JP2007308544A - Nano composite material having low dielectric constant and low refractive index - Google Patents

Nano composite material having low dielectric constant and low refractive index Download PDF

Info

Publication number
JP2007308544A
JP2007308544A JP2006137217A JP2006137217A JP2007308544A JP 2007308544 A JP2007308544 A JP 2007308544A JP 2006137217 A JP2006137217 A JP 2006137217A JP 2006137217 A JP2006137217 A JP 2006137217A JP 2007308544 A JP2007308544 A JP 2007308544A
Authority
JP
Japan
Prior art keywords
dielectric constant
refractive index
silica
resin
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137217A
Other languages
Japanese (ja)
Inventor
Akio Takahashi
昭雄 高橋
Yasuo Miyazaki
靖夫 宮崎
Shinji Yamada
真治 山田
Yuuichi Satsuu
祐一 佐通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006137217A priority Critical patent/JP2007308544A/en
Publication of JP2007308544A publication Critical patent/JP2007308544A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica resin nano composite material which can realize a low dielectric constant and a low refractive index without needing the introduction of a special structure in the insulated resin, and to provide a method for producing the same. <P>SOLUTION: This silica resin nano composite material having a low dielectric constant and a low refractive index and having a nano porous structure having ≤100 nm diameter pores in the organic resin is obtained by heating a physically gelled organogel formed from silica fine particles, the organic resin, and an organic solvent to remove the organic solvent from the gelation product. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機樹脂中に直径が100nm以下のナノポーラス構造を有するポリマー/セラミックナノコンポジット材料に関し、多層配線の低誘電率層間絶縁材料,各種ディスプレイの低反射膜,導波路用クラッド材として広く応用できる。   The present invention relates to a polymer / ceramic nanocomposite material having a nanoporous structure with a diameter of 100 nm or less in an organic resin, and is widely applied as a low dielectric constant interlayer insulating material for multilayer wiring, a low reflection film for various displays, and a cladding material for a waveguide. it can.

電子材料用絶縁樹脂としてエポキシ樹脂が幅広く使用されている。エポキシ樹脂は、室温で液状のものから固体のものまであり汎用溶剤にも可溶であるため作業性に優れている。また、アミン系,無水酸系,フェノール系の各種硬化剤あるいは光開始剤により容易に硬化し成形性も優れている。硬化物の接着性,機械物性,耐熱性,電気特性等の各種特性も優れたバランスの良い樹脂である。電子材料用絶縁樹脂は、伝送速度向上の観点から誘電率の低減が強く望まれている。しかしながら、電子材料用エポキシ樹脂が有するエポキシ基、硬化剤となるアミノ基,フェノールあるいは、硬化後に生成する水酸基やカルボキシル基等の極性基の影響で誘電率の低減には限界がある。さらに、各種ディスプレイの低反射膜,導波路クラッド等への応用範囲の拡大が検討されている。しかしながら、誘電率の場合と同様に、分子構造中に有する極性基の影響で低屈折率化には限界があった。エポキシ樹脂の低誘電率は、耐熱骨格として導入されている芳香族基の代わりに脂環式構造を導入する。あるいは、硬化剤としてアミノ基やフェノール基等の極性基が極力少なく、且つ硬化過程で水酸基が生成しない方法により行われる。エポキシ樹脂は上述したように、接着性,耐熱性等の特性の優れたバランスのとれた樹脂であるが極性基を減らすことにより接着性が損なわれる。脂環式構造の導入や嵩高いアルキル基の導入は、耐熱性を犠牲にせざるを得なくなる問題がある。さらに、特殊な構造の導入は、合成コストが高くなることも問題である。また、ポリテトラフロロエチレンの多孔質材料を補強材として用いる材料もあるが、特殊な補強材料を使用する必要があるための使用上の制約がある。また、不透明材料になる問題もある。   Epoxy resins are widely used as insulating resins for electronic materials. Epoxy resins range from liquid to solid at room temperature and are soluble in general-purpose solvents, so they are excellent in workability. Further, it is easily cured by various amine-based, acid anhydride-based and phenol-based curing agents or photoinitiators, and has excellent moldability. It is a well-balanced resin with excellent properties such as adhesion of cured products, mechanical properties, heat resistance, and electrical properties. Insulating resins for electronic materials are strongly desired to reduce the dielectric constant from the viewpoint of improving transmission speed. However, there is a limit to the reduction of the dielectric constant due to the influence of the epoxy group possessed by the epoxy resin for electronic materials, the amino group serving as a curing agent, phenol, or polar groups such as hydroxyl groups and carboxyl groups generated after curing. Furthermore, expansion of the application range of various displays to low-reflection films, waveguide claddings, and the like has been studied. However, as in the case of the dielectric constant, there is a limit to lowering the refractive index due to the influence of polar groups in the molecular structure. The low dielectric constant of the epoxy resin introduces an alicyclic structure instead of the aromatic group introduced as a heat-resistant skeleton. Alternatively, it is carried out by a method in which polar groups such as amino groups and phenol groups are as few as possible as a curing agent and a hydroxyl group is not generated during the curing process. As described above, the epoxy resin is a well-balanced resin having excellent properties such as adhesion and heat resistance, but the adhesion is impaired by reducing the polar groups. The introduction of an alicyclic structure or a bulky alkyl group has a problem that heat resistance must be sacrificed. Furthermore, the introduction of a special structure has a problem that the synthesis cost is increased. In addition, there is a material using a porous material of polytetrafluoroethylene as a reinforcing material, but there is a limitation in use because it is necessary to use a special reinforcing material. There is also a problem of becoming an opaque material.

一方、ナノポーラス構造を有するシリカ微粒子をエポキシ樹脂中に分散する方法がある(例えば、特許文献1)。この方法は、特殊な方法で製造された約10Å(1nm)から約100Å(10nm)の範囲にわたる大きさの空隙を有するシリカ中空球体を用いる方法である。シリカ球体そのものの大きさは約10nmから約1,000nm の範囲のものができる。この方法によれば、エポキシ樹脂やポリイミド樹脂に上述の特殊なシリカ中空球体を分散させることにより誘電率が3.0 以下の樹脂を得ることができる。この方法によれば、シリカ中空球体の分散量によるがエポキシ樹脂等の一般特性を損なわずに低誘電率化が図れる可能性がある。   On the other hand, there is a method of dispersing silica fine particles having a nanoporous structure in an epoxy resin (for example, Patent Document 1). This method uses silica hollow spheres having voids having a size ranging from about 10 mm (1 nm) to about 100 mm (10 nm) manufactured by a special method. The size of the silica sphere itself can range from about 10 nm to about 1,000 nm. According to this method, a resin having a dielectric constant of 3.0 or less can be obtained by dispersing the above-described special silica hollow spheres in an epoxy resin or a polyimide resin. According to this method, depending on the amount of silica hollow spheres dispersed, there is a possibility that a low dielectric constant can be achieved without impairing general properties such as epoxy resin.

この他、かご状シルセスキオキサンを用いて分子構造中にある分子レベルの空隙を利用した低屈折率コンポジットも検討されている(例えば、特許文献2)。   In addition, a low-refractive-index composite using a cage silsesquioxane and utilizing molecular-level voids in the molecular structure has also been studied (for example, Patent Document 2).

