JP2007311279A - Nonaqueous electrolytic solution secondary battery - Google Patents

Nonaqueous electrolytic solution secondary battery Download PDF

Info

Publication number
JP2007311279A
JP2007311279A JP2006141172A JP2006141172A JP2007311279A JP 2007311279 A JP2007311279 A JP 2007311279A JP 2006141172 A JP2006141172 A JP 2006141172A JP 2006141172 A JP2006141172 A JP 2006141172A JP 2007311279 A JP2007311279 A JP 2007311279A
Authority
JP
Japan
Prior art keywords
negative electrode
surfactant
secondary battery
electrode active
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141172A
Other languages
Japanese (ja)
Inventor
Tomomi Endo
友美 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006141172A priority Critical patent/JP2007311279A/en
Publication of JP2007311279A publication Critical patent/JP2007311279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high capacity type nonaqueous electrolytic solution secondary battery having superior cycle characteristics and high temperature storing characteristics by improving dispersibility of composite particles which are negative electrode active materials, and by optimizing surfaces of carbonaceous materials which are source of conductivity. <P>SOLUTION: The nonaqueous electrolytic solution secondary battery is provided with a positive electrode, a negative electrode having the negative electrode active materials capable of reversibly storing and releasing lithium ions, and a nonaqueous electrolytic solution, and the negative electrode active materials are constituted by adhering the carbonaceous materials in which a surfactant is adsorbed to at least one part of the surface of metal oxide or semimetal oxide at one part of the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非水電解液二次電池に関し、より詳しくは非水電解液二次電池用負極に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a negative electrode for a non-aqueous electrolyte secondary battery.

非水電解液二次電池は軽量で高エネルギー密度を有するため様々なポータブル機器に用いられている。現在、黒鉛などの炭素材料が非水電解液二次電池の負極活物質として実用化されている。しかしながらその理論容量密度は372mAh/gである。そこで、さらに非水電解質二次電池を高エネルギー密度化するために、リチウムと合金化するケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)やこれらの酸化物および合金などが検討されている。これらの負極活物質材料の理論容量密度は、炭素質材料に比べて大きい。特にSi粒子や酸化ケイ素粒子などの含ケイ素粒子は安価なため、幅広く検討されている。   Non-aqueous electrolyte secondary batteries are lightweight and have high energy density, and are therefore used in various portable devices. Currently, carbon materials such as graphite are put into practical use as negative electrode active materials for non-aqueous electrolyte secondary batteries. However, its theoretical capacity density is 372 mAh / g. Therefore, silicon (Si), tin (Sn), germanium (Ge), and oxides and alloys thereof, which are alloyed with lithium, are being studied in order to further increase the energy density of nonaqueous electrolyte secondary batteries. . The theoretical capacity density of these negative electrode active material materials is larger than that of carbonaceous materials. In particular, silicon-containing particles such as Si particles and silicon oxide particles are widely studied because they are inexpensive.

しかしながら、これらの材料を負極活物質に用いて充放電サイクルを繰り返すと、充放電に伴う活物質粒子の体積変化が起こる。この体積変化により活物質粒子は微紛化し、その結果、活物質粒子間の導電性が低下する。そのため、充分な充放電サイクル特性(以下、「サイクル特性」という)が得られない。   However, when these materials are used as the negative electrode active material and the charge / discharge cycle is repeated, the volume of the active material particles changes due to charge / discharge. This volume change makes the active material particles fine, and as a result, the conductivity between the active material particles decreases. Therefore, sufficient charge / discharge cycle characteristics (hereinafter referred to as “cycle characteristics”) cannot be obtained.

そこでリチウム合金を形成しうる金属または半金属を含む活物質を核に、複数の炭素質材料(主に炭素繊維)を結合させて複合粒子化させることが提案されている。この構成では、活物質の体積変化が起こっても導電性が確保され、サイクル特性が維持できることが報告されている(例えば、特許文献1)。
特開2004−349056号公報
Therefore, it has been proposed to combine a plurality of carbonaceous materials (mainly carbon fibers) into composite particles by using an active material containing a metal or metalloid capable of forming a lithium alloy as a core. In this configuration, it has been reported that conductivity is ensured and cycle characteristics can be maintained even if the volume of the active material changes (for example, Patent Document 1).
JP 2004-349056 A

上述した複合粒子は、通常は溶媒などを加えて塗料化した後、集電体に塗布する形で合剤層を形成し、負極として構成される。しかしながら特許文献1の技術を用いた場合、炭素質材料は塗料の溶媒に対するぬれ性が低いので複合粒子の分散性が低下し、合剤層内で複合粒子が偏在化する。この負極を用いた非水電解液二次電池を充放電すると、複合粒子の一部のみに選択的にリチウムが吸蔵放出されやすくなり、部分的に劣化が促進され、サイクル特性が低下する。さらには負極活物質の表面の炭素質材料の表面積が過多であると、これに相応して高温保存時のガス発生が著しくなり、電池内圧が上昇しやすいという課題があった。これら2つの課題は、炭素質材料の表面積が大きい繊維状の場合に顕著であった。   The composite particles described above are usually formed as a negative electrode by forming a mixture layer by applying a solvent to a current collector and then applying the mixture to a current collector. However, when the technique of Patent Document 1 is used, the carbonaceous material has low wettability with respect to the solvent of the paint, so that the dispersibility of the composite particles is reduced, and the composite particles are unevenly distributed in the mixture layer. When a non-aqueous electrolyte secondary battery using this negative electrode is charged / discharged, lithium is likely to be selectively occluded and released only in a part of the composite particles, the deterioration is partially promoted, and the cycle characteristics are lowered. Furthermore, if the surface area of the carbonaceous material on the surface of the negative electrode active material is excessive, there is a problem in that gas generation during high-temperature storage is correspondingly increased and the internal pressure of the battery tends to increase. These two problems are remarkable when the carbonaceous material has a large surface area.

本発明は上記課題を解決するためのものであり、負極活物質である複合粒子の分散性を向上しつつ、導電性の源である炭素質材料の表面を最適化することにより、優れたサイクル特性と高温保存特性とを有する高容量化タイプの非水電解液二次電池を提供するものである。   The present invention is for solving the above-mentioned problems, and by improving the dispersibility of the composite particles as the negative electrode active material, by optimizing the surface of the carbonaceous material as the conductive source, an excellent cycle is achieved. The present invention provides a high capacity type non-aqueous electrolyte secondary battery having characteristics and high-temperature storage characteristics.

上述した課題を解決するために本発明の非水電解液二次電池は、正極と、リチウムイオンを可逆的に吸蔵放出可能な負極活物質を有する負極と、非水電解液を備えた非水電解液二次電池であって、表面の一部に界面活性剤を吸着させた炭素質材料を、金属酸化物または半金属酸化物の表面の少なくとも一部に付着させて構成したものを負極活物質としたことを特徴とする。   In order to solve the above-described problems, a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode having a negative electrode active material capable of reversibly occluding and releasing lithium ions, and a non-aqueous electrolyte including a non-aqueous electrolyte. An electrolyte secondary battery comprising a carbonaceous material adsorbed with a surfactant on a part of the surface and attached to at least a part of the surface of the metal oxide or metalloid oxide. Characterized by substance.

金属酸化物または半金属酸化物は高容量な負極活物質であるが、微粉化しやすいがゆえに導電性に乏しい。この表面の少なくとも一部に炭素質材料を付着させることにより導電性は確保できるが、負極形成時の分散性が乏しい上に高温保存時のガス発生源となる。そこでこの炭素質材料の表面の一部に界面活性剤を吸着させることにより、塗料化の際に用いる溶媒に対する炭素質材料のぬれ性が向上して分散性が高められ、負極合剤層における偏在化が抑制されてサイクル特性が向上する。さらには炭素質材料に吸着した界面活性剤が高温保存時のガス発生反応をブロックするため、電池の変形や非水電解液の外部への放出を回避できる。   Metal oxides or metalloid oxides are high-capacity negative electrode active materials, but have poor conductivity because they are easily pulverized. Conductivity can be secured by adhering a carbonaceous material to at least a part of the surface, but it has poor dispersibility when forming the negative electrode and becomes a gas generation source during high-temperature storage. Therefore, by adsorbing the surfactant to a part of the surface of the carbonaceous material, the wettability of the carbonaceous material with respect to the solvent used for coating is improved and the dispersibility is improved, and the uneven distribution in the negative electrode mixture layer The cycle characteristics are improved by suppressing the crystallization. Furthermore, since the surfactant adsorbed on the carbonaceous material blocks the gas generation reaction during high temperature storage, it is possible to avoid deformation of the battery and release of the nonaqueous electrolytic solution to the outside.

本発明によれば、理論容量の大きい負極活物質のサイクル特性と高温保存特性とを高めることができるので、実用的でかつ高容量な非水電解液二次電池が提供できる。   According to the present invention, since the cycle characteristics and high-temperature storage characteristics of a negative electrode active material having a large theoretical capacity can be enhanced, a practical and high capacity non-aqueous electrolyte secondary battery can be provided.

以下に本発明について、図を用いて詳述する。   The present invention will be described in detail below with reference to the drawings.

第1の発明は、正極と、リチウムイオンを可逆的に吸蔵放出可能な負極活物質を有する負極と、非水電解液を備えた非水電解液二次電池であって、表面の一部に界面活性剤を吸着させた炭素質材料を、金属酸化物または半金属酸化物の表面の少なくとも一部に付着させて構成したものを負極活物質としたことを特徴とする。   A first invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having a negative electrode active material capable of reversibly occluding and releasing lithium ions, and a non-aqueous electrolyte, wherein a part of the surface A negative electrode active material is characterized in that a carbonaceous material adsorbed with a surfactant is attached to at least a part of the surface of a metal oxide or metalloid oxide.

第1の発明の負極活物質は、図1の模式図に示すように、金属酸化物または半金属酸化物1の表面の一部に炭素質材料2が付着した複合粒子を含んでいる。さらに炭素質材料2の表面の一部には、炭素質材料2に対する吸着サイト3と非吸着サイト4とを併せ持つ界面活性剤5が吸着している。   As shown in the schematic diagram of FIG. 1, the negative electrode active material of the first invention includes composite particles in which a carbonaceous material 2 is attached to a part of the surface of a metal oxide or metalloid oxide 1. Furthermore, a surfactant 5 having both an adsorption site 3 and a non-adsorption site 4 for the carbonaceous material 2 is adsorbed on a part of the surface of the carbonaceous material 2.

上述したように金属酸化物または半金属酸化物1は高容量であるが、微粉化しやすいがゆえに導電性に乏しい。この金属酸化物または半金属酸化物1の表面の少なくとも一部に炭素質材料2を付着させることにより導電性は確保できるが、負極合剤層における分散性が乏しい上に高温保存時のガス発生源となる。そこで炭素質材料2の表面の一部に界面活性剤5を吸着させることにより、塗料化する際に用いる溶媒に対する炭素質材料2のぬれ性が向上して分散性が高められる。これは溶媒に対する親和性が、界面活性剤5における非吸着サイト4で高められたことによる。この効果によって負極の合剤層内部での複合粒子の偏在化が解消できるので、サイクル特性が向上する。さらには炭素質材料2に吸着した界面活性剤5が高温保存時のガス発生反応をブロックするため、電池の変形や非水電解液の外部への放出を回避できる。   As described above, the metal oxide or metalloid oxide 1 has a high capacity, but is poor in conductivity because it is easily pulverized. Conductivity can be secured by adhering the carbonaceous material 2 to at least a part of the surface of the metal oxide or metalloid oxide 1, but the dispersibility in the negative electrode mixture layer is poor, and gas generation during high-temperature storage is achieved. The source. Therefore, by adsorbing the surfactant 5 on a part of the surface of the carbonaceous material 2, the wettability of the carbonaceous material 2 with respect to the solvent used for coating is improved and the dispersibility is enhanced. This is because the affinity for the solvent is increased at the non-adsorption site 4 in the surfactant 5. This effect can eliminate the uneven distribution of the composite particles inside the negative electrode mixture layer, thereby improving the cycle characteristics. Furthermore, since the surfactant 5 adsorbed on the carbonaceous material 2 blocks the gas generation reaction during high temperature storage, it is possible to avoid deformation of the battery and release of the non-aqueous electrolyte to the outside.

金属酸化物または半金属酸化物1には、多量のリチウムを吸蔵放出できる観点からSi、Ge、Sn、Pb、Mn、Fe、Co、Ni、Cu、Zn、Ag、Al、Zn、Mg、CdおよびMgより選ばれた金属酸化物または半金属酸化物を単体、あるいは他の金属との合金または化合物および混合物を用いることが可能である。   The metal oxide or metalloid oxide 1 includes Si, Ge, Sn, Pb, Mn, Fe, Co, Ni, Cu, Zn, Ag, Al, Zn, Mg, and Cd from the viewpoint of occluding and releasing a large amount of lithium. Further, it is possible to use a metal oxide or a semimetal oxide selected from Mg and Mg alone, or an alloy or a compound and a mixture with another metal.

炭素質材料2には、活性炭、黒鉛系炭素、非晶質系炭素、炭素繊維、人造黒鉛、リン片状黒鉛、メソフェーズ小球体を黒鉛化して得た球状黒鉛、カーボンナノファイバー(CNF)、CNF修飾複合材、カーボンナノチューブ(CNT)、CNT修飾複合材などを単体あるいは混合して焼結したものを用いることができ、金属酸化物または半金属酸化物の表面に付着することが可能である。なお、比表面積が大きいものほど、複合粒子に導電性を付与しやすい上に界面活性剤による効果が大きいため、負極活物質に用いる炭素質材料は、活性炭、リン片状黒鉛、炭素繊維、CNF、CNF修飾複合材、CNT、CNT修飾
複合材が好ましい。
Examples of the carbonaceous material 2 include activated carbon, graphite carbon, amorphous carbon, carbon fiber, artificial graphite, flake graphite, spherical graphite obtained by graphitizing mesophase spherules, carbon nanofiber (CNF), CNF. A modified composite material, a carbon nanotube (CNT), a CNT-modified composite material, or the like sintered alone or mixed can be used, and can be attached to the surface of a metal oxide or a semi-metal oxide. In addition, since the larger the specific surface area, the easier it is to impart conductivity to the composite particles and the greater the effect of the surfactant, the carbonaceous material used for the negative electrode active material is activated carbon, flake graphite, carbon fiber, CNF. CNF-modified composite material, CNT, and CNT-modified composite material are preferable.

界面活性剤5には、アニオン系界面活性剤、非イオン系(ノニオン)界面活性剤、両性イオン系界面活性剤、カチオン系界面活性剤を用いることが可能である。炭素質材料2の表面に界面活性剤5が吸着するメカニズムについては詳しく後述するが、高温保存時にガス発生の場として用いられる炭素質材料2の露出面積が界面活性剤5によって制御されるため、ガス発生量が抑制できる。   As the surfactant 5, an anionic surfactant, a nonionic surfactant, a zwitterionic surfactant, or a cationic surfactant can be used. Although the mechanism by which the surfactant 5 is adsorbed on the surface of the carbonaceous material 2 will be described in detail later, since the exposed area of the carbonaceous material 2 used as a gas generation field during high-temperature storage is controlled by the surfactant 5, Gas generation amount can be suppressed.

第2の発明は、第1の発明において、炭素質材料2が繊維状であることを特徴とする。上述したように炭素質材料2は導電性を付与するために用いられるのだが、金属酸化物または半金属酸化物1が微紛化した際にも互いに絡み合って導電ネットワークを確保しやすいという観点から、炭素質材料2が繊維状であるのがより好ましい。このような繊維状の炭素質材料2として、炭素繊維、CNF、CNF修飾複合材、CNT、CNT修飾複合材を挙げることができる。   The second invention is characterized in that, in the first invention, the carbonaceous material 2 is fibrous. As described above, the carbonaceous material 2 is used for imparting electrical conductivity. However, when the metal oxide or metalloid oxide 1 is pulverized, the carbonaceous material 2 is entangled with each other to easily secure a conductive network. The carbonaceous material 2 is more preferably fibrous. Examples of such fibrous carbonaceous material 2 include carbon fiber, CNF, CNF-modified composite material, CNT, and CNT-modified composite material.

第3の発明は、第1の発明において、界面活性剤5が炭素質材料2の0.1〜70%を被覆していることを特徴とする。界面活性剤5の被覆度合が炭素質材料2に対して0.1%未満では、塗料作製時に用いる溶媒に対する炭素質材料2のぬれ性が十分ではなく、複合粒子の分散性がやや低下してサイクル特性が若干低下する。さらには高温保存時に炭素質材料2の表面を介したガス発生反応がやや増加する。一方界面活性剤5の被覆度合が炭素質材料2に対して70%を超える場合、炭素質材料2の露出面積がやや不足するため、炭素質材料2の表面を介した導電ネットワークが不十分となり、サイクル特性が若干低下する。なお炭素質材料2に対する界面活性剤5の被覆度合は、炭素質材料2を用いた電極の電気二重層容量ならびに比表面積を測定することで確認が可能である。   The third invention is characterized in that, in the first invention, the surfactant 5 covers 0.1 to 70% of the carbonaceous material 2. When the coating degree of the surfactant 5 is less than 0.1% with respect to the carbonaceous material 2, the wettability of the carbonaceous material 2 with respect to the solvent used at the time of preparing the paint is not sufficient, and the dispersibility of the composite particles is slightly lowered. The cycle characteristics are slightly degraded. Furthermore, the gas generation reaction through the surface of the carbonaceous material 2 slightly increases during high temperature storage. On the other hand, when the covering degree of the surfactant 5 exceeds 70% with respect to the carbonaceous material 2, the exposed area of the carbonaceous material 2 is slightly insufficient, so that the conductive network through the surface of the carbonaceous material 2 becomes insufficient. The cycle characteristics are slightly deteriorated. The degree of coverage of the surfactant 5 on the carbonaceous material 2 can be confirmed by measuring the electric double layer capacity and specific surface area of the electrode using the carbonaceous material 2.

第4の発明は、第1の発明において、界面活性剤5としてアニオン系、両イオン系、非イオン系のいずれかを単独、あるいは2種以上の混合物として含むことを特徴とする。塗料形成時に、金属酸化物または半金属酸化物1の表面は負の電荷を帯びる一方、炭素質材料2はこれに反発する形で正の電荷を帯びている。上記の3つの系の界面活性剤5は、以下に示すようにそれぞれ負の電荷を帯びた吸着サイト3によって炭素質材料2に吸着することにより、負極合剤層内での複合粒子の偏在化を抑制している。   A fourth invention is characterized in that, in the first invention, the surfactant 5 includes any one of anionic, amphoteric, and nonionic surfactants, or a mixture of two or more thereof. At the time of coating formation, the surface of the metal oxide or metalloid oxide 1 is negatively charged, while the carbonaceous material 2 is positively charged in a manner repelling it. The above three surfactants 5 are adsorbed on the carbonaceous material 2 by the adsorption sites 3 each having a negative charge as shown below, whereby the composite particles are unevenly distributed in the negative electrode mixture layer. Is suppressed.

