JP2007303231A - Method and facility for measuring sliding surface of slope - Google Patents

Method and facility for measuring sliding surface of slope Download PDF

Info

Publication number
JP2007303231A
JP2007303231A JP2006135009A JP2006135009A JP2007303231A JP 2007303231 A JP2007303231 A JP 2007303231A JP 2006135009 A JP2006135009 A JP 2006135009A JP 2006135009 A JP2006135009 A JP 2006135009A JP 2007303231 A JP2007303231 A JP 2007303231A
Authority
JP
Japan
Prior art keywords
work vehicle
measuring
sliding surface
work
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006135009A
Other languages
Japanese (ja)
Other versions
JP4915777B2 (en
Inventor
Kenji Sakai
賢治 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKA TEC KK
KF Co Ltd
Original Assignee
SAKA TEC KK
KF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKA TEC KK, KF Co Ltd filed Critical SAKA TEC KK
Priority to JP2006135009A priority Critical patent/JP4915777B2/en
Publication of JP2007303231A publication Critical patent/JP2007303231A/en
Application granted granted Critical
Publication of JP4915777B2 publication Critical patent/JP4915777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a facility for measuring the sliding surface of a slope capable of easily and accurately measuring the positions of rocks at multiple points on the slope and minimizing wasteful civil engineering operations by accurately calculating the sliding surface of the slope. <P>SOLUTION: By using a sliding surface measuring facility 1 having a self-traveling work vehicle 2, an assisting device 5 for assisting the work vehicle 2 to the upper side of the slope by a winch 3 by using a lifting wire rope 4 stretched between the work vehicle 2 and the upper part of the slope, and a rock position measuring means 32 installed in the work vehicle 2, the work vehicle 2 is moved to a pre-set measurement position MP while assisting the work vehicle 2 to the upper side of the slope by the assisting device 5. The position of the rock is measured by the rock position measuring means 32 at the measurement point MP. The positions of the rocks are sequentially measured at multiple measurement points MP to obtain the sliding surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、山の斜面などの傾斜地における滑り面測定方法及び滑り面測定設備に関する。   The present invention relates to a sliding surface measuring method and a sliding surface measuring facility on an inclined land such as a mountain slope.

山の斜面などの傾斜地に対して法面を施工するなどの土木作業を施す際には、施工後における地滑り等の発生を未然に防止するため、地滑りの発生し易い、岩盤と表層土との境界面を予め測定するとともに、傾斜地上部の地割れ位置を測定し、境界面と地割れ位置から想定滑り面を算出し、この想定滑り面に基づいて傾斜地の掘削やアンカーの打ち込みなどの土木作業を行っている。   When performing civil engineering work such as constructing slopes on slopes such as mountain slopes, in order to prevent the occurrence of landslides after construction, in order to prevent the occurrence of landslides, In addition to measuring the boundary surface in advance, measure the crack position on the sloped ground, calculate the estimated slip surface from the boundary surface and the crack position, and perform civil engineering work such as excavation of the tilted land and anchor placement based on the assumed slip surface. ing.

ところで、境界面の位置を正確に測定するためには、傾斜地の複数箇所においてボーリング作業を行って岩盤位置を測定したり、標準貫入試験により岩盤位置を測定したり必要がある。しかし、傾斜地上部への地質調査用ボーリング機械や標準貫入試験機の運搬は、傾斜地の勾配や傾斜地に自生している樹木により阻まれて、困難になるケースがほとんどで、通常は、土木作業を施す傾斜地の上下2点において、人手により簡易貫入試験を行って岩盤位置として測定し、この2点における岩盤位置と傾斜地上部の地割れ位置とから想定滑り面を算出しているのが実状である。ところで、簡易貫入試験では、質量5kgのハンマーを50cm自由落下させ、先端コーンが10cm貫入するのに要する回数(Nc値)を測定することになるが、傾斜地における人手による作業であることから、測定精度にバラツキが多く、しかも測定用ロッドの長さが1mたらずであることから、実際の岩盤位置を間接的にしか測定できないという問題があった。   By the way, in order to accurately measure the position of the boundary surface, it is necessary to perform the boring operation at a plurality of locations on the slope and measure the rock mass position, or to measure the rock mass position by a standard penetration test. However, transportation of geological survey boring machines and standard penetrating test machines to sloped ground is often difficult due to the slope of the slope and the trees growing on the slope. It is the actual situation that a simple intrusion test is conducted manually at two points above and below the slope to be applied and measured as a rock mass position, and an assumed slip surface is calculated from the rock mass position at these two points and the ground crack position on the slope ground. By the way, in the simple penetration test, a hammer with a mass of 5 kg is freely dropped by 50 cm, and the number of times (Nc value) required for the tip cone to penetrate 10 cm is measured. Since there are many variations in accuracy and the length of the measuring rod is not 1 m, there has been a problem that the actual rock mass position can only be measured indirectly.

また、傾斜地に対して重機を用いて土木作業を行う場合には、傾斜地の下部から上部に至るパイロット道路を想定滑り面に基づいて施工した後、パイロット道路を利用して傾斜地の上部へ重機を移動させ、重機により傾斜地の上側から順番に想定滑り面に応じて予め設定した掘削面に沿って掘削等の土木作業を行っている。   In addition, when civil engineering work is performed on sloping ground using heavy machinery, after constructing the pilot road from the bottom to the top of the sloping ground based on the assumed sliding surface, the heavy machinery is installed on the top of the sloping ground using the pilot road. It is moved, and civil engineering work such as excavation is performed along the excavation surface set in advance according to the assumed sliding surface in order from the upper side of the sloped land by heavy machinery.

一方、傾斜地における土木作業に好適な土木作業設備として、土木作業面よりも上方位置(山側)に左右1対の固定点を設け、ブルドーザーやバックホウ等の作業車に左右1対のウィンチを設置して、両ウィンチから繰り出した昇降用ワイヤを前記固定点にそれぞれ固定し、作業車の上下移動や左右移動に応じて両ウィンチにより昇降用ワイヤを巻き取ったり、繰り出したりすることで、作業車の移動を助勢するように構成したものが提案され、実用化されている(例えば、特許文献1参照。)。   On the other hand, as civil engineering equipment suitable for civil engineering work on slopes, a pair of left and right fixed points are provided above the civil engineering work surface (mountain side), and a pair of left and right winches are installed on work vehicles such as bulldozers and backhoes. Then, the lifting wires fed out from both winches are fixed to the fixing points, respectively, and the lifting wires are wound up and fed out by both winches according to the vertical movement and left / right movement of the work vehicle. A device configured to assist the movement has been proposed and put into practical use (for example, see Patent Document 1).

しかし、前記土木作業設備では、作業車の上部旋回体にウィンチを固定している関係上、上部旋回体に組み付けたバケットアームを旋回させると、上部旋回体とともにウィンチが旋回し、昇降用ワイヤが引っ張られるので、これを防止するためバケットアームを常時下側へ向けて作業する必要があり、土木作業の作業性が大変悪かった。そこで、これを防止すため、作業車の下部走行体に環状部材を固定し、環状部材に沿って移動自在に連結部材を設け、左右1対の滑車を連結部材に固定し、両滑車に昇降用ワイヤを巻き掛けて、昇降用ワイヤをそれぞれ巻き取ったり、繰り出したりすることで、作業車の向きを変えたときでも、環状部材に沿って連結部材が回動することで、両滑車が作業車の山側に常時位置するように構成したものも提案されている(例えば、特許文献2参照。)。   However, in the civil engineering work facility, when the winch is fixed to the upper swing body of the work vehicle, when the bucket arm assembled to the upper swing body is swung, the winch is swung together with the upper swing body, and the lifting wire is Since it was pulled, it was necessary to always work the bucket arm downward to prevent this, and the workability of civil engineering work was very bad. Therefore, in order to prevent this, an annular member is fixed to the lower traveling body of the work vehicle, a connecting member is provided so as to be movable along the annular member, a pair of left and right pulleys are fixed to the connecting member, and the two pulleys are moved up and down. Even if the direction of the work vehicle is changed by winding the wire for winding and winding the wire for raising and lowering, both pulleys work by rotating the connecting member along the annular member. A configuration in which the vehicle is always located on the mountain side of the vehicle has also been proposed (see, for example, Patent Document 2).

特開平4−120319号公報Japanese Patent Laid-Open No. 4-120319 特開2003−27520号公報Japanese Patent Laid-Open No. 2003-27520

ところで、傾斜地における土木作業は、作業現場毎に各種測量を行って、予め工事内容を明記した報告書を作成し、それに沿って行っていおり、この報告書を作成するにあたり、傾斜地における想定滑り面の算出は、工事内容を決定するための重要な要素である。しかし、前述のように傾斜地においては、地質調査用ボーリング機械や標準貫入試験機の運搬が困難である場合が多く、主に簡易貫入試験の試験結果に基づいて算出している関係上、算出した想定滑り面には比較的大きな誤差が含まれる。このため、通常は安全係数を掛けるなどして、想定滑り面を安全サイドに設定しているが、このように想定滑り面を安全サイドに設定すると、傾斜地に対する掘削作業時に、岩盤が露出しているにも拘わらず、更なる掘削が余儀なくされることが多々あり、また岩盤が露出しているからといって、途中で工事内容を変更することもできないことから、無駄な作業であると分かりつつ、多大な労力と費用を投じて土木作業を行っているのが実状である。   By the way, civil engineering work on slopes is carried out according to various surveys conducted at each work site, and a report specifying the details of the work is prepared in advance. The calculation of is an important factor for determining the construction content. However, as mentioned above, it is often difficult to transport geological survey boring machines and standard penetration testing machines on sloping terrain, and it was calculated mainly because of the calculation based on the test results of the simple penetration test. The assumed slip surface includes a relatively large error. For this reason, the assumed sliding surface is usually set to the safe side by multiplying it with a safety factor.However, if the assumed sliding surface is set to the safe side in this way, the bedrock will be exposed during excavation work on sloping ground. In spite of this, it is often found that it is a wasteful work because further excavation is often forced, and because the bedrock is exposed, it is not possible to change the construction work on the way. On the other hand, the actual situation is that civil engineering work is carried out with great effort and cost.

本発明の目的は、傾斜地における複数点での岩盤位置の測定作業を容易に且つ精度良く実施でき、傾斜地の滑り面を精度良く算出可能とすることで、無駄な土木作業を極力少なくし得る傾斜地の滑り面測定方法及び傾斜地の滑り面測定設備を提供することである。   It is an object of the present invention to be able to easily and accurately carry out a work for measuring rock positions at a plurality of points on an inclined land, and to calculate a sliding surface of the inclined land with high accuracy, so that it is possible to reduce wasteful civil engineering work as much as possible. It is providing the slip surface measuring method of this, and the slip surface measuring equipment of a sloping ground.

