JP2007309736A - Crack development testing method and crack development testing machine - Google Patents
Crack development testing method and crack development testing machine Download PDFInfo
- Publication number
- JP2007309736A JP2007309736A JP2006137724A JP2006137724A JP2007309736A JP 2007309736 A JP2007309736 A JP 2007309736A JP 2006137724 A JP2006137724 A JP 2006137724A JP 2006137724 A JP2006137724 A JP 2006137724A JP 2007309736 A JP2007309736 A JP 2007309736A
- Authority
- JP
- Japan
- Prior art keywords
- crack
- test piece
- displacement
- test
- crack growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、構造材料の健全性を試験するために、試験片に形成されたき裂を進展させるき裂進展試験方法、および、き裂進展試験装置に関する。 The present invention relates to a crack propagation test method and a crack propagation test apparatus for propagating a crack formed on a test piece in order to test the soundness of a structural material.
沸騰水型原子炉の炉内機器などには、応力腐食割れ(SCC)が発生して構造健全性が損なわれるおそれがある。このため、SCCによるき裂の進展速度を、高い精度で測定する試験方法が必要とされている。 There is a possibility that stress corrosion cracking (SCC) occurs in the in-core equipment of a boiling water reactor and the structural integrity is impaired. For this reason, there is a need for a test method for measuring the crack growth rate by SCC with high accuracy.
たとえば特許文献1には、小型で廉価なき裂進展特性評価装置が開示されている。
一般に、き裂進展速度は、応力拡大係数に支配されていると考えられている。このため、試験により取得したSCCによるき裂進展速度と応力拡大係数との関係を用いて、実機のき裂進展寿命評価が行われている。 In general, it is considered that the crack growth rate is governed by the stress intensity factor. For this reason, the crack growth life evaluation of the actual machine is performed using the relationship between the crack growth rate and the stress intensity factor by SCC obtained by the test.
模擬炉水環境中の試験によるき裂進展速度データにはばらつきが大きく、ある応力拡大係数におけるき裂進展速度を決定するためには信頼性の高い試験データの取得が望まれている。しかし、従来のコンパクトテンション型試験片を用いた試験方法ではき裂長さの増加とともに応力拡大係数が変化するため、ある特定の応力拡大係数におけるき裂進展速度を正確に決定できないという問題がある。 The crack growth rate data from tests in a simulated reactor water environment vary widely, and obtaining reliable test data is desired to determine the crack growth rate at a certain stress intensity factor. However, in the conventional test method using a compact tension type test piece, the stress intensity factor changes as the crack length increases, so that there is a problem that the crack growth rate at a specific stress intensity factor cannot be accurately determined.
本発明は、上述の課題を解決するため、応力拡大係数が一定のままき裂を進展させるき裂進展試験ができるようにすることを目的とする。 In order to solve the above-described problems, an object of the present invention is to make it possible to perform a crack growth test in which a crack is propagated with a constant stress intensity factor.
上述の目的を達成するため、本発明は、試験片にき裂を進展させるき裂進展試験方法において、前記試験片にき裂を形成するき裂形成工程と、前記試験片に、前記き裂が延びる方向に垂直な強制変位を加え、その強制変位を一定に保つ保持工程と、を有することを特徴とする。 In order to achieve the above-mentioned object, the present invention provides a crack growth test method in which a crack is propagated in a test piece, a crack forming step for forming a crack in the test piece, and the crack in the test piece. And a holding step of keeping the forced displacement constant by applying a forced displacement perpendicular to the extending direction.
また、本発明は、試験片にき裂を進展させるき裂進展試験装置において、き裂が形成された前記試験片に、前記き裂が延びる方向に垂直な強制変位を加え、その強制変位を一定に保つ保持手段、を有することを特徴とする。 Further, the present invention provides a crack propagation test apparatus for propagating a crack in a test piece, to which a forced displacement perpendicular to the direction in which the crack extends is applied to the test piece in which the crack is formed. Holding means for keeping it constant.
本発明によれば、応力拡大係数が一定のままき裂を進展させるき裂進展試験ができる。 According to the present invention, it is possible to perform a crack growth test in which a crack is propagated with a constant stress intensity factor.
本発明に係るき裂進展試験方法、および、そのための試験装置の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。 Embodiments of a crack growth test method and a test apparatus therefor according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.
[第1の実施の形態]
図1は、本発明に係る第1の実施の形態のき裂進展試験方法に用いられる試験片の正面図である。図2は、図1の試験片の側面図である。
[First Embodiment]
FIG. 1 is a front view of a test piece used in the crack growth test method according to the first embodiment of the present invention. FIG. 2 is a side view of the test piece of FIG.
試験片1は、板厚が均一で、一対の長辺21および一対の短辺22で囲まれる長方形の板である。
The
き裂進展試験は、試験片1にき裂2を形成するき裂形成工程と、試験片1に変位を加えて保持する保持工程を有している。き裂形成工程において、き裂2は、試験片1の一方の長辺21から短辺22にほぼ平行に、その先端20が試験片1のほぼ中央に位置するように形成される。
The crack growth test has a crack forming process for forming a
一方の短辺22は、き裂2が剛体壁3にほぼ並行となるように、剛体壁3に固定されている。保持工程において、試験片1のき裂2を挟んで剛体壁3に対向する辺には、その辺の全体に一様な強制変位が加えられ、その強制変位は一定に保持される。図1では、試験片1に加える強制変位の方向を、破線の矢印4で示した。
One
次に、このようなき裂進展試験で、応力拡大係数がほぼ一定となることを、この試験を模擬した数値解析の結果を用いて示す。 Next, the fact that the stress intensity factor is almost constant in such a crack growth test is shown using the results of numerical analysis simulating this test.
図3は、き裂進展試験を模擬した数値解析モデルを示す図である。 FIG. 3 is a diagram showing a numerical analysis model simulating a crack growth test.
ここで、試験片1の長さは200mm、幅は100mmとし、一方の長辺21から垂直に長さaのき裂2が形成されているとした。なお、解析は、対称性を考慮して1/2の部分をモデル化している。試験片1の短辺22の全体に一様な0.025mmの強制変位を、試験片1を引っ張るように長辺21の方向に加えた状態を模擬している。
Here, the length of the
図4は、き裂長さaを変えて数値解析により求めた応力拡大係数Kを示すグラフである。なお、グラフの横軸は、き裂長さaを試験片1の短辺22の長さWで除して無次元化した無次元化き裂長さa/Wである。
FIG. 4 is a graph showing the stress intensity factor K obtained by numerical analysis while changing the crack length a. The horizontal axis of the graph represents the non-dimensional crack length a / W obtained by dividing the crack length a by the length W of the
図4から、a/Wが0.1から0.4までの間ではき裂長さの増加とともに応力拡大係数Kは大きくなるが、a/Wが0.4から0.7までの間、すなわちき裂長さが板幅の40%から70%の間ではほぼ一定値を取ることがわかる。そこで、この範囲を試験範囲とする。 From FIG. 4, the stress intensity factor K increases as the crack length increases when a / W is between 0.1 and 0.4, but a / W is between 0.4 and 0.7, that is, It can be seen that the crack length is almost constant when the crack length is between 40% and 70% of the plate width. Therefore, this range is set as a test range.
このように、き裂長さaが試験片1の幅の所定の割合の範囲にある場合には、応力拡大係数Kがほぼ一定となる。このため、試験片1にこの範囲のき裂長さのき裂2を形成しておくことにより、試験片1の一端に一様変位を与えるという非常に簡易な方法によって、応力拡大係数が一定のき裂進展試験を行うことができる。
Thus, when the crack length a is within a predetermined ratio range of the width of the
また、き裂進展試験では、保持工程の後に、試験片1に強制変位を加えるために負荷した力を除荷する解放工程を追加し、解放工程の後に、再度、試験片1のき裂2を挟んで剛体壁3に対向する辺の全体に一様な強制変位を加えて、その強制変位を一定に保つことにより、試験片1に繰り返し強制変位を加えてもよい。
In the crack growth test, a release process for unloading the force applied to apply the forced displacement to the
なお、試験片1の形状は長方形に限定されるものではない。
In addition, the shape of the
[第2の実施の形態]
図5は、本発明に係る第2の実施の形態のき裂進展試験方法に用いられる試験片の正面図である。図6は、図5の試験片をき裂進展試験装置の要部とともに示す側面図である。
[Second Embodiment]
FIG. 5 is a front view of a test piece used in the crack growth test method according to the second embodiment of the present invention. FIG. 6 is a side view showing the test piece of FIG. 5 together with the main part of the crack growth test apparatus.
