JP4450151B2 - Artificial marble made of epoxy resin molding - Google Patents
Artificial marble made of epoxy resin molding Download PDFInfo
- Publication number
- JP4450151B2 JP4450151B2 JP2003040974A JP2003040974A JP4450151B2 JP 4450151 B2 JP4450151 B2 JP 4450151B2 JP 2003040974 A JP2003040974 A JP 2003040974A JP 2003040974 A JP2003040974 A JP 2003040974A JP 4450151 B2 JP4450151 B2 JP 4450151B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- artificial marble
- particles
- inorganic oxide
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、人工大理石などの建材等に使用される、透明かつ表面硬度や強度、および生産性に優れたエポキシ樹脂成形体に関する。
【0002】
【従来の技術】
近年、建材、特に人工大理石において強度はもとより意匠性の向上が要求され、ガラス調のような高い透明性が重要な要求性能となっている。高い透明性を持たせた場合、傷が目立ちやすいことから表面硬度が高いことが望ましい。エポキシ樹脂成型体は強度に優れ、かつ透明性が高い。例えば、人工大理石としての成型体が、エポキシ樹脂主剤、酸無水物硬化剤、硬化促進剤、充填材などを混合した材料を、型内で加熱重合(硬化)することで得られている。(例えば、特許文献1参照)。また、微小な粒子を分散させる手段として、ゾルゲル法によりシラン粒子を成形中に形成させる方法が開示されている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平2−6359号公報
【特許文献2】
特開平10−298405号公報
【0004】
通常、エポキシ樹脂成型体には物理物性の向上を目的とした場合、粒径が数μmから数十μmの無機酸化物を充填材として多量に添加する。そして、成型体の透明性を向上させるためには、樹脂と充填剤の屈折率を近づける手段を取るのが一般的である。しかし、充填剤の屈折率を完全に一致させることは難しく、粒子の形状、樹脂と粒子の界面の影響により透過光は拡散する。そのため、透明性、ヘイズは低下する。これら物性値の低下は、充填剤の添加量が多いほど、著しくなる。したがって、エポキシ樹脂固有の高い透明性、全光線透過率、ヘイズ値をそのまま活かせるような成型体を得るのは難しい。
【0005】
特許文献1で開示された、物理的物性と透明性を両立させたエポキシ樹脂成型体は、粒径が数μmから数十μmの無機酸化物を充填材として多量に添加したため物理物性は良好であったが、屈折率がエポキシ樹脂(1.54〜1.55)に近いシリカ(1.47〜1.54)を用いても、成形体厚み5mmにおいて全光線透過率が80%程度のものしかできていない。ヘイズ値については明記されていない。
【0006】
また、特許文献2記載の、ゾルゲル法により粒子を成形中に生成させる方法では、無機酸化物前駆体を用い微小な無機酸化物を得るため透明性が向上したものが得られるが、生産性、成型体物性に劣る。
すなわち、コーティング法ではない厚みのある成形体をシラン化合物のような無機酸化物前駆体、特にアルコキシ基、水酸基を持つものを含む組成物を用いて製造する場合には、縮重合反応により発生するアルコール、水が系外に抜けにくいため、エポキシの硬化不足や縮重合反応の不足からくる物性低下を招きやすい。
また、シラン化合物に代表される無機酸化物前駆体の縮重合反応はpHに左右される。すなわち、無機酸化物の生成形態や生成速度はエポキシ樹脂中の硬化剤の種類によって変化する。一般に、アルコキシ基を有するものの重縮合反応に対しては、アミン系の硬化剤は酸無水物系の硬化剤よりも速い。その理由は、酸無水物は、酸触媒としてアルコキシ基の縮重合を抑制する方へ働くために、粒子を成型体中に生成するのは難しいためと考えられる。
【0007】
特許文献2では縮重合反応が速いアミン系硬化剤を利用している。実施例で得られた10〜20nm程度のシラン重合体が含まれたエポキシ成型体は、アルコキシ基をもつシラン化合物を縮重合反応を経て数十nmのシラン重合体に成長させるため、アミン系硬化剤とシラン化合物を調整した組成物を80℃の金型内に4時間も放置する工程が、成型以外の工程で必要となる。アミン系硬化剤を利用しても、成型前の工程で金型内に数十分から数時間も放置する必要がある組成物、または成型体は、生産性について良いとは言い難い。
【0008】
また、他の手段として塗料により成形体に透明な塗膜を作ることも表面硬度を上げる方法として考えられる。しかし、製造工程の増加や、熱水等の衝撃による塗膜の剥離の発生、といった問題が起こる場合もあり、また剛性等の成形物自体の強度を向上させることは不可能である。また、この塗膜を重ね塗りすることで厚みのある成形体を作る方法も考えられるが、形状物において均一な厚膜を作りにくい、気泡や物入りの危険性が高くなる、片面のみ型からの転写面となる、といった不具合があり、生産的にも相当の繰り返し塗布が必要で現実的ではないと思われる。
【0009】
【発明が解決しようとする課題】