特開平5−182518号公報JP-A-5-182518 特開2000−334881号公報JP 2000-334881 A

しかしながら、引用文献1に記載のシリカ中空球体を得る為には、室温から300℃、300℃から600℃、600℃から800℃の温度で、酸素雰囲気あるいは塩素/アルゴンガス雰囲気下で長時間の熱処理が必要であり、最終的には約800℃から約1200℃の範囲でのフラッシュ焼結が必要である。また、空隙含有率のコントロールも難しい等の問題がある。   However, in order to obtain the silica hollow sphere described in the cited document 1, the temperature is from room temperature to 300 ° C., from 300 ° C. to 600 ° C., from 600 ° C. to 800 ° C., in an oxygen atmosphere or a chlorine / argon gas atmosphere for a long time. Heat treatment is required, and eventually flash sintering in the range of about 800 ° C. to about 1200 ° C. is necessary. There is also a problem that it is difficult to control the void content.

また、引用文献2では、かご状シルセスキオキサンの合成,分子量の制御,特性の安定化等で課題を残している。   In Cited Document 2, problems remain in the synthesis of cage silsesquioxane, control of molecular weight, stabilization of characteristics, and the like.

本発明は、上述の問題を鑑みなされたもので、絶縁樹脂において、特殊な構造の導入を必要とせず、低誘電率,低屈折率を実現可能なシリカ樹脂ナノコンポジット材料とその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a silica resin nanocomposite material capable of realizing a low dielectric constant and a low refractive index without requiring the introduction of a special structure in an insulating resin, and a method for producing the same. The purpose is to do.

本発明者らは上記目的を達成するために鋭意検討を重ねた結果、シリカ微粒子,有機樹脂,有機溶剤から形成される物理ゲル化したオルガノゲルを利用することにより、有機樹脂中に直径100nm以下の気泡を有するナノポーラス構造を有する低誘電率低屈折率材料が得られることを確認した。有機溶剤に分散させた粒径が5nmから100nmのシリカ微粒子をエポキシ樹脂に分散させた後、物理ゲル化状態にする。この後、加熱によりゲル化物から有機溶剤を除去する方法である。   As a result of intensive studies in order to achieve the above object, the present inventors have used a physical gelled organogel formed from silica fine particles, an organic resin, and an organic solvent, so that the organic resin has a diameter of 100 nm or less. It was confirmed that a low dielectric constant and low refractive index material having a nanoporous structure with bubbles was obtained. Silica fine particles having a particle size of 5 nm to 100 nm dispersed in an organic solvent are dispersed in an epoxy resin and then brought into a physical gelation state. Thereafter, the organic solvent is removed from the gelled product by heating.

上記目的を達成するため、本発明は、有機樹脂中にシリカ微粒子が分散した低誘電率低屈折率シリカ樹脂ナノコンポジット材料であって、前記有機樹脂が直径100nm以下の気泡を有する低誘電率低屈折率シリカ樹脂ナノコンポジット材料を特徴とする。   In order to achieve the above object, the present invention provides a low dielectric constant low refractive index silica resin nanocomposite material in which silica fine particles are dispersed in an organic resin, wherein the organic resin has a low dielectric constant and a low bubble having a diameter of 100 nm or less. Features refractive index silica resin nanocomposite material.

また、本発明は、シリカ微粒子を分散した有機樹脂と溶剤からなる溶液を、室温で放置して物理ゲルとした後、加熱により溶剤を除去し、前記シリカ微粒子が分散した前記有機樹脂中に直径100nm以下の気泡を形成する低誘電率低屈折率シリカ樹脂ナノコンポジット材料の製造方法を特徴とする。   In the present invention, a solution comprising an organic resin in which silica fine particles are dispersed and a solvent is allowed to stand at room temperature to form a physical gel, then the solvent is removed by heating, and the diameter of the organic resin in which the silica fine particles are dispersed is removed. It is characterized by a method for producing a low dielectric constant, low refractive index silica resin nanocomposite material that forms bubbles of 100 nm or less.

本発明によれば、ナノ粒子特有の現象である溶剤を取り込んだ物理ゲル現象を利用するため特別な装置や薬品を必要とせず安価に、比誘電率が2.0〜3.0の低誘電率のシリカ樹脂ナノコンポジット材料を得ることができ、例えば、配線板の層間絶縁膜に適用した場合、信号伝送速度の大幅な改善を図ることができる。また、本発明のシリカ樹脂ナノコンポジット材料は、無色透明な樹脂板となり光の屈折率も低減され、各種ディスプレイの反射防止膜,導波路用クラッド材として応用範囲が大きく広がる。   According to the present invention, a low dielectric constant having a relative dielectric constant of 2.0 to 3.0 is obtained at low cost without using a special device or chemical because a physical gel phenomenon incorporating a solvent, which is a phenomenon peculiar to nanoparticles, is used. For example, when applied to an interlayer insulating film of a wiring board, the signal transmission speed can be greatly improved. In addition, the silica resin nanocomposite material of the present invention becomes a colorless and transparent resin plate, the refractive index of light is reduced, and the application range is greatly expanded as an antireflection film for various displays and a clad material for waveguides.

本発明の低誘電率低屈折率シリカ樹脂ナノコンポジット材料は、有機溶剤に分散させた粒径が5nmから100nmのシリカ微粒子をエポキシ樹脂に分散させた後、物理ゲル化状態にする。この後、加熱によりゲル化物から有機溶剤を除去する方法により作成される。この加熱過程で溶剤は除去されるが、コンポジット樹脂の形状,体積共にほとんど変化しない。コンポジット樹脂は、無色透明であり溶剤が除去された後の空隙のサイズは100nm以下である。最終的に、エポキシ樹脂は加熱により硬化するため空隙は独立気泡となるため、吸水等の問題もない。空隙となる気泡の含有率としては体積で5から40%で作製される。ここで、ゲルとは三次元網目が多量の溶媒を含んだ状態を言い、水を含むゲルをハイドロゲル、有機溶媒を含むゲルをオルガノゲル、気体を含むゲルをエアロゲルという。また、化学結合(共有結合)によるゲルを化学ゲル、物理的な架橋(非共有結合)によるゲルを物理ゲルという。本発明では、物理的な架橋によるゲルで多量の溶剤を含んだオルガノゲルを利用している。本発明では、シリカ微粒子,有機樹脂,有機溶剤で形成された物理ゲル化状態のオルガノゲルから有機溶剤を除去してコンポジットの有機樹脂中に均一に気泡を形成させる。従って、中空シリカを用いる方法と異なり、気泡含有率は、有機溶剤の量と溶剤乾燥プロセスの条件により気泡量及びサイズをコントロールできる。また、できる気泡も均一に分散されたシリカ微粒子間の有機樹脂中に形成されるため、直径10nmから100nmのサイズで均一に存在する。   The low dielectric constant and low refractive index silica resin nanocomposite material of the present invention is made into a physical gelation state after silica fine particles having a particle diameter of 5 nm to 100 nm dispersed in an organic solvent are dispersed in an epoxy resin. Thereafter, it is prepared by a method of removing the organic solvent from the gelled product by heating. Although the solvent is removed during this heating process, the shape and volume of the composite resin hardly change. The composite resin is colorless and transparent, and the size of the voids after the solvent is removed is 100 nm or less. Finally, since the epoxy resin is cured by heating, the voids become closed cells, so there is no problem such as water absorption. The content rate of bubbles to be voids is 5 to 40% by volume. Here, the gel refers to a state in which the three-dimensional network contains a large amount of a solvent. A gel containing water is called a hydrogel, a gel containing an organic solvent is called an organogel, and a gel containing a gas is called an aerogel. Moreover, the gel by a chemical bond (covalent bond) is called a chemical gel, and the gel by a physical bridge | crosslinking (noncovalent bond) is called a physical gel. In the present invention, an organogel containing a large amount of solvent is used as a gel by physical crosslinking. In the present invention, the organic solvent is removed from the physically gelled organogel formed of silica fine particles, organic resin, and organic solvent to uniformly form bubbles in the composite organic resin. Therefore, unlike the method using hollow silica, the bubble content can be controlled by the amount of the organic solvent and the condition of the solvent drying process. Further, since the generated bubbles are formed in the organic resin between the silica fine particles uniformly dispersed, they exist uniformly in a size of 10 nm to 100 nm in diameter.

本発明では、有機溶剤に1次粒子レベルで分散した疎水牲オルガノシリカゾルを用いることが有効であるが、界面活性剤等での表面処理を施し有機溶剤への分散性を高めたシリカ微粒子でも同じ効果が得られる。また、有機樹脂は、エポキシ樹脂,ポリイミド樹脂,シアネート樹脂,フェノール樹脂,メタクリレート樹脂,不飽和ポリエステル樹脂等の熱硬化性樹脂全般に適用可能であるが、溶剤に可溶なポリアミド樹脂等の熱可塑性樹脂でも適用可能である。特に、エポキシ樹脂に適用した場合、その効果が顕著である。   In the present invention, it is effective to use a hydrophobic organosilica sol dispersed at the primary particle level in an organic solvent, but the same applies to silica fine particles that have been surface-treated with a surfactant or the like to improve dispersibility in an organic solvent. An effect is obtained. Organic resins can be applied to all thermosetting resins such as epoxy resins, polyimide resins, cyanate resins, phenol resins, methacrylate resins, and unsaturated polyester resins, but thermoplastics such as polyamide resins that are soluble in solvents. Resin is also applicable. In particular, when applied to an epoxy resin, the effect is remarkable.

シリカ微粒子の平均粒径は5nmから200nmの範囲が適用可能であるが、特に、5nmから100nmの範囲が高い効果を示す。溶剤としては、テトラヒドロフラン,アセトン,メチルエチルケトン,メチルイソブチルケトン、2−メトキシエタノール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が使用できるが、エポキシ樹脂が硬化する前にコンポジット樹脂から除去できる沸点の低い方が好ましい。   The average particle diameter of the silica fine particles is applicable in the range of 5 nm to 200 nm, and particularly in the range of 5 nm to 100 nm shows a high effect. As the solvent, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-methoxyethanol, N, N-dimethylformamide, N, N-dimethylacetamide, etc. can be used, but they can be removed from the composite resin before the epoxy resin is cured. A lower boiling point is preferred.

シリカ微粒子の配合量は特に限定はされないが、各種特性のバランスを考慮した場合、5wt%から30wt%の範囲が好ましい。例えば、特開平6−316407号公報等に記載のように、アルキルシリケートをアルカリ触媒で加水分解することにより得られるシリカゾルの製造方法で粒子径3nmから100nmの範囲で粒子径のそろった球状シリカが得られる。本発明では、このようにして得られたシリカ微粒子が適用できる。当然のことながら、他の製造方法で得られたシリカ微粒子でも、同じ効果が得られる。このようにして得られた親水性コロイド状シリカをジシロキサン化合物あるいはモノアルコキシシラン化合物等のシリル化剤で疎水化処理されたシリカ微粒子を用いる方法が好ましい。勿論、シリカ微粒子の表面をシラン系カップリング剤により疎水化して有機溶剤への分散性を高める方法あるいは界面活性剤により分散性を高める方法で表面処理したシリカ微粒子を適用することも可能である。   The blending amount of silica fine particles is not particularly limited, but is preferably in the range of 5 wt% to 30 wt% in consideration of the balance of various characteristics. For example, as described in JP-A-6-316407 and the like, spherical silica having a uniform particle diameter in a particle diameter range of 3 nm to 100 nm is obtained by a silica sol production method obtained by hydrolyzing an alkyl silicate with an alkali catalyst. can get. In the present invention, the silica fine particles thus obtained can be applied. As a matter of course, the same effect can be obtained with silica fine particles obtained by other production methods. A method using silica fine particles obtained by hydrophobizing the thus obtained hydrophilic colloidal silica with a silylating agent such as a disiloxane compound or a monoalkoxysilane compound is preferred. Of course, it is also possible to apply silica fine particles that have been surface-treated by a method of increasing the dispersibility in an organic solvent by hydrophobizing the surface of the silica fine particles with a silane coupling agent or a method of increasing the dispersibility with a surfactant.

ナノコンポジット材料の作製手順としては、まずシリカ微粒子を分散したメチルエチルケトンのような低沸点溶剤にエポキシ樹脂,硬化剤、必要に応じて硬化促進剤を溶解させたワニスを用意する。次に、このワニスを基板上に均一に塗布する。この塗布基板を密閉容器中に保管すると数時間から2,3日で塗布膜が物理ゲルとなり固化する。この物理ゲルを加熱処理することにより溶剤を除去する。この加熱処理で塗布膜は溶剤が除去される分、軽くなるが、形状及び体積はほとんど変化なく、且つ透明性は増す、即ち屈折率が小さくなる。溶剤除去のための加熱処理は、窒素のような不活性ガス雰囲気中、あるいは減圧雰囲気下で行うことが好ましい。この後、用途にもよるが窒素等の不活性ガス雰囲気下で、加熱してコンポジット樹脂を硬化させる。光硬化の場合は、UV露光により硬化させた後、加熱による後硬化を実施するが、溶媒除去のための加熱処理は露光前に行っても、露光後に行ってもかまわない。   As a procedure for producing the nanocomposite material, first, a varnish in which an epoxy resin, a curing agent, and a curing accelerator as required is dissolved in a low boiling point solvent such as methyl ethyl ketone in which silica fine particles are dispersed is prepared. Next, this varnish is uniformly applied on the substrate. When this coated substrate is stored in a sealed container, the coated film becomes a physical gel and solidifies within a few hours to a few days. The solvent is removed by heat-treating the physical gel. By this heat treatment, the coating film becomes light as much as the solvent is removed, but the shape and volume hardly change, and the transparency increases, that is, the refractive index decreases. The heat treatment for removing the solvent is preferably performed in an inert gas atmosphere such as nitrogen or in a reduced pressure atmosphere. Thereafter, depending on the application, the composite resin is cured by heating in an inert gas atmosphere such as nitrogen. In the case of photocuring, after curing by UV exposure, post-curing by heating is performed, but the heat treatment for removing the solvent may be performed before exposure or after exposure.

以下、本発明の低誘電率低屈折率ナノコンポジット材料について具体的な実施例で説明する。   Hereinafter, specific examples of the low dielectric constant and low refractive index nanocomposite material of the present invention will be described.

(実施例1)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500,日立化成工業製)をモル比1:1.5 の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)0.2 重量部(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。この液状樹脂混合物に、平均粒径12nmの疎水性シリカ30wt%が分散されたメチルエチルケトンスラリ(日産化学MEK−ST)を混合してシリカフィラ分散ワニスを調整した。硬化剤,硬化促進剤を含むエポキシ樹脂分85重量部に対してMEK−STを50重量部の割合で調整した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ10μmの塗布膜とした。この後、密閉ガラス容器中で24時間保管して物理ゲル状の塗布膜を得た。この物理ゲル状の塗布膜を90℃で減圧下、30分加熱して塗布膜中に残存するメチルエチルケトンを乾燥除去する。次に、この試料を130℃で1時間、170℃で2時間加熱して硬化させた。物理ゲル化した塗布膜断面と加熱硬化後の試料断面の高分解能SEM写真(日立の走査型電子顕微鏡S−900で観察)を図1に示す。物理ゲルではシリカが均一に分散しており樹脂と溶剤を抱え込んだネットワーク構造を形成しているように観察される。これを熱処理すると30nmから50nmの空隙が全面に観察される。これは、シリカ微粒子ネットワークを保持したまま溶剤が除去され、樹脂が硬化するため溶剤の除去部が極めて小さい空隙として残る構造になると推定される。硬化後、無色透明,低屈折率の塗布膜となる。なお、得られたナノポーラス構造硬化膜の空隙率は25vol% であった。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2 の円形の電極を形成して誘電特性の評価用試料とした。
Example 1
An alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176), 3or4-methyl-hexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) was mixed at a molar ratio of 1: 1.5. . Further, 0.2 part by weight (based on epoxy and acid anhydride) of 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei) was added as a curing accelerator to prepare a liquid resin mixture. To this liquid resin mixture, methyl ethyl ketone slurry (Nissan Chemical MEK-ST) in which 30 wt% of hydrophobic silica having an average particle size of 12 nm was dispersed was mixed to prepare a silica filler dispersed varnish. MEK-ST was adjusted at a ratio of 50 parts by weight to 85 parts by weight of the epoxy resin containing a curing agent and a curing accelerator. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. Thereafter, it was stored in a sealed glass container for 24 hours to obtain a physical gel-like coating film. This physical gel-like coating film is heated at 90 ° C. under reduced pressure for 30 minutes to dry and remove methyl ethyl ketone remaining in the coating film. The sample was then cured by heating at 130 ° C. for 1 hour and 170 ° C. for 2 hours. FIG. 1 shows a high-resolution SEM photograph (observed with a Hitachi scanning electron microscope S-900) of the cross section of the coating film formed into a physical gel and the cross section of the sample after heat curing. In the physical gel, silica is uniformly dispersed, and it is observed that a network structure containing a resin and a solvent is formed. When this is heat-treated, voids of 30 nm to 50 nm are observed on the entire surface. This is presumed to be a structure in which the solvent is removed while retaining the silica fine particle network and the resin is cured, so that the solvent removal portion remains as a very small void. After curing, the coating film is colorless and transparent and has a low refractive index. In addition, the porosity of the obtained nanoporous structure cured film was 25 vol%. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は2.5 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.39 であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (model 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 2.5. The refractive index of the film produced at the same time was 1.39 at a measurement wavelength of 633 nm.

(実施例2)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176)90重量部と光重合開始剤(アデカオプトマSP−170)を0.9 重量部からなる液状樹脂組成物に、平均粒径12nmの疎水性シリカ30wt%が分散されたメチルエチルケトンスラリ(日産化学MEK−ST)33重量部を混合してシリカフィラ分散ワニスを調整した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ
10μmの塗布膜とした。この後、密閉ガラス容器中で冷暗所に24時間保管して物理ゲル状の塗布膜を得た。この物理ゲル状の塗布膜を90℃で減圧下、30分加熱して塗布膜中に残存するメチルエチルケトンを乾燥除去する。この後、UV露光(365nm,4J/cm2 )により塗布膜を硬化し、さらに100℃,1時間と170℃,1時間の加熱により硬化膜を得た。硬化後、無色透明、低屈折率の塗布膜となる。なお、得られたナノポーラス構造硬化膜の空隙率は15vol% であった。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2の円形の電極を形成して誘電特性の評価用試料とした。
(Example 2)
A liquid resin composition comprising 90 parts by weight of an alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176) and 0.9 part by weight of a photopolymerization initiator (Adekaoptoma SP-170), an average particle size of 12 nm. A silica filler dispersed varnish was prepared by mixing 33 parts by weight of methyl ethyl ketone slurry (Nissan Chemical MEK-ST) in which 30 wt% of hydrophobic silica was dispersed. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. Then, it was stored in a cool and dark place in a sealed glass container for 24 hours to obtain a physical gel-like coating film. This physical gel-like coating film is heated at 90 ° C. under reduced pressure for 30 minutes to dry and remove methyl ethyl ketone remaining in the coating film. Thereafter, the coating film was cured by UV exposure (365 nm, 4 J / cm 2 ), and further a cured film was obtained by heating at 100 ° C. for 1 hour and 170 ° C. for 1 hour. After curing, the coating film is colorless and transparent and has a low refractive index. In addition, the porosity of the obtained nanoporous structure cured film was 15 vol%. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は2.6 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.42であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (model 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 2.6. The refractive index of the film produced at the same time was 1.42 at a measurement wavelength of 633 nm.

(実施例3)
ビスフェノール型エポキシ樹脂(エピコート828,ジャパンエポキシレジン,エポキシ当量189),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500,日立化成工業製)をモル比1:2の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)を0.2 重量都(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。この液状樹脂混合物に、平均粒径25nmの疎水性球状シリカ30wt%が分散されたメチルエチルケトンスラリを混合してシリカフィラ分散ワニスを調整した。硬化剤、硬化促進剤を含むエポキシ樹脂分90重量部に対して球状シリカが分散されたトルエンスラリを33重量部の割合で均一に混合した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ20
μmの塗布膜とした。この後、密閉ガラス容器中で48時間保管して物理ゲル状の塗布膜を得た。この物理ゲル状の塗布膜を90℃で減圧下、30分加熱して塗布膜中に残存するメチルエチルケトンを乾燥除去した。次に、窒素ガス雰囲気下、このサンプルを130℃で1時間、170℃で2時間加熱して硬化させた。硬化後、無色透明,低屈折率の塗布膜となる。なお、得られたナノポーラス構造硬化膜の空隙率は10vol% であった。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2 の円形の電極を形成して誘電特性の評価用試料とした。
Example 3
Bisphenol type epoxy resin (Epicoat 828, Japan epoxy resin, epoxy equivalent 189) and 3or4-methyl-hexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) were mixed at a molar ratio of 1: 2. Further, 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei Co., Ltd.) was added as a curing accelerator to 0.2 weight capital (based on epoxy and acid anhydride) to prepare a liquid resin mixture. A silica filler dispersed varnish was prepared by mixing this liquid resin mixture with methyl ethyl ketone slurry in which 30 wt% of hydrophobic spherical silica having an average particle diameter of 25 nm was dispersed. Toluene slurry in which spherical silica was dispersed with respect to 90 parts by weight of the epoxy resin containing a curing agent and a curing accelerator was uniformly mixed at a ratio of 33 parts by weight. The varnish was applied on a glass plate on which an electrode was formed with a doctor blade, and the thickness was 20
A μm coating film was formed. Thereafter, it was stored in a sealed glass container for 48 hours to obtain a physical gel-like coating film. This physical gel-like coating film was heated at 90 ° C. under reduced pressure for 30 minutes to dry and remove methyl ethyl ketone remaining in the coating film. Next, the sample was cured by heating at 130 ° C. for 1 hour and at 170 ° C. for 2 hours in a nitrogen gas atmosphere. After curing, the coating film is colorless and transparent and has a low refractive index. In addition, the porosity of the obtained nanoporous structure cured film was 10 vol%. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric properties.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は3を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.49 であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (model 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 3. The refractive index of the film produced at the same time was 1.49 at a measurement wavelength of 633 nm.

(実施例4)
フェノールノボラック型エポキシ樹脂(エピコート152,ジャパンエポキシレジン製,エポキシ当量175),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500日立化成工業製)をモル比1:1.5 の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)を0.2 重量部(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。この液状樹脂混合物に、平均粒径12nmの疎水性シリカ30wt%が分散されたメチルエチルケトンスラリ
(日産化学MEK−ST)を混合してシリカフィラ分散ワニスを調整した。硬化剤,硬化促進剤を含むエポキシ樹脂分90重量部に対してMEK−STを33重量部の割合で調整した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ10μmの塗布膜とした。この後、密閉ガラス容器中で24時間保管して物理ゲル状の塗布膜を得た。さらに、この物理ゲル状の塗布膜を90℃で減圧下、30分加熱して塗布膜中に残存するメチルエチルケトンを乾燥除去した。次に、このサンプルを130℃で1時間、170℃で2時間加熱して硬化させた。硬化後、無色透明,低屈折率の塗布膜となる。なお、得られたナノポーラス構造硬化膜の空隙率は20vol%であった。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2の円形の電極を形成して誘電特性の評価用試料とした。
Example 4
Phenol novolac type epoxy resin (Epicoat 152, manufactured by Japan Epoxy Resin, epoxy equivalent 175) and 3or4-methyl-hexahydrophthalic anhydride (HN-5500 manufactured by Hitachi Chemical Co., Ltd.) were mixed at a molar ratio of 1: 1.5. Further, 0.2 part by weight (based on epoxy and acid anhydride) of 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei) was added as a curing accelerator to prepare a liquid resin mixture. To this liquid resin mixture, methyl ethyl ketone slurry (Nissan Chemical MEK-ST) in which 30 wt% of hydrophobic silica having an average particle diameter of 12 nm was dispersed was mixed to prepare a silica filler dispersed varnish. MEK-ST was adjusted at a ratio of 33 parts by weight to 90 parts by weight of the epoxy resin containing a curing agent and a curing accelerator. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. Thereafter, it was stored in a sealed glass container for 24 hours to obtain a physical gel-like coating film. Further, this physical gel-like coating film was heated at 90 ° C. under reduced pressure for 30 minutes to dry remove methyl ethyl ketone remaining in the coating film. The sample was then cured by heating at 130 ° C. for 1 hour and 170 ° C. for 2 hours. After curing, the coating film is colorless and transparent and has a low refractive index. In addition, the porosity of the obtained nanoporous structure cured film was 20 vol%. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は2.7 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.49であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (type 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 2.7. Moreover, the refractive index of the film produced at the same time was 1.49 at a measurement wavelength of 633 nm.

(比較例1)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500,日立化成工業製)をモル比1:1.5 の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)を0.2 重量部(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ10μmの塗布膜とした。次に、この試料を130℃で1時間、170℃で2時間加熱して硬化させた。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2 の円形の電極を形成して誘電特性の評価用試料とした。
(Comparative Example 1)
An alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176), 3or4-methyl-hexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) was mixed at a molar ratio of 1: 1.5. . Further, 0.2 part by weight (based on epoxy and acid anhydride) of 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei) was added as a curing accelerator to prepare a liquid resin mixture. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. The sample was then cured by heating at 130 ° C. for 1 hour and 170 ° C. for 2 hours. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は3.3 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.51であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (model 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 3.3. Moreover, the refractive index of the film produced at the same time was 1.51 at a measurement wavelength of 633 nm.

(比較例2)
実施例1の密閉ガラス容器中で24時間保管して物理ゲル状の塗布膜を得る工程を省略した以外は、実施例1と全く同様にして試料を作製した。誘電率は3.4、屈折率は1.48を示した。
(Comparative Example 2)
A sample was prepared in exactly the same manner as in Example 1, except that the step of obtaining a physical gel-like coating film by storing in the sealed glass container of Example 1 for 24 hours was omitted. The dielectric constant was 3.4, and the refractive index was 1.48.

比較例1のマトリクスレジンと比較して、屈折率は、わずかに低減したが1MHzでの誘電率は少し高くなる結果となった。   Compared with the matrix resin of Comparative Example 1, the refractive index was slightly reduced, but the dielectric constant at 1 MHz was slightly higher.

(比較例3)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176)90重量部と光重合開始剤(アデカオプトマSP−170)を0.9 重量部からなる液状樹脂組成物を調整した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ10μmの塗布膜とした。この後、UV露光(365mm,4J/cm2)により塗布膜を硬化し、さらに120℃、2時間と180℃、2時間の加熱により無色透明の硬化膜を得た。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2 の円形の電極を形成して誘電特性の評価用試料とした。
(Comparative Example 3)
A liquid resin composition comprising 90 parts by weight of an alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176) and 0.9 part by weight of a photopolymerization initiator (Adekaoptoma SP-170) was prepared. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. Thereafter, the coating film was cured by UV exposure (365 mm, 4 J / cm 2 ), and further a colorless and transparent cured film was obtained by heating at 120 ° C. for 2 hours and 180 ° C. for 2 hours. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric properties.

LFインピーダンスアナライザ(ヒューレットパッカード社製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は3.1 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.49であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (type 4192F manufactured by Hewlett-Packard Company), the dielectric constant was 3.1. Moreover, the refractive index of the film produced at the same time was 1.49 at a measurement wavelength of 633 nm.

(比較例4)
実施例2の密閉ガラス容器中で24時間保管して物理ゲル状の塗布膜を得る工程を省略した以外は、実施例2と全く同様にして試料を作製した。誘電率は3.3、屈折率は1.47を示した。比較例3のマトリクスレジンと比較して、屈折率は、わずかに低減したが1
MHzでの誘電率は少し高くなる結果となった。
(Comparative Example 4)
A sample was prepared in exactly the same manner as in Example 2 except that the step of obtaining a physical gel-like coating film by storing in the sealed glass container of Example 2 for 24 hours was omitted. The dielectric constant was 3.3, and the refractive index was 1.47. Compared with the matrix resin of Comparative Example 3, the refractive index was slightly reduced but 1
The dielectric constant at MHz was slightly higher.

(比較例5)
ビスフェノールA型エポキシ樹脂(エピコ一ト828,ジャパンエポキシレジン,エポキシ当量189),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500,日立化成工業製)をモル比1:2の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)を0.2 重量部(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ20μmの塗布膜とした。次に、窒素ガス雰囲気下、このサンプルを130℃で1時間、170℃で2時間加熱して硬化させ、無色透明の塗布膜を得た。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2の円形の電極を形成して誘電特性の評価用試料とした。
(Comparative Example 5)
Bisphenol A type epoxy resin (Epicolate 828, Japan epoxy resin, epoxy equivalent 189) and 3or4-methyl-hexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) were mixed at a molar ratio of 1: 2. Further, 0.2 part by weight (based on epoxy and acid anhydride) of 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei) was added as a curing accelerator to prepare a liquid resin mixture. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 20 μm. Next, in a nitrogen gas atmosphere, the sample was cured by heating at 130 ° C. for 1 hour and 170 ° C. for 2 hours to obtain a colorless and transparent coating film. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した緒果、誘電率は3.4 を示した。また、同時に作製したフィルムの屈折率は、測定波長633nmで1.54であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (model 4192F manufactured by Hewlett-Packard), the dielectric constant was 3.4. Moreover, the refractive index of the film produced at the same time was 1.54 at a measurement wavelength of 633 nm.