試験片1の両方の短辺22には、き裂2が形成されている場所の板厚よりも板厚が厚い掴み部5がそれぞれ形成されている。掴み部5の剛性は、板厚が厚いためき裂2が形成されている部分に比べて大きくなっている。
On both
き裂進展試験装置は、向かい合う2つのチャック6およびボールねじ7を備えた負荷機構を有している。2つのチャック6は、それぞれ試験片1の掴み部5をつかめるようになっている。一つのチャック6には、ボールねじ7が取り付けられている。もう一方のチャック6は、剛体壁3に固定される。また、ボールねじ7は、ガイド8によって案内されている。
The crack growth test apparatus has a load mechanism including two
掴み部5は、2つのチャック6によって保持される。ボールねじ7は、回転角を制御することにより試験片1の端面に一定の強制変位を与える。
The
また、ガイド8としてシール部材を用いることと、模擬炉水環境中でのき裂進展試験を行うこともできる。
In addition, a seal member can be used as the
[第3の実施の形態]
図7は、本発明に係る第3の実施の形態のき裂進展試験方法に用いられる試験片をき裂進展試験装置の要部とともに示す側面図である。
[Third Embodiment]
FIG. 7: is a side view which shows the test piece used for the crack growth test method of 3rd Embodiment based on this invention with the principal part of a crack growth test apparatus.
本実施の形態のき裂進展試験装置は、チャック6に直接取り付けられた油圧シリンダ9、チャック6の間の変位を測定する変位計10、および、油圧シリンダの変位を制御するサーボ制御器11を有している。
The crack growth test apparatus according to the present embodiment includes a
サーボ制御器11は、変位計10によって測定されたチャック6の間の変位を受け取り、この変位量が一定に維持されるように、油圧シリンダ9の変位を制御する。この油圧シリンダ9によって、チャック6に強制変位を与える。これにより、高精度な応力拡大係数一定き裂進展試験が可能である。
The
なお、本実施の形態においても、ガイド8にシール部材を用いることで模擬炉水環境中でのき裂進展試験が可能である。
In this embodiment as well, a crack propagation test in a simulated reactor water environment is possible by using a seal member for the
なお、以上の説明は単なる例示であり、本発明は上述の各実施の形態に限定されず、様々な形態で実施することができる。また、各実施の形態の特徴を組み合わせて実施することもできる。 The above description is merely an example, and the present invention is not limited to the above-described embodiments, and can be implemented in various forms. Moreover, it can also implement combining the characteristic of each embodiment.
1…試験片、2…き裂、3…剛体壁、5…掴み部、6…チャック、7…ボールねじ、8…ガイド、9…油圧シリンダ、10…変位計、11…サーボ制御器
DESCRIPTION OF
Claims (10)
前記試験片にき裂を形成するき裂形成工程と、
前記試験片に、前記き裂が延びる方向に垂直な強制変位を加え、その強制変位を一定に保つ保持工程と、
を有することを特徴とするき裂進展試験方法。 In the crack growth test method for propagating a crack in the test piece,
A crack forming step for forming a crack in the test piece;
Applying a forced displacement perpendicular to the direction in which the crack extends to the test piece, and maintaining the forced displacement constant;
A crack growth test method characterized by comprising:
前記解放工程の後に、前記試験片に前記強制変位を加えて、その強制変位を一定に保つ再保持工程と、
を有することを特徴とする請求項1記載のき裂進展試験方法。 After the holding step, a releasing step of unloading the force applied to apply the forced displacement to the test piece;
After the releasing step, applying the forced displacement to the test piece, a re-holding step of keeping the forced displacement constant,
The crack growth test method according to claim 1, wherein:
前記試験片に加えられた変位を測定する測定工程と、
前記測定工程で測定された変位をフィードバックして前記試験片に加えられる変位をサーボ制御する工程と、
を有することを特徴とする請求項1または請求項2記載のき裂進展試験方法。 The holding step includes
A measuring step for measuring a displacement applied to the test piece;
Feeding back the displacement measured in the measuring step to servo-control the displacement applied to the test piece;
The crack growth test method according to claim 1 or 2, characterized by comprising:
き裂が形成された前記試験片に、前記き裂が延びる方向に垂直な強制変位を加え、その強制変位を一定に保つ保持手段、
を有することを特徴とするき裂進展試験装置。 In a crack growth test device that propagates a crack in a test piece,
Holding means for applying a forced displacement perpendicular to the direction in which the crack extends to the test piece formed with a crack, and maintaining the forced displacement constant;
A crack growth test apparatus characterized by comprising:
前記保持手段は、前記掴み部を把持して、その掴み部の前記き裂に平行な方向全体にわたって一様な前記強制変位を加え、その強制変位を一定に保つものである、
ことを特徴とする請求項6記載のき裂進展試験装置。 The test piece includes a grip portion having a predetermined rigidity at both ends in a direction in which displacement is applied across the crack,
The holding means grips the grip part, applies the forced displacement that is uniform over the entire direction parallel to the crack of the grip part, and keeps the forced displacement constant.
The crack growth test apparatus according to claim 6.
前記強制変位の方向に延びるシリンダと、
前記シリンダの変位を制御可能な油圧機構と、
を有することを特徴とする請求項6または請求項7記載のき裂進展試験装置。 The holding means is
A cylinder extending in the direction of the forced displacement;
A hydraulic mechanism capable of controlling the displacement of the cylinder;
The crack growth test apparatus according to claim 6 or 7, characterized by comprising:
前記試験片に加えられた変位を測定する測定手段と、
前記測定手段が測定した変位をフィードバックして前記シリンダの変位を前記油圧機構を介してサーボ制御する制御手段と、
を有することを特徴とする請求項9記載のき裂進展試験装置。 The holding means is
Measuring means for measuring the displacement applied to the test piece;
Control means for feeding back the displacement measured by the measuring means to servo-control the displacement of the cylinder via the hydraulic mechanism;
The crack growth test apparatus according to claim 9, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006137724A JP4764249B2 (en) | 2006-05-17 | 2006-05-17 | Crack growth test method and crack growth test apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006137724A JP4764249B2 (en) | 2006-05-17 | 2006-05-17 | Crack growth test method and crack growth test apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007309736A true JP2007309736A (en) | 2007-11-29 |
JP4764249B2 JP4764249B2 (en) | 2011-08-31 |
Family
ID=38842730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006137724A Active JP4764249B2 (en) | 2006-05-17 | 2006-05-17 | Crack growth test method and crack growth test apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4764249B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008147A (en) * | 2008-06-25 | 2010-01-14 | Toshiba Corp | Crack development testing method and device |
JP2010160028A (en) * | 2009-01-07 | 2010-07-22 | Toshiba Corp | Method for evaluating breaking strength of different material joint part |
CN110702014A (en) * | 2019-11-26 | 2020-01-17 | 苏交科集团股份有限公司 | Crack monitoring device and method for road slope |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636339U (en) * | 1986-06-25 | 1988-01-16 | ||
JPS63168560A (en) * | 1986-12-29 | 1988-07-12 | Nippon Steel Corp | Jig for introducing brittle precracking to ceramic test piece |