アニオン系界面活性剤の場合、塗料中でアニオンとカチオンに解離する。ここでアニオンにおけるカチオンとの結合サイトだった箇所が吸着サイト3として炭素質材料2に吸着する一方、反対側が非吸着サイト4として塗料を構成する溶媒と親和することにより、塗料における複合粒子の分散性が向上するので、複合材料の偏在化が抑制できる。   In the case of an anionic surfactant, it dissociates into an anion and a cation in the paint. Here, the portion of the anion that is the binding site with the cation is adsorbed to the carbonaceous material 2 as the adsorption site 3, while the opposite side is adsorbed to the solvent constituting the paint as the non-adsorption site 4, thereby dispersing the composite particles in the paint. Therefore, uneven distribution of the composite material can be suppressed.

両イオン系界面活性剤の場合、一つの分子内にアニオンとカチオンの両サイトが存在している。ここでアニオンのサイトが吸着サイト3として炭素質材料2に吸着する一方、反対側が非吸着サイト4として塗料を構成する溶媒と親和することにより、塗料における複合粒子の分散性が向上するので、複合材料の偏在化が抑制できる。   In the case of a zwitterionic surfactant, both anion and cation sites exist in one molecule. Here, while the anion site is adsorbed on the carbonaceous material 2 as the adsorption site 3, the dispersibility of the composite particles in the paint is improved because the opposite side has affinity with the solvent constituting the paint as the non-adsorption site 4. Uneven distribution of the material can be suppressed.

非イオン系界面活性剤の場合、溶液中でイオン化はしないが分子内の親油基が吸着サイト3として炭素質材料2に吸着する一方、親水基どうしの反発によって塗料における複合粒子の分散性が向上するので、複合材料の偏在化が抑制できる。また非イオン系界面活性剤はイオン化しないため、金属イオンの存在下であっても、アニオン系界面活性剤のように金属イオンによる干渉が無視できるため好ましい。   In the case of a nonionic surfactant, the lipophilic group in the molecule is not ionized in the solution but is adsorbed on the carbonaceous material 2 as the adsorption site 3, while the dispersibility of the composite particles in the coating is caused by repulsion between the hydrophilic groups. Since it improves, the uneven distribution of a composite material can be suppressed. In addition, since nonionic surfactants are not ionized, interference with metal ions can be ignored even in the presence of metal ions as in the case of anionic surfactants.

一方カチオン系界面活性剤の場合、塗料中でアニオンとカチオンに解離するのだが、カチオンにおけるアニオンとの結合サイトだった箇所が吸着サイト3として炭素質材料2で
はなく金属酸化物または半金属酸化物1の表面の負電荷に選択的に吸着するため、金属酸化物または半金属酸化物1の表面で行われるリチウムの吸蔵放出反応が阻害される。さらには代表的なカチオン系界面活性剤として、第4級アンモニウム系のアルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アミン塩系のN−メチルビスヒドロキエチルアミン脂肪酸エステル・塩酸塩などが挙げられるが、ハロゲン元素を含むものが多く、塩化水素やフッ化水素などのガスが発生しやすいため好ましくない。
On the other hand, in the case of a cationic surfactant, it dissociates into an anion and a cation in the paint, but the site of the cation binding site with the anion is not the carbonaceous material 2 but the metal oxide or semi-metal oxide as the adsorption site 3. Since it is selectively adsorbed by the negative charge on the surface of 1, the occlusion and release reaction of lithium performed on the surface of the metal oxide or metalloid oxide 1 is inhibited. Further, as representative cationic surfactants, quaternary ammonium alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, amine salt N-methylbishydroxyethylamine fatty acid esters and hydrochlorides, etc. However, it is not preferable because many of them contain a halogen element and gas such as hydrogen chloride or hydrogen fluoride is easily generated.

本発明の非水電解液二次電池の概要について、さらに詳しく説明する。   The outline of the nonaqueous electrolyte secondary battery of the present invention will be described in more detail.

本発明の非水電解液二次電池は、リチウムイオンを可逆的に吸蔵放出可能な正極と負極と非水電解液とから構成される。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte that can reversibly store and release lithium ions.

本発明にかかる非水電解液二次電池の正極活物質としては、リチウムイオンを可逆的に吸蔵放出可能な材料であれば特に限定されるものではないが、例えば、LiCoO2、LiNiO2、LiMn24、LiMnO2、LixTiS2、Lix25、V2MoO8、MoS2、LiFePO4などを用いることが可能である。中でも、合成が比較的容易である層状岩塩型構造のCo系材料のLiCoO2と同様の結晶構造を有する理論容量が大きいNi系材料のLiNiO2、LiNiO2のNiをMn、Al、Coなどで置換を行ったもの、スピネル構造のLiMn24、斜方晶や単斜晶構造を有するLiMnO2、オリビン型構造のLiFePO4が望ましい。 The positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , Li x TiS 2 , Li x V 2 O 5 , V 2 MoO 8 , MoS 2 , LiFePO 4 or the like can be used. Among them, NiNi of LiNiO 2 and LiNiO 2 having a large theoretical capacity having a crystal structure similar to that of LiCoO 2 of a Co-based material having a layered rock salt structure that is relatively easy to synthesize with Mn, Al, Co, etc. Substituted materials such as LiMn 2 O 4 having a spinel structure, LiMnO 2 having an orthorhombic or monoclinic structure, and LiFePO 4 having an olivine structure are desirable.

金属酸化物または半金属酸化物1としては、リチウムを吸蔵放出できるものであれば特に限定されないが、例えばSi、Ge、Sn、Pb、Mn、Fe、Co、Ni、Cu、Zn、Ag、Al、Zn、Mg、CdおよびMgより選ばれた元素の酸化物を単体あるいは2種以上の混合物として含ませることが可能である。中でも、容量の大きいSi、Snの酸化物が好ましく用いられる。   The metal oxide or metalloid oxide 1 is not particularly limited as long as it can occlude and release lithium. For example, Si, Ge, Sn, Pb, Mn, Fe, Co, Ni, Cu, Zn, Ag, Al It is possible to contain an oxide of an element selected from Zn, Mg, Cd and Mg as a single substance or a mixture of two or more. Among them, Si and Sn oxides having a large capacity are preferably used.

本発明の負極の活物質は、金属酸化物または半金属酸化物1に結着剤を混合し、さらに炭素質材料2を混合して、炭素質材料2を金属酸化物または半金属酸化物1の表面に結着させ、さらに還元雰囲気若しくは不活性雰囲気において400〜3000℃で焼結させて作製できる。   The negative electrode active material of the present invention is obtained by mixing a metal oxide or semi-metal oxide 1 with a binder and further mixing a carbonaceous material 2, thereby converting the carbonaceous material 2 into a metal oxide or semi-metal oxide 1. And then sintered at 400 to 3000 ° C. in a reducing atmosphere or an inert atmosphere.

本発明の非水電解液二次電池の製造方法について説明する。   A method for producing the nonaqueous electrolyte secondary battery of the present invention will be described.

正極および負極の電極の製造方法としては、それぞれの活物質を溶媒に分散して電極ペーストとし、集電体に塗布、乾燥することにより正極および負極を得ることができる。   As a method for producing a positive electrode and a negative electrode, the positive electrode and the negative electrode can be obtained by dispersing each active material in a solvent to form an electrode paste, and applying and drying to a current collector.

電極ペーストには結着剤を含ませることができる。結着剤としてはポリアクリル酸(PAA)、変性アクリルゴム、ポリフッ化ビニリデン(PVDF)などのフッ素系樹脂、スチレンブタジエンゴム(SBR)などのジエン系ゴム、ポリビニルアセトアミド(PNVA)、ポリアクリル酸等を単独、或いは2種以上混合したものを用いることができる。また、結着剤の添加量は、負極の場合は活物質の総重量に対して0.1重量%〜20重量%が望ましい。さらには各種分散剤、安定剤等を必要に応じて添加することも可能である。電極ペーストの溶媒は特に限定されないが、水、N−メチル−2−ピロリドン(NMP)、シクロヘキサン、N,N−ジメチルホルムアミド、テトラヒドロフラン、アセトン、メタノール、エタノール、プロパノール、メチルエチルケトン等を単独、或いは2種以上混合物して用いることができる。   The electrode paste can contain a binder. Binders include polyacrylic acid (PAA), modified acrylic rubber, fluororesins such as polyvinylidene fluoride (PVDF), diene rubbers such as styrene butadiene rubber (SBR), polyvinylacetamide (PNVA), polyacrylic acid, etc. Can be used alone or in combination of two or more. In addition, in the case of the negative electrode, the addition amount of the binder is preferably 0.1% by weight to 20% by weight with respect to the total weight of the active material. Further, various dispersants, stabilizers and the like can be added as necessary. The solvent of the electrode paste is not particularly limited, but water, N-methyl-2-pyrrolidone (NMP), cyclohexane, N, N-dimethylformamide, tetrahydrofuran, acetone, methanol, ethanol, propanol, methyl ethyl ketone, etc. alone or in combination A mixture of the above can be used.

電極ペーストの集電体への塗布方法については、例えば、アプリケータロールなどのロ
ーラコーティング、スクリーンコーティング、ドクターブレード方式、転写方式、スピンコーティング、バーコーダなどの手段を用いて任意の厚みおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。どの方法を用いるかについては、電極ペーストの流動性や電極ペーストの集電体への結着性に応じて個別に選ぶ必要がある。
For the method of applying the electrode paste to the current collector, for example, any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, transfer method, spin coating, bar coder, etc. Although it is desirable to apply | coat to, it is not limited to these. Which method should be used must be individually selected according to the fluidity of the electrode paste and the binding property of the electrode paste to the current collector.

集電体としては、構成された電池に悪影響を及ぼさない電子伝導体であれば任意に選択できる。例えば、銅、ニッケル、アルミニウム、ステンレス、モリブデンなどが挙げられるが、リチウムと合金化しない材料から形成されていることが好ましく、特に好ましい材料としては、銅が挙げられる。集電体は厚みが薄いものであることが好ましく、特に5μm〜100μmの厚さが好ましい。このような銅箔としては、電解銅箔が挙げられる。電解銅箔は、例えば、銅イオンが溶解された非水電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られる銅箔である。さらに、必要であれば、電極ペーストを集電体に塗布し、乾燥した後に、ローラープレスなどにより圧延することも可能である。   The current collector can be arbitrarily selected as long as it is an electronic conductor that does not adversely affect the constructed battery. For example, although copper, nickel, aluminum, stainless steel, molybdenum, etc. are mentioned, it is preferable that it is formed from the material which does not alloy with lithium, and copper is mentioned as a particularly preferable material. The current collector is preferably thin, and particularly preferably 5 μm to 100 μm. Examples of such copper foil include electrolytic copper foil. Electrolytic copper foil, for example, immerses a metal drum in a non-aqueous electrolytic solution in which copper ions are dissolved, and allows current to flow while rotating it, thereby depositing copper on the surface of the drum and peeling it off It is the copper foil obtained. Furthermore, if necessary, the electrode paste can be applied to a current collector, dried, and then rolled by a roller press or the like.

本発明に係る非水電解質は、非水溶媒に非水電解液を溶解することにより、調整される。非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、1,2−ジメトキシメタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、リン酸トリエチル等を用いることができる。これらの非水溶媒は、単独、或いは2種以上を混合して使用することができる。   The non-aqueous electrolyte according to the present invention is prepared by dissolving a non-aqueous electrolyte in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), ethyl methyl carbonate (EMC), propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1,2-dimethoxymethane, 1,2-dichloroethane. 1,3-dimethoxypropane, 4-methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, dimethyl Formamide, trimethyl phosphate, triethyl phosphate and the like can be used. These non-aqueous solvents can be used alone or in admixture of two or more.

さらに、本発明に係る非水電解液に含まれる電解質としては、例えば、過塩素酸リチウム、六フッ化リン酸リチウム、ホウフッ化リチウム、六フッ化砒素リチウム、トリフルオロメタスルホン酸リチウム等のリチウム塩を用いることができる。   Further, examples of the electrolyte contained in the nonaqueous electrolytic solution according to the present invention include lithium such as lithium perchlorate, lithium hexafluorophosphate, lithium borofluoride, lithium hexafluoroarsenide, and lithium trifluorometasulfonate. A salt can be used.

本発明の非水電解液二次電池の形状は、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれであってもよい。   The shape of the non-aqueous electrolyte secondary battery of the present invention may be any of coin type, button type, sheet type, laminated type, cylindrical type, flat type, square type, large size used for electric vehicles, etc. .

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following description.

(実施例1)
(i)正極の作製
正極活物質として、Li2CO3とCo34をモル比で3:2となるように混合し、焼成してLoCoO2を合成した。このようにして得た100重量部のLiCoO2に対して、導電材としてアセチレンブラックを5重量部、結着剤としてPVDFを10重量部混合した。次いでこの混合物をLiCoO2と等量のN−メチル−2−ピロリドン(NMP)に懸濁させて、正極電極ペーストとした。厚さ20μmのアルミニウム箔を集電体とし、正極電極ペーストをドクターブレードで集電体上に塗布して120℃で60分間乾燥し、1対のステンレス製ローラーを用いてこれを圧延した後10mm×10mmに裁断し、正極とした。
Example 1
(I) Production of Positive Electrode As a positive electrode active material, Li 2 CO 3 and Co 3 O 4 were mixed at a molar ratio of 3: 2, and baked to synthesize LoCoO 2 . 5 parts by weight of acetylene black as a conductive material and 10 parts by weight of PVDF as a binder were mixed with 100 parts by weight of LiCoO 2 thus obtained. Next, this mixture was suspended in an equivalent amount of N-methyl-2-pyrrolidone (NMP) to LiCoO 2 to obtain a positive electrode paste. The aluminum foil having a thickness of 20 μm was used as a current collector, the positive electrode paste was applied onto the current collector with a doctor blade, dried at 120 ° C. for 60 minutes, and rolled using a pair of stainless steel rollers, and then 10 mm. It cut | judged in * 10mm and was set as the positive electrode.

