JP2007302779A - Mixed solution containing iron sulfide particle and method of treating heavy metal using the same - Google Patents
Mixed solution containing iron sulfide particle and method of treating heavy metal using the same Download PDFInfo
- Publication number
- JP2007302779A JP2007302779A JP2006132352A JP2006132352A JP2007302779A JP 2007302779 A JP2007302779 A JP 2007302779A JP 2006132352 A JP2006132352 A JP 2006132352A JP 2006132352 A JP2006132352 A JP 2006132352A JP 2007302779 A JP2007302779 A JP 2007302779A
- Authority
- JP
- Japan
- Prior art keywords
- iron sulfide
- heavy metal
- slurry
- activated carbon
- mixed solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、重金属処理時の臭気発生がなく、灰や土壌、或いは排水中に含まれる重金属を処理することによる無害化処理に用いるのに適した硫化鉄粒子含有混合溶液に関する。 The present invention relates to a mixed solution containing iron sulfide particles that is suitable for use in detoxification treatment by treating heavy metals contained in ash, soil, or waste water, without generating odor during heavy metal treatment.
硫化鉄粒子を含有する溶液には、硫化鉄粒子が水等の分散媒体中に安定に分散して沈降分離しない硫化鉄コロイド溶液や、静置しておくと硫化鉄が沈降分離する硫化鉄スラリーとがある。硫化鉄粒子が水等の分散媒に分散している硫化鉄粒子含有溶液は、重金属で汚染された土壌、焼却灰等に混合しやすく、重金属処理剤として適している。 For solutions containing iron sulfide particles, iron sulfide colloid solutions in which iron sulfide particles are stably dispersed in a dispersion medium such as water and do not settle and separate, and iron sulfide slurries in which iron sulfide settles and separates when left standing There is. A solution containing iron sulfide particles in which iron sulfide particles are dispersed in a dispersion medium such as water is easy to mix with soil contaminated with heavy metals, incinerated ash, and the like, and is suitable as a heavy metal treatment agent.
これまで硫化鉄を重金属汚染物と混合し、各種重金属を不溶化(無害化)処理することは広く知られており、例えば工業用硫化鉄(ピロータイト構造)や、鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液から製造した硫化鉄を用いて水溶液中のPb、Cd、Cr、Hg、As等の有害な重金属を処理する方法が知られていた。特に、重金属処理特性としては鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液から製造した硫化鉄(マキナワイト構造)が優れていることが知られていた。(例えば特許文献1〜3参照)
しかし従来の硫化鉄粒子含有溶液の場合において、2価の鉄塩水溶液と、硫黄イオンを含む水溶液を混合して得られた溶液では、重金属処理の条件によっては臭気が感じられることがあった。
It has been widely known that iron sulfide is mixed with heavy metal contaminants to insolubilize (detoxify) various heavy metals. For example, it contains industrial iron sulfide (pilotite structure) and iron (II) ions. There has been known a method of treating harmful heavy metals such as Pb, Cd, Cr, Hg and As in an aqueous solution by using iron sulfide produced from a solution and a solution containing sulfur ions. In particular, it has been known that iron sulfide (makinawite structure) produced from a solution containing iron (II) ions and a solution containing sulfur ions is excellent as a heavy metal treatment characteristic. (For example, see Patent Documents 1 to 3)
However, in the case of a conventional iron sulfide particle-containing solution, in a solution obtained by mixing a divalent iron salt aqueous solution and an aqueous solution containing sulfur ions, an odor may be felt depending on heavy metal treatment conditions.
一方、これまでに飛灰等の重金属処理に粉末炭素と重金属処理剤を併用することが報告されている。(特許文献4、5参照)しかし、これまでの炭素の用い方は、重金属処理剤とは別々に用いるものであり、炭素と重金属処理剤を一剤とした例はなかった。また重金属処理剤と粉末炭素を併用すると重金属処理成分が活性炭に吸着され、同時に用いることには問題があることも知られていた。 On the other hand, it has been reported that powdered carbon and a heavy metal treating agent are used in combination with heavy metal treatment such as fly ash. (Refer to Patent Documents 4 and 5) However, the conventional use of carbon is used separately from the heavy metal treating agent, and there has been no example of using carbon and the heavy metal treating agent as one agent. It has also been known that when a heavy metal treating agent and powdered carbon are used in combination, the heavy metal treating component is adsorbed on the activated carbon, and there is a problem in using it simultaneously.