JPS63229339A (en) * | 1987-03-18 | 1988-09-26 | Toshiba Corp | Method for measuring stress magnifying coefficient and apparatus for monitoring residual life of cracked member |
JPH01114738A (en) * | 1987-10-28 | 1989-05-08 | Shimadzu Corp | Crack progress due to fatigue testing instrument |
JPH05340858A (en) * | 1992-06-10 | 1993-12-24 | Hitachi Ltd | Corrosion environment sensor and corrosion environment controller |
JPH08278241A (en) * | 1995-04-07 | 1996-10-22 | Toshiba Corp | Crack-development-characteristic evaluation apparatus |
JP2004340591A (en) * | 2003-05-13 | 2004-12-02 | Toshiba Corp | Method of testing stress corrosion cracking |
-
2006
- 2006-05-17 JP JP2006137724A patent/JP4764249B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636339U (en) * | 1986-06-25 | 1988-01-16 | ||
JPS63168560A (en) * | 1986-12-29 | 1988-07-12 | Nippon Steel Corp | Jig for introducing brittle precracking to ceramic test piece |
JPS63229339A (en) * | 1987-03-18 | 1988-09-26 | Toshiba Corp | Method for measuring stress magnifying coefficient and apparatus for monitoring residual life of cracked member |
JPH01114738A (en) * | 1987-10-28 | 1989-05-08 | Shimadzu Corp | Crack progress due to fatigue testing instrument |
JPH05340858A (en) * | 1992-06-10 | 1993-12-24 | Hitachi Ltd | Corrosion environment sensor and corrosion environment controller |
JPH08278241A (en) * | 1995-04-07 | 1996-10-22 | Toshiba Corp | Crack-development-characteristic evaluation apparatus |
JP2004340591A (en) * | 2003-05-13 | 2004-12-02 | Toshiba Corp | Method of testing stress corrosion cracking |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008147A (en) * | 2008-06-25 | 2010-01-14 | Toshiba Corp | Crack development testing method and device |
JP2010160028A (en) * | 2009-01-07 | 2010-07-22 | Toshiba Corp | Method for evaluating breaking strength of different material joint part |
CN110702014A (en) * | 2019-11-26 | 2020-01-17 | 苏交科集团股份有限公司 | Crack monitoring device and method for road slope |
CN110702014B (en) * | 2019-11-26 | 2021-04-06 | 苏交科集团股份有限公司 | Crack monitoring device and method for road slope |
Also Published As
Publication number | Publication date |
---|---|
JP4764249B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103760036B (en) | A kind of method of testing of steel fiber reinforced concrete destructive test initial cracking load | |
Hill | The slitting method | |
CN108827513B (en) | Method for detecting plane residual stress of thin plate subjected to laser shot blasting | |
US20110126605A1 (en) | Bend bar quality control method for laser shock peening | |
JP4764249B2 (en) | Crack growth test method and crack growth test apparatus | |
CN106092785A (en) | The method using asymmetric crackle test fatigue crack growth rate | |
JPH0621783B2 (en) | Fatigue / remaining life evaluation method for machine parts | |
CN105352433A (en) | Device and method for measuring surface crack depth and shape of hull typical welding structure | |
JP2000258306A (en) | Evaluation technique for creep life by maximum void grain boundary occupation rate method | |
JP5049896B2 (en) | Crack growth test method and apparatus | |
JP2009198296A (en) | Fatigue tester and fatigue strength evaluation method | |
KR20140124698A (en) | An apparatus for examining surface status of metallic and plastic materials | |
JP2006234594A (en) | Material strength testing device and method | |
Verreman et al. | Short crack growth and coalescence along the toe of a manual fillet weld | |
JP2000146716A (en) | Method and device for measuring residual stress | |
JP6049377B2 (en) | Fatigue testing equipment | |
Saeed et al. | Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimens | |
JP4000089B2 (en) | Stress corrosion cracking test method | |
BR112018074669B1 (en) | METHOD FOR ULTRASONIC TESTING OF ELONGATED HOLLOW PROFILES | |
JP2005227138A (en) | Internal residual stress measuring instrument, and measuring method therefor | |
Valentini et al. | Bending test rig for validating the hole drilling method residual stress measurement | |
TW200813675A (en) | System and method for controlling movements of a machine tool | |
JP2009109388A (en) | Template | |
KR20120097229A (en) | Curved-type tension test apparatus for pipe wreck test | |
JP7481300B2 (en) | Method for estimating stress in concrete members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110610 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4764249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |