) Silicon wafer and manufacturing method thereof
JP2007084417A (en) Apparatus for growing high quality silicon single crystal ingot and growing method using the apparatus
KR100955887B1 (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
TWI308605B (en) Method for growing silicon single crystal
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
JP4806974B2 (en) Silicon single crystal growth method
JP2011162436A (en) Method for pulling single crystal composed of silicon from melt contained in crucible, and single crystal produced thereby
JP2001278692A (en) Manufacturing method of silicon wafer and single crystal silicon
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JP2005162599A (en) Single crystal silicon ingot and wafer having homogeneous vacancy defect, and method and apparatus for making same
JP4650345B2 (en) Method for producing silicon single crystal
JP2010126401A (en) Silicon single crystal, method for growing the same, silicon wafer, and method for manufacturing the same
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
US7594966B2 (en) Method for producing a single crystal
JP2008127217A (en) Apparatus and method for manufacturing semiconductor single crystal
JP2005015314A (en) Method for manufacturing single crystal, and single crystal
JP2009274888A (en) Production method of silicon single crystal, and silicon single crystal wafer
JP2009057232A (en) Silicon single crystal growing method and its apparatus
JP4433865B2 (en) Method for producing silicon single crystal
JPH11195565A (en) Silicon wafer and method of growing crystal
JP2005154172A (en) Method for manufacturing silicon single crystal, method for designing apparatus for manufacturing silicon single crystal, and apparatus for manufacturing silicon single crystal
JP2002226296A (en) Method for manufacturing silicon single crystal
JP4234842B2 (en) Silicon single crystal wafer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4650345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250