本発明の目的は、あらゆる重金属処理の条件において臭気発生がなく、操作性及び重金属処理特性に優れた硫化鉄粒子含有混合溶液を提供するものである。 An object of the present invention is to provide an iron sulfide particle-containing mixed solution that does not generate odor under any heavy metal treatment condition and is excellent in operability and heavy metal treatment characteristics.
本発明者らは、重金属処理剤として用いる硫化鉄粒子含有溶液について鋭意検討した結果、その臭気の原因は無機硫黄原料(水硫化ソーダ等)ではなく、有機硫黄化合物であることを突き止め、その様な有機硫黄化合物の臭気抑制には活性炭が特に有効であることを見出し、本発明を完成させるに至ったものである。 As a result of intensive studies on a solution containing iron sulfide particles used as a heavy metal treating agent, the present inventors have found that the cause of the odor is not an inorganic sulfur raw material (such as sodium hydrosulfide) but an organic sulfur compound. The present inventors have found that activated carbon is particularly effective for suppressing the odor of organic sulfur compounds, and have completed the present invention.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の硫化鉄粒子含有混合溶液(以下「硫化鉄スラリー」という)は、硫化鉄の濃度が1wt%以上、50wt%以下のものである。硫化鉄濃度が1wt%未満では重金属処理剤として用いる際に大量に使用する必要があり、また輸送や貯蔵のコストが多大なものとなる。硫化鉄濃度は高いほど好ましくより好ましく、5wt%以上、更に10wt%以上であることが好ましい。一方、硫化鉄濃度が高すぎた場合は、硫化鉄スラリーの粘度が上がりすぎてハンドリングが困難となるため、硫化鉄濃度の上限としては50wt%以下、より好ましくは40wt%以下、更には30wt%以下の濃度が好ましい。 The mixed solution containing iron sulfide particles of the present invention (hereinafter referred to as “iron sulfide slurry”) has a concentration of iron sulfide of 1 wt% or more and 50 wt% or less. When the iron sulfide concentration is less than 1 wt%, it is necessary to use it in a large amount when used as a heavy metal treating agent, and transportation and storage costs become great. The iron sulfide concentration is preferably as high as possible, more preferably 5 wt% or more, and further preferably 10 wt% or more. On the other hand, if the iron sulfide concentration is too high, the viscosity of the iron sulfide slurry is too high and handling becomes difficult, so the upper limit of the iron sulfide concentration is 50 wt% or less, more preferably 40 wt% or less, and even 30 wt%. The following concentrations are preferred.
本発明の硫化鉄スラリーにおける活性炭濃度は0.01wt%以上30wt%以下である。活性炭濃度が0.01wt%未満では臭気の抑制効果が少なく、また30wt%よりも多い場合、臭気抑制効果に対して必要量以上の活性炭が存在することになり、コスト面で不利となる。さらに固形成分濃度が高いことにより溶液粘度があがり、ハンドリングが困難となる。 The activated carbon concentration in the iron sulfide slurry of the present invention is 0.01 wt% or more and 30 wt% or less. If the activated carbon concentration is less than 0.01 wt%, the effect of suppressing odor is small, and if it is more than 30 wt%, more activated carbon than necessary is present for the odor suppression effect, which is disadvantageous in terms of cost. Furthermore, since the solid component concentration is high, the solution viscosity increases and handling becomes difficult.