本出願人は、傾斜地における無駄な土木作業を極力少なくすべく、鋭意検討した結果、傾斜地の滑り面をより実際に近い滑り面に設定すれば、無駄な土木作業を極力少なくできるとの発想を得て、本発明を完成するに至った。   As a result of diligent study to minimize wasteful civil engineering work on sloped land, the applicant has the idea that wasteful civil engineering work can be reduced as much as possible by setting the sliding surface of the sloped land closer to the actual surface. As a result, the present invention has been completed.

本発明に係る傾斜地の滑り面測定方法は、自走式の作業車と、作業車と傾斜地の上部間に張設した昇降用ワイヤを用いて、傾斜地の上側へ作業車をウィンチにて助勢する助勢装置と、作業車に設けた岩盤位置測定手段とを備えた滑り面測定設備を用い、助勢装置により傾斜地の上側へ作業車を助勢しながら、予め設定した測定位置へ作業車を移動させ、該測定位置において岩盤位置測定手段により岩盤位置を測定し、複数の測定位置において岩盤位置の測定を順次行って滑り面を求めるものである。   The method for measuring a sliding surface of an inclined ground according to the present invention uses a winch to assist the working vehicle to the upper side of the inclined ground by using a self-propelled working vehicle and a lifting wire stretched between the working vehicle and the upper portion of the inclined ground. Using the sliding surface measurement equipment provided with the assist device and the rock mass position measuring means provided on the work vehicle, the work vehicle is moved to a preset measurement position while assisting the work vehicle to the upper side of the slope by the assist device, The rock position is measured by the rock position measuring means at the measurement position, and the rock position is sequentially measured at a plurality of measurement positions to obtain the sliding surface.

この滑り面測定方法では、助勢装置により傾斜地の上側へ作業車を助勢しながら、作業車を傾斜地の任意の位置へ移動させることができ、しかも作業車に岩盤位置測定手段を備えさせているので、パイロット道路等を施工することなく、複数の測定位置において岩盤位置を容易に測定することができる。特に、土砂崩れを起こした現場においては、樹木が倒れているので、樹木を伐採するなどの作業を行うことなく、作業車を移動させることができる。また、こうして得られた複数の岩盤位置の測定データを基にして、滑り面の位置を算出するので、滑り面を精度良く算出することができ、算出した滑り面に応じて土木作業を行うことで、無駄な掘削等の土木作業を大幅に省略できる。また、法面を施工する際には、アンカーピンの本数や長さを作業現場に応じたものに設定できるので、法面施工時における無駄なアンカーピンの施工作業も省略できる。   In this sliding surface measurement method, the work vehicle can be moved to an arbitrary position on the slope while assisting the work vehicle to the upper side of the slope by the assist device, and the work vehicle is provided with the rock mass position measuring means. The rock position can be easily measured at a plurality of measurement positions without constructing a pilot road or the like. In particular, at a site where a landslide has occurred, the trees are falling down, so that the work vehicle can be moved without performing operations such as cutting the trees. In addition, since the position of the sliding surface is calculated based on the measurement data of the plurality of rock positions obtained in this way, the sliding surface can be calculated with high accuracy, and civil engineering work should be performed according to the calculated sliding surface. Thus, civil engineering work such as wasteful excavation can be largely omitted. In addition, when constructing a slope, the number and length of anchor pins can be set according to the work site, so that unnecessary construction work of anchor pins during slope construction can be omitted.

ここで、前記傾斜地の上側の測定位置から順番に岩盤位置を測定するとともに、作業車により傾斜地に対して土木作業を施し、上側から順番に滑り面を測定しながら土木作業を施すことができる。傾斜地の岩盤位置の測定だけを先に行って、滑り面を算出した後、この滑り面に応じて土木作業を行うことも好ましいが、この発明のように岩盤位置の測定と土木作業とを交互に行うと、滑り面の測定と掘削等の土木作業を効率的に行えるので好ましい。   Here, the rock position can be measured in order from the measurement position on the upper side of the slope, the civil work can be performed on the slope with a work vehicle, and the civil work can be performed while measuring the sliding surface in order from the upper side. It is also preferable to perform the civil engineering work according to this sliding surface after calculating the sliding surface first by measuring only the rock mass position on the slope. However, as in this invention, the measurement of the rock mass position and the civil engineering work are alternately performed. This is preferable because it enables efficient civil engineering work such as sliding surface measurement and excavation.

前記岩盤位置測定手段として地質調査用ボーリング機械を作業車に着脱自在に設けることもできる。この場合には、地質調査用ボーリング機械を作業車に取り付けて、傾斜地を掘削し、岩盤位置を測定することができる。   As the rock position measuring means, a geological survey boring machine can be detachably provided on the work vehicle. In this case, a geological survey boring machine can be attached to the work vehicle to excavate the slope and measure the rock mass position.

前記岩盤位置測定手段として標準貫入試験機を作業車に着脱自在に設けることができる。この場合には、標準貫入試験により得られたN値に基づいて岩盤位置を測定することができる。   A standard penetration testing machine can be detachably provided on the work vehicle as the rock mass position measuring means. In this case, the rock mass position can be measured based on the N value obtained by the standard penetration test.

前記作業車の現在位置を測定する現在位置測定手段を設けることもできる。作業車の現在位置は、光学式の計測器等で計測することもできるが、GPS(グローバル ポジショニング システム)などの現在地位測定手段により測定すると、容易に測定できるので好ましい。   Current position measuring means for measuring the current position of the work vehicle may be provided. The current position of the work vehicle can be measured with an optical measuring instrument or the like, but it is preferable to measure it with a current position measuring means such as GPS (Global Positioning System) because it can be easily measured.

前記作業車を遠隔操作するための遠隔操作手段を設けることが好ましい。作業車に作業員が乗り込んで、岩盤位置の測定作業や土木作業を行うことも可能であるが、傾斜地によっては、45°以上の急勾配の傾斜地も多々あり、そのような急勾配の傾斜地での作業は危険を伴なうものとなるので、本発明のように、安全な場所において作業車を遠隔操作できるように構成することが、作業者の安全性を向上する上で好ましい。   It is preferable to provide remote operation means for remotely operating the work vehicle. It is possible to work on the work vehicle and perform rockwork position measurement work and civil engineering work. However, depending on the slope, there are many slopes with a steep slope of 45 ° or more. Since this work involves danger, it is preferable to improve the safety of the worker so that the work vehicle can be remotely operated in a safe place as in the present invention.

前記助勢装置として、作業車に設けた動滑車と、傾斜地の土木作業予定面の外縁上部に設けた1対の固定点と、少なくとも一方の固定点に固定した定滑車と、土木作業予定面の外縁下に設けたウィンチとを備え、ウィンチから繰り出した昇降用ワイヤを他方の固定点に定滑車を介して案内し、両固定点間に張設された昇降用ワイヤを土木作業予定面側へ繰り出してその途中部に作業車の動滑車を引っ掛けてなるものを用いることが好ましい実施の形態である。このような助勢装置を用いると、重量物であるウィンチを土木作業予定面の下縁部に設置でき、傾斜地の上部には定滑車を設置するだけでよいので、滑り面測定設備の設置作業の労力を大幅に軽減できる。また、ウィンチは、1台だけでよく、特許文献1記載のように2台用いる必要がないので、滑り面測定設備の設備コストも安くなる。また、作業車に取り付けた滑車が、動滑車となるように昇降用ワイヤを張設するので、2倍の力で作業車を助勢することが可能となり、ウィンチとして出力の小さい小型なものを採用して、設備経済的な負担を軽減できる。   As the assisting device, a moving pulley provided on the work vehicle, a pair of fixed points provided on the outer edge of the planned civil engineering work surface on the sloping ground, a fixed pulley fixed to at least one fixed point, a civil engineering work planned surface A winch provided under the outer edge, guides the lifting wire fed from the winch to the other fixed point via a fixed pulley, and moves the lifting wire stretched between the two fixed points toward the planned civil engineering work side It is a preferred embodiment to use one that is extended and hooked with a moving pulley of a work vehicle in the middle. Using such an assist device, a heavy winch can be installed at the lower edge of the planned civil engineering work surface, and it is only necessary to install a fixed pulley on the upper part of the slope. Labor can be greatly reduced. Further, only one winch is required, and it is not necessary to use two as described in Patent Document 1, so that the equipment cost of the sliding surface measuring equipment is reduced. In addition, since the lifting wire is stretched so that the pulley attached to the work vehicle becomes a moving pulley, it is possible to assist the work vehicle with twice the force, and a small winch with a small output is adopted. Thus, the equipment economic burden can be reduced.

本発明に係る傾斜地の滑り面測定設備は、自走式の作業車と、前記作業車と傾斜地の上部間に張設した昇降用ワイヤを用いて、傾斜地の上側へ作業車をウィンチにて助勢する助勢装置と、前記作業車に設けた岩盤位置測定手段と備えたものである。   The apparatus for measuring a sliding surface of an inclined ground according to the present invention uses a winch to assist the working vehicle to the upper side of the inclined ground using a self-propelled working vehicle and a lifting wire stretched between the working vehicle and the upper portion of the inclined ground. And a rock mass position measuring means provided in the work vehicle.

ここで、前記岩盤位置測定手段として地質調査用ボーリング機械を作業車に着脱自在に設けること、前記岩盤位置測定手段として標準貫入試験機を作業車に着脱自在に設けること、前記作業車の現在位置を測定する現在位置測定手段を設けること、前記作業車を遠隔操作するための遠隔操作手段を設けること、前記助勢装置として、作業車に設けた動滑車と、傾斜地の土木作業予定面の外縁上部に設けた1対の固定点と、少なくとも一方の固定点に固定した定滑車と、土木作業予定面の外縁下部に設けたウィンチとを備え、ウィンチから繰り出した昇降用ワイヤを他方の固定点に定滑車を介して案内し、両固定点間に張設された昇降用ワイヤを土木作業予定面側へ繰り出してその途中部に作業車の動滑車を引っ掛けてなるものを用いること、などが好ましい実施の形態である。   Here, a geological survey boring machine is detachably provided on a work vehicle as the rock mass position measuring means, a standard penetration testing machine is detachably provided on the work vehicle as the rock mass position measuring means, and the current position of the work vehicle Providing a current position measuring means for measuring, a remote operating means for remotely operating the work vehicle, a moving pulley provided on the work vehicle as an assisting device, and an upper part of an outer edge of a planned civil engineering work surface on an inclined ground A fixed pulley fixed to at least one fixed point, and a winch provided at a lower portion of the outer edge of the planned civil engineering work surface, and the lifting wire fed from the winch is used as the other fixed point. Use a guide that is guided through a fixed pulley, and that lifts a lifting wire stretched between the two fixed points to the civil engineering work planned surface side and hooks a moving pulley of the work vehicle in the middle. Etc. is the preferred embodiment.