(比較例6)
実施例3の密閉ガラス容器中で48時間保管して物理ゲル状の塗布膜を得る工程を省略した以外は、実施例3と全く同様にして試料を作製した。誘電率は3.5、屈折率は1.52を示した。比較例5のマトリクスレジンと比較して、屈折率は、わずかに低減したが1
MHzでの誘電率は少し高くなる結果となった。
(Comparative Example 6)
A sample was prepared in exactly the same manner as in Example 3 except that the step of obtaining a physical gel-like coating film by storing in the sealed glass container of Example 3 for 48 hours was omitted. The dielectric constant was 3.5, and the refractive index was 1.52. Compared with the matrix resin of Comparative Example 5, the refractive index was slightly reduced but 1
The dielectric constant at MHz was slightly higher.

(比較例7)
フェノールノボラック型エポキシ樹脂(エピコート152,ジャパンエポキシレジン製,エポキシ当量175),3or4−メチル−ヘキサヒドロ無水フタル酸(HN−5500日立化成工業製)をモル比1:1.5 の割合で混合した。さらに、硬化促進剤として2−エチル−4−メチルイミダゾールCN(2E4MZ−CN,四国化成製)を0.2 重量部(エポキシ,酸無水物に対し)を加え液状樹脂混合物を作製した。このワニスを、電極を形成したガラス板の上にドクターブレードで塗布し厚さ10μmの塗布膜とした。次に、このサンプルを130℃で1時間、170℃で2時間加熱して硬化させ、無色透明の塗布膜を得た。この試料の表面に、アルミニウムの蒸着により厚さ約500Å,1cm2 の円形の電極を形成して誘電特性の評価用試料とした。
(Comparative Example 7)
Phenol novolac type epoxy resin (Epicoat 152, manufactured by Japan Epoxy Resin, epoxy equivalent 175) and 3or4-methyl-hexahydrophthalic anhydride (HN-5500 manufactured by Hitachi Chemical Co., Ltd.) were mixed at a molar ratio of 1: 1.5. Further, 0.2 part by weight (based on epoxy and acid anhydride) of 2-ethyl-4-methylimidazole CN (2E4MZ-CN, manufactured by Shikoku Kasei) was added as a curing accelerator to prepare a liquid resin mixture. This varnish was applied on a glass plate on which an electrode was formed with a doctor blade to form a coating film having a thickness of 10 μm. Next, this sample was cured by heating at 130 ° C. for 1 hour and at 170 ° C. for 2 hours to obtain a colorless and transparent coating film. A circular electrode having a thickness of about 500 mm and 1 cm 2 was formed on the surface of this sample by vapor deposition of aluminum, and used as a sample for evaluating dielectric characteristics.

LFインピーダンスアナライザ(ヒューレットパッカード杜製4192F型)を用いて周波数1MHzの誘電率を測定した結果、誘電率は3.4 を示した。また、同時に作製したフィルムの屈折率は、測定波長633mで1.59であった。   As a result of measuring the dielectric constant at a frequency of 1 MHz using an LF impedance analyzer (type 4192F manufactured by Hewlett-Packard Co.), the dielectric constant was 3.4. The refractive index of the film produced at the same time was 1.59 at a measurement wavelength of 633 m.

(比較例8)
実施例4の密閉ガラス容器中で24時間保管して物理ゲル状の塗布膜を得る工程を省略した以外は、実施例4と全く同様にして試料を作製した。誘電率は3.5、屈折率は1.57を示した。比較例7のマトリクスレジンと比較して屈折率はわずかに低減したが1MHzでの誘電率は少し高くなる結果となった。
(Comparative Example 8)
A sample was prepared in exactly the same manner as in Example 4, except that the step of obtaining a physical gel-like coating film by storing in the sealed glass container of Example 4 for 24 hours was omitted. The dielectric constant was 3.5, and the refractive index was 1.57. Although the refractive index was slightly reduced as compared with the matrix resin of Comparative Example 7, the dielectric constant at 1 MHz was slightly higher.

以上の実施例及び比較例の条件と結果をまとめて表1,2に示す。比較例1,3,5,7は、実施例1〜4のマトリクス樹脂の評価結果である。実施例ではいずれも、大幅な低誘電率化,低屈折率化が実現している。また、比較例2,4,6,8は、実施例1〜4の、物理ゲル化のプロセスを削除した場合であるが、ポーラス構造が実現しないため、顕著な低誘電率化,低屈折率化は認められなかった。次に、多層配線板,反射防止膜,光導波路への実施例を用いてその効果を説明する。   The conditions and results of the above examples and comparative examples are summarized in Tables 1 and 2. Comparative Examples 1, 3, 5, and 7 are evaluation results of the matrix resins of Examples 1 to 4. In each of the embodiments, a significant reduction in dielectric constant and reduction in refractive index are realized. Further, Comparative Examples 2, 4, 6, and 8 are cases where the physical gelation process of Examples 1 to 4 was omitted, but since a porous structure was not realized, a remarkable reduction in dielectric constant and low refractive index were achieved. Conversion was not observed. Next, the effect is demonstrated using the Example to a multilayer wiring board, an antireflection film, and an optical waveguide.

Figure 2007308544
Figure 2007308544

Figure 2007308544
Figure 2007308544

(実施例5)
図2に示す工程で本発明のナノコンポジット材を絶縁層に適用した多層配線板を作製した。以下、詳細を説明する。両面に厚さ12μmの銅配線1が形成された厚さ0.2mm のエポキシ積層板(FR−5)2の上下に実施例2で作製した疎水性シリカ配合のエポキシワニスを厚さ25μmの物理ゲル化した塗布膜3を形成した。この物理ゲル状の塗布膜を90℃で減圧下、加熱して塗布膜中に残存するメチルエチルケトンを乾燥除去する。この後、UV露光波長(365nm,4J)により塗布膜を硬化し、さらに120℃、2時問と170℃、2時間の加熱により硬化膜を得た。この後、レーザーによりブラインドビア4を形成した後、無電解銅めっきと電解銅めっきにより厚さ18μmの銅5を全面に形成させた。次に、外層の配線となる部分をレジストで覆い、配線部以外の銅をエッチングにより除去して外層の配線とビアの導通部,パッド部6を形成した。このプロセスで、上下2層に誘電率2.6の低誘電率絶縁層7を有する4層配線の多層配線板8を得た。
(Example 5)
A multilayer wiring board in which the nanocomposite material of the present invention was applied to an insulating layer in the process shown in FIG. 2 was produced. Details will be described below. The epoxy varnish containing the hydrophobic silica prepared in Example 2 was applied to the upper and lower sides of the 0.2 mm thick epoxy laminate (FR-5) 2 having the copper wiring 1 having a thickness of 12 μm formed on both sides, and the physical thickness of 25 μm. A gelled coating film 3 was formed. The physical gel-like coating film is heated at 90 ° C. under reduced pressure to dry and remove methyl ethyl ketone remaining in the coating film. Thereafter, the coating film was cured by UV exposure wavelength (365 nm, 4 J), and further a cured film was obtained by heating at 120 ° C. for 2 hours and 170 ° C. for 2 hours. After that, the blind via 4 was formed by laser, and then copper 5 having a thickness of 18 μm was formed on the entire surface by electroless copper plating and electrolytic copper plating. Next, a portion to be an outer layer wiring was covered with a resist, and copper other than the wiring portion was removed by etching to form an outer layer wiring, a via conduction portion, and a pad portion 6. By this process, a multilayer wiring board 8 having a four-layer wiring having a low dielectric constant insulating layer 7 having a dielectric constant of 2.6 in two upper and lower layers was obtained.

