JP2007312498A - Regenerative synchronous rectification circuit - Google Patents

Regenerative synchronous rectification circuit Download PDF

Info

Publication number
JP2007312498A
JP2007312498A JP2006138593A JP2006138593A JP2007312498A JP 2007312498 A JP2007312498 A JP 2007312498A JP 2006138593 A JP2006138593 A JP 2006138593A JP 2006138593 A JP2006138593 A JP 2006138593A JP 2007312498 A JP2007312498 A JP 2007312498A
Authority
JP
Japan
Prior art keywords
synchronous
rectifying element
transformer
output
synchronous rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006138593A
Other languages
Japanese (ja)
Inventor
Akemichi Hirabayashi
明道 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH NO HIRABAYASHI KK
Original Assignee
TECH NO HIRABAYASHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH NO HIRABAYASHI KK filed Critical TECH NO HIRABAYASHI KK
Priority to JP2006138593A priority Critical patent/JP2007312498A/en
Publication of JP2007312498A publication Critical patent/JP2007312498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving method for a synchronous rectification circuit in a flyback converter and a switching power supply wherein output constant-voltage control can be implemented with a smaller number of parts and high efficiency can be achieved. <P>SOLUTION: An error amplifier used to be connected to an output terminal is disposed between the secondary winding (N2) of a transformer and a synchronous rectifying element (Q1). Thus, both driving of the synchronous rectifying element and constant-voltage control on output can be achieved. Even when a load becomes so heavy that rated power is exceeded and the error amplifier does not work, the synchronous rectifying element can be turned off without fail by a transistor Q2 and a capacitor C1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はスイッチング電源装置に関し、より具体的には同期整流回路に関する。 The present invention relates to a switching power supply device, and more particularly to a synchronous rectifier circuit.

従来方式の1例として図2に示した同期整流回路が有る。 As an example of the conventional system, there is a synchronous rectifier circuit shown in FIG.

図2において誤差増幅器U1からの信号によりQ2のオン時間を制御してMOSFET Q1のオン、オフを制御している。出力端子OUT+、OUT−の電圧が低い時はQ1をオフすることができず、N3巻線の電圧がQ1のスレッショルド電圧に下がるまではQ1はオンを続け、N2巻線から入力に回生電流が流れてしまう。
特開平8ー126317
In FIG. 2, the on / off time of the MOSFET Q1 is controlled by controlling the on time of the Q2 by a signal from the error amplifier U1. Q1 cannot be turned off when the voltages at the output terminals OUT + and OUT− are low, and Q1 is kept on until the voltage of the N3 winding falls to the threshold voltage of Q1, and the regenerative current is input from the N2 winding to the input. It will flow.
JP-A-8-126317

従来の回路では同期整流素子を的確にコントロールするには複雑な回路が必要となり、負荷に並列接続された電圧源などにより誤動作の問題もあった。 In the conventional circuit, a complicated circuit is required to accurately control the synchronous rectifier element, and there is a problem of malfunction due to a voltage source connected in parallel to the load.

この発明は誤差増幅素子をトランスの2次巻線と同期整流素子との間に接続する事により、励磁エネルギー放出時間は同期整流MOSFETを確実にオンにし、励磁エネルギー放出時間の末期には出力端子電圧がそのまま誤差増幅素子に与えられる為、負荷が軽くて出力端子電圧が高い時は、励磁エネルギー放出後も同期整流MOSFETをオンさせたままとなる。その結果余分なエネルギーは1次側に回生し、出力端子電圧は高精度に制御される。また、1次側にフィードバックするフォトカプラは不要となる。 In the present invention, the error amplifying element is connected between the secondary winding of the transformer and the synchronous rectifying element, so that the excitation energy release time surely turns on the synchronous rectification MOSFET, and the output terminal at the end of the excitation energy release time. Since the voltage is directly applied to the error amplifying element, when the load is light and the output terminal voltage is high, the synchronous rectification MOSFET is kept on even after the excitation energy is released. As a result, excess energy is regenerated to the primary side, and the output terminal voltage is controlled with high accuracy. Further, a photocoupler that feeds back to the primary side is not necessary.