そこで、本発明では、上記問題を解決するためになされたもので、本発明の目的は、透明かつ表面硬度や強度、および生産性に優れたエポキシ樹脂成形体からなる人工大理石を提供することにある。
【0010】
【課題を解決するための手段】
本発明では、上記課題を解決すべく、エポキシ樹脂およびシリカ粒子を少なくとも含んでなる組成物を硬化させることにより、1mm以上の厚さを有する均一なバルク体となるように成型したエポキシ樹脂成形体からなる人工大理石であって、
該成型体中に平均粒径が50nm以下のシリカ粒子が分散していることを特徴とするエポキシ樹脂成形体からなる人工大理石を提供する。
得られた成形体は、無機粒子を充填しているので表面硬度や剛性を向上させることが可能であるのと同時に、平均粒径が50nm以下と可視光の波長よりはるかに小さいために、得られる成形体は粒子の添加量に関係なく、非常に透明性に優れる。すなわち、光線透過率が高いのはもちろん、ヘイズ値に関しても非常に小さく、よって、成形体の厚みが変化しても透明性の低下はほとんどなく、そのためバックコーティングによる高意匠化等において、安定した成形体を提供できる、といった利点がある。
【0011】
本発明の好ましい様態においては、組成物中の無機酸化物粒子が、シリカである。シリカはエポキシ樹脂との屈折率が近く、また硬度も高いため、透明性維持および表面硬度の向上という目的において、最も適している。
【0012】
本発明の好ましい様態においては、前記組成物中の無機酸化物粒子が、平均粒径が50nm以下であることを特徴とする。組成物中の無機酸化物粒子の平均粒径を50nm以下とすることで成型体中の無機酸化物粒子の平均粒径も小さくすることが容易になる。
【0013】
本発明の好ましい様態においては、前記組成物中の無機酸化物粒子が、平均粒径が50nm以下の無機酸化物粒子が数珠状に連なっている形状であることを特徴とする。数珠状に繋がることによってアスペクト比が大きくなり、球状粒子分散体に比べて強度や表面硬度の向上が著しく、少ない添加量で要求性能を達成できる。また、50nm以下の粒子が繋がっていることから透明性を維持できる。
【0014】
本発明の好ましい様態においては、前記組成物中の無機酸化物が無機酸化物ゾルとして配合されることを特徴とする。微粒子の粉体は凝集しやすく、これを樹脂中に分散させるのは難しい。また、嵩密度が非常に小さくなるので、樹脂中に多量に添加するのが難しく、取り扱いに関しても空中に舞い上がりやすく扱いにくい。ゾルであれば、液状なのでこれらの問題を解決することができる。
【0015】
本発明の好ましい様態においては、無機酸化物ゾルの溶媒がメチルエチルケトンであることを特徴とする。メチルエチルケトンは、エポキシ樹脂と均一に混合し、また沸点が約80℃と低く除去しやすい。
【0016】
本発明における好ましい様態は、エポキシ樹脂と無機酸化物ゾルを配合する工程と、その配合物の溶媒をエポキシ樹脂に対して10重量%以下になるまで除去する工程と、これを型内に入れ加熱することにより樹脂の硬化反応を行う工程とを備えた製造方法により製造されることを特徴とする。
エポキシ樹脂成型体は、配合工程、除去工程の後に成形工程を経て製造される。つまり、塗膜のように数10μm程度の厚みであれば溶媒は容易に揮発させることができるが、すでに述べたように成形体の成形においては、溶媒は系外に抜けにくい。溶媒を除去する工程の後に残存するエポキシ樹脂と無機酸化物ゾルの混合物中の溶媒含有量は、エポキシ樹脂に対し10重量%以下にするのが好ましく、さらには6重量%以下が好ましい。残存する溶媒含有量が10%より多ければ、耐熱性や強度への影響が大きくなり、さらには発泡等外観に影響を及ぼすことがある。溶媒を除去する方法としては温浴などで蒸発させる方法が用いられる。減圧下で行うとより効率的であり、好ましい。
【0017】
【発明の実施の形態】
以下に、本発明の具体的な好ましい様態について説明する。
エポキシ樹脂としては、汎用のビスフェノールAジグリシジルエーテルの他、水添ビスフェノールAジグリシジルエーテル、ビスフェノールF等の二価フェノールとエピクロルヒドリンより得られるビスフェノール型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、長鎖ポリオールのグリシジルエーテル型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリオレフィン型エポキシ樹脂等の樹脂成分がある。比較的低粘度のモノエポキサイドやポリエポキサイド等の反応性希釈剤等のエポキシ化合物を本発明の所定の効果に悪影響を及ぼさない範囲内で適宜配合することができる。
【0018】
本発明においては組成物中に硬化剤を添加することが好ましい。硬化剤としては、酸無水物硬化剤が好ましい。例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水トリメット酸、無水ピロメリット酸、無水メチルハイミック酸、無水マレイン酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。耐光性を考慮すると二重結合がないヘキサヒドロ無水フタル酸やメチルヘキサヒドロ無水フタル酸がさらに好ましい。
【0019】
本発明においては組成物中にさらに硬化促進剤を添加することが好ましい。硬化促進剤としては、多くの種類があるが、酸無水物硬化剤用として実用例が多いトリスジメチルアミノメチルフェノール、ベンジルジメチルアミン、DBU(二環式アミジン化合物)、イミダゾール、第4級ホスホニウム塩、第4級アンモニウム塩、オクチル酸スズ、芳香族ホスフィン等が挙げられる。
【0020】
