JP2007185059A - Regenerative synchronous rectifier circuit - Google Patents

Regenerative synchronous rectifier circuit Download PDF

Info

Publication number
JP2007185059A
JP2007185059A JP2006002203A JP2006002203A JP2007185059A JP 2007185059 A JP2007185059 A JP 2007185059A JP 2006002203 A JP2006002203 A JP 2006002203A JP 2006002203 A JP2006002203 A JP 2006002203A JP 2007185059 A JP2007185059 A JP 2007185059A
Authority
JP
Japan
Prior art keywords
synchronous
voltage
output terminal
output
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006002203A
Other languages
Japanese (ja)
Inventor
Akemichi Hirabayashi
明道 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH NO HIRABAYASHI KK
Original Assignee
TECH NO HIRABAYASHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH NO HIRABAYASHI KK filed Critical TECH NO HIRABAYASHI KK
Priority to JP2006002203A priority Critical patent/JP2007185059A/en
Publication of JP2007185059A publication Critical patent/JP2007185059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving method of a synchronous rectifier circuit in a flyback converter, and to provide a circuit capable of regulating a constant output voltage with a small number of parts. <P>SOLUTION: An error amplifier conventionally connected to an output terminal is arranged between the secondary winding of a transformer and a synchronous rectifying device. Therefore, synchronous rectification MOSFET is certainly turned on during an exciting energy releasing time, and an output terminal voltage is automatically given to an error amplifying element at the end of the exciting energy releasing time, thereby turning the synchronous rectifying MOSFET on when a load is light and an output voltage is high after releasing of exciting energy. As a result, extra energy is regenerated to a primary winding side to control the output terminal voltage with high accuracy, thereby enabling combination between driving of the synchronous rectifying device and constant-voltage control of an output. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はスイッチング電源装置に関し、より具体的には同期整流回路に関する。 The present invention relates to a switching power supply device, and more particularly to a synchronous rectifier circuit.

従来方式の1例として図2に示した同期整流回路が有る。 As an example of the conventional system, there is a synchronous rectifier circuit shown in FIG.

図2においてMOSFET Q1のオン時間は補助巻線N3に発生する電圧とコンデンサC1、抵抗R1、抵抗R5による微分回路で決まる。また、出力端子OUT+、OUT−の電圧はフォトカプラPC1により1次側にフィードバックされて、1次側の主スイッチ素子Q3のオン時間を変える事により制御される。 In FIG. 2, the on-time of MOSFET Q1 is determined by a voltage generated in auxiliary winding N3 and a differentiation circuit using capacitor C1, resistor R1, and resistor R5. The voltages at the output terminals OUT + and OUT− are fed back to the primary side by the photocoupler PC1 and controlled by changing the on-time of the primary side main switch element Q3.

従来の回路では出力端子電圧を1次側にフィードバックする素子が不可欠であり、また、軽負荷ではスイッチング周波数が高くなる為、制御が難しかった。 In the conventional circuit, an element for feeding back the output terminal voltage to the primary side is indispensable, and the switching frequency becomes high at a light load, so that control is difficult.

この発明は誤差増幅素子をトランスの2次巻線と同期整流素子との間に接続する事により、励磁エネルギー放出時間は同期整流MOSFETを確実にオンにし、励磁エネルギー放出時間の末期には出力端子電圧がそのまま誤差増幅素子に与えられる為、負荷が軽くて出力端子電圧が高い時は、励磁エネルギー放出後も同期整流MOSFETをオンさせたままとなる。その結果余分なエネルギーは1次側に回生し、出力端子電圧は高精度に制御される。また、1次側にフィードバックするフォトカプラは不要となる。 In the present invention, the error amplifying element is connected between the secondary winding of the transformer and the synchronous rectifying element, so that the excitation energy release time surely turns on the synchronous rectification MOSFET, and the output terminal at the end of the excitation energy release time. Since the voltage is directly applied to the error amplifying element, when the load is light and the output terminal voltage is high, the synchronous rectification MOSFET is kept on even after the excitation energy is released. As a result, excess energy is regenerated to the primary side, and the output terminal voltage is controlled with high accuracy. Further, a photocoupler that feeds back to the primary side is not necessary.

少ない部品点数で同期整流および出力電圧制御ができるので経済的効果が大きい。 Since synchronous rectification and output voltage control can be performed with a small number of parts, the economic effect is great.