少ない部品点数で同期整流および出力電圧制御ができるので経済的効果が大きい。 Since synchronous rectification and output voltage control can be performed with a small number of parts, the economic effect is great.

本発明の実施では充分にオン抵抗の低い、かつ入力容量の少ない同期整流用MOSFETを選ぶ事が肝要である。 In implementing the present invention, it is important to select a synchronous rectification MOSFET having a sufficiently low on-resistance and a small input capacitance.

図1のQ3が主スイッチ素子である。Q4によって一定時間オン、オフする。 Q3 in FIG. 1 is a main switch element. Turns on and off for a certain time by Q4.

トランスの2次巻線N2からはR3,R4を通じて誤差増幅器U1に電圧が与えられる。 A voltage is applied from the secondary winding N2 of the transformer to the error amplifier U1 through R3 and R4.

誤差増幅器U1の出力はダイオードD1を通じてQ2を制御する。つまり2次巻線N2の電圧が設定値以上であればQ2をオフして、同期整流素子Q1のオンを継続する。 The output of the error amplifier U1 controls Q2 through the diode D1. That is, if the voltage of the secondary winding N2 is equal to or higher than the set value, Q2 is turned off and the synchronous rectifier element Q1 is kept on.

定格負荷では2次巻線N2からのエネルギー放出が完了するとQ2がオンになり、ゲート電荷が引き抜かれてQ1がオフになり、トランスのNB巻線に発生する電圧で主スイッチ素子Q3がオンになる。これは従来のフライバックコンバーターと同じである。 When the energy release from the secondary winding N2 is completed at the rated load, Q2 is turned on, the gate charge is extracted, Q1 is turned off, and the main switch element Q3 is turned on by the voltage generated in the NB winding of the transformer. Become. This is the same as a conventional flyback converter.

負荷が軽い場合は2次巻線N2からのエネルギー放出が終わった時点でも出力端子電圧が高くなる。この場合、設定電圧になるまで誤差増幅素子U1はQ2をオフし、Q1をオンし続ける。結果、出力からトランスの2次巻線N2に電流が逆流し、1次巻線N1を通して入力側にエネルギーが回生される。 When the load is light, the output terminal voltage becomes high even when the energy emission from the secondary winding N2 is finished. In this case, the error amplifying element U1 turns off Q2 and keeps turning on Q1 until the set voltage is reached. As a result, current flows backward from the output to the secondary winding N2 of the transformer, and energy is regenerated to the input side through the primary winding N1.

同期整流用MOSFETのQ1に充分オン抵抗の低い物を選べば、N2巻線からのエネルギー放出末期の電圧は出力端子電圧に等しい。故に高精度な出力電圧の制御が可能であり、フォトカプラなどによる1次側へのフィードバックは不要になる。 If the Q1 of the synchronous rectification MOSFET is selected to have a sufficiently low on-resistance, the voltage at the end of energy emission from the N2 winding is equal to the output terminal voltage. Therefore, it is possible to control the output voltage with high accuracy, and feedback to the primary side by a photocoupler or the like is not necessary.

負荷が定格出力を越えて重くなった場合、誤差増幅器U1は出力を停止するので、Q2はR2,C1の時定数でオンする事になり、Q1は確実にオフされる。故に出力電力に関係なく同期整流を維持できるので高い効率の実現が可能になる。 When the load becomes heavier than the rated output, the error amplifier U1 stops outputting, so that Q2 is turned on with a time constant of R2 and C1, and Q1 is reliably turned off. Therefore, since synchronous rectification can be maintained regardless of output power, high efficiency can be realized.

本発明のフライバックコンバーターにおける実施例を示す回路図である。(実施例1)It is a circuit diagram which shows the Example in the flyback converter of this invention. Example 1 従来方式の1例を示す回路図である。It is a circuit diagram which shows an example of a conventional system.