本発明における、無機酸化物粒子としては、アルミナ、酸化チタン、酸化亜鉛、酸化セリウム、シリカ等が挙げられる。これらは2種以上を混合して用いてもよい。これら無機酸化物粒子には、分散安定性あるいは樹脂との密着性を高めるために、シランカップリング剤などの表面処理を施していてもよい。添加量は、エポキシ樹脂の種類や成形法により随時決定する必要がある。
無機酸化物ゾルの溶媒としては、トルエン、メチルエチルケトン、エチレングリコール等が挙げられる。
【0021】
成型体中の無機酸化物の粒径は、成型体を電子顕微鏡で観察し、画像解析により実測する。一次粒子で分散している場合は一次粒子径を、凝集している場合はその凝集粒子径を指す。ただし、粒子が画像上で単に重なって見える場合や、粒子が数珠状に連なっているものについては各粒子の径を粒径とする。また、画面上の少なくとも20個の粒子についての平均値を採用することが望ましい。また、組成物中の無機酸化物の粒径については、粉体の場合はそのまま、ゾルの場合は乾燥させて電子顕微鏡で観察して実測する。
【0022】
前記、エポキシ樹脂および無機酸化物ゾル、硬化剤、硬化促進剤以外にも、例えば、紫外線吸収剤、顔料、難燃剤、内部離型剤、抗菌剤などの各種添加剤を適宜配合できる。
【0023】
本発明における成形は、注型法やプレス成形法などにて行われる。成形温度は60℃から180℃が好ましく、さらに90℃から140℃がより好ましい。必要に応じてアフターキュアリングを施してもよい。
【0024】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
ビスフェノールAグリシジルエーテル型エポキシ樹脂(エピコート828、ジャパンエポキシレジン株式会社製)50重量部、脂環式エポキシ樹脂(セロキサイド2021、ダイセル化学工業株式会社製)50重量部、メチルヘキサヒドロ無水フタル酸(リカシッドMH700、新日本理化株式会社製)104重量部、に平均粒径15nm以下の球状粒子が単分散しているオルガノシリカゾル(シリカ含有量30重量%、溶媒メチルエチルケトン、商品名MEK−ST、日産化学工業株式会社製)80重量部を混合し、60℃で温浴しながら溶媒であるメチルエチルケトンをエポキシ樹脂に対して10%重量以下になるまで除去した。その後、硬化促進剤(U−CAT18X、サンアプロ株式会社製)6重量部を混合し、離型処理したガラス型に注型、140℃で40分キュアした後脱型して厚さ4mmの板を得た。
得られた試料の曲げ試験(JIS K 7203)、鉛筆硬度試験(JIS K 5400)、ヘイズ値測定(JIS K 7105)をそれぞれ行い評価した。
また、分散状態をTEM(H−7500 HITACHI製)にて観察した。
(実施例2)
実施例1と同様のエポキシ樹脂、酸無水物硬化剤、硬化促進剤に、平均粒径15nm以下の球状粒子が数珠状に連なったものが分散しているオルガノシリカゾル(シリカ含有量20重量%、溶媒メチルエチルケトン、商品名MEK−ST−UP、日産化学工業株式会社製)100重量部を混合し、同様に成形後、評価を行った。
【0025】
(比較例1)
実施例1の配合から充填剤を除いたエポキシ樹脂、酸無水物硬化剤、硬化促進剤、を混合し、同様に成形後、評価を行った。
【0026】
(比較例2)
実施例1と同じエポキシ樹脂、酸無水物硬化剤、硬化促進剤に、充填材として平均粒径約8μmの結晶性シリカ(F8,ハイシリカ工業株式会社製)5重量部を混合・脱気し、同様に注型しキュアした後、評価を行った。
【0027】
(比較例3)
実施例1と同じエポキシ樹脂、酸無水物硬化剤、硬化促進剤に、充填材として平均粒径約0.012μmの微粒シリカ(アエロジルR805,日本アエロジル株式会社製)5重量部を混合・脱気し、同様に注型しキュアした後、評価を行った。
【0028】
表1に、実施例、比較例で得られた試料の物性の評価結果を示した。
実施例において、比較例1の樹脂のみの系と比較すると、透明性を維持しつつ表面硬度が向上している。さらに、剛性も向上していることが分かる。
また、透明性はどちらも十分高いが、実施例2の方が実施例1に対して、表面硬度や剛性において、優れた値を示しているのが分かる。
比較例2の8μmのシリカを添加した場合では、粒径が大きいために成形中に沈降してしまっていた。シリカの添加量は2.3重量%と非常に少量だが、ヘイズ値は高く透明性に劣る。また表面硬度は高いがこれは粒子が表面に一層沈降している効果であり、表面光沢の低下などの問題がある。
比較例3の0.012μmのシリカを添加した場合では、ヘイズが高く、目視でも粒子の凝集が認められ、平均粒径50nm以下の無機酸化物分散体が得られていないのが分かる。粉体を混合するのでは要求する分散状態にするのは難しい。また、この配合においてはシリカを10重量部以上配合することは困難であった。添加量に限りがあり、表面硬度の向上もこれ以上望めない。
【0029】
【表1】
【0030】
図1に実施例2の成形体断面におけるTEM写真を示した。シリカ粒子がほぼ単分散し、平均粒径50nm以下の分散状態を満たしている。
【発明の効果】
本発明によって、人工大理石や建材等に使用される透明かつ表面硬度や強度に優れたエポキシ樹脂成形体を提供することが可能となる。
【図面の簡単な説明】
【図1】実施例2の成形体のTEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin molded article that is transparent and has excellent surface hardness, strength, and productivity, which is used for building materials such as artificial marble.