(実施例6)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176)90重量部と光重合開始剤(アデカオプトマSP−170)を0.9 重量部からなる液状樹脂組成物に、平均粒径12nmの疎水性シリカ30wt%が分散されたメチルエチルケトンスラリ(日産化学MEK−ST)33重量部を混合してシリカフィラ分散ワニスを調整した。作製した上記ワニスをBK7ガラス(屈折率1.52,波長633nm)基板上にスプレーコートにより塗布し、厚さ550nmの塗布膜とした。この後、密閉ガラス容器中で冷暗所に6時間保管して物理ゲル状の塗布膜を得た。この物理ゲル状の塗布膜を70℃で減圧下、30分加熱して塗布膜中に残存するメチルエチルケトンを乾燥・除去する。この後、UV露光(365nm,4J/cm2)により塗布膜を硬化し、さらに100℃、
1時間と180℃、2時間の加熱により透明な硬化膜を得た。作製した基板に対して垂直方向からHe−Neレーザー光(波長633mm)を入射し、反射率を測定したところ反射率は1.9%と大幅に低減し、作製した低屈折率層は著しい反射防止効果を示した。
(Example 6)
A liquid resin composition comprising 90 parts by weight of an alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176) and 0.9 part by weight of a photopolymerization initiator (Adekaoptoma SP-170), an average particle size of 12 nm. A silica filler dispersed varnish was prepared by mixing 33 parts by weight of methyl ethyl ketone slurry (Nissan Chemical MEK-ST) in which 30 wt% of hydrophobic silica was dispersed. The produced varnish was applied on a BK7 glass (refractive index 1.52, wavelength 633 nm) substrate by spray coating to obtain a coating film having a thickness of 550 nm. Thereafter, it was stored in a cool and dark place in a sealed glass container for 6 hours to obtain a physical gel-like coating film. This physical gel-like coating film is heated at 70 ° C. under reduced pressure for 30 minutes to dry and remove methyl ethyl ketone remaining in the coating film. Thereafter, the coating film is cured by UV exposure (365 nm, 4 J / cm 2 ), and further at 100 ° C.,
A transparent cured film was obtained by heating at 180 ° C. for 2 hours for 1 hour. He-Ne laser light (wavelength 633 mm) was incident on the fabricated substrate from the vertical direction and the reflectance was measured. The reflectance was greatly reduced to 1.9%, and the fabricated low refractive index layer was significantly reflected. The prevention effect was shown.

(比較例9)
BK7ガラス基板に対して垂直方向からHe−Neレーザー光(波長633nm)を入射し、反射率を測定したところ反射率は4.5%であった。
(Comparative Example 9)
When a He—Ne laser beam (wavelength 633 nm) was incident on the BK7 glass substrate from the vertical direction and the reflectance was measured, the reflectance was 4.5%.

(比較例10)
脂環式エポキシ樹脂(セロキサイド2021,ダイセル化学工業製,エポキシ当量176)90重量部と光重合開始剤(アデカオプトマSP−170)を0.9 重量部からなる液状樹脂組成物を調整した。このワニスを、電極を形成したガラス板の上にスプレーコートで塗布,乾燥後、UV露光(365m,4J/cm2)により塗布膜を硬化し、さらに100℃、1時間と180℃、2時間の加熱により厚さ550nmの無色透明の硬化膜を得た。作製した基板に対して垂直方向からHe−Neレーザー光(波長633m)を入射し、反射率を測定したところ反射率は4.0%であった。
(Comparative Example 10)
A liquid resin composition comprising 90 parts by weight of an alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, epoxy equivalent 176) and 0.9 part by weight of a photopolymerization initiator (Adekaoptoma SP-170) was prepared. This varnish is applied onto a glass plate on which an electrode has been formed by spray coating, dried, and then the coating film is cured by UV exposure (365 m, 4 J / cm 2 ). A colorless and transparent cured film having a thickness of 550 nm was obtained by heating of. He—Ne laser light (wavelength 633 m) was incident on the manufactured substrate from the vertical direction, and the reflectance was measured. As a result, the reflectance was 4.0%.

(実施例7)
実施例6と同様のプロセスにより、BK7ガラス基板上に厚さ100μmの低屈折率のアンダークラッドを形成した。但し、塗布にドクターブレード法を用いた。その後、比較例10で用いたワニスを上記アンダークラッド上に、ドクターブレードを用いて塗布し、比較例10と同様のプロセスにより厚さ40μmのコアを形成した。再度、実施例6と同様のプロセスにより、コア上に低屈折率のオーバークラッドを形成し、スラブ型の光導波路を形成した。光導波路単面よりHe−Neレーザー光を入射したところ、導波光が確認できた。
(Example 7)
By a process similar to that of Example 6, a low refractive index under cladding having a thickness of 100 μm was formed on a BK7 glass substrate. However, the doctor blade method was used for coating. Thereafter, the varnish used in Comparative Example 10 was applied onto the underclad using a doctor blade, and a core having a thickness of 40 μm was formed by the same process as in Comparative Example 10. Again, by the same process as in Example 6, a low refractive index overclad was formed on the core to form a slab type optical waveguide. When He—Ne laser light was incident from a single surface of the optical waveguide, the guided light was confirmed.

物理ゲル化した塗布膜断面と加熱硬化後の試料断面の高分解能SEM写真。A high-resolution SEM photograph of a cross section of a coating film that has been physically gelled and a cross section of a sample after heat curing. 多層配線板の作製工程を示す図。The figure which shows the preparation process of a multilayer wiring board.

符号の説明Explanation of symbols

1…銅配線、2…エポキシ積層板、3…塗布膜、4…ブラインドビア、5…銅、6…パッド部、7…低誘電率絶縁層、8…多層配線板。
DESCRIPTION OF SYMBOLS 1 ... Copper wiring, 2 ... Epoxy laminated board, 3 ... Coating film, 4 ... Blind via, 5 ... Copper, 6 ... Pad part, 7 ... Low dielectric constant insulating layer, 8 ... Multilayer wiring board.

Claims (10)

有機樹脂中にシリカ微粒子が分散した低誘電率低屈折率シリカ樹脂ナノコンポジット材料であって、前記有機樹脂が直径100nm以下の気泡を有することを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料。   A low dielectric constant, low refractive index silica resin nanocomposite material in which silica fine particles are dispersed in an organic resin, wherein the organic resin has bubbles having a diameter of 100 nm or less. material. 請求項1において、前記気泡の含有率が体積で5〜40%であることを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料。   2. The low dielectric constant and low refractive index silica resin nanocomposite material according to claim 1, wherein the content rate of the bubbles is 5 to 40% by volume. 請求項1において、前記シリカ微粒子の平均粒径が5nm〜100nmであることを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料。   2. The low dielectric constant and low refractive index silica resin nanocomposite material according to claim 1, wherein the silica fine particles have an average particle diameter of 5 nm to 100 nm. シリカ微粒子,有機樹脂,有機溶剤から形成される物理ゲルを加熱することで得られた請求項1に記載の低誘電率低屈折率シリカ樹脂ナノコンポジット材料。   The low dielectric constant low refractive index silica resin nanocomposite material according to claim 1, obtained by heating a physical gel formed from silica fine particles, an organic resin, and an organic solvent. 請求項4において、前記シリカ微粒子が有機溶剤に一次粒子レベルで分散可能な疎水性シリカであることを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料。   5. The low dielectric constant low refractive index silica resin nanocomposite material according to claim 4, wherein the silica fine particles are hydrophobic silica that can be dispersed in an organic solvent at a primary particle level. シリカ微粒子を分散した有機樹脂と溶剤からなる溶液を、室温で放置して物理ゲルとした後、加熱により溶剤を除去し、前記シリカ微粒子が分散した前記有機樹脂中に直径100nm以下の気泡を形成することを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料の製造方法。   A solution consisting of an organic resin in which silica particles are dispersed and a solvent is allowed to stand at room temperature to form a physical gel, and then the solvent is removed by heating to form bubbles having a diameter of 100 nm or less in the organic resin in which the silica particles are dispersed. A method for producing a low dielectric constant, low refractive index silica resin nanocomposite material, comprising: 請求項6において、前記溶液中のシリカ微粒子の配合量が5wt%〜30wt%であることを特徴とする低誘電率低屈折率シリカ樹脂ナノコンポジット材料の製造方法。   The method for producing a low dielectric constant, low refractive index silica resin nanocomposite material according to claim 6, wherein the amount of silica fine particles in the solution is 5 wt% to 30 wt%. 絶縁層と配線層とを有する配線基板において、前記絶縁層に請求項1に記載の低誘電率シリカ樹脂ナノコンポジット材料を用いたことを特徴とする配線基板。   A wiring board having an insulating layer and a wiring layer, wherein the low dielectric constant silica resin nanocomposite material according to claim 1 is used for the insulating layer. 請求項1に記載の低屈折率シリカ樹脂ナノコンポジット材料を基材に塗布した反射防止膜。   An antireflection film obtained by applying the low refractive index silica resin nanocomposite material according to claim 1 to a base material. 請求項1に記載の低屈折率シリカ樹脂ナノコンポジット材料をクラッド材に用いたことを特徴とする光導波路。

An optical waveguide characterized by using the low refractive index silica resin nanocomposite material according to claim 1 as a clad material.

JP2006137217A 2006-05-17 2006-05-17 Nano composite material having low dielectric constant and low refractive index Pending JP2007308544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137217A JP2007308544A (en) 2006-05-17 2006-05-17 Nano composite material having low dielectric constant and low refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137217A JP2007308544A (en) 2006-05-17 2006-05-17 Nano composite material having low dielectric constant and low refractive index

Publications (1)

Publication Number Publication Date
JP2007308544A true JP2007308544A (en) 2007-11-29

Family

ID=38841707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137217A Pending JP2007308544A (en) 2006-05-17 2006-05-17 Nano composite material having low dielectric constant and low refractive index

Country Status (1)

Country Link
JP (1) JP2007308544A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097184A2 (en) * 2008-01-14 2009-08-06 Cornell University Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly
JP2010087097A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Insulating resin composition for printed circuit board, insulating resin sheet for the printed circuit board, method for manufacturing multilayer printed circuit substrate using them, and electronic apparatus
JP2013512307A (en) * 2009-11-25 2013-04-11 ダウ グローバル テクノロジーズ エルエルシー Nanoporous polymer foam with high porosity
JP2016040608A (en) * 2010-04-14 2016-03-24 スリーエム イノベイティブ プロパティズ カンパニー Patterned gradient polymer film and method
CN106633180A (en) * 2016-10-24 2017-05-10 西南科技大学 Preparation method of ultra-low dielectric nano-composite polymer material
CN108686838A (en) * 2018-05-16 2018-10-23 西南科技大学 A kind of nano-bubble generator
CN111454538A (en) * 2020-04-17 2020-07-28 上海国瓷新材料技术有限公司 Epoxy resin composition and application thereof in preparation of millimeter wave circuit substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311210A (en) * 2002-02-14 2002-10-23 Dainippon Printing Co Ltd Porous optical material for antireflection
JP2003342411A (en) * 2002-05-29 2003-12-03 Asahi Glass Co Ltd Porous nanocomposite thin film and method of forming the same
JP2006503922A (en) * 2002-09-26 2006-02-02 ロレアル Composition comprising an arrayed polymer and a gelling agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311210A (en) * 2002-02-14 2002-10-23 Dainippon Printing Co Ltd Porous optical material for antireflection
JP2003342411A (en) * 2002-05-29 2003-12-03 Asahi Glass Co Ltd Porous nanocomposite thin film and method of forming the same
JP2006503922A (en) * 2002-09-26 2006-02-02 ロレアル Composition comprising an arrayed polymer and a gelling agent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097184A2 (en) * 2008-01-14 2009-08-06 Cornell University Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly
WO2009097184A3 (en) * 2008-01-14 2010-03-18 Cornell University Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly
US8569391B2 (en) 2008-01-14 2013-10-29 Cornell University Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly
JP2010087097A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Insulating resin composition for printed circuit board, insulating resin sheet for the printed circuit board, method for manufacturing multilayer printed circuit substrate using them, and electronic apparatus
JP2013512307A (en) * 2009-11-25 2013-04-11 ダウ グローバル テクノロジーズ エルエルシー Nanoporous polymer foam with high porosity
JP2016040608A (en) * 2010-04-14 2016-03-24 スリーエム イノベイティブ プロパティズ カンパニー Patterned gradient polymer film and method
US10302823B2 (en) 2010-04-14 2019-05-28 3M Innovative Properties Company Patterned gradient polymer film and method
CN106633180A (en) * 2016-10-24 2017-05-10 西南科技大学 Preparation method of ultra-low dielectric nano-composite polymer material
CN108686838A (en) * 2018-05-16 2018-10-23 西南科技大学 A kind of nano-bubble generator
CN111454538A (en) * 2020-04-17 2020-07-28 上海国瓷新材料技术有限公司 Epoxy resin composition and application thereof in preparation of millimeter wave circuit substrate
CN111454538B (en) * 2020-04-17 2023-03-31 上海国瓷新材料技术有限公司 Epoxy resin composition and application thereof in preparation of millimeter wave circuit substrate

Similar Documents

Publication Publication Date Title
JP2007308544A (en) Nano composite material having low dielectric constant and low refractive index
JP4233456B2 (en) Coating composition for forming a low refractive index thin film
Haas Hybrid inorganic–organic polymers based on organically modified Si‐Alkoxides
JP5688783B2 (en) Clay film and method for producing the same
JP6116856B2 (en) Substrate insulating layer composition, prepreg and substrate using the same
US20090267263A1 (en) Thermosetting resin composition, material for substrate and film for substrate
Chen et al. Preparation and properties of silylated PTFE/SiO2 organic–inorganic hybrids via sol–gel process
KR101309601B1 (en) Paste composition for light guide and light guide utilizing the same
JP2011174082A (en) Epoxy resin composition, prepreg, cured product, sheet-like molded product, laminated board, and multilayer laminated board
JP2010053334A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded article, laminate plate, and multilayer laminate plate
KR101372123B1 (en) Resin composition for optical waveguide, dry film, optical waveguide, and photoelectric composite wiring board using same
JP3230765B2 (en) Epoxy resin composition
JP4496828B2 (en) Manufacturing method of transparent composite substrate
Yu et al. Surface modified hollow glass microspheres-epoxy composites with enhanced thermal insulation and reduced dielectric constant
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
Nakamura et al. Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particle‐filled epoxy resin
CN109776832A (en) Three-decker polymer matrix composites and its application
JP2004346288A (en) Thermosetting resin composition and manufacturing method therefor
JP4450151B2 (en) Artificial marble made of epoxy resin molding
JP4845214B2 (en) Conductive circuit forming substrate, manufacturing method thereof, conductive circuit substrate and manufacturing method thereof
JP2001118841A (en) Porous silica
KR20070051940A (en) Object comprising a non-insulative coating
JP4387772B2 (en) Transparent resin composition for optical communication
JP2005225104A (en) Method for producing transparent composite substrate
KR20160052234A (en) Insulating resin composition for photo curing and printed circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417