(ii)負極活物質の作製
SiO2と昭和電工(株)製のCNFとを結着剤であるPVDFのNMP溶液に混合さ
せ、SiO2の表面にカーボンナノファイバーを結着させた。これをアルゴン雰囲気において1500℃で焼結して、負極活物質を得た。
(Ii) Production of negative electrode active material SiO 2 and CNF manufactured by Showa Denko KK were mixed in an NMP solution of PVDF as a binder, and carbon nanofibers were bound to the surface of SiO 2 . This was sintered at 1500 ° C. in an argon atmosphere to obtain a negative electrode active material.

(iii)負極の作製
アニオン系界面活性剤であるラウリン酸ナトリウムの水溶液を作製し、上述した負極活物質の表面積1m2あたりに対し界面活性剤の量が0.18gになるように負極活物質を加えて撹拌した。さらに結着剤として、負極活物質100重量部に対し平均分子量10万のPAAを20重量部添加して混練し、負極電極ペーストの固形分量を40%として、負極電極ペーストを作製した。その後、厚さ15μmの銅箔を集電体とし、乾燥後の集電体と負極合剤層との膜厚の合計が100μmになるように集電体に負極電極ペーストをドクターブレード方式で塗布し、120℃で60分間乾燥した。さらに、乾燥した負極を10mm×10mmに裁断し、負極とした。
(Iii) Preparation of negative electrode An aqueous solution of sodium laurate, which is an anionic surfactant, was prepared, and the negative electrode active material was adjusted so that the amount of surfactant was 0.18 g per 1 m 2 of the surface area of the negative electrode active material described above. Was added and stirred. Furthermore, as a binder, 20 parts by weight of PAA having an average molecular weight of 100,000 was added to 100 parts by weight of the negative electrode active material and kneaded to prepare a negative electrode paste by setting the solid content of the negative electrode paste to 40%. Then, a 15 μm thick copper foil was used as a current collector, and a negative electrode paste was applied to the current collector by a doctor blade method so that the total thickness of the dried current collector and the negative electrode mixture layer was 100 μm. And dried at 120 ° C. for 60 minutes. Furthermore, the dried negative electrode was cut into 10 mm × 10 mm to obtain a negative electrode.

なお実施例1の負極を飛行時間型質量分析(TOF−SIMS)によって測定し、界面活性剤の分子構造をもつイオン量によって、負極活物質表面の炭素質材料に対する界面活性剤の被覆率を求めた結果、0.1%であった。   The negative electrode of Example 1 was measured by time-of-flight mass spectrometry (TOF-SIMS), and the coverage of the surfactant with respect to the carbonaceous material on the surface of the negative electrode active material was determined by the amount of ions having the molecular structure of the surfactant. As a result, it was 0.1%.

(iv)非水電解液の作製
ECとEMCを体積比1:3で混合した溶媒に対し、LiPF6を1モル/リットル(1.0M)溶解して非水電解液を作製した。
(Iv) Preparation of non-aqueous electrolyte A non-aqueous electrolyte was prepared by dissolving 1 mol / liter (1.0 M) of LiPF 6 in a solvent in which EC and EMC were mixed at a volume ratio of 1: 3.

(v)電池の作製
正極にアルミニウムのリードを溶着し、負極にニッケルのリードを溶着した。次いで正極と負極との間にポリエチレン製の微多孔質フィルムからなるセパレータを介して捲回し、これを袋状のアルミラミネートフィルム(内寸35mm幅)に挿入した後、非水電解液を1ml注入し、アルミラミネートフィルムの開口端を熱封止して、非水電解液二次電池を作製した。これを実施例1とする。
(V) Production of Battery An aluminum lead was welded to the positive electrode, and a nickel lead was welded to the negative electrode. Next, it is wound between a positive electrode and a negative electrode through a separator made of a polyethylene microporous film, inserted into a bag-like aluminum laminate film (inner size 35 mm width), and then injected with 1 ml of a non-aqueous electrolyte. Then, the open end of the aluminum laminate film was heat sealed to produce a non-aqueous electrolyte secondary battery. This is Example 1.

(実施例2)
界面活性剤として非イオン系であるポリオキシエチレンアルキルエーテルを用い、負極活物質の表面積1m2あたりに対し界面活性剤の量が0.1gになるように負極活物質を加えて負極電極ペーストを作製した。これを用いたこと以外は、実施例1と同様に作製した非水電解液二次電池を実施例2とする。なお実施例1と同様に負極活物質表面の炭素質材料に対する界面活性剤の被覆率を求めた結果、2.7%であった。
(Example 2)
A nonionic polyoxyethylene alkyl ether is used as the surfactant, and the negative electrode active material is added so that the amount of the surfactant is 0.1 g per 1 m 2 of the surface area of the negative electrode active material. Produced. A nonaqueous electrolyte secondary battery produced in the same manner as in Example 1 except that this was used is referred to as Example 2. In addition, it was 2.7% as a result of calculating | requiring the coverage of the surfactant with respect to the carbonaceous material of the negative electrode active material surface similarly to Example 1. FIG.

(実施例3)
界面活性剤として非イオン系であるポリオキシエチレンソルビタン脂肪酸エステルを用い、負極活物質の表面積1m2あたりに対し界面活性剤の量が20gになるように負極活物質を加えて負極電極ペーストを作製した。これを用いたこと以外は、実施例1と同様に作製した非水電解液電池を実施例3とする。なお実施例1と同様に負極活物質表面の炭素質材料に対する界面活性剤の被覆率を求めた結果、35.6%であった。
(Example 3)
A nonionic polyoxyethylene sorbitan fatty acid ester is used as the surfactant, and the negative electrode active material is added so that the amount of the surfactant is 20 g per 1 m 2 of the surface area of the negative electrode active material to produce a negative electrode paste. did. A nonaqueous electrolyte battery produced in the same manner as in Example 1 except that this was used is referred to as Example 3. In addition, it was 35.6% as a result of calculating | requiring the coverage of the surfactant with respect to the carbonaceous material of the negative electrode active material surface similarly to Example 1. FIG.

(実施例4)
界面活性剤として両性イオン系であるアルキルアミノ脂肪酸ナトリウムを用い、負極活物質の表面積1m2あたりに対し界面活性剤の量が10gになるように負極活物質を加えて負極電極ペーストを作製した。これを用いたこと以外は、実施例1と同様に作製した非水電解液電池を実施例4とする。なお実施例1と同様に負極活物質表面の炭素質材料に対する界面活性剤の被覆率を求めた結果、70%であった。
Example 4
A zwitterionic sodium alkylamino fatty acid was used as the surfactant, and the negative electrode active material was added so that the amount of the surfactant was 10 g per 1 m 2 of the surface area of the negative electrode active material to prepare a negative electrode paste. A non-aqueous electrolyte battery produced in the same manner as in Example 1 except that this was used is referred to as Example 4. In addition, it was 70% as a result of calculating | requiring the coating rate of surfactant with respect to the carbonaceous material of the negative electrode active material surface similarly to Example 1. FIG.

(実施例5〜7)
界面活性剤として非イオン系界面活性剤であるソルビタン脂肪酸エステル(溶媒:エタノール)を用い、負極活物質の表面積1m2あたりに対し界面活性剤の量が3g(実施例5)、0.15g(実施例6)および14g(実施例7)になるように負極活物質を加えて負極電極ペーストを作製した。これを用いたこと以外は、実施例1と同様に作製した非水電解液電池を実施例5〜7とする。なお実施例1と同様に負極活物質表面の炭素質材料に対する界面活性剤の被覆率を求めた結果、それぞれ13.3%(実施例5)、0.09%(実施例6)および70.8%(実施例7)であった。
(Examples 5-7)
As the surfactant, sorbitan fatty acid ester (solvent: ethanol) which is a nonionic surfactant is used, and the amount of the surfactant is 3 g (Example 5) and 0.15 g per 1 m 2 of the surface area of the negative electrode active material ( The negative electrode active material was added so that it might become Example 6) and 14g (Example 7), and the negative electrode paste was produced. Except having used this, the nonaqueous electrolyte battery produced similarly to Example 1 is made into Examples 5-7. As in Example 1, the surfactant coverage on the carbonaceous material on the surface of the negative electrode active material was determined. As a result, 13.3% (Example 5), 0.09% (Example 6), and 70. It was 8% (Example 7).

(比較例1)
負極活物質としてSiO2のみを用いたこと以外は、実施例1と同様に非水電解液二次電池を比較例1とする。
(Comparative Example 1)
A non-aqueous electrolyte secondary battery is referred to as Comparative Example 1 as in Example 1 except that only SiO 2 is used as the negative electrode active material.

以上の各電池について、以下に示す評価を行った。結果を(表1)に示す。   Each battery described above was evaluated as follows. The results are shown in (Table 1).

(サイクル特性)
4.2Vに達するまで2mAで定電流充電を行った後、さらに0.2mAに達するまで定電圧充電を行い、30分の休止の後、3.0Vに達するまで1mAで定電流放電を行った。この充放電を繰り返し、2サイクル目の放電容量に対する50サイクル目の放電容量の比率を「容量維持率」として求めた。結果を(表1)に示す。
(Cycle characteristics)
After constant current charging at 2 mA until reaching 4.2 V, constant voltage charging was further performed until reaching 0.2 mA, and after a pause of 30 minutes, constant current discharging was performed at 1 mA until 3.0 V was reached. . This charge / discharge was repeated, and the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 2nd cycle was determined as the “capacity maintenance ratio”. The results are shown in (Table 1).

(高温保存特性)
環境温度20℃、4.2Vの定電圧、2mAの制限電流で充電を4時間行った。これらの充電状態の電池を1mAの定電流で放電し、これを3サイクル繰り返した後、4サイクル目は充電のみ行った。40℃の環境下で6時間放置した後、各電池のアルミラミネートフィルムの一端に孔をあけて、非水電解液中で電池内部のガスを捕集した。捕集したガス量(cm3)を(表1)に示す。
(High temperature storage characteristics)
Charging was performed for 4 hours at an environmental temperature of 20 ° C., a constant voltage of 4.2 V, and a limiting current of 2 mA. These batteries in a charged state were discharged at a constant current of 1 mA, and this was repeated for 3 cycles, and then only the charge was performed in the fourth cycle. After leaving for 6 hours in an environment of 40 ° C., a hole was made in one end of the aluminum laminate film of each battery, and the gas inside the battery was collected in a non-aqueous electrolyte. The amount of collected gas (cm 3 ) is shown in (Table 1).

Figure 2007311279
実施例1〜7は、比較例1と比べて容量維持率が高くなっている。この理由として負極合剤層中の負極活物質の分散性が界面活性剤の作用によって向上していることが挙げられる。その効果は負極活物質表面の炭素質材料に対する界面活性剤の被覆率が0.1%以上の場合に顕著であるが、この被覆率が70%を超えるとSiO2のリチウム吸蔵放出反応が阻害されるために、かえってややサイクル特性が低下する傾向が見られた。
Figure 2007311279
In Examples 1 to 7, the capacity retention rate is higher than that of Comparative Example 1. This is because the dispersibility of the negative electrode active material in the negative electrode mixture layer is improved by the action of the surfactant. The effect is remarkable when the coverage of the surfactant to the carbonaceous material on the surface of the negative electrode active material is 0.1% or more, but when this coverage exceeds 70%, the lithium occlusion / release reaction of SiO 2 is inhibited. As a result, there was a tendency for the cycle characteristics to decrease rather.

また実施例1〜7は、比較例1と比べてガス捕集量が少なくなっている。この理由とし
て負極活物質の炭素質材料の表面に界面活性剤が選択的に吸着して被覆することにより、充放電時のガス発生が抑制されたことが挙げられる。その効果は負極活物質表面の炭素質材料に対する界面活性剤の被覆率が0.1%以上の場合に顕著であった。
In Examples 1 to 7, the amount of gas collected is smaller than that of Comparative Example 1. The reason for this is that the generation of gas during charging and discharging is suppressed by selectively adsorbing and coating the surface of the carbonaceous material of the negative electrode active material. The effect was remarkable when the coverage of the surfactant with respect to the carbonaceous material on the surface of the negative electrode active material was 0.1% or more.

本発明の非水電解液二次電池は、従来のものより高容量な上にバランスの良い電池特性を示すので、ノートパソコンや携帯電話、デジタルカメラなどあらゆる分野に対する電源として利用可能性が高く、かつ有用である。   The non-aqueous electrolyte secondary battery of the present invention has a higher capacity than conventional batteries and exhibits well-balanced battery characteristics. Therefore, the non-aqueous electrolyte secondary battery is highly usable as a power source for various fields such as notebook computers, mobile phones, and digital cameras. And useful.

本発明の負極活物質を示す模式図Schematic showing the negative electrode active material of the present invention

符号の説明Explanation of symbols

1 金属酸化物または半金属酸化物
2 炭素質材料
3 吸着サイト
4 非吸着サイト
5 界面活性剤
1 Metal oxide or metalloid oxide 2 Carbonaceous material 3 Adsorption site 4 Non-adsorption site 5 Surfactant

Claims (4)

正極と、リチウムイオンを可逆的に吸蔵放出可能な負極活物質を有する負極と、非水電解液を備えた非水電解液二次電池であって、
表面の一部に界面活性剤を吸着させた炭素質材料を、金属酸化物または半金属酸化物の表面の少なくとも一部に付着させて前記負極活物質を構成したことを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having a negative electrode active material capable of reversibly occluding and releasing lithium ions, and a non-aqueous electrolyte,
Non-aqueous electrolysis characterized in that the negative electrode active material is configured by adhering a carbonaceous material having a surfactant adsorbed on a part of the surface to at least a part of the surface of the metal oxide or semi-metal oxide. Liquid secondary battery.
前記炭素質材料が繊維状であることを特徴とする請求項1記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material is fibrous. 前記界面活性剤が、前記炭素質材料の0.1〜70%を被覆していることを特徴とする請求項1記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the surfactant covers 0.1 to 70% of the carbonaceous material. 前記界面活性剤としてアニオン系界面活性剤、両イオン系界面活性剤、非イオン系界面活性剤のいずれかを単独、あるいは2種以上の混合物として含むことを特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous composition according to claim 1, wherein the surfactant contains any one of an anionic surfactant, a zwitterionic surfactant, and a nonionic surfactant as a single type or a mixture of two or more types. Electrolyte secondary battery.
JP2006141172A 2006-05-22 2006-05-22 Nonaqueous electrolytic solution secondary battery Pending JP2007311279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141172A JP2007311279A (en) 2006-05-22 2006-05-22 Nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141172A JP2007311279A (en) 2006-05-22 2006-05-22 Nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2007311279A true JP2007311279A (en) 2007-11-29

Family

ID=38843937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141172A Pending JP2007311279A (en) 2006-05-22 2006-05-22 Nonaqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2007311279A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076948A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Conductive complex, and negative electrode for lithium ion battery
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
WO2015164848A1 (en) * 2014-04-25 2015-10-29 South Dakota Board Of Regents High capacity electrodes
KR101808594B1 (en) 2012-11-26 2017-12-13 인더스트리얼 테크놀로지 리서치 인스티튜트 Electrode powder and electrode plate for lithium ion battery
WO2020090343A1 (en) * 2018-11-02 2020-05-07 日産化学株式会社 Active material composite formation composition, active material composite, and production method for active material composite
CN111509227A (en) * 2013-01-25 2020-08-07 帝人株式会社 Ultrafine fibrous carbon aggregate for nonaqueous electrolyte secondary battery, composite, and electrode active material layer
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076948A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Conductive complex, and negative electrode for lithium ion battery
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JPWO2012029420A1 (en) * 2010-09-02 2013-10-28 日本電気株式会社 Secondary battery
JP5978999B2 (en) * 2010-09-02 2016-08-24 日本電気株式会社 Secondary battery
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
KR101808594B1 (en) 2012-11-26 2017-12-13 인더스트리얼 테크놀로지 리서치 인스티튜트 Electrode powder and electrode plate for lithium ion battery
CN111509227A (en) * 2013-01-25 2020-08-07 帝人株式会社 Ultrafine fibrous carbon aggregate for nonaqueous electrolyte secondary battery, composite, and electrode active material layer
JP7023198B2 (en) 2013-01-25 2022-02-21 帝人株式会社 Ultrafine fibrous carbon, ultrafine fibrous carbon aggregate, carbon-based conductive aid, electrode material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and ultrafine fiber Method of manufacturing state carbon
US11545669B2 (en) 2013-01-25 2023-01-03 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
WO2015164848A1 (en) * 2014-04-25 2015-10-29 South Dakota Board Of Regents High capacity electrodes
JP2017514290A (en) * 2014-04-25 2017-06-01 サウス ダコタ ボード オブ リージェンツ Large capacity electrode
CN106463710B (en) * 2014-04-25 2021-01-05 南达科他州评议委员会 High capacity electrode
US10950847B2 (en) 2014-04-25 2021-03-16 South Dakota Board Of Regents High capacity electrodes
EP3920273A1 (en) * 2014-04-25 2021-12-08 South Dakota Board of Regents High capacity electrodes
CN106463710A (en) * 2014-04-25 2017-02-22 南达科他州评议委员会 High capacity electrodes
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes
CN112956051A (en) * 2018-11-02 2021-06-11 日产化学株式会社 Composition for forming active material composite material, and method for producing same
JPWO2020090343A1 (en) * 2018-11-02 2021-09-24 日産化学株式会社 Composition for forming an active material complex, an active material complex, and a method for producing an active material complex.
WO2020090343A1 (en) * 2018-11-02 2020-05-07 日産化学株式会社 Active material composite formation composition, active material composite, and production method for active material composite
JP7318661B2 (en) 2018-11-02 2023-08-01 日産化学株式会社 Active material complex-forming composition, active material complex, and method for producing active material complex

Similar Documents

Publication Publication Date Title
JP5416128B2 (en) Non-aqueous secondary battery
US10164240B2 (en) Composite anode active material, anode including the composite anode active material, and lithium secondary battery including the anode
JP6237791B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
US10374222B2 (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
JP7028164B2 (en) Lithium ion secondary battery
JP6755253B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery including this
KR101213300B1 (en) Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
US10601024B2 (en) Anode materials for lithium ion batteries and methods of making and using same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2011192563A (en) Nonaqueous secondary battery
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP2011233349A (en) Nonaqueous secondary battery
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2016136227A1 (en) Nonaqueous electrolyte secondary battery
JP2007311279A (en) Nonaqueous electrolytic solution secondary battery
JP2013178913A (en) Nonaqueous electrolyte secondary battery
JP2012174577A (en) Negative electrode plate of lithium secondary battery, negative electrode, and lithium secondary battery
JP2016219408A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP2016184484A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6567289B2 (en) Lithium ion secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
JP7096184B2 (en) Lithium-ion secondary battery and its manufacturing method