[0002]
[Prior art]
In recent years, building materials, particularly artificial marble, have been required to improve not only strength but also design, and high transparency such as glass has become an important required performance. When high transparency is given, it is desirable that the surface hardness is high because scratches are easily noticeable. The epoxy resin molded body has excellent strength and high transparency. For example, a molded body as an artificial marble is obtained by heat-polymerizing (curing) a material in which a main component of an epoxy resin, an acid anhydride curing agent, a curing accelerator, a filler and the like are mixed in a mold. (For example, refer to Patent Document 1). Moreover, as a means for dispersing fine particles, a method of forming silane particles during molding by a sol-gel method is disclosed (for example, see Patent Document 2).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-6359 [Patent Document 2]
Japanese Patent Laid-Open No. 10-298405
Usually, when an objective is to improve physical properties, an epoxy resin molded body is added with a large amount of an inorganic oxide having a particle size of several μm to several tens of μm as a filler. And in order to improve the transparency of a molded object, it is common to take the means which makes the refractive index of resin and a filler close. However, it is difficult to make the refractive indexes of the fillers completely coincide with each other, and the transmitted light is diffused by the influence of the shape of the particles and the interface between the resin and the particles. Therefore, transparency and haze are lowered. The decrease in these physical property values becomes more significant as the amount of filler added increases. Therefore, it is difficult to obtain a molded body that can make use of the high transparency, total light transmittance, and haze value inherent to the epoxy resin.
[0005]
The epoxy resin molding disclosed in Patent Document 1, which has both physical properties and transparency, has a good physical property because an inorganic oxide having a particle size of several μm to several tens of μm is added in a large amount as a filler. Even though silica (1.47 to 1.54) having a refractive index close to that of epoxy resin (1.54 to 1.55) is used, the total light transmittance is about 80% at a molded body thickness of 5 mm. Only done. The haze value is not specified.