符号の説明Explanation of symbols

V1 電圧源
OUT+、OUT− 出力端子
Q3 主スイッチ素子
Q1 同期整流素子
U1 誤差増幅素子
T1 トランス
N1 1次巻線
N2 2次巻線
N3 補助巻線
NB ベース巻線
Q2、Q4 スイッチ素子
R1、R2、R3、R4 抵抗
C1 コンデンサ
V1 Voltage source OUT +, OUT− Output terminal Q3 Main switch element Q1 Synchronous rectifier element U1 Error amplifying element T1 Transformer N1 Primary winding N2 Secondary winding N3 Auxiliary winding NB Base winding Q2, Q4 Switching elements R1, R2, R3, R4 Resistor C1 Capacitor

Claims (1)

一定の周期でオン、オフする主スイッチ素子がトランスの1次巻線と直列に接続され、上記トランスの2次巻線と出力端子との間に直列に接続された同期整流素子と、上記同期整流素子をオン、オフさせる為の補助巻線と、上記同期整流素子のオン時間を制御する誤差増幅素子を上記トランスの2次巻線と上記同期整流素子の間に備えたフライバック式のスイッチング電源装置において、上記出力端子間の電圧が上がると上記同期整流素子のオン時間を長くして電流を1次側に回生させる事を特徴とする同期整流スイッチング電源装置。
A main switching element that is turned on and off at a constant cycle is connected in series with the primary winding of the transformer, and a synchronous rectifying element connected in series between the secondary winding of the transformer and the output terminal, and the synchronous A flyback type switching comprising an auxiliary winding for turning on and off the rectifying element and an error amplifying element for controlling the on-time of the synchronous rectifying element between the secondary winding of the transformer and the synchronous rectifying element. In the power supply apparatus, the synchronous rectification switching power supply apparatus is characterized in that when the voltage between the output terminals rises, the on-time of the synchronous rectifier element is lengthened and the current is regenerated to the primary side.
JP2006138593A 2006-05-18 2006-05-18 Regenerative synchronous rectification circuit Pending JP2007312498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138593A JP2007312498A (en) 2006-05-18 2006-05-18 Regenerative synchronous rectification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138593A JP2007312498A (en) 2006-05-18 2006-05-18 Regenerative synchronous rectification circuit

Publications (1)

Publication Number Publication Date
JP2007312498A true JP2007312498A (en) 2007-11-29

Family

ID=38844838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138593A Pending JP2007312498A (en) 2006-05-18 2006-05-18 Regenerative synchronous rectification circuit

Country Status (1)

Country Link
JP (1) JP2007312498A (en)

Similar Documents

Publication Publication Date Title
JP4950320B2 (en) Switching power supply
JP5125607B2 (en) Power converter
JP2009284667A (en) Power supply device, its control method, and semiconductor device
US9263957B2 (en) Switching power supply circuit and LED illumination device
JP2010051053A (en) Control circuit for boost dc-dc converters and boost dc-dc converter
JP2010206982A (en) Switching power supply device
JP2007244086A (en) Soft start circuit of switching power supply
JP4816908B2 (en) Multi-output switching power supply
TWI543502B (en) Power conversion device, isolated driving circuit, and isolated driving method
JP6381963B2 (en) Switching power supply circuit
JP2009240025A (en) Step-up dc-dc converter and semiconductor integrated circuit for driving power supply
JP2007068359A (en) Power conversion apparatus
JP2010213366A (en) Switching power supply
JP2009268323A (en) Booster circuit
US9564819B2 (en) Switching power supply circuit
JP2008086114A (en) Switching power supply and voltage detection circuit
JP2006280179A (en) Dc-stabilizing power supply
JP5783597B2 (en) Switching power supply
JP2010142002A (en) Power supply start-up circuit and switching power supply device
JP2008306804A (en) Regeneration synchronous rectification circuit
JP2007312498A (en) Regenerative synchronous rectification circuit
JP2011087389A (en) Dc-dc converter and lamp fitting for vehicles
JP2007336635A (en) Regenerative synchronous rectification circuit
JP2007185059A (en) Regenerative synchronous rectifier circuit
JP2006223021A (en) Switching power supply device