本発明に係る傾斜地の滑り面測定方法及び滑り面測定設備によれば、助勢装置により傾斜地の上側へ作業車を助勢しながら、作業車を傾斜地の任意の位置へ移動させることができ、しかも作業車に岩盤位置測定手段を備えさせているので、パイロット道路等を施工することなく、複数の測定位置において岩盤位置を容易に測定することができる。特に、土砂崩れを起こした現場においては、樹木が倒れているので、樹木を伐採するなどの作業を行うことなく、作業車を移動させることができる。また、こうして得られた複数の岩盤位置の測定データを基にして、滑り面の位置を算出するので、滑り面を精度良く算出することができ、算出した滑り面に応じて土木作業を行うことで、無駄な掘削等の土木作業を大幅に省略できる。また、法面を施工する際には、アンカーピンの本数や長さを作業現場に応じたものに設定できるので、法面施工時における無駄なアンカーピンの施工作業も省略できる。   According to the sliding surface measuring method and the sliding surface measuring equipment for the slope according to the present invention, the work vehicle can be moved to an arbitrary position on the slope while assisting the work vehicle to the upper side of the slope by the assisting device. Since the vehicle is provided with the rock mass position measuring means, the rock mass position can be easily measured at a plurality of measurement positions without constructing a pilot road or the like. In particular, at a site where a landslide has occurred, the trees are falling down, so that the work vehicle can be moved without performing operations such as cutting the trees. In addition, since the position of the sliding surface is calculated based on the measurement data of the plurality of rock positions obtained in this way, the sliding surface can be calculated with high accuracy, and civil engineering work should be performed according to the calculated sliding surface. Thus, civil engineering work such as wasteful excavation can be largely omitted. In addition, when constructing a slope, the number and length of anchor pins can be set according to the work site, so that unnecessary construction work of anchor pins during slope construction can be omitted.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1〜図3に示すように、傾斜地の滑り面測定設備1は、自走式の作業車2と、ウィンチ3から繰り出される昇降用ワイヤ4を用いて傾斜地の上側へ作業車2を助勢する助勢装置5と、岩盤位置GPを測定するための岩盤位置測定装置6と、作業車2と助勢装置5と岩盤位置測定装置6とを遠隔操作するための無線コントローラ7とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the slope-slide surface measuring equipment 1 assists the work vehicle 2 to the upper side of the slope using a self-propelled work vehicle 2 and a lifting wire 4 fed out from the winch 3. A support device 5, a rock position measurement device 6 for measuring the rock position GP, and a wireless controller 7 for remotely operating the work vehicle 2, the support device 5, and the rock position measurement device 6 are provided.

作業車2と助勢装置5と岩盤位置測定装置6とを遠隔操作するため、作業車2には、無線機10と、無線機10からの信号に基づいて作業車2の各種油圧機器11及び各種電気機器12を制御する制御手段13が設けられている。また、助勢装置5には、無線機20と、無線機20からの信号に基づいて助勢装置5のウィンチ3の駆動を制御する制御手段21とが設けられている。更に、岩盤位置測定装置6には、無線機30と、無線機30からの信号に基づいて岩盤位置測定手段32などを制御する制御手段31が設けられている。そして、無線コントローラ7により、助勢装置5と作業車2とを遠隔操作して、土木作業予定面CSに予め設定した測定位置MP付近に作業車2を移動させ、岩盤位置測定装置6を遠隔操作して、測定位置MPにおいて岩盤までの深さDを測定できるように構成されている。この滑り面測定設備1では、作業車2付近の安全な場所において、作業者Wが無線コントローラ7を操作して、作業車2と助勢装置5と岩盤位置測定装置6を操作できるように構成したが、作業員が実際に作業車2に乗り込んで手動にて作業車2と助勢装置5と岩盤位置測定装置6を操作するように構成した設備も本発明の範疇である。   In order to remotely operate the work vehicle 2, the assisting device 5, and the rock mass position measuring device 6, the work vehicle 2 includes a wireless device 10, various hydraulic devices 11 of the work vehicle 2 based on signals from the wireless device 10, and various types. Control means 13 for controlling the electric device 12 is provided. Further, the assisting device 5 is provided with a wireless device 20 and a control unit 21 that controls the driving of the winch 3 of the assisting device 5 based on a signal from the wireless device 20. Furthermore, the rock mass position measuring device 6 is provided with a radio 30 and a control means 31 for controlling the rock mass position measuring means 32 and the like based on a signal from the radio 30. Then, the assisting device 5 and the work vehicle 2 are remotely operated by the wireless controller 7 to move the work vehicle 2 near the measurement position MP set in advance on the civil engineering work planned surface CS, and the rock mass position measurement device 6 is remotely operated. And it is comprised so that the depth D to the bedrock can be measured in the measurement position MP. The sliding surface measuring facility 1 is configured such that the worker W can operate the wireless controller 7 to operate the work vehicle 2, the assisting device 5, and the rock position measuring device 6 in a safe place near the work vehicle 2. However, equipment configured such that an operator actually gets into the work vehicle 2 and manually operates the work vehicle 2, the assisting device 5, and the rock mass position measuring device 6 is also within the scope of the present invention.

作業車2は、油圧ショベルやブルドーザーなど、任意の構成の作業機械を採用することができる。図2、図4に示す作業車2は、クローラ式の下部走行部14と、下部走行部14に旋回可能に設けた上部旋回部15とを備えた油圧ショベルで、上部旋回部15に回動自在に取り付けたブーム16と、ブーム16に回動自在に取り付けたアーム17とを介して岩盤位置測定手段32を回動自在に支持するとともに、複数の油圧シリンダ18により岩盤位置測定手段32を操作可能となした周知の構成のものである。この作業車2には、図3に示すように、無線機10と、無線機10からの信号に基づいて作業車2の各種油圧機器11及び各種電気機器12を制御する制御手段13が設けられ、無線コントローラ7を操作することで、作業者Wが乗り込んで操作する場合と同様に作業車2を自在に操作できるように構成されている。尚、この作業車2のアーム17の先端部に、岩盤位置測定手段32に代えて、バケットや削岩機等を着脱自在に取り付けることで、滑り面測定設備1を、傾斜地を掘削等するための土木作業設備としてそのまま利用することができる。   The work vehicle 2 can employ a work machine having an arbitrary configuration such as a hydraulic excavator or a bulldozer. The work vehicle 2 shown in FIG. 2 and FIG. 4 is a hydraulic excavator provided with a crawler-type lower traveling unit 14 and an upper revolving unit 15 that is turnably provided on the lower traveling unit 14. The rock position measuring means 32 is rotatably supported via the boom 16 that is freely attached and the arm 17 that is rotatably attached to the boom 16, and the rock position measuring means 32 is operated by a plurality of hydraulic cylinders 18. It is of a known configuration that has become possible. As shown in FIG. 3, the work vehicle 2 is provided with a wireless device 10 and a control unit 13 that controls various hydraulic devices 11 and various electrical devices 12 of the work vehicle 2 based on signals from the wireless device 10. By operating the wireless controller 7, the work vehicle 2 can be freely operated in the same manner as when the operator W gets on and operates. In addition, instead of the rock mass position measuring means 32, a bucket, a rock drill or the like is detachably attached to the distal end portion of the arm 17 of the work vehicle 2 so that the sliding surface measuring equipment 1 can excavate an inclined ground. It can be used as it is as civil engineering equipment.

岩盤位置測定装置6は、図2〜図5に示すように、アーム17の先端部に取り付けた岩盤位置測定手段32と、上部旋回部15の旋回角度θ1を測定する旋回角測定手段33と、ブーム16とアーム17と岩盤位置測定手段32の角度θ2〜θ4をそれぞれ測定する角度測定手段34〜36と、傾斜地の勾配θを測定する勾配測定手段37と、作業車2の現在位置を測定するGPS(グローバル ポジショニング システム)からなる現在位置測定手段38と、無線コントローラ7との間でデータや信号の授受を行う無線機30と、岩盤位置測定手段32を制御する制御手段31とを備えている。制御手段31では、現在位置測定手段38から得られた作業車2の現在位置情報を無線コントローラ7に対して送信する。そして、無線コントローラ7では、それに設けた図示外のディスプレイ上に傾斜地の地図とともに測定位置MPと作業車2の現在位置を表示させて、所望の測定位置MPへ作業車2を容易に操作できるように構成されている。また、岩盤位置GPの測定時、制御手段31では、無線コントローラ7の操作に応じて、岩盤位置測定手段32への必要な給電及び圧油の供給などを制御して、測定位置MPにおける岩盤の深さDを測定する。更に、制御手段31では、作業車2の各部の寸法が予め入力格納されており、この各部の寸法のデータと測定して得られた角度θ1〜θ4と勾配θと作業車2の現在位置の3次元座標データとに基づいて、測定位置MP(岩盤位置測定手段32による傾斜面の掘削開始位置)の3次元座標を演算し、岩盤位置測定手段32により測定した岩盤の深さDに基づいて測定位置MPにおける岩盤の3次元座標を岩盤位置GPとして算出する。但し、岩盤位置GPの3次元座標の算出は、固定基地に設置のパソコンへ必要なデータを送信することで、該パソコンにおいて算出することもできる。   As shown in FIGS. 2 to 5, the rock mass position measuring device 6 includes a rock mass position measuring means 32 attached to the tip of the arm 17, a turning angle measuring means 33 for measuring the turning angle θ <b> 1 of the upper turning section 15, The angle measuring means 34 to 36 for measuring the angles θ2 to θ4 of the boom 16, the arm 17 and the rock mass position measuring means 32, the gradient measuring means 37 for measuring the slope θ of the slope, and the current position of the work vehicle 2 are measured. A current position measuring means 38 comprising a GPS (Global Positioning System), a radio 30 for exchanging data and signals with the radio controller 7, and a control means 31 for controlling the rock mass position measuring means 32 are provided. . The control means 31 transmits the current position information of the work vehicle 2 obtained from the current position measuring means 38 to the wireless controller 7. The wireless controller 7 displays the measurement position MP and the current position of the work vehicle 2 on the display (not shown) provided on the wireless controller 7 so that the work vehicle 2 can be easily operated to the desired measurement position MP. It is configured. Further, when measuring the rock mass position GP, the control means 31 controls necessary power supply and pressure oil supply to the rock mass position measuring means 32 in accordance with the operation of the wireless controller 7, so that the rock mass at the measurement position MP is controlled. Measure depth D. Further, in the control means 31, the dimensions of each part of the work vehicle 2 are previously input and stored. The data of the dimensions of each part and the angles θ1 to θ4 and the gradient θ obtained by measurement and the current position of the work vehicle 2 are stored. Based on the three-dimensional coordinate data, the three-dimensional coordinates of the measurement position MP (the excavation start position of the inclined surface by the rock position measurement means 32) are calculated, and based on the rock depth D measured by the rock position measurement means 32. The three-dimensional coordinates of the rock at the measurement position MP are calculated as the rock position GP. However, the calculation of the three-dimensional coordinates of the rock mass position GP can also be performed on the personal computer by transmitting necessary data to the personal computer installed on the fixed base.

岩盤位置測定手段32としては、岩盤位置GPを測定できるものであれば任意の構成のものを採用できる。具体的には、地質調査用ボーリング機械や標準貫入試験機40や簡易貫入試験機を用いることができるが、それ以外に、弾性波探査や電気探査や音波探査などの機器を採用することもできる。例えば、標準貫入試験を行う場合には、図5に示すように、途中部にノッキングブロック41を設けたボーリングロッド42と、ボーリングロッド42の下端部に取り付けたサンプラー43と、ノッキングブロック41よりも上側においてボーリングロッド42に上下移動自在に設けたドライブハンマー44とを有する標準貫入試験機40と、図4に示すボーリング機械45とをアーム17の先端部に取り付け、ボーリング機械45により傾斜地に対して鉛直にボーリング孔46を形成した後、サンプラー43をボーリング孔46の底まで挿入して標準貫入試験機40をボーリング孔46にセットし、ドライブハンマー44を設定高さからノッキングブロック41に対して自由落下させ、サンプラー43が地中に30cm貫入するのに必要な打撃回数をN値として記録し、ボーリング孔46を例えば1mずつ段階的に掘り下げて、上記と同様にしてN値を測定し、例えばN値20以上になった深さDを求めることになる。尚、サンプラー43に代えて、ボーリングロッド42の下端部にコアチューブを取り付け、コアを抜き取り検査して岩盤位置GPを測定することも可能である。   As the rock position measuring means 32, any structure can be adopted as long as the rock position GP can be measured. Specifically, a geological survey boring machine, a standard penetrating tester 40, or a simple penetrating tester can be used, but other devices such as elastic wave exploration, electrical exploration, and acoustic exploration can also be employed. . For example, when performing a standard penetration test, as shown in FIG. 5, the boring rod 42 provided with a knocking block 41 in the middle, the sampler 43 attached to the lower end of the boring rod 42, and the knocking block 41 A standard penetration testing machine 40 having a drive hammer 44 provided on the boring rod 42 so as to be movable up and down on the upper side and a boring machine 45 shown in FIG. 4 are attached to the tip of the arm 17. After the boring hole 46 is formed vertically, the sampler 43 is inserted to the bottom of the boring hole 46, the standard penetration testing machine 40 is set in the boring hole 46, and the drive hammer 44 is freely set with respect to the knocking block 41 from the set height. It is necessary for the sampler 43 to fall and penetrate 30cm into the ground. The 撃回 number recorded as N values, drill down the borehole 46 for example by stepwise 1 m, the N value measured in the same manner as above, thereby obtaining the depth D became e.g. N value 20 or more. Instead of the sampler 43, it is also possible to attach a core tube to the lower end portion of the boring rod 42, extract the core, and inspect the rock mass position GP.

尚、ボーリング孔46の形成時に発生するスライムを撮像する撮像手段39を岩盤位置測定手段32或いは作業車2に設け、撮像した画像データを無線コントローラ7に送信して、無線コントローラ7のディスプレイ(図示略)にてスライムの性状変化を目視しながらボーリング深さを設定できるように構成することも好ましい実施の形態である。つまり、岩盤近くになるとスライムの性状が変化するので、そのタイミングでボーリングを中断して、標準貫入試験を行うことで、何度もボーリング孔46を掘り下げることなく、適正な岩盤までの深さDを迅速且つ容易に測定することができる。また、岩盤位置測定手段32への圧油の供給及び給電は、作業車2側から供給することになる。   An image pickup means 39 for picking up a slime generated when the boring hole 46 is formed is provided in the rock mass position measuring means 32 or the work vehicle 2, and the picked-up image data is transmitted to the wireless controller 7 to display the wireless controller 7 display (illustrated). It is also a preferred embodiment that the boring depth can be set while visually observing the property change of the slime. In other words, since the properties of the slime change near the bedrock, the drilling is interrupted at that timing and the standard penetration test is performed, so that the depth D to the appropriate bedrock can be obtained without digging the borehole 46 many times. Can be measured quickly and easily. Further, the supply and power supply of the pressure oil to the bedrock position measuring means 32 are supplied from the work vehicle 2 side.

助勢装置5は、図1、図2に示すように、作業車2に設けた動滑車22と、土木作業予定面CSの外縁における第1側CSaの下側に設置したウィンチ3と、無線コントローラ7からの指令を受信する無線機20と、無線機20からの信号に基づいて助勢装置5のウィンチ3の駆動を制御する制御手段21と、土木作業予定面CSの外縁付近の傾斜地に、土木作業予定面CSの外縁に沿って相互に間隔をあけて設けた複数の固定点23と、少なくとも土木作業予定面CSの第1側CSaにおける複数の固定点23にそれぞれ取り付けた複数の定滑車24とを備え、ウィンチ3から繰り出した昇降用ワイヤ4の途中部を、複数の定滑車24により、土木作業予定面CSの外縁に沿って着脱可能に案内し、昇降用ワイヤ4の先端部を土木作業予定面CSの外縁における第2側CSbに設置の固定点23に固定し、第1側CSaの定滑車24と、昇降用ワイヤ4の先端部を固定した固定点23又は第2側CSbに設置の定滑車24との間に張設される昇降用ワイヤ4を土木作業予定面CS側へ繰り出して、その途中部に作業車2の動滑車22を引っ掛けたものである。   As shown in FIGS. 1 and 2, the assisting device 5 includes a movable pulley 22 provided on the work vehicle 2, a winch 3 installed below the first side CSa on the outer edge of the planned civil engineering work surface CS, and a wireless controller. 7 on the slope near the outer edge of the planned civil engineering work surface CS, the radio 20 that receives the command from the radio 7, the control means 21 that controls the drive of the winch 3 of the assisting device 5 based on the signal from the radio 20. A plurality of fixed points 23 provided at intervals along the outer edge of the planned work surface CS, and a plurality of fixed pulleys 24 respectively attached to the fixed points 23 at least on the first side CSa of the planned civil work surface CS. The middle part of the lifting wire 4 fed out from the winch 3 is removably guided along the outer edge of the civil engineering work planned surface CS by a plurality of fixed pulleys 24, and the tip of the lifting wire 4 is civilized. Work schedule Fixed to the fixed point 23 installed on the second side CSb at the outer edge of the CS, and fixed to the fixed point 23 or the second side CSb fixed to the fixed pulley 24 of the first side CSa and the tip of the lifting wire 4. The raising / lowering wire 4 stretched between the pulley 24 is fed to the civil engineering work planned surface CS side, and the movable pulley 22 of the work vehicle 2 is hooked on the middle portion thereof.

尚、第1側CSaの下端に設置されている定滑車24は、昇降用ワイヤ4をウィンチ3側へ単に案内するためのもので、省略することも可能であるし、1つ以上設けることも可能である。また、定滑車24は、少なくとも上部2箇所の固定点23の一方に取り付けてあればよく、その他の定滑車24は省略することもできる。更に、ウィンチ3を土木作業予定面CSの上部に設定して、定滑車24を介することなく昇降用ワイヤ4を繰り出したり、巻き取ったりできるように構成したものも本発明の範疇であるし、作業車2に2台のウィンチ3を設置して、このウィンチ3から繰り出した昇降用ワイヤ4の先端部を土木作業予定面CSの上部2箇所に固定し、2台のウィンチ3を操作することで、作業車2を土木作業予定面CSに対して左右方向及び上下方向に移動可能となした助勢装置5など、周知の構成の助勢装置5を用いることもできる。   The fixed pulley 24 installed at the lower end of the first side CSa is merely for guiding the elevating wire 4 to the winch 3 side, and can be omitted or provided. Is possible. Moreover, the fixed pulley 24 should just be attached to at least one of the two fixed points 23 in the upper part, and the other fixed pulleys 24 can be omitted. Furthermore, it is within the scope of the present invention that the winch 3 is set at the upper part of the planned civil engineering work surface CS so that the elevating wire 4 can be fed out and wound up without using the fixed pulley 24. Two winches 3 are installed on the work vehicle 2, and the tips of the lifting wires 4 fed from the winches 3 are fixed to the upper two places of the planned civil engineering work surface CS, and the two winches 3 are operated. Thus, it is possible to use an assisting device 5 having a well-known configuration, such as the assisting device 5 that can move the work vehicle 2 in the left-right direction and the up-down direction with respect to the planned civil engineering work surface CS.

ウィンチ3は、図1に示すように、昇降用ワイヤ4を巻装したドラム25と、ドラム25を正方向と逆方向とに回転方向を切り替え可能に駆動する駆動手段26とを備えた周知の構成のもので、無線コントローラ7の操作により、ドラム25の回転方向を遠隔操作して、昇降用ワイヤ4を繰り出したり、巻き取ったりできるように構成されている。   As shown in FIG. 1, the winch 3 includes a drum 25 around which a lifting wire 4 is wound, and a driving unit 26 that drives the drum 25 so that the rotation direction can be switched between a forward direction and a reverse direction. The configuration is such that by operating the wireless controller 7, the rotating direction of the drum 25 can be remotely controlled to feed out or wind up the lifting wire 4.

動滑車22及び定滑車24は、異種構成のものを採用することも可能であるが、同じ構成のものを採用することが、滑車22、24の製作コストを低減できるので好ましい。両滑車22、24について説明すると、図6〜図8に示すように、昇降用ワイヤ4が掛けられる滑車本体50が設けられ、滑車本体50の上下両側には上面板51と下面板52とが設けられている。上面板51及び下面板52は、滑車本体50よりもやや大きな平面サイズの取付板53と、それを補強する前後方向に細長い補強板54とで構成され、上面板51及び下面板52はその先端部間に設けたスペーサ板55で連結されている。上面板51及び下面板52の略中央部には回転軸56が架設状に設けられ、滑車本体50は上面板51及び下面板52間において回転軸56に回転自在に支持されている。   The moving pulley 22 and the fixed pulley 24 can adopt different configurations, but it is preferable to use the same configuration because the manufacturing cost of the pulleys 22 and 24 can be reduced. The pulleys 22 and 24 will be described. As shown in FIGS. 6 to 8, a pulley body 50 on which the lifting wire 4 is hung is provided, and an upper surface plate 51 and a lower surface plate 52 are provided on both upper and lower sides of the pulley body 50. Is provided. The upper surface plate 51 and the lower surface plate 52 are constituted by a mounting plate 53 having a slightly larger plane size than the pulley body 50 and a reinforcing plate 54 elongated in the front-rear direction for reinforcing the upper surface plate 51 and the lower surface plate 52. They are connected by a spacer plate 55 provided between the sections. A rotation shaft 56 is provided in a substantially central portion of the upper surface plate 51 and the lower surface plate 52, and the pulley body 50 is rotatably supported by the rotation shaft 56 between the upper surface plate 51 and the lower surface plate 52.