[0006]
Further, in the method of generating particles during molding by the sol-gel method described in Patent Document 2, an inorganic oxide precursor is used to obtain a fine inorganic oxide, so that improved transparency is obtained. Inferior to the physical properties of the molded body.
That is, when a molded product having a thickness that is not a coating method is produced using an inorganic oxide precursor such as a silane compound, particularly a composition containing an alkoxy group or a hydroxyl group, it is generated by a condensation polymerization reaction. Since alcohol and water are difficult to escape out of the system, physical properties are likely to deteriorate due to insufficient curing of the epoxy or insufficient condensation polymerization reaction.
Further, the condensation polymerization reaction of an inorganic oxide precursor represented by a silane compound depends on pH. That is, the production | generation form and production | generation speed | rate of an inorganic oxide change with the kind of hardening | curing agent in an epoxy resin. Generally, amine-based curing agents are faster than acid anhydride-based curing agents for polycondensation reactions with alkoxy groups. The reason is considered to be that it is difficult to produce particles in the molded body because the acid anhydride acts as an acid catalyst to suppress the condensation polymerization of alkoxy groups.
[0007]
In Patent Document 2, an amine curing agent having a fast condensation polymerization reaction is used. The epoxy molded body containing a silane polymer of about 10 to 20 nm obtained in the examples is grown with an amine-based curing in order to grow a silane compound having an alkoxy group into a tens of nm silane polymer through a condensation polymerization reaction. A step of leaving the composition prepared by mixing the agent and the silane compound in a mold at 80 ° C. for 4 hours is required in steps other than molding. Even if an amine-based curing agent is used, it is difficult to say that a composition or a molded body that needs to be left in the mold for several tens of minutes to several hours in the step before molding is good in terms of productivity.
[0008]
Another method for increasing the surface hardness is to form a transparent coating film on the molded body with a paint. However, problems such as an increase in the production process and occurrence of peeling of the coating film due to impact of hot water may occur, and it is impossible to improve the strength of the molded product itself such as rigidity. In addition, it is possible to make a thick molded body by recoating this coating film, but it is difficult to form a uniform thick film in the shape, and there is a high risk of bubbles and objects entering, only one side from the mold There is a problem that it becomes a transfer surface, and it is considered impractical because a considerable number of repeated coatings are necessary in terms of productivity.
[0009]
[Problems to be solved by the invention]
Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to provide an artificial marble made of an epoxy resin molded body that is transparent and has excellent surface hardness, strength, and productivity. is there.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problems, an epoxy resin molded body molded to be a uniform bulk body having a thickness of 1 mm or more by curing a composition comprising at least an epoxy resin and silica particles. An artificial marble made of
Provided is an artificial marble made of an epoxy resin molded product , wherein silica particles having an average particle size of 50 nm or less are dispersed in the molded product .
Since the obtained molded body is filled with inorganic particles, the surface hardness and rigidity can be improved, and at the same time, the average particle size is 50 nm or less, which is much smaller than the wavelength of visible light. The resulting molded product is very excellent in transparency regardless of the amount of particles added. That is, not only the light transmittance is high, but also the haze value is very small. Therefore, there is almost no decrease in transparency even when the thickness of the molded body is changed, and thus stable in high design by back coating, etc. There is an advantage that a molded body can be provided.
[0011]
In a preferred embodiment of the present invention, the inorganic oxide particles in the composition are silica. Since silica has a refractive index close to that of an epoxy resin and has a high hardness, it is most suitable for the purpose of maintaining transparency and improving surface hardness.
[0012]
In a preferred embodiment of the present invention, the inorganic oxide particles in the composition have an average particle size of 50 nm or less. By making the average particle diameter of the inorganic oxide particles in the composition 50 nm or less, it becomes easy to reduce the average particle diameter of the inorganic oxide particles in the molded body.
[0013]
In a preferred embodiment of the present invention, the inorganic oxide particles in the composition have a shape in which inorganic oxide particles having an average particle size of 50 nm or less are arranged in a bead shape. By connecting in a bead shape, the aspect ratio is increased, and the strength and surface hardness are remarkably improved as compared with the spherical particle dispersion, and the required performance can be achieved with a small addition amount. Moreover, since particles of 50 nm or less are connected, transparency can be maintained.
[0014]
In a preferred embodiment of the present invention, the inorganic oxide in the composition is blended as an inorganic oxide sol. The fine particle powder tends to aggregate and is difficult to disperse in the resin. In addition, since the bulk density is very small, it is difficult to add a large amount to the resin, and it is difficult to handle it easily in the air. A sol can solve these problems because it is liquid.