本発明の実施では充分にオン抵抗の低い、かつ入力容量の少ない同期整流用MOSFETを選ぶ事が肝要である。 In implementing the present invention, it is important to select a synchronous rectification MOSFET having a sufficiently low on-resistance and a small input capacitance.

図1のQ3が主スイッチ素子である。Q4によって一定時間オン、オフする。 Q3 in FIG. 1 is a main switch element. Turns on and off for a certain time by Q4.

トランスの2次巻線N2からはR3,R4を通じて誤差増幅器U1に電圧が与えられる。 A voltage is applied from the secondary winding N2 of the transformer to the error amplifier U1 through R3 and R4.

誤差増幅器U1の出力は抵抗R2を通じてQ2を制御する。つまり2次巻線N2の電圧が設定値以上であればQ2をオンして、R1経由で同期整流素子Q1をオンにする。 The output of the error amplifier U1 controls Q2 through a resistor R2. That is, if the voltage of the secondary winding N2 is equal to or higher than the set value, Q2 is turned on, and the synchronous rectifier element Q1 is turned on via R1.

定格負荷では2次巻線N2からのエネルギー放出が完了するとQ1がオフになり、トランスのNB巻線に発生する電圧で主スイッチ素子Q3がオンになる。これは従来のフライバックコンバーターと同じである。 When the energy release from the secondary winding N2 is completed at the rated load, Q1 is turned off, and the main switch element Q3 is turned on by the voltage generated in the NB winding of the transformer. This is the same as a conventional flyback converter.

負荷が軽い場合は2次巻線N2からのエネルギー放出が終わった時点でも出力端子電圧が高くなる。この場合、設定電圧になるまで誤差増幅素子U1はQ1をオンし続ける。結果、出力からトランスの2次巻線N2に電流が逆流し、1次巻線N1を通して入力側にエネルギーが回生される。 When the load is light, the output terminal voltage becomes high even when the energy emission from the secondary winding N2 is finished. In this case, the error amplifying element U1 continues to turn on Q1 until the set voltage is reached. As a result, current flows backward from the output to the secondary winding N2 of the transformer, and energy is regenerated to the input side through the primary winding N1.

同期整流用MOSFETのQ1に充分オン抵抗の低い物を選べば、N2巻線からのエネルギー放出末期の電圧は出力端子電圧に等しい。故に高精度な出力電圧の制御が可能であり、フォトカプラなどによる1次側へのフィードバックは不要になる。 If the Q1 of the synchronous rectification MOSFET is selected to have a sufficiently low on-resistance, the voltage at the end of energy emission from the N2 winding is equal to the output terminal voltage. Therefore, it is possible to control the output voltage with high accuracy, and feedback to the primary side by a photocoupler or the like is not necessary.

負荷が定格出力を越えて重くなった場合、誤差増幅器U1は出力を停止するのでQ1はオンする事がなくなり、Q1の内部寄生ダイオードにより導通するのみとなる。この時はQ1の損失が大きくなるので発熱の問題が発生する。 When the load becomes heavier than the rated output, the error amplifier U1 stops outputting so that Q1 does not turn on and is only conducted by the internal parasitic diode of Q1. At this time, since the loss of Q1 becomes large, a problem of heat generation occurs.

図3に示すようにQ2のコレクタ、エミッタ間に適当な容量のコンデンサC3を付加する事により、たとえU1がオン指令を出さなくても有る一定時間Q1をオンする事ができる。これにより重負荷時でもある程度同期整流が働く事になり、Q1の発熱を下げる事ができる。 As shown in FIG. 3, by adding a capacitor C3 having an appropriate capacity between the collector and emitter of Q2, it is possible to turn on Q1 for a certain period of time even if U1 does not issue an on command. As a result, synchronous rectification works to some extent even under heavy loads, and the heat generation of Q1 can be reduced.

本発明のフライバックコンバーターにおける実施例を示す回路図である。(実施例1)It is a circuit diagram which shows the Example in the flyback converter of this invention. Example 1 従来方式の1例を示す回路図である。It is a circuit diagram which shows an example of a conventional system. 発熱が問題になる場合の、本発明のフライバックコンバーターにおける実施例を示す回路図である。(実施例2)It is a circuit diagram which shows the Example in the flyback converter of this invention when heat_generation | fever becomes a problem. (Example 2)

符号の説明Explanation of symbols

V1 電圧源
OUT+、OUT− 出力端子
Q3 主スイッチ素子
Q1 同期整流素子
U1 誤差増幅素子
T1 トランス
N1 1次巻線
N2 2次巻線
N3 補助巻線
NB ベース巻線
Q2、Q4 スイッチ素子
R1、R2、R3、R4、R5 抵抗
PC1 フォトカプラ
C1、C3 コンデンサ
V1 Voltage source OUT +, OUT− Output terminal Q3 Main switch element Q1 Synchronous rectifier element U1 Error amplifying element T1 Transformer N1 Primary winding N2 Secondary winding N3 Auxiliary winding NB Base winding Q2, Q4 Switching elements R1, R2, R3, R4, R5 Resistor PC1 Photocoupler C1, C3 Capacitor

Claims (1)

一定の周期でオン、オフする主スイッチ素子がトランスの1次巻線と直列に接続され、上記トランスの2次巻線と出力端子との間に直列に接続された同期整流素子と、上記同期整流素子をオン、オフさせる為の補助巻線と、上記同期整流素子のオン時間を制御する誤差増幅素子を上記トランスの2次巻線と上記同期整流素子の間に備えたフライバック式のスイッチング電源装置において、上記出力端子間の電圧が上がると上記同期整流素子のオン時間を長くして電流を1次側に回生させる事を特徴とする同期整流スイッチング電源装置。
A main switching element that is turned on and off at a constant cycle is connected in series with the primary winding of the transformer, and a synchronous rectifying element connected in series between the secondary winding of the transformer and the output terminal, and the synchronous A flyback type switching comprising an auxiliary winding for turning on and off the rectifying element and an error amplifying element for controlling the on-time of the synchronous rectifying element between the secondary winding of the transformer and the synchronous rectifying element. In the power supply apparatus, the synchronous rectification switching power supply apparatus is characterized in that when the voltage between the output terminals rises, the on-time of the synchronous rectifier element is lengthened and the current is regenerated to the primary side.
JP2006002203A 2006-01-10 2006-01-10 Regenerative synchronous rectifier circuit Pending JP2007185059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002203A JP2007185059A (en) 2006-01-10 2006-01-10 Regenerative synchronous rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002203A JP2007185059A (en) 2006-01-10 2006-01-10 Regenerative synchronous rectifier circuit

Publications (1)

Publication Number Publication Date
JP2007185059A true JP2007185059A (en) 2007-07-19

Family

ID=38340679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002203A Pending JP2007185059A (en) 2006-01-10 2006-01-10 Regenerative synchronous rectifier circuit

Country Status (1)

Country Link
JP (1) JP2007185059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114978A (en) * 2010-11-19 2012-06-14 Canon Inc Power supply and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114978A (en) * 2010-11-19 2012-06-14 Canon Inc Power supply and image forming apparatus

Similar Documents

Publication Publication Date Title
US11097368B2 (en) Welding or cutting power supply using phase shift double forward converter circuit (PSDF)
JP4975166B2 (en) Multi-output synchronous flyback converter
JP4258560B2 (en) Multi-output switching power supply
US20200052598A1 (en) Voltage sense control circuit, voltage sense control method and isolated converter thereof
JP4229202B1 (en) Multi-output switching power supply
JP2005354845A (en) Dc/dc converter control circuit, dc/dc converter control method, semiconductor device, dc/dc converter, and electronic apparatus
JP2013192440A (en) Switching power supply
TWI479792B (en) Power converter and method of controlling the same
JP2018516042A (en) LED driver and LED driving method
JP2010088152A (en) Switching power supply
JP4830408B2 (en) Power converter
TW201526484A (en) Power conversion device, isolated driving circuit, and isolated driving method
JP6459599B2 (en) Switching power supply
JP2007195283A (en) Multi-output switching power unit
KR101228767B1 (en) Switching mode power supply with multiple output
JP2002101662A (en) Power supply device
JP2007185059A (en) Regenerative synchronous rectifier circuit
JP2001045759A (en) Self-excited switching power supply
JP2008306804A (en) Regeneration synchronous rectification circuit
JP2011087389A (en) Dc-dc converter and lamp fitting for vehicles
JP6711150B2 (en) Boost circuit
JP2007312498A (en) Regenerative synchronous rectification circuit
TWI399910B (en) Power converter, controller for controlling a transformer and method thereof
JP2007336635A (en) Regenerative synchronous rectification circuit
JP5997063B2 (en) Secondary battery charger