本発明の特徴のひとつは硫化鉄スラリーの臭気抑制に活性炭を選択したことである。従来硫化鉄は無機化合物の反応によって製造するものであるため、臭気の成分としては主に硫化水素等の無機系の化合物が想定された。硫化水素等が臭気源であれば、アルカリ濃度の増加や、アミンの添加による臭気防止技術が効果的であることが一般的に知られている。しかし、これらの技術では、本発明の様な特段の臭気抑制はできなかった。なぜなら、硫化鉄スラリーの臭気の主原因は、ごく微量の有機硫黄化合物、例えば二硫化ジメチル等であるからである。 One of the features of the present invention is that activated carbon is selected to suppress the odor of the iron sulfide slurry. Conventionally, since iron sulfide is produced by a reaction of an inorganic compound, an inorganic compound such as hydrogen sulfide is mainly assumed as an odor component. If hydrogen sulfide or the like is an odor source, it is generally known that an increase in alkali concentration or an odor prevention technique by adding an amine is effective. However, these techniques have not been able to achieve special odor control as in the present invention. This is because the main cause of the odor of the iron sulfide slurry is a very small amount of organic sulfur compound such as dimethyl disulfide.
また本発明では、重金属処理剤が硫化鉄スラリー、即ち固形物であるが故に重金属処理成分が活性炭に吸着して処理活性が低下することがないことも重要である。また活性炭は、重金属の吸着助剤としての働きも期待できる。 In the present invention, since the heavy metal treatment agent is an iron sulfide slurry, that is, a solid material, it is also important that the heavy metal treatment component is not adsorbed on the activated carbon and the treatment activity is not lowered. Activated carbon can also be expected to act as a heavy metal adsorption aid.
本発明の硫化鉄スラリーに用いる硫化鉄の結晶構造はマキナワイト構造であることが特に好ましい。ピロータイト構造の硫化鉄を湿式微粉砕することにより本発明の硫化鉄粒子含有混合溶液を調製することも不可能ではないが、粉砕に多大なコストを必要となる。マキナワイト構造の硫化鉄は重金属処理能力が高いため、本発明の目的である重金属処理剤としての用途に特に適している。 The crystal structure of iron sulfide used in the iron sulfide slurry of the present invention is particularly preferably a makinawite structure. Although it is not impossible to prepare the iron sulfide particle-containing mixed solution of the present invention by wet-pulverizing iron sulfide having a pyrotite structure, a large cost is required for pulverization. Since the iron sulfide having a makinawite structure has a high heavy metal treatment capability, it is particularly suitable for use as a heavy metal treatment agent which is an object of the present invention.
本発明の硫化鉄スラリーに用いる硫化鉄粒子は、粗大な粒子が少なく、100μm以上の粗大粒子の割合が全粒子に対して5%未満のものが好ましい。溶液中での粒子の沈降速度を求めたストークスの式によると、粒子の沈降速度は粒子径の2乗に比例する。従って、粗大な硫化鉄粒子が硫化鉄粒子含有混合溶液中に含まれていると、溶液を攪拌していても、液の上昇速度が不足した部分に粗大粒子が沈降し濃度のむらが生じ易い。粒子径が100μm以上の硫化鉄は沈降速度が約1cm/s以上になり、攪拌によって均一なスラリーとして保持しておくために多大な動力と攪拌設備を必要となるだけでなく、送液中の配管等で目詰まりが生じ易くなる。本発明では100μm以上の粗大粒子の割合が全粒子に対して5%未満、より好ましくは3%未満、さらに好ましくは1%未満である。 The iron sulfide particles used in the iron sulfide slurry of the present invention have few coarse particles, and the proportion of coarse particles of 100 μm or more is preferably less than 5% with respect to all particles. According to the Stokes equation for determining the sedimentation rate of particles in a solution, the sedimentation rate of particles is proportional to the square of the particle diameter. Therefore, if coarse iron sulfide particles are contained in the mixed solution containing iron sulfide particles, even if the solution is stirred, the coarse particles are likely to settle in a portion where the rising speed of the liquid is insufficient and unevenness in concentration tends to occur. Iron sulfide having a particle size of 100 μm or more has a sedimentation speed of about 1 cm / s or more, and not only a large amount of power and stirring equipment are required to keep it as a uniform slurry by stirring. Clogging is likely to occur in piping and the like. In the present invention, the proportion of coarse particles of 100 μm or more is less than 5%, more preferably less than 3%, and even more preferably less than 1% with respect to all particles.
本発明に用いる活性炭は粒子径として150μm以下のものを用いることが好ましい。上述した通り、本発明では高濃度の硫化鉄スラリーとするために、硫化鉄の粒径として100μm以下が好んで用いられる。ここで活性炭の粒径が大きすぎると、硫化鉄と活性炭が分離し、臭気抑制の効果が不均一となり易い。本発明では活性炭の粒子径として150μm以下を用いることにより、流動性に良い硫化鉄スラリー中での均一性が保てる。 The activated carbon used in the present invention preferably has a particle size of 150 μm or less. As described above, in the present invention, in order to obtain a high concentration iron sulfide slurry, the particle size of iron sulfide is preferably 100 μm or less. Here, when the particle size of the activated carbon is too large, iron sulfide and activated carbon are separated, and the effect of suppressing odor tends to be non-uniform. In the present invention, by using 150 μm or less as the particle size of the activated carbon, uniformity in the iron sulfide slurry having good fluidity can be maintained.
次に本発明の硫化鉄スラリーの製造法を説明する。 Next, the manufacturing method of the iron sulfide slurry of this invention is demonstrated.
本発明の硫化鉄の製造方法については特に限定されないが、例えば2価の鉄塩の水溶液と硫黄イオンを含む水溶液を一定のpH範囲を保つように混合して硫化鉄スラリーとすることにより製造することができる。 Although it does not specifically limit about the manufacturing method of the iron sulfide of this invention, For example, it manufactures by mixing the aqueous solution containing a bivalent iron salt and the aqueous solution containing a sulfur ion so that a fixed pH range may be maintained, and making it an iron sulfide slurry. be able to.
本発明では、上記方法で調製した硫化鉄スラリーに活性炭を添加する。添加方法としては特に限定されないが、硫化鉄スラリーを調製し、余分な母液や副生塩を除去した後に添加することが好ましい。また、活性炭を添加後、硫化鉄粒子含有混合溶液を均質化するために攪拌等の操作を行い、できるだけ均一な混合溶液とすることが好ましい。 In the present invention, activated carbon is added to the iron sulfide slurry prepared by the above method. Although it does not specifically limit as an addition method, It is preferable to add, after preparing an iron sulfide slurry and removing excess mother liquor and by-product salt. Moreover, after adding activated carbon, in order to homogenize the mixed solution containing iron sulfide particles, it is preferable to perform an operation such as stirring to make the mixed solution as uniform as possible.
次に本発明の硫化鉄スラリーを用いた重金属処理について説明する。 Next, heavy metal treatment using the iron sulfide slurry of the present invention will be described.
本発明の硫化鉄スラリーは、重金属処理剤として用いることができ、処理する重金属としては、特にCr、As、Seの処理に対して有効である。重金属をそれぞれ単独に処理するだけでなく、これらが複数含まれたものを処理することも可能である。 The iron sulfide slurry of the present invention can be used as a heavy metal treating agent, and is particularly effective for the treatment of Cr, As, and Se as the heavy metal to be treated. It is possible not only to treat heavy metals individually, but also to treat those containing a plurality of these.
本発明の硫化鉄スラリーを含む重金属処理剤(以下「重金属処理剤」という)は、単独で使用するだけでなく、PbやCdと反応する有機キレート剤と混合又は単独に併用して使用してもよい。中でもPb、Cdおよび6価Cr、As、Seで複合汚染されたような廃棄物に対しては、本発明の重金属処理剤と有機キレート剤を用いて無害化処理することが効果的である。 The heavy metal treating agent (hereinafter referred to as “heavy metal treating agent”) containing the iron sulfide slurry of the present invention is not only used alone, but also used in combination with an organic chelating agent that reacts with Pb or Cd. Also good. Among them, it is effective to detoxify the waste that is complexly contaminated with Pb, Cd and hexavalent Cr, As, and Se using the heavy metal treating agent and the organic chelating agent of the present invention.
本発明の重金属処理剤で処理する対象物は特に限定はないが、重金属を含んだごみ焼却灰や飛灰が例示できる。ごみ焼却灰や飛灰中には、各種ごみに含まれていた重金属類が濃縮されており、無害化処理が必要である。飛灰や溶融飛灰は焼却炉の構造や運転方法の違いにより、アルカリ性飛灰、中性飛灰、アルカリ性溶融飛灰、中性溶融飛灰等の種類があり、また、焼却するごみの種類によって含まれる重金属類の種類と含有量は大きく異なるが、本発明の重金属処理剤はどのような灰にも用いることができる。 The object to be treated with the heavy metal treating agent of the present invention is not particularly limited, and examples thereof include waste incineration ash and fly ash containing heavy metal. The waste incineration ash and fly ash are concentrated with heavy metals contained in various types of waste and need to be detoxified. Fly ash and molten fly ash are classified into alkaline fly ash, neutral fly ash, alkaline molten fly ash, neutral molten fly ash, etc., depending on the structure and operation method of the incinerator, and the type of garbage to be incinerated. Although the kind and content of heavy metals contained vary greatly depending on the type, the heavy metal treating agent of the present invention can be used for any ash.
本発明の重金属処理剤の添加量は、ごみ焼却灰や飛灰に含まれる重金属類の種類と総量により異なるため一概に規定できないが、通常はごみ焼却灰や飛灰の量に対して0.1〜50wt%、好ましくは0.5〜30wt%が例示できる。さらに、予めごみ焼却灰や飛灰をサンプリングしてラボテストで添加量を求め、ごみ焼却灰や飛灰に含まれる重金属類の量の変動を考慮して最適添加量を求めることが好ましい。 The addition amount of the heavy metal treating agent of the present invention differs depending on the type and total amount of heavy metals contained in the waste incineration ash and fly ash, and thus cannot be defined unconditionally. Examples thereof include 1 to 50 wt%, preferably 0.5 to 30 wt%. Furthermore, it is preferable to sample the waste incineration ash and fly ash in advance and obtain the addition amount by a lab test, and to obtain the optimum addition amount in consideration of fluctuations in the amount of heavy metals contained in the waste incineration ash and fly ash.
本発明の重金属処理剤への水の添加量はごみ焼却灰や飛灰の性質により異なるが、通常、ごみ焼却灰や飛灰の量に対して10〜40wt%を例示することができる。混練の方法、時間は特に限定されず従来から知られている条件でよい。 Although the amount of water added to the heavy metal treating agent of the present invention varies depending on the properties of the waste incineration ash and fly ash, it is usually 10 to 40 wt% with respect to the amount of the waste incineration ash and fly ash. The method and time for kneading are not particularly limited, and may be those conventionally known.
本発明の重金属処理剤は、重金属類を含んだ土壌の処理にも有効である。重金属類を含んだ土壌に対して、本発明の重金属処理剤及び、必要に応じて水を添加し、混練して用いることができる。 The heavy metal treating agent of the present invention is also effective for treating soil containing heavy metals. The heavy metal treating agent of the present invention and, if necessary, water can be added to the soil containing heavy metals and kneaded.
土壌に対する本発明の重金属処理剤の添加量も、土壌に含まれる重金属類の総量により異なるため一概に規定できないが、例えば処理すべき土壌の量に対して0.1〜20wt%を例示することができる。さらに、予め土壌をサンプリングしてラボテストで最小添加量を求め、安全を見込んで若干過剰となる量を添加することが好ましい。土壌に含まれる水分が少ない場合は、土壌の種類によっても異なるが、必要に応じて水を添加し、土壌に含まれる水分の量が通常10〜60wt%となるようにすることが好ましい。混練の方法、時間は特に限定されず従来から知られている方法を用いることができる。 Although the amount of the heavy metal treating agent of the present invention added to the soil also varies depending on the total amount of heavy metals contained in the soil, it cannot be defined unconditionally, but for example 0.1 to 20 wt% is exemplified with respect to the amount of soil to be treated Can do. Further, it is preferable to sample the soil in advance and obtain the minimum addition amount by a laboratory test, and add an amount that is slightly excessive in consideration of safety. When the moisture contained in the soil is small, it varies depending on the type of soil, but it is preferable to add water as necessary so that the amount of moisture contained in the soil is usually 10 to 60 wt%. The kneading method and time are not particularly limited, and a conventionally known method can be used.
本発明の重金属処理剤は、重金属類を含んだ排水の処理にも適用可能である。排水に対する重金属処理剤の添加量も、排水に含まれる重金属類の総量により異なるため一概に規定できないが、予め排水をサンプリングしてラボテストで最小添加量を求め、安全を見込んで若干過剰量を添加することが好ましい。この時に、排水のpHが低いと硫化鉄が分解し硫化水素の生成の可能性があるため、排水のpHを前もって調整しておくことが好ましく、その場合には排水のpHは3.0以上、より好ましくは6.0以上となるようにすることが好ましい。混合の方法、時間は特に限定されず従来から知られている方法を用いることができる。また、通常、凝集沈澱処理の際に使用される無機系凝集沈澱剤、例えば塩化第2鉄、ポリ塩化アルミニウム、硫酸バンド等を併用し、あるいは凝集速度を速める高分子凝集剤等を併用することも可能である。 The heavy metal treating agent of the present invention can also be applied to the treatment of waste water containing heavy metals. The amount of heavy metal treatment agent added to the wastewater also varies depending on the total amount of heavy metals contained in the wastewater, but it cannot be specified unconditionally. However, the wastewater is sampled in advance and the minimum amount added is determined by a laboratory test. It is preferable to do. At this time, if the pH of the wastewater is low, iron sulfide may decompose and hydrogen sulfide may be generated. Therefore, it is preferable to adjust the pH of the wastewater in advance, in which case the pH of the wastewater is 3.0 or more. More preferably, it should be 6.0 or more. The mixing method and time are not particularly limited, and a conventionally known method can be used. Ordinarily, inorganic coagulant precipitants used in the coagulation precipitation process, for example, ferric chloride, polyaluminum chloride, sulfuric acid band, etc. are used in combination, or polymer coagulants that increase the coagulation rate are used in combination. Is also possible.
本発明の硫化鉄スラリーは、焼却灰、土壌、排水等の重金属処理における重金属処理剤として用いることができ、重金属の処理能力が高く、使用される条件によらずに臭気発生が無く、作業環境を悪化させる問題がない。活性炭は硫化鉄の重金属処理活性を低下させることなく、重金属処理の吸着助剤として働き、なおかつこれらの成分が一剤となっている本発明の硫化鉄スラリーは処理操作性の上からも極めて好適なものである。 The iron sulfide slurry of the present invention can be used as a heavy metal treatment agent in the treatment of heavy metals such as incineration ash, soil, waste water, etc., has a high treatment capacity for heavy metals, has no odor generation regardless of the conditions used, and has a working environment. There is no problem to worsen. Activated charcoal works as an adsorption aid for heavy metal treatment without reducing the heavy metal treatment activity of iron sulfide, and the iron sulfide slurry of the present invention in which these components are used as one agent is also extremely suitable in terms of processing operability. It is a thing.
以下、実施例において本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited only to these Examples.
実施例1
実効内容積750mLで上部にオーバーフロー口を有したステンレス製連続反応容器を50℃に保ち、攪拌しながら塩化鉄(II)水溶液(35.0wt%)を600g/hで、水硫化ナトリウム水溶液(10.0wt%)を880g/hで連続的に添加するとともに、反応槽のスラリーpHが9.5±0.5を保つように水酸化ナトリウム水溶液(48.0wt%)を流量制御しながら連続的に添加し、生成したマキナワイト構造の硫化鉄スラリーをオーバーフロー口より回収した。
Example 1
A stainless steel continuous reaction vessel having an effective internal volume of 750 mL and an overflow port at the top is kept at 50 ° C., and while stirring, an aqueous solution of iron (II) chloride (35.0 wt%) is added at 600 g / h with an aqueous solution of sodium hydrosulfide (10 0.0 wt%) continuously at 880 g / h, and while controlling the flow rate of the aqueous sodium hydroxide solution (48.0 wt%) so that the slurry pH in the reaction vessel is maintained at 9.5 ± 0.5, And the produced iron sulfide slurry having a makinawite structure was recovered from the overflow port.
得られたスラリーは、硫化鉄9.5wt%、塩化ナトリウム12.7wt%を含んでいた。次に、得られたスラリーを濾過し、塩化ナトリウムを含んだ余分な母液を除去した。濾過後の硫化鉄ケーキに水と粉末状の活性炭を加えて攪拌リパルプした後、さらに解砕処理を行い、硫化鉄スラリーとした。 The resulting slurry contained 9.5 wt% iron sulfide and 12.7 wt% sodium chloride. The resulting slurry was then filtered to remove excess mother liquor containing sodium chloride. Water and powdered activated carbon were added to the iron sulfide cake after filtration and stirred and repulped, and then pulverization was performed to obtain an iron sulfide slurry.
得られた硫化鉄スラリーは、硫化鉄濃度が15wt%、活性炭濃度が1.0wt%であり、B型粘度計で測定した調整直後の粘度は510mPa・Sで、流動性は良好であった。 The obtained iron sulfide slurry had an iron sulfide concentration of 15 wt% and an activated carbon concentration of 1.0 wt%. The viscosity immediately after adjustment measured with a B-type viscometer was 510 mPa · S, and the fluidity was good.
この硫化鉄スラリーを1週間静置保存すると沈降が生じ、上部より容器の高さの1割程度透明な層が観察された。沈降部分の状態を観察したが、きわめて柔らかな沈降物であり、攪拌羽根で攪拌すると1分以内に均一な分散溶液となり、この時の粘度は520mPa・Sであり良好な流動性であった。 When this iron sulfide slurry was kept standing for one week, sedimentation occurred, and a transparent layer of about 10% of the height of the container was observed from the top. Although the state of the sedimentation portion was observed, it was a very soft sediment, and when it was stirred with a stirring blade, it became a uniform dispersed solution within 1 minute. At this time, the viscosity was 520 mPa · S and the fluidity was good.
得られた硫化鉄スラリーをバイアル瓶にいれ、1日放置した後のヘッドスペース部の発生ガスをガスクロマトグラムで分析したが、明確なピークは観察されず、官能試験においてもほぼ無臭であった。 The obtained iron sulfide slurry was put in a vial and the gas generated in the head space after being left for one day was analyzed by gas chromatogram. However, no clear peak was observed, and the sensory test was almost odorless.
比較例1
活性炭を加えない以外は実施例1と同様の操作を行い、硫化鉄スラリーを得た。得られた硫化鉄スラリーをバイアル瓶にいれ、1日放置した後のヘッドスペース部の発生ガスをガスクロマトグラムで分析した結果、原料中の不純物に由来すると考えられる有機硫黄化合物の微量なピークが複数観察され、最も大きなピークは二硫化ジメチルであった。また、官能試験として臭いを検査した結果、硫黄系の臭気が感じられた。
Comparative Example 1
Except not adding activated carbon, operation similar to Example 1 was performed and the iron sulfide slurry was obtained. The obtained iron sulfide slurry was put in a vial and the gas generated in the headspace after being left for one day was analyzed by gas chromatogram. The largest peak observed was dimethyl disulfide. Moreover, as a result of inspecting the odor as a sensory test, a sulfur-based odor was felt.
実施例2
六価クロムを含有した廃棄物を用い、実施例1及び比較例1の硫化鉄スラリーを用いて重金属類の処理特性の検討を行なった。廃棄物100重量部に対し、硫化鉄粒子含有混合溶液を加え、さらに水を水+処理剤40重量部となるように加えた後、混練し重金属処理を行なった。廃棄物に対し、環境庁(現在環境省)告示第13号溶出試験(1973年)を行なった。溶出液中に含まれる六価Crをジフェニルカルバジド法で、トータルCrをICP発行分析法で測定しその結果を表1に示した。
Example 2
Using waste containing hexavalent chromium, the processing characteristics of heavy metals were examined using the iron sulfide slurry of Example 1 and Comparative Example 1. The iron sulfide particle-containing mixed solution was added to 100 parts by weight of the waste, and water was further added so as to be 40 parts by weight of water + treatment agent, followed by kneading and heavy metal treatment. For the waste, the Environmental Agency (now Ministry of the Environment) Notification No. 13 dissolution test (1973) was conducted. The hexavalent Cr contained in the eluate was measured by the diphenylcarbazide method, and the total Cr was measured by the ICP issuance analysis method. The results are shown in Table 1.
Claims (5)
The heavy metal processing method using the iron sulfide particle containing solution of Claims 1-3 as a heavy metal processing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132352A JP2007302779A (en) | 2006-05-11 | 2006-05-11 | Mixed solution containing iron sulfide particle and method of treating heavy metal using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132352A JP2007302779A (en) | 2006-05-11 | 2006-05-11 | Mixed solution containing iron sulfide particle and method of treating heavy metal using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007302779A true JP2007302779A (en) | 2007-11-22 |
Family
ID=38836985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006132352A Pending JP2007302779A (en) | 2006-05-11 | 2006-05-11 | Mixed solution containing iron sulfide particle and method of treating heavy metal using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007302779A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012201765A (en) * | 2011-03-24 | 2012-10-22 | Daiwa House Industry Co Ltd | Soil-modifying composition and method for modifying soil |
-
2006
- 2006-05-11 JP JP2006132352A patent/JP2007302779A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012201765A (en) * | 2011-03-24 | 2012-10-22 | Daiwa House Industry Co Ltd | Soil-modifying composition and method for modifying soil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008184469A (en) | Mixture composition and method for treating heavy metal therewith | |
JP5268867B2 (en) | Purification material | |
JP2009082818A (en) | Treatment agent and treatment method for polluted water containing heavy metals | |
JP2008018312A (en) | Manganese dioxide heavy metal adsorbent and treatment method using the same | |
JPWO2011136095A1 (en) | Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same | |
CN107176644A (en) | Purifying agent and purifying treatment method | |
JP2010082539A (en) | Method of treating soil or slag | |
Li et al. | Simultaneous decomplexation of Pb-EDTA and elimination of free Pb ions by MoS2/H2O2: Mechanisms and applications | |
JP2007302779A (en) | Mixed solution containing iron sulfide particle and method of treating heavy metal using the same | |
JP2009256430A (en) | Heavy metal-treating agent and method for treating heavy metal-contaminated material by using the same | |
JP4867700B2 (en) | Heavy metal treatment agent and method for treating heavy metal contaminants using the same | |
JP6850634B2 (en) | How to purify mercury-contaminated soil | |
CN112322301A (en) | Composite soil conditioner and application thereof | |
JP2010234306A (en) | Selenium insolubilization method | |
JP7191753B2 (en) | Method for treating selenium-containing water | |
JP5252028B2 (en) | Heavy metal treating agent and method for stabilizing heavy metal contaminants using the same | |
JP5938784B2 (en) | Heavy metal contaminated water treatment method, solid heavy metal contaminated treatment method, and heavy metal removal composition | |
JP2008200628A (en) | Heavy metal treatment agent and method for treating material contaminated with heavy metal using the same | |
JP5608352B2 (en) | Methods for insolubilizing hazardous substances | |
JP5306977B2 (en) | Method for treating boron-containing water and boron removing agent | |
JP5903866B2 (en) | Heavy metal treating agent and method for treating heavy metal-containing material using the same | |
KR20200125461A (en) | Removal method of selenium | |
CN102276092B (en) | Method for treating calcium hypochlorite waste water by membrane separation and electrolysis combined process | |
JP2014133221A (en) | Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor | |
JP2006316183A (en) | Heavy metal treating agent and treating method of heavy metal using the same |