上面板51は本体部51aと開閉板51bとに分割構成され、開閉板51bは、本体部51aの端部に設けた枢支ピン57を中心に、図8(b)に実線で図示の閉鎖位置と、仮想線で図示の開放位置とにわたって回動自在に支持され、開閉板51bを開放位置に回動させた状態で、滑車本体50に対して昇降用ワイヤ4を着脱できるように構成されている。開閉板51bを閉鎖位置に保持するため、下側の取付板53の後端部には連結ブロック58が固定され、連結ブロック58には上方へ突出する連結ピン59が植設され、開閉板51bの後端部には連結ピン59が挿通可能なピン孔60が形成され、開閉板51bを閉鎖位置に回動させて、連結ピン59をピン孔60に装着した状態で、連結ピン59の先端部に図示外のピン部材を装着することで、開閉板51bを閉鎖位置に保持できるように構成されている。連結ブロック58には後方へ延びる連結具62が取り付けられ、定滑車24及び動滑車22は、連結具62の後端部に着脱自在に取り付けたシャックル63を介して固定点23又は作業車2の連結手段70にそれぞれ取り付けられている。   The upper surface plate 51 is divided into a main body 51a and an opening / closing plate 51b, and the opening / closing plate 51b is a closure shown by a solid line in FIG. 8 (b) with a pivot pin 57 provided at the end of the main body 51a. The lift wire 4 can be attached to and detached from the pulley body 50 in a state where the position and the open position shown in the phantom line are rotatably supported, and the open / close plate 51b is rotated to the open position. ing. In order to hold the opening / closing plate 51b in the closed position, a connecting block 58 is fixed to the rear end portion of the lower mounting plate 53, and a connecting pin 59 protruding upward is planted in the connecting block 58, and the opening / closing plate 51b. A pin hole 60 into which the connection pin 59 can be inserted is formed at the rear end of the rear end of the connection pin 59 in a state where the opening / closing plate 51b is rotated to the closed position and the connection pin 59 is attached to the pin hole 60. By attaching a pin member (not shown) to the part, the opening / closing plate 51b can be held in the closed position. A connecting tool 62 extending rearward is attached to the connecting block 58, and the fixed pulley 24 and the movable pulley 22 are attached to the rear end portion of the connecting tool 62 through a shackle 63 detachably attached to the fixed point 23 or the work vehicle 2. Each is attached to the connecting means 70.

連結手段70は、作業車2に対して動滑車22を回動自在に連結するためのものである。連結手段70について説明すると、図4、図6に示すように、作業車2の下部走行部14と上部旋回部15間において下部走行部14には円板状の支持板71が略水平に設けられ、支持板71の外周部にはリング状部材72が全周にわたって設けられ、リング状部材72には支持板71の上下両側へ突出する案内部72aが形成されている。支持板71の外周部には側面視コ字状の可動部材73が外嵌状に設けられ、可動部材73にはリング状部材72の案内部72aの内周面及び外周面に当接する複数のローラ74と、リング状部材72の上面及び下面に当接する複数のローラ75が設けられ、可動部材73は、これら複数のローラ74、75により、リング状部材72に沿った方向にのみ回動自在に案内されている。可動部材73の前面には1対のブラケット76が固定され、両ブラケット76には略水平な枢支軸77を中心に連結部材78が回動自在に支持され、連結部材78には略鉛直方向の連結軸79が設けられ、動滑車22はシャックル63により連結軸79に掛け止めされて、可動部材73とともにリング状部材72に沿って回動自在に作業車2に取り付けられている。また、動滑車22を、枢支軸77を中心に上下方向に回動自在に支持するとともに、連結軸79を中心に左右方向に回動自在に支持することで、凸凹な土木作業予定面CSでの土木作業時における作業車2の揺動等を吸収して、動滑車22と昇降用ワイヤ4とが常時適正な位置関係に維持できる。尚、連結軸79に対して連結用ワイヤ70を用いて動滑車22を連結することもできる。この場合には、連結用ワイヤ70の長さを岩盤位置測定手段32の移動範囲よりも長く設定することで、動滑車22や昇降用ワイヤ4に邪魔されることなく、作業車2の上側の測定位置MPにおける岩盤位置GPを測定することができる。   The connecting means 70 is for connecting the movable pulley 22 to the work vehicle 2 so as to be rotatable. The connecting means 70 will be described. As shown in FIGS. 4 and 6, a disc-shaped support plate 71 is provided substantially horizontally on the lower traveling portion 14 between the lower traveling portion 14 and the upper turning portion 15 of the work vehicle 2. In addition, a ring-shaped member 72 is provided on the outer peripheral portion of the support plate 71 over the entire circumference, and the ring-shaped member 72 is formed with guide portions 72 a that protrude to the upper and lower sides of the support plate 71. A movable member 73 having a U-shape in side view is provided on the outer peripheral portion of the support plate 71 so as to fit outwardly. The roller 74 and a plurality of rollers 75 that contact the upper and lower surfaces of the ring-shaped member 72 are provided, and the movable member 73 is rotatable only in the direction along the ring-shaped member 72 by the plurality of rollers 74 and 75. It is guided to. A pair of brackets 76 are fixed to the front surface of the movable member 73, and a connecting member 78 is rotatably supported on both brackets 76 around a substantially horizontal pivot shaft 77, and the connecting member 78 has a substantially vertical direction. The connecting pulley 79 is provided, and the movable pulley 22 is hooked to the connecting shaft 79 by a shackle 63 and is attached to the work vehicle 2 so as to be rotatable along the ring-shaped member 72 together with the movable member 73. In addition, the movable pulley 22 is supported so as to be pivotable in the vertical direction about the pivot shaft 77, and is also supported so as to be pivotable in the horizontal direction about the connection shaft 79, so that the uneven civil engineering work planned surface CS is obtained. By absorbing the swinging of the work vehicle 2 during civil engineering work, the movable pulley 22 and the lifting wire 4 can always be maintained in an appropriate positional relationship. The movable pulley 22 can be connected to the connecting shaft 79 using the connecting wire 70. In this case, by setting the length of the connecting wire 70 to be longer than the moving range of the bedrock position measuring means 32, the upper side of the work vehicle 2 is not disturbed by the movable pulley 22 and the lifting wire 4. The rock position GP at the measurement position MP can be measured.

図7に示すように、固定点23は、土木作業予定面CSの外縁の適所に生育する樹木で構成され、定滑車24は、ワイヤロープや繊維ロープなどからなるロープ80を固定点23としての樹木に巻き掛けて、ロープ80の両端部に形成したアイに定滑車24のシャックル63を掛け止めすることにより、固定点23に固定設置されている。   As shown in FIG. 7, the fixed point 23 is configured by a tree that grows at a suitable location on the outer edge of the planned civil engineering work surface CS, and the fixed pulley 24 uses a rope 80 made of a wire rope, a fiber rope, or the like as the fixed point 23. It is fixedly installed at the fixed point 23 by being wound around a tree and hooking the shackle 63 of the fixed pulley 24 on the eyes formed at both ends of the rope 80.

傾斜地に対する固定点23の設置強度を高めるため、昇降用ワイヤ4による固定点23の引っ張り側とは反対側には、該反対側へ固定点23を引っ張って固定点23の横倒れを防止する補強手段81が設けられている。この補強手段81について説明すると、固定点23に対する昇降用ワイヤ4の引っ張り側とは反対側に生育する1乃至複数本の樹木が補強点82として設けられ、固定点23及び補強点82としての樹木にはロープ84がそれぞれ巻き掛けられている。両ロープ84の両端部のアイにはシャックル85、86がそれぞれ取り付けられ、一方のシャックル85にはターンバックル87の一端部が連結され、他方のシャックル86には補強用ワイヤ83の一端が連結されている。ターンバックル87の他端部と補強用ワイヤ83の他端部とはシャックル88で連結され、ターンバックル87を回転操作して、固定点23と補強点82間に一定の引っ張り力を作用させ、昇降用ワイヤ4の張力による固定点23の横倒れを防止できるように構成されている。但し、この補強手段81は、任意の個数設けることができるし、固定点23の設置強度を十分に確保できる場合には省略することも可能である。   In order to increase the installation strength of the fixing point 23 with respect to the inclined ground, the reinforcement that prevents the fixing point 23 from falling down by pulling the fixing point 23 to the opposite side to the pulling side of the fixing point 23 by the lifting wire 4. Means 81 are provided. The reinforcing means 81 will be described. One or a plurality of trees that grow on the side opposite to the pulling side of the lifting wire 4 with respect to the fixed point 23 are provided as the reinforcing points 82, and the trees as the fixing points 23 and the reinforcing points 82 are provided. Rope 84 is wound around each. Shackles 85 and 86 are attached to the eyes at both ends of both ropes 84, one end of a turnbuckle 87 is connected to one shackle 85, and one end of a reinforcing wire 83 is connected to the other shackle 86. ing. The other end of the turnbuckle 87 and the other end of the reinforcing wire 83 are connected by a shackle 88, and the turnbuckle 87 is rotated to apply a certain tensile force between the fixed point 23 and the reinforcing point 82, The fixing point 23 is prevented from falling down due to the tension of the lifting wire 4. However, an arbitrary number of reinforcing means 81 can be provided, and can be omitted if the installation strength of the fixing point 23 can be sufficiently secured.

尚、本実施の形態では、土木作業予定面CS付近の傾斜地に生育する樹木を固定点23及び補強点82として利用したが、適当な樹木が生育していない場合には、図9に示すように、固定点23の施工位置における傾斜地に、一定間隔をあけて深さ2〜3mの1対の孔90を左右に間隔をあけて形成して、該孔90にアンカーボルト91をセットした状態で、コンクリート92を流し込んで、1対のアンカーボルト91を相互に一定間隔をあけて傾斜地に埋設状に固定し、両アンカーボルト91の上端部を連結する連結板93を傾斜地に略平行に固定して、固定点23及び補強点82を設けることができる。この場合には、この連結板93の途中部に形成した取付孔94にロープ80を挿通させ、このロープ80の両端部に形成のアイにシャックル63を用いて定滑車24を連結したり、昇降用ワイヤ4の先端部を固定したりすることになる。尚、固定点23及び補強点82としては、図9に例示した以外の任意の構成のものを採用することができる。   In the present embodiment, the trees that grow on the slope near the planned civil engineering work surface CS are used as the fixed points 23 and the reinforcing points 82. However, when no suitable trees are growing, as shown in FIG. In addition, a pair of holes 90 having a depth of 2 to 3 m are formed on the sloped ground at the construction position of the fixed point 23 with a distance from each other at intervals, and the anchor bolt 91 is set in the hole 90. Then, the concrete 92 is poured, the pair of anchor bolts 91 are fixed to each other at a fixed interval in an embedded manner on the inclined ground, and the connecting plate 93 connecting the upper ends of both anchor bolts 91 is fixed substantially parallel to the inclined ground. Thus, the fixing point 23 and the reinforcing point 82 can be provided. In this case, the rope 80 is inserted into the mounting hole 94 formed in the middle part of the connecting plate 93, and the fixed pulley 24 is connected to the eyes formed at both ends of the rope 80 by using the shackle 63, or is moved up and down. For example, the tip of the wire 4 is fixed. In addition, as the fixing point 23 and the reinforcing point 82, those having an arbitrary configuration other than those illustrated in FIG. 9 can be adopted.

次に、前記滑り面測定設備1を用いた滑り面測定方法について説明する。
先ず、セッティング工程において、図1に実線で示すように、土木作業予定面CSの外縁に沿って間隔をあけて複数の固定点23に設け、これら複数の固定点23に定滑車24を取り付けるとともに、土木作業予定面CSの第1側CSaの下側にウィンチ3を設置する。次に、ウィンチ3から繰り出した昇降用ワイヤ4を複数の定滑車24により土木作業予定面CSの外縁に沿って第1側CSaから第2側CSbへ案内するとともに、昇降用ワイヤ4の先端部を土木作業予定面CSの第2側CSbにおける最上部の固定点23に固定する。次に、第1側CSaの最上部の定滑車24と昇降用ワイヤ4を固定した固定点23間に張設される昇降用ワイヤ4を土木作業予定面CS側へ繰り出して、その途中部に作業車2の動滑車22を引っ掛けて、滑り面測定設備1を土木作業予定面CSにセットする。また、土木作業現場の下側へ土砂等が落下しないように、予め土木作業予定面CSの下端縁に沿ってフェンスFを設置する。
Next, a sliding surface measuring method using the sliding surface measuring equipment 1 will be described.
First, in the setting process, as shown by a solid line in FIG. 1, a plurality of fixing points 23 are provided at intervals along the outer edge of the civil engineering work planned surface CS, and fixed pulleys 24 are attached to the plurality of fixing points 23. The winch 3 is installed below the first side CSa of the planned civil engineering work surface CS. Next, the elevating wire 4 fed out from the winch 3 is guided from the first side CSa to the second side CSb along the outer edge of the planned civil engineering work surface CS by a plurality of fixed pulleys 24, and the tip end portion of the elevating wire 4 Is fixed to the uppermost fixed point 23 on the second side CSb of the planned civil engineering work surface CS. Next, the lifting / lowering wire 4 stretched between the uppermost fixed pulley 24 of the first side CSa and the fixing point 23 to which the lifting / lowering wire 4 is fixed is drawn out to the civil engineering work planned surface CS side, and in the middle thereof The moving pulley 22 of the work vehicle 2 is hooked, and the sliding surface measuring equipment 1 is set on the civil engineering work planned surface CS. In addition, a fence F is installed in advance along the lower edge of the planned civil engineering work surface CS so that earth and sand do not fall below the civil engineering work site.

尚、固定点23の個数は、土木作業予定面CSの高さや形状に応じて任意に設定できる。また、土木作業予定面CSに樹木が自生している場合には、複数の定滑車を設置した後、昇降用ワイヤ4の途中部を複数の定滑車で案内し、昇降用ワイヤ4の端部を固定点23に固定しないで、昇降用ワイヤ4を土木作業予定面CSの一側上部の定滑車24から、土木作業予定面CSの下部へ引き出して作業車2に固定し、作業車2を1本吊り状態で助勢しながら下側から順番に作業車2で樹木を順次伐採し、昇降用ワイヤ4に沿った一定範囲の樹木を伐採した後、昇降用ワイヤ4を繰り出す定滑車24を隣の定滑車24に架け替えて、昇降用ワイヤ4で作業車2を支持しながら上側から順番に樹木を伐採し、上記作業を順番に繰り返して、土木作業予定面CSにける樹木を順次伐採する。そして、前述のように昇降用ワイヤ4の端部を固定点23に固定するとともに、昇降用ワイヤ4の途中部に作業車2の動滑車22を引っ掛けて、滑り面測定設備1を土木作業予定面CSにセットすることになる。但し、樹木の伐採作業は他の方法により行うこともできる。   Note that the number of the fixed points 23 can be arbitrarily set according to the height and shape of the planned civil engineering work surface CS. In addition, when trees are growing on the planned civil engineering work surface CS, a plurality of fixed pulleys are installed, and then the middle part of the lifting wire 4 is guided by the plurality of fixed pulleys, and the end of the lifting wire 4 is Is fixed to the work vehicle 2 by pulling the lifting wire 4 from the fixed pulley 24 on one side upper part of the planned civil engineering work surface CS to the lower part of the planned civil engineering work surface CS. Trees are cut sequentially with work vehicle 2 in order from the lower side while assisting in a single suspended state, and a certain range of trees along cutting wire 4 is cut down, and then fixed pulley 24 that feeds lifting wire 4 is next to it. It is replaced with the fixed pulley 24, and trees are cut in order from the upper side while supporting the work vehicle 2 with the lifting wire 4, and the above operations are repeated in order to sequentially cut the trees on the planned civil engineering work surface CS. . And as mentioned above, while fixing the end part of the raising / lowering wire 4 to the fixing point 23, the moving pulley 22 of the work vehicle 2 is hooked on the middle part of the raising / lowering wire 4, and the sliding surface measuring equipment 1 is planned for civil engineering work. It will be set on the surface CS. However, tree cutting work can also be performed by other methods.

次に、測定工程において、作業車2を目視可能な安全な場所においてウィンチ3及び作業車2を遠隔操作して、昇降用ワイヤ4が弛まないようにウィンチ3を操作しながら、予め設定した土木作業予定面CSの上部の測定位置MP付近へ作業車2を移動させる。このとき、作業車2の土木作業予定面CSの上側への移動は、作業車2のクローラによる走行と、ウィンチ3による昇降用ワイヤ4の巻き上げ力によりなされ、また左右方向及び下方への移動は、昇降用ワイヤ4に一定の張力を作用させて作業車2の横転を防止しつつ、平地での移動と同様に、進む方向へ作業車2を旋回させて、走行することになる。作業車2の移動可能な範囲は、昇降用ワイヤ4が掛けられている定滑車24のうち、土木作業予定面CSの第1側CSa及び第2側CSbの最上部における1対の定滑車24間の領域内で、しかもV字状に張設される動滑車22に至る昇降用ワイヤ4の角度θが120°を超えると、昇降用ワイヤ4に大きな張力が作用するので、角度θが120°以下となるような、最上部の定滑車24よりも下側の範囲に設定されるので、この範囲内で作業を行うことになる。   Next, in the measurement process, the winch 3 and the work vehicle 2 are remotely operated in a safe place where the work vehicle 2 can be visually observed, and the winch 3 is operated so that the lifting wire 4 is not loosened. The work vehicle 2 is moved to the vicinity of the measurement position MP above the work scheduled surface CS. At this time, the upward movement of the planned civil engineering work surface CS of the work vehicle 2 is performed by the travel of the work vehicle 2 by the crawler and the hoisting force of the lifting wire 4 by the winch 3, and the horizontal movement and downward movement are performed. The work vehicle 2 is swung in the traveling direction and traveled in the same manner as the movement on the flat ground while applying a certain tension to the lifting wire 4 to prevent the work vehicle 2 from rolling over. The movable range of the work vehicle 2 is a pair of constant pulleys 24 at the top of the first side CSa and the second side CSb of the planned civil engineering work surface CS among the fixed pulleys 24 on which the lifting wire 4 is hung. If the angle θ of the elevating wire 4 reaching the movable pulley 22 stretched in a V-shape in the region between them exceeds 120 °, a large tension acts on the elevating wire 4, so the angle θ is 120 Since it is set in a range below the uppermost constant pulley 24 so as to be less than or equal to 0 °, the work is performed within this range.

こうして、作業車2を測定位置MP付近へ移動させた後、標準貫入試験を行う場合には、図2に示すように、先ずボーリング機械45により測定位置MPにボーリング孔46を形成する。ボーリング孔46の深さは、任意に設定可能であるが、撮像手段39にてボーリング時におけるスライムを撮像し、その映像を無線コントローラ7の図示外のディスプレイにて目視して、スライムの性状変化を観察しながらボーリングを行うことで、スライムの性状が岩盤付近における性状になったときの深さに設定することができる。次に、図5に示すように、ボーリング機械45に代えて標準貫入試験機40をボーリング孔46にセットして、標準貫入試験を行い、N値が20以上になったときにおける、測定位置MPからの深さDを測定し、測定位置MPにおける岩盤位置GPの三次元座標を算出する。   Thus, when the standard penetration test is performed after the work vehicle 2 is moved to the vicinity of the measurement position MP, a boring hole 46 is first formed at the measurement position MP by the boring machine 45 as shown in FIG. Although the depth of the boring hole 46 can be set arbitrarily, the slime at the time of boring is imaged by the imaging means 39, and the image of the slime is visually observed on a display (not shown) of the wireless controller 7 to change the property of the slime. By drilling while observing, the depth of the slime can be set to the depth when it is near the bedrock. Next, as shown in FIG. 5, instead of the boring machine 45, the standard penetration tester 40 is set in the boring hole 46, the standard penetration test is performed, and the measurement position MP when the N value becomes 20 or more. Is measured, and the three-dimensional coordinates of the rock mass position GP at the measurement position MP are calculated.

こうして、土木作業予定面CSの上部に対する岩盤位置GPの測定後、次のワイヤ掛替え工程において、作業車2の横転を防止した状態で、図1に仮想線で示すように、昇降用ワイヤ4が掛けられている第1側CSaの最上部の定滑車24から昇降用ワイヤ4を取り外す作業と、昇降用ワイヤ4の先端部が固定されている固定点23を第2側CSbの最上部の固定点23から、その下側の固定点23へ切り替える作業の一方又は双方の作業を行ってから、ウィンチ3により昇降用ワイヤ4の弛みを巻き取って、作業車2を下側へ移動させ、前記測定工程と同様に、次の段の岩盤位置GPを測定し、以降、昇降用ワイヤ4の最上部の位置を下側へ切り替える作業と、作業車2による岩盤位置GPの測定作業を交互に行って、土木作業予定面CSの上側から順番に岩盤位置GPを測定することになる。図1では、作業車2により岩盤位置GPの測定を行う土木作業予定面CSを、最上部の第1段目からその下側の第2段目へ移行させるときには、最上部の定滑車24から昇降用ワイヤ4を取り外し、第2段目からその下側の第3段目へ移行させるときには、上から2つ目の定滑車24から昇降用ワイヤ4を取り外し、第3段目からその下側の第4段目へ移行させるときには、上から3つ目の定滑車24から昇降用ワイヤ4を取り外すとともに、昇降用ワイヤ4の固定点23を第2側CSbの途中部の固定点23に移動させることになる。尚、定滑車24の設置箇所や定滑車24に対する昇降用ワイヤ4の架け替え作業は、土木作業予定面CSの形状等に応じて任意に設定することができる。   In this way, after measuring the rock position GP with respect to the upper part of the planned civil engineering work surface CS, in the next wire switching step, in a state where the work vehicle 2 is prevented from overturning, as shown by a virtual line in FIG. The lifting wire 4 is removed from the uppermost fixed pulley 24 of the first side CSa, and the fixing point 23 to which the tip of the lifting wire 4 is fixed is connected to the uppermost portion of the second side CSb. After performing one or both of the operations of switching from the fixed point 23 to the lower fixed point 23, the slack of the lifting wire 4 is wound up by the winch 3, and the work vehicle 2 is moved downward, In the same manner as in the measurement step, the rock position GP of the next stage is measured, and thereafter, the work of switching the uppermost position of the lifting wire 4 to the lower side and the work of measuring the rock position GP by the work vehicle 2 are alternately performed. Go, civil engineering work plan surface CS It will measure the rock position GP from the top in order. In FIG. 1, when the civil engineering work planned surface CS for measuring the rock mass position GP by the work vehicle 2 is shifted from the uppermost first step to the second lower step, the uppermost fixed pulley 24 is used. When the lifting / lowering wire 4 is removed and the second stage is shifted from the second stage to the lower third stage, the lifting / lowering wire 4 is removed from the second fixed pulley 24 from the top, and the third stage and the lower side thereof. When moving to the fourth stage, the lifting / lowering wire 4 is removed from the third fixed pulley 24 from the top, and the fixing point 23 of the lifting / lowering wire 4 is moved to the fixing point 23 in the middle of the second side CSb. I will let you. In addition, the installation location of the fixed pulley 24 and the work of replacing the lifting wire 4 with respect to the fixed pulley 24 can be arbitrarily set according to the shape of the planned civil engineering work surface CS.

こうして、土木作業予定面CSの岩盤位置GPを順次測定した後、これらの岩盤位置GPの三次元座標データに基づいて滑り面SFを算出することになるが、例えば平面距離や傾斜面に沿った距離において10mおきの測定位置MPにおける岩盤位置GPを測定するので、算出した滑り面SF(図2参照)は、実際の岩盤位置GPに適合した精度のよいものとなる。このため、この滑り面SFに基づいて、傾斜面に対して土木作業を行うと、無駄な土木作業を極力少なくして、土木作業の工期の短縮と経費の節減を図ることが可能となる。尚、本実施の形態では、土木作業予定面CSの滑り面SFの測定だけを行ったが、岩盤位置測定手段32に代えてバケットや削岩機を作業車2のアーム17に取り付けることで、測定作業と同様にして作業車2を土木作業予定面CSに沿って移動させながら、上側から順番に土木作業を行うことができる。また、滑り面SFの測定と土木作業とを土木作業予定面CSの上側から交互に行って、滑り面SFの測定と土木作業を並行して行うことも可能である。   Thus, after sequentially measuring the rock mass position GP of the planned civil engineering work surface CS, the sliding surface SF is calculated based on the three-dimensional coordinate data of these rock mass positions GP. Since the rock mass positions GP at the measurement positions MP every 10 m in the distance are measured, the calculated sliding surface SF (see FIG. 2) has a good accuracy suitable for the actual rock mass position GP. For this reason, if civil engineering work is performed on the inclined surface based on the sliding surface SF, it is possible to reduce wasteful civil engineering work as much as possible, thereby shortening the construction period of the civil engineering work and reducing costs. In the present embodiment, only the sliding surface SF of the planned civil engineering work surface CS is measured, but a bucket or a rock drilling machine is attached to the arm 17 of the work vehicle 2 in place of the rock mass position measuring means 32. The civil engineering work can be performed sequentially from the upper side while moving the work vehicle 2 along the planned civil engineering work surface CS in the same manner as the measurement work. It is also possible to perform the measurement of the sliding surface SF and the civil engineering work in parallel by alternately measuring the sliding surface SF and the civil engineering work from the upper side of the planned civil engineering work surface CS.

傾斜地の滑り面測定設備の正面図Front view of equipment for measuring sliding surfaces on slopes 岩盤位置測定時における作業車付近の縦断面図Longitudinal cross section near work vehicle when measuring rock position 滑り面測定設備の制御系の説明図Explanatory diagram of control system for sliding surface measuring equipment 作業車の側面図Side view of work vehicle 標準貫入試験機の説明図Illustration of standard penetration testing machine 動滑車及び連結手段の平面図Plan view of moving pulley and connecting means 定滑車の設置構造の説明図Illustration of fixed pulley installation structure (a)は定滑車の平面図、(b)は定滑車の側面図(a) is a plan view of the fixed pulley, (b) is a side view of the fixed pulley. 固定点及び補強点の設置構造の説明図Illustration of installation structure of fixed points and reinforcing points

符号の説明Explanation of symbols

1 滑り面測定設備 2 作業車
3 ウィンチ 4 昇降用ワイヤ
5 助勢装置 6 岩盤位置測定装置
7 無線コントローラ
10 無線機 11 各種油圧機器
12 各種電気機器 13 制御手段
14 下部走行部 15 上部旋回部
16 ブーム 17 アーム
18 油圧シリンダ
20 無線機 21 制御手段
22 動滑車 23 固定点
24 定滑車 25 ドラム
26 駆動手段
30 無線機 31 制御手段
32 岩盤位置測定手段 33 旋回角測定手段
34 角度測定手段 35 角度測定手段
36 角度測定手段 37 勾配測定手段
38 現在位置測定手段 39 撮像手段
40 標準貫入試験機 41 ノッキングブロック
42 ボーリングロッド 43 サンプラー
44 ドライブハンマー 45 ボーリング機械
46 ボーリング孔
50 滑車本体 51 上面板
51a 本体部 51b 開閉板
52 下面板 53 取付板
54 補強板 55 スペーサ板
56 回転軸 57 枢支ピン
58 連結ブロック 59 連結ピン
60 ピン孔 62 連結具
63 シャックル
70 連結手段 70 連結用ワイヤ
71 支持板 72 リング状部材
72a 案内部 73 可動部材
74 ローラ 75 ローラ
76 ブラケット 77 枢支軸
78 連結部材 79 連結軸
80 ロープ 81 補強手段
82 補強点 83 補強用ワイヤ
84 ロープ 85 シャックル
86 シャックル 87 ターンバックル
88 シャックル
90 孔 91 アンカーボルト
92 コンクリート 93 連結板
94 取付孔
CS 土木作業予定面 CSa 第1側
CSb 第2側 F フェンス
W 作業者 MP 測定位置
GP 岩盤位置 SF 滑り面
DESCRIPTION OF SYMBOLS 1 Sliding surface measuring equipment 2 Work vehicle 3 Winch 4 Elevating wire 5 Auxiliary device 6 Rock bed position measuring device 7 Radio controller 10 Radio 11 Various hydraulic equipment 12 Various electric equipment 13 Control means 14 Lower traveling part 15 Upper turning part 16 Boom 17 Arm 18 Hydraulic cylinder 20 Radio 21 Control means 22 Moving pulley 23 Fixed point 24 Fixed pulley 25 Drum 26 Drive means 30 Radio 31 Control means 32 Rock bed position measurement means 33 Turning angle measurement means 34 Angle measurement means 35 Angle measurement means 36 Angle Measuring means 37 Gradient measuring means 38 Current position measuring means 39 Imaging means 40 Standard penetration testing machine 41 Knocking block 42 Boring rod 43 Sampler 44 Drive hammer 45 Boring machine 46 Boring hole 50 Pulley body 51 Top plate 51a Body 51b Opening / closing plate 52 Below Plate 53 Mounting plate 54 Reinforcement plate 55 Spacer plate 56 Rotating shaft 57 Pivot pin 58 Connection block 59 Connection pin 60 Pin hole 62 Connection tool 63 Shackle 70 Connection means 70 Connection wire 71 Support plate 72 Ring-shaped member 72a Guide portion 73 Movable Member 74 roller 75 roller 76 bracket 77 pivot shaft 78 connecting member 79 connecting shaft 80 rope 81 reinforcing means 82 reinforcing point 83 reinforcing wire 84 rope 85 shackle 86 shackle 87 turnbuckle 88 shackle 90 hole 91 anchor bolt 92 concrete 93 connecting plate 94 Mounting hole CS Civil engineering work planned surface CSa First side CSb Second side F Fence W Worker MP Measurement position GP Rock bed position SF Sliding surface

Claims (13)

自走式の作業車と、作業車と傾斜地の上部間に張設した昇降用ワイヤを用いて、傾斜地の上側へ作業車をウィンチにて助勢する助勢装置と、作業車に設けた岩盤位置測定手段とを備えた滑り面測定設備を用い、助勢装置により傾斜地の上側へ作業車を助勢しながら、予め設定した測定位置へ作業車を移動させ、該測定位置において岩盤位置測定手段により岩盤位置を測定し、複数の測定位置において岩盤位置の測定を順次行って滑り面を求めることを特徴とする傾斜地の滑り面測定方法。   Using a self-propelled work vehicle and a lifting wire stretched between the work vehicle and the upper part of the slope, an assist device for assisting the work vehicle with a winch to the upper side of the slope, and a rock position measurement provided on the work vehicle Using a sliding surface measuring facility provided with means, and moving the work vehicle to a preset measurement position while assisting the work vehicle to the upper side of the slope by the assisting device, and the rock position measurement means at the measurement position A method for measuring a sliding surface of an inclined land, characterized in that a sliding surface is obtained by measuring and sequentially measuring rock positions at a plurality of measuring positions. 前記傾斜地の上側の測定位置から順番に岩盤位置を測定するとともに、作業車により傾斜地に対して土木作業を施し、上側から順番に滑り面を測定しながら土木作業を施す請求項1記載の傾斜地の滑り面測定方法。   2. The slope according to claim 1, wherein the rock position is measured in order from the measurement position on the upper side of the slope, the civil engineering work is performed on the slope with a work vehicle, and the civil work is performed while measuring the sliding surface in order from the upper side. Sliding surface measurement method. 前記岩盤位置測定手段として地質調査用ボーリング機械を作業車に着脱自在に設けた請求項1又は2記載の傾斜地の滑り面測定方法。   The method of measuring a sliding surface of an inclined land according to claim 1 or 2, wherein a geological survey boring machine is detachably provided on a work vehicle as the rock mass position measuring means. 前記岩盤位置測定手段として標準貫入試験機を作業車に着脱自在に設けた請求項1〜3のいずれか1項記載の傾斜地の滑り面測定方法。   The sliding surface measurement method of the sloping ground of any one of Claims 1-3 which provided the standard penetration testing machine in the work vehicle so that attachment or detachment was possible as the said rock mass position measurement means. 前記作業車の現在位置を測定する現在位置測定手段を設けた請求項1〜4のいずれか1項記載の傾斜地の滑り面測定方法。   The method for measuring a sliding surface of an inclined land according to any one of claims 1 to 4, further comprising a current position measuring unit that measures a current position of the work vehicle. 前記作業車を遠隔操作するための遠隔操作手段を設けた請求項1〜5のいずれか1項記載の傾斜地の滑り面測定方法。   The method for measuring a sliding surface of an inclined land according to any one of claims 1 to 5, further comprising remote operation means for remotely operating the work vehicle. 前記助勢装置として、作業車に設けた動滑車と、傾斜地の土木作業予定面の外縁上部に設けた1対の固定点と、少なくとも一方の固定点に固定した定滑車と、土木作業予定面の外縁下に設けたウィンチとを備え、ウィンチから繰り出した昇降用ワイヤを他方の固定点に定滑車を介して案内し、両固定点間に張設された昇降用ワイヤを土木作業予定面側へ繰り出してその途中部に作業車の動滑車を引っ掛けてなるものを用いた請求項1〜6のいずれか1項記載の傾斜地の滑り面測定方法。   As the assisting device, a moving pulley provided on the work vehicle, a pair of fixed points provided on the outer edge of the planned civil engineering work surface on the sloping ground, a fixed pulley fixed to at least one fixed point, a civil engineering work planned surface A winch provided under the outer edge, guides the lifting wire fed from the winch to the other fixed point via a fixed pulley, and moves the lifting wire stretched between the two fixed points toward the planned civil engineering work side The method for measuring a sliding surface of an inclined land according to any one of claims 1 to 6, wherein the sliding surface of a work vehicle is used that is extended and hooked with a moving pulley of a work vehicle in the middle thereof. 自走式の作業車と、
前記作業車と傾斜地の上部間に張設した昇降用ワイヤを用いて、傾斜地の上側へ作業車をウィンチにて助勢する助勢装置と、
前記作業車に設けた岩盤位置測定手段と、
備えた傾斜地の滑り面測定設備。
A self-propelled work vehicle,
An assisting device for assisting the work vehicle with a winch to the upper side of the slope using a lifting wire stretched between the work vehicle and the upper part of the slope;
Rock mass position measuring means provided in the work vehicle;
Equipment for measuring sliding surfaces on slopes.
前記岩盤位置測定手段として地質調査用ボーリング機械を作業車に着脱自在に設けた請求項8記載の傾斜地の滑り面測定設備。   The equipment for measuring a sliding surface of an inclined land according to claim 8, wherein a geological survey boring machine is detachably provided on a work vehicle as the rock mass position measuring means. 前記岩盤位置測定手段として標準貫入試験機を作業車に着脱自在に設けた請求項8又は9記載の傾斜地の滑り面測定設備。   10. Sliding surface measurement equipment for slopes according to claim 8 or 9, wherein a standard penetration testing machine is detachably provided on a work vehicle as the rock mass position measuring means. 前記作業車の現在位置を測定する現在位置測定手段を設けた請求項8〜10のいずれか1項記載の傾斜地の滑り面測定設備。   11. The sliding surface measurement facility for sloping ground according to claim 8, further comprising a current position measuring unit configured to measure a current position of the work vehicle. 前記作業車を遠隔操作するための遠隔操作手段を設けた請求項8〜11のいずれか1項記載の傾斜地の滑り面測定設備。   The slip surface measuring equipment for sloping ground according to any one of claims 8 to 11, further comprising a remote control means for remotely operating the work vehicle. 前記助勢装置として、作業車に設けた動滑車と、傾斜地の土木作業予定面の外縁上部に設けた1対の固定点と、少なくとも一方の固定点に固定した定滑車と、土木作業予定面の外縁下部に設けたウィンチとを備え、ウィンチから繰り出した昇降用ワイヤを他方の固定点に定滑車を介して案内し、両固定点間に張設された昇降用ワイヤを土木作業予定面側へ繰り出してその途中部に作業車の動滑車を引っ掛けてなるものを用いた請求項8〜12のいずれか1項記載の傾斜地の滑り面測定設備。
As the assisting device, a moving pulley provided on the work vehicle, a pair of fixed points provided on the outer edge of the planned civil engineering work surface on the sloping ground, a fixed pulley fixed to at least one fixed point, a civil engineering work planned surface A winch provided at the lower part of the outer edge, guiding the lifting wire fed out from the winch to the other fixed point via a fixed pulley, and the lifting wire stretched between the two fixed points to the planned civil engineering work side The equipment for measuring a sliding surface of an inclined ground according to any one of claims 8 to 12, wherein the equipment is one that is extended and hooked with a moving pulley of a work vehicle in the middle thereof.
JP2006135009A 2006-05-15 2006-05-15 Sliding surface measuring method and equipment for measuring inclined surface Active JP4915777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135009A JP4915777B2 (en) 2006-05-15 2006-05-15 Sliding surface measuring method and equipment for measuring inclined surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135009A JP4915777B2 (en) 2006-05-15 2006-05-15 Sliding surface measuring method and equipment for measuring inclined surface

Publications (2)

Publication Number Publication Date
JP2007303231A true JP2007303231A (en) 2007-11-22
JP4915777B2 JP4915777B2 (en) 2012-04-11

Family

ID=38837392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135009A Active JP4915777B2 (en) 2006-05-15 2006-05-15 Sliding surface measuring method and equipment for measuring inclined surface

Country Status (1)

Country Link
JP (1) JP4915777B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032433A (en) * 2008-07-30 2010-02-12 Nippon Road Co Ltd:The Hardness testing and measuring instrument of measured object article
JP2011012498A (en) * 2009-07-03 2011-01-20 Fukasawa Komusho:Kk Work facility on slope
CN109271648A (en) * 2018-05-24 2019-01-25 内蒙古综合交通科学研究院有限责任公司 A kind of two dimension slope most dangerous sliding surface searching method
JP2019143316A (en) * 2018-02-19 2019-08-29 東興ジオテック株式会社 Unmanned spraying system
JP2019173304A (en) * 2018-03-27 2019-10-10 株式会社Sakatec Hillside drilling method
JP2020020176A (en) * 2018-08-01 2020-02-06 株式会社熊谷組 Anchor selection method, anchor construction method, and anchor layer distribution 3d model at anchor construction site
US20210180948A1 (en) * 2019-12-12 2021-06-17 Wuhan University Of Science And Technology Method for determining slope slip plane with gently-inclined soft interlayer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390105U (en) * 1989-12-27 1991-09-13
JPH0416115A (en) * 1990-05-07 1992-01-21 Yanmar Diesel Engine Co Ltd Working machine on inclined ground
JPH1046575A (en) * 1996-08-05 1998-02-17 Sadao Takahashi Pile driving method using gear type speed change mechanism and pile driving device therefor
JPH1090392A (en) * 1996-09-13 1998-04-10 Taisei Corp Slope-finishing control system
JP2003003510A (en) * 2001-06-27 2003-01-08 Koken Boring Mach Co Ltd Travel device for slope
JP2003074064A (en) * 2001-08-31 2003-03-12 Takuo Yukimoto Pile-fence construction method of slope face of slope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390105U (en) * 1989-12-27 1991-09-13
JPH0416115A (en) * 1990-05-07 1992-01-21 Yanmar Diesel Engine Co Ltd Working machine on inclined ground
JPH1046575A (en) * 1996-08-05 1998-02-17 Sadao Takahashi Pile driving method using gear type speed change mechanism and pile driving device therefor
JPH1090392A (en) * 1996-09-13 1998-04-10 Taisei Corp Slope-finishing control system
JP2003003510A (en) * 2001-06-27 2003-01-08 Koken Boring Mach Co Ltd Travel device for slope
JP2003074064A (en) * 2001-08-31 2003-03-12 Takuo Yukimoto Pile-fence construction method of slope face of slope

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032433A (en) * 2008-07-30 2010-02-12 Nippon Road Co Ltd:The Hardness testing and measuring instrument of measured object article
JP2011012498A (en) * 2009-07-03 2011-01-20 Fukasawa Komusho:Kk Work facility on slope
JP2019143316A (en) * 2018-02-19 2019-08-29 東興ジオテック株式会社 Unmanned spraying system
JP2019173304A (en) * 2018-03-27 2019-10-10 株式会社Sakatec Hillside drilling method
CN109271648A (en) * 2018-05-24 2019-01-25 内蒙古综合交通科学研究院有限责任公司 A kind of two dimension slope most dangerous sliding surface searching method
JP2020020176A (en) * 2018-08-01 2020-02-06 株式会社熊谷組 Anchor selection method, anchor construction method, and anchor layer distribution 3d model at anchor construction site
JP7039418B2 (en) 2018-08-01 2022-03-22 株式会社熊谷組 Anchor selection method and anchor construction method
US20210180948A1 (en) * 2019-12-12 2021-06-17 Wuhan University Of Science And Technology Method for determining slope slip plane with gently-inclined soft interlayer
US11644308B2 (en) * 2019-12-12 2023-05-09 Wuhan University Of Science And Technology Method for determining slope slip plane with gently-inclined soft interlayer

Also Published As

Publication number Publication date
JP4915777B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4915777B2 (en) Sliding surface measuring method and equipment for measuring inclined surface
CN103874807B (en) Stress and/or accumulated damage monitoring system
JP7160467B2 (en) Method and construction equipment for soil work
JP5819152B2 (en) Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method
CN111535308A (en) Full-length steel sleeve construction device and construction method thereof
JP2017203739A (en) Evaluation method and system of trafficability
JP2014074291A (en) Cast-in-place pile construction apparatus and cast-in-place pile construction method
US3516183A (en) Grab with adjustable guide mast
CN102797461A (en) Method and system for monitoring the operation of cable shovel machine
JP4964525B2 (en) Caisson settlement method and caisson settlement management system
JP3788481B1 (en) Civil work equipment for sloped land and civil engineering work method for sloped land
JP4340209B2 (en) Pile driver depth measuring device
JP5612980B2 (en) Underwater drilling apparatus and underwater drilling method
JP4261610B1 (en) Dredger and dredging method
JP7359344B2 (en) Drilling vehicle and drilling method
JP6088093B1 (en) Low head excavator and horizontal frame height position adjustment method in low head excavator
JP6627905B2 (en) Slope drilling method
JP2005126957A (en) Excavating method and excavating device for pile work
JP3788480B1 (en) Civil work equipment for sloped land and civil engineering work method for sloped land
JP7049176B2 (en) Excavation method
JP2018012925A (en) Civil engineering work facility for slope land
JP4765616B2 (en) Geologic exploration method and apparatus
JP2000154538A (en) Plumb bob type device for driving steel pipe in inner moat and plumb bob type construction method of driving steel pipe in inner moat
JP3946992B2 (en) Rock drilling system in caisson method.
US3344866A (en) Portable rock breaking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4915777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250