[0015]
In a preferred embodiment of the present invention, the solvent of the inorganic oxide sol is methyl ethyl ketone. Methyl ethyl ketone is uniformly mixed with the epoxy resin and has a boiling point as low as about 80 ° C. and is easy to remove.
[0016]
A preferred embodiment of the present invention includes a step of blending an epoxy resin and an inorganic oxide sol, a step of removing the solvent of the blend until it becomes 10% by weight or less with respect to the epoxy resin, and heating this by placing it in a mold. It is manufactured by the manufacturing method provided with the process of performing the hardening reaction of resin by doing.
The epoxy resin molded body is manufactured through a molding process after a blending process and a removing process. That is, the solvent can be easily volatilized with a thickness of about several tens of μm as in the case of a coating film. However, as already described, in the molding of a molded body, the solvent is difficult to escape from the system. The solvent content in the mixture of the epoxy resin and the inorganic oxide sol remaining after the step of removing the solvent is preferably 10% by weight or less, more preferably 6% by weight or less based on the epoxy resin. If the residual solvent content is more than 10%, the heat resistance and the strength will be greatly affected, and the appearance such as foaming may be further affected. As a method of removing the solvent, a method of evaporating with a warm bath or the like is used. It is more efficient and preferable to carry out under reduced pressure.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Below, the specific preferable aspect of this invention is demonstrated.
Epoxy resins include general-purpose bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol type epoxy resins obtained from dihydric phenols such as bisphenol F and epichlorohydrin, cycloaliphatic epoxy resins, glycidyl ester type epoxies. There are resin components such as resins, glycidyl ether type epoxy resins of long-chain polyols, novolac type epoxy resins, polyolefin type epoxy resins. Epoxy compounds such as reactive diluents such as monoepoxide and polyepoxide having a relatively low viscosity can be appropriately blended within a range that does not adversely affect the predetermined effects of the present invention.
[0018]
In the present invention, it is preferable to add a curing agent to the composition. As the curing agent, an acid anhydride curing agent is preferable. For example, phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimetic anhydride, pyromellitic anhydride, methyl hymic anhydride, maleic anhydride, hexahydro anhydride Examples thereof include phthalic acid and methylhexahydrophthalic anhydride. Considering light resistance, hexahydrophthalic anhydride and methylhexahydrophthalic anhydride having no double bond are more preferable.
[0019]
In the present invention, it is preferable to further add a curing accelerator to the composition. There are many types of curing accelerators, but trisdimethylaminomethylphenol, benzyldimethylamine, DBU (bicyclic amidine compound), imidazole, quaternary phosphonium salts, which are frequently used for acid anhydride curing agents. , Quaternary ammonium salt, tin octylate, aromatic phosphine and the like.
[0020]
Examples of the inorganic oxide particles in the present invention include alumina, titanium oxide, zinc oxide, cerium oxide, and silica. You may use these in mixture of 2 or more types. These inorganic oxide particles may be subjected to a surface treatment such as a silane coupling agent in order to enhance dispersion stability or adhesion to the resin. The addition amount needs to be determined as needed depending on the type of epoxy resin and the molding method.
Examples of the solvent for the inorganic oxide sol include toluene, methyl ethyl ketone, ethylene glycol, and the like.
[0021]
The particle size of the inorganic oxide in the molded body is measured by observing the molded body with an electron microscope and analyzing the image. When dispersed with primary particles, the primary particle diameter is indicated, and when aggregated, the aggregated particle diameter is indicated. However, the diameter of each particle is defined as the particle diameter when the particles appear to overlap each other on the image or when the particles are arranged in a bead shape. Moreover, it is desirable to employ an average value for at least 20 particles on the screen. In addition, the particle size of the inorganic oxide in the composition is measured in the case of a powder as it is, and in the case of a sol, it is dried and observed with an electron microscope.
[0022]
In addition to the epoxy resin and the inorganic oxide sol, the curing agent, and the curing accelerator, various additives such as an ultraviolet absorber, a pigment, a flame retardant, an internal mold release agent, and an antibacterial agent can be appropriately blended.
[0023]
The molding in the present invention is performed by a casting method or a press molding method. The molding temperature is preferably 60 ° C to 180 ° C, more preferably 90 ° C to 140 ° C. After-curing may be performed as necessary.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
Example 1
50 parts by weight of bisphenol A glycidyl ether type epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.), 50 parts by weight of alicyclic epoxy resin (Celoxide 2021, manufactured by Daicel Chemical Industries, Ltd.), methylhexahydrophthalic anhydride (Licacid) Organosilica sol in which spherical particles having an average particle size of 15 nm or less are monodispersed in 104 parts by weight of MH700 (manufactured by Shin Nippon Chemical Co., Ltd.) (silica content 30% by weight, solvent methyl ethyl ketone, trade name MEK-ST, Nissan Chemical Industries) 80 parts by weight) were mixed, and the solvent, methyl ethyl ketone, was removed while being warmed at 60 ° C. until it became 10% by weight or less with respect to the epoxy resin. Thereafter, 6 parts by weight of a curing accelerator (U-CAT18X, manufactured by San Apro Co., Ltd.) is mixed, cast into a mold that has been subjected to mold release treatment, cured at 140 ° C. for 40 minutes, and then demolded to form a 4 mm thick plate Obtained.
The obtained sample was subjected to a bending test (JIS K 7203), a pencil hardness test (JIS K 5400), and a haze value measurement (JIS K 7105) for evaluation.
Further, the dispersion state was observed with TEM (manufactured by H-7500 HITACHI).
(Example 2)
Organosilica sol in which spherical particles having an average particle size of 15 nm or less are dispersed in a bead shape in the same epoxy resin, acid anhydride curing agent, and curing accelerator as in Example 1 (silica content 20% by weight, 100 parts by weight of solvent methyl ethyl ketone, trade name MEK-ST-UP, manufactured by Nissan Chemical Industries, Ltd.) were mixed and evaluated in the same manner after molding.
[0025]
(Comparative Example 1)
The epoxy resin excluding the filler from the formulation of Example 1, an acid anhydride curing agent, and a curing accelerator were mixed and evaluated after molding in the same manner.
[0026]
(Comparative Example 2)
The same epoxy resin, acid anhydride curing agent and curing accelerator as in Example 1 were mixed and degassed with 5 parts by weight of crystalline silica (F8, manufactured by High Silica Industry Co., Ltd.) having an average particle size of about 8 μm as a filler. Evaluation was performed after casting and curing in the same manner.
[0027]
(Comparative Example 3)
The same epoxy resin, acid anhydride curing agent and curing accelerator as in Example 1 were mixed and degassed with 5 parts by weight of fine silica (Aerosil R805, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of about 0.012 μm as a filler. Then, after casting and curing in the same manner, the evaluation was performed.
[0028]
Table 1 shows the evaluation results of the physical properties of the samples obtained in the examples and comparative examples.
In the examples, compared with the resin-only system of Comparative Example 1, the surface hardness is improved while maintaining transparency. Furthermore, it turns out that the rigidity is also improving.
Moreover, although both transparency is high enough, it turns out that the direction of Example 2 has shown the outstanding value in the surface hardness and rigidity with respect to Example 1. FIG.
When 8 μm silica of Comparative Example 2 was added, the particle size was large, so that it settled during molding. The amount of silica added is very small at 2.3% by weight, but the haze value is high and the transparency is poor. Further, although the surface hardness is high, this is an effect that particles are further settled on the surface, and there is a problem such as a decrease in surface gloss.
When 0.012 μm silica of Comparative Example 3 was added, the haze was high, particle aggregation was observed visually, and an inorganic oxide dispersion having an average particle size of 50 nm or less was not obtained. It is difficult to achieve the required dispersion state by mixing powder. Further, in this blending, it was difficult to blend 10 parts by weight or more of silica. The amount of addition is limited, and no further improvement in surface hardness can be expected.
[0029]
[Table 1]
[0030]
FIG. 1 shows a TEM photograph of the cross section of the molded product of Example 2. Silica particles are almost monodispersed and satisfy a dispersion state with an average particle size of 50 nm or less.
【The invention's effect】
According to the present invention, it is possible to provide a transparent epoxy resin molded body excellent in surface hardness and strength used for artificial marble and building materials.
[Brief description of the drawings]
1 is a TEM photograph of a molded article of Example 2. FIG.
Claims (3)
該成型体中に平均粒径が50nm以下のシリカ粒子が分散していることを特徴とするエポキシ樹脂成形体からなる人工大理石。An artificial marble composed of an epoxy resin molded body molded into a uniform bulk body having a thickness of 1 mm or more by curing a composition comprising at least an epoxy resin and silica particles,
An artificial marble comprising an epoxy resin molding, wherein silica particles having an average particle size of 50 nm or less are dispersed in the molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040974A JP4450151B2 (en) | 2003-02-19 | 2003-02-19 | Artificial marble made of epoxy resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040974A JP4450151B2 (en) | 2003-02-19 | 2003-02-19 | Artificial marble made of epoxy resin molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004250521A JP2004250521A (en) | 2004-09-09 |
JP4450151B2 true JP4450151B2 (en) | 2010-04-14 |
Family
ID=33024680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003040974A Expired - Fee Related JP4450151B2 (en) | 2003-02-19 | 2003-02-19 | Artificial marble made of epoxy resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4450151B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5270092B2 (en) * | 2004-09-27 | 2013-08-21 | 日本化薬株式会社 | Epoxy resin composition and article |
JP5072309B2 (en) * | 2006-09-29 | 2012-11-14 | 株式会社日本触媒 | Resin composition and method for producing the same |
TW200831583A (en) | 2006-09-29 | 2008-08-01 | Nippon Catalytic Chem Ind | Curable resin composition, optical material, and method of regulating optical material |
JP4398500B2 (en) * | 2007-04-06 | 2010-01-13 | 株式会社日本触媒 | Resin composition and optical member |
US8674038B2 (en) | 2007-09-27 | 2014-03-18 | Nippon Skokubai Co., Ltd. | Curable resin composition for molded bodies, molded body, and production method thereof |
JP4406465B2 (en) * | 2008-03-27 | 2010-01-27 | 株式会社日本触媒 | Curable resin composition for molded body, molded body and method for producing the same |
JP5644261B2 (en) * | 2010-03-24 | 2014-12-24 | 住友化学株式会社 | Composition for suppressing expansion, multilayer structure and method for suppressing expansion of substrate |
KR101829475B1 (en) * | 2010-06-09 | 2018-02-14 | 데쿠세리아루즈 가부시키가이샤 | Light-reflective anisotropic conductive paste, and light-emitting device |
JP7141639B2 (en) * | 2016-07-01 | 2022-09-26 | 日産化学株式会社 | Method for suppressing occurrence of creeping discharge |
CN106800745B (en) * | 2017-01-22 | 2019-04-16 | 广州玖盈化工材料有限公司 | Structure material, preparation method and applications |
WO2019235206A1 (en) * | 2018-06-05 | 2019-12-12 | Dic株式会社 | Actinic-ray-curable composition and film formed using same |
KR20240096744A (en) | 2021-12-13 | 2024-06-26 | 가부시키가이샤 니콘. 에시로루 | Liquid composition, hard coat layer and spectacle lens |
-
2003
- 2003-02-19 JP JP2003040974A patent/JP4450151B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004250521A (en) | 2004-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4450151B2 (en) | Artificial marble made of epoxy resin molding | |
CN102220062B (en) | Aqueous UV curing coating and preparation method thereof | |
CN104066805B (en) | Coating composition and antireflection film | |
JP5525152B2 (en) | UV-curable coating composition, method for producing the same, and resin-coated article coated therewith | |
US6696148B1 (en) | Plastic window panel and process for producing same | |
CN105339418A (en) | Inorganic microparticle composite, method for producing same, composition, and cured product | |
Binyamin et al. | 3D Printing Thermally Stable High‐Performance Polymers Based on a Dual Curing Mechanism | |
JP3584501B2 (en) | Composite of epoxy resin and metal oxide and method for producing the same | |
JP5219280B2 (en) | Photosensitive composition, coating agent, coating film, and method for producing photosensitive composition | |
CN109517340B (en) | Temperature-resistant transparent photosensitive resin for 3D printing | |
JP2013127065A (en) | Anti-reflection coating composition and method for preparing the same | |
TWI464116B (en) | Reactive monomer dispersed silica sol, method for producing the same, curing composition and cured product from the same | |
KR100729898B1 (en) | Cationically polymerizable composition containing metal oxide particles | |
JP2004346288A (en) | Thermosetting resin composition and manufacturing method therefor | |
JP2001281475A (en) | Organic/inorganic composite material for optical waveguide and method for manufacturing optical waveguide using the same | |
CN117343479A (en) | Colorless transparent high UV yellowing resistant epoxy composition and preparation method thereof | |
JP2008274013A (en) | Curable epoxy resin composition and its manufacturing method | |
JP5421513B2 (en) | Cured film, resin laminate and coating composition | |
EP1666552B1 (en) | Coating composition and resin product having light-transmitting property | |
JP2000143940A (en) | Solid epoxy resin composition | |
JPH0525397A (en) | Resin composition | |
JP5207501B2 (en) | Epoxy resin composition for optical material and cured product thereof | |
JPS62227923A (en) | Epoxy resin composition | |
JP6655359B2 (en) | Method for producing electronic / electric parts and epoxy resin composition | |
JP2005139369A (en) | Resin composition for optical material and optical element using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4450151 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140205 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |