JP2007302123A - Automobile - Google Patents

Automobile Download PDF

Info

Publication number
JP2007302123A
JP2007302123A JP2006132904A JP2006132904A JP2007302123A JP 2007302123 A JP2007302123 A JP 2007302123A JP 2006132904 A JP2006132904 A JP 2006132904A JP 2006132904 A JP2006132904 A JP 2006132904A JP 2007302123 A JP2007302123 A JP 2007302123A
Authority
JP
Japan
Prior art keywords
fuel
battery
fuel tank
internal combustion
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006132904A
Other languages
Japanese (ja)
Inventor
Yasuhiro Endo
康浩 遠藤
Ryoji Mizutani
良治 水谷
Eiji Yamada
英治 山田
Kazutaka Tatematsu
和高 立松
Yasuaki Tawara
安晃 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006132904A priority Critical patent/JP2007302123A/en
Publication of JP2007302123A publication Critical patent/JP2007302123A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automobile in which a mounted battery can be cooled with a simple configuration. <P>SOLUTION: A battery 1 is installed to be adjacent to a fuel tank 11, so that the heat of the battery can be transmitted to fuel in the fuel tank 11. An ECU 9 decides whether or not it is necessary to cool the battery 1 based on the detection result of a temperature sensor SNS. When it is necessary to cool the battery 1, the ECU 9 controls an electromagnetic valve 15 so that a portion or whole part of the fuel coming out of the fuel tank 11 can be returned through a return piping 14 to the fuel tank 11 again. When the fuel is circulated in this path, heat escapes from the fuel, that is, heat exchange is carried out between the battery 1 and the fuel. Thus, it is possible to cool the battery 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車に関し、特に、自動車に搭載される蓄電池を冷却する技術に関する。   The present invention relates to an automobile, and more particularly, to a technology for cooling a storage battery mounted on the automobile.

近年ますます高まりつつある省エネ・環境問題を背景に、ハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きく注目されている。そして、ハイブリッド自動車は、既に実用化されている。   BACKGROUND ART Hybrid vehicles and electric vehicles are attracting a great deal of attention against the background of increasing energy saving and environmental problems in recent years. And hybrid vehicles have already been put into practical use.

ハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。すなわち、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換された交流電圧によりモータを回転させることによってさらに動力源を得るものである。   A hybrid vehicle is a vehicle that uses a DC power source, an inverter, and a motor driven by the inverter as a power source in addition to a conventional engine. That is, a power source is obtained by driving the engine, a DC voltage from a DC power source is converted into an AC voltage by an inverter, and a motor is further rotated by rotating the converted AC voltage to obtain a power source. .

多くの場合、ハイブリッド自動車ではモータに電源供給を行なうために蓄電池が設けられる。このような蓄電池は高容量であることが求められるためサイズも大型化する。よって蓄電池を車両に搭載するための様々な方法が従来から提案される。   In many cases, in a hybrid vehicle, a storage battery is provided to supply power to the motor. Since such a storage battery is required to have a high capacity, the size is also increased. Therefore, various methods for mounting a storage battery on a vehicle have been proposed.

たとえば特開2001−138753号公報(特許文献1)は、ハイブリッド自動車の下部車体構造を開示する。このハイブリッド自動車においては車両前後方向の長さを短縮しながら低床化を図るため、乗員が座るシート下部のフロアパネルに、そのフロアパネルの主面よりも高い段部を形成する。そして、この段部の空間内にエンジン用の燃料タンクと蓄電池とが配置される。蓄電池は冷却用のファンとともにケース内に収容される。
特開2001−138753号公報
For example, Japanese Patent Laying-Open No. 2001-138553 (Patent Document 1) discloses a lower body structure of a hybrid vehicle. In this hybrid vehicle, in order to reduce the floor while shortening the length in the longitudinal direction of the vehicle, a step portion higher than the main surface of the floor panel is formed on the floor panel below the seat on which the occupant sits. And the fuel tank and storage battery for engines are arrange | positioned in the space of this step part. The storage battery is housed in a case together with a cooling fan.
JP 2001-138754 A

特開2001−138753号公報(特許文献1)では、蓄電池を冷却するためのファンが蓄電池とともにケースに収納されることが開示される。このため、ケース全体のサイズが大きくなる、あるいは、蓄電池、冷却装置およびケースを含めた電池パックの総重量が重くなる等の問題が生じることが考えられる。しかしながら特開2001−138753号公報(特許文献1)にはこのような問題を解決するための方法は示されていない。   Japanese Unexamined Patent Publication No. 2001-138553 (Patent Document 1) discloses that a fan for cooling a storage battery is housed in a case together with the storage battery. For this reason, it is considered that the size of the entire case increases, or that the total weight of the battery pack including the storage battery, the cooling device, and the case increases. However, Japanese Patent Laid-Open No. 2001-138553 (Patent Document 1) does not show a method for solving such a problem.

本発明の目的は、搭載される蓄電池の冷却を簡単な構成で可能な自動車を提供することである。   An object of the present invention is to provide an automobile capable of cooling a mounted storage battery with a simple configuration.

本発明は要約すれば、自動車であって、内燃機関と、内燃機関に燃料を供給するための燃料供給装置と、燃料との間で熱交換を行なう蓄電池とを備える。   In summary, the present invention is an automobile, and includes an internal combustion engine, a fuel supply device for supplying fuel to the internal combustion engine, and a storage battery that performs heat exchange with the fuel.

好ましくは、燃料供給装置は、燃料を蓄える燃料タンクを含む。蓄電池は、燃料タンクに隣接して配置される。   Preferably, the fuel supply device includes a fuel tank that stores fuel. The storage battery is disposed adjacent to the fuel tank.

より好ましくは、蓄電池は、バイポーラ2次電池である。
より好ましくは、燃料供給装置は、燃料タンクから内燃機関に向けて燃料を流す燃料配管と、燃料配管内の燃料を燃料タンクに戻す戻り配管と、燃料配管と戻り配管との分岐部に設けられ、燃料配管内の燃料の流れを戻り配管に分岐するか否かを切換えるバルブとをさらに含む。
More preferably, the storage battery is a bipolar secondary battery.
More preferably, the fuel supply device is provided in a fuel pipe for flowing fuel from the fuel tank toward the internal combustion engine, a return pipe for returning the fuel in the fuel pipe to the fuel tank, and a branch portion between the fuel pipe and the return pipe. And a valve for switching whether or not the fuel flow in the fuel pipe is branched to the return pipe.

さらに好ましくは、自動車は、蓄電池の温度を検出する温度センサと、温度センサの検出結果に基づいてバルブを制御する制御部とをさらに備える。   More preferably, the automobile further includes a temperature sensor that detects the temperature of the storage battery, and a control unit that controls the valve based on the detection result of the temperature sensor.

さらに好ましくは、バルブは、制御信号に応じて、燃料配管を経由して内燃機関に送られる燃料の流量と、戻り配管を経由して燃料タンクに戻される燃料の流量との流量比を連続的に変化させることが可能である。内燃機関は、自動車の駆動源である。自動車は、内燃機関の他の駆動源であり、かつ、蓄電池から電源供給されて動作する電動機をさらに備える。制御部は、車両状況に応じて、自動車の全駆動力に対する内燃機関と電動機とへの配分比を決定する。制御部は、温度センサの検出結果が所定の温度を上回る場合には、配分比に応じて流量比を決定し、決定結果を示す制御信号をバルブに送る。   More preferably, the valve continuously sets a flow rate ratio between the flow rate of the fuel sent to the internal combustion engine via the fuel pipe and the flow rate of the fuel returned to the fuel tank via the return pipe according to the control signal. It is possible to change. An internal combustion engine is a driving source of an automobile. The automobile further includes an electric motor that is another driving source of the internal combustion engine and that is operated by being supplied with power from a storage battery. The control unit determines a distribution ratio between the internal combustion engine and the electric motor with respect to the entire driving force of the automobile according to the vehicle situation. When the detection result of the temperature sensor exceeds a predetermined temperature, the control unit determines the flow rate ratio according to the distribution ratio and sends a control signal indicating the determination result to the valve.

本発明によれば、自動車に搭載される蓄電池の冷却を簡単な構成で実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling of the storage battery mounted in a motor vehicle is realizable with a simple structure.

以下において、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.

図1は、本実施の形態のハイブリッド自動車の概略構成図である。
図1を参照して、ハイブリッド自動車100は、バッテリ1と、電力変換部(PCU:Power Control Unit)2と、電動機3と、エンジン(内燃機関)4と、動力分割機構5と、発電機(ジェネレータ)6と、減速機7と、駆動輪8a,8bと、ハイブリッド自動車100の全体動作を制御するECU9と、燃料供給装置10とを備える。
FIG. 1 is a schematic configuration diagram of a hybrid vehicle according to the present embodiment.
Referring to FIG. 1, hybrid vehicle 100 includes a battery 1, a power conversion unit (PCU: Power Control Unit) 2, an electric motor 3, an engine (internal combustion engine) 4, a power split mechanism 5, a generator ( Generator) 6, reduction gear 7, drive wheels 8 a and 8 b, ECU 9 for controlling the overall operation of hybrid vehicle 100, and fuel supply device 10.

なお、図1には、前輪のみが駆動輪であるハイブリッド自動車を示したが、さらに後輪駆動用の電動機を設けて、4WDのハイブリッド自動車を構成することも可能である。   Although FIG. 1 shows a hybrid vehicle in which only the front wheels are drive wheels, it is also possible to provide a rear-wheel drive motor to form a 4WD hybrid vehicle.

バッテリ1は、充電可能な二次電池から構成される。バッテリ1の構成の詳細は後述する。電力変換部2は、バッテリ1から供給された直流電圧を、電動機3駆動用の交流電圧に変換するインバータ(図示せず)を含む。このインバータは、双方向の電力変換が可能なように構成され、電動機3の回生制動動作による発電電力(交流電圧)およびジェネレータ6による発電電力(交流電圧)を、バッテリ1充電用の直流電圧に変換する機能を併せ持つものとする。   The battery 1 is composed of a rechargeable secondary battery. Details of the configuration of the battery 1 will be described later. The power conversion unit 2 includes an inverter (not shown) that converts the DC voltage supplied from the battery 1 into an AC voltage for driving the electric motor 3. This inverter is configured to be capable of bidirectional power conversion, and the generated power (AC voltage) generated by the regenerative braking operation of the electric motor 3 and the generated power (AC voltage) generated by the generator 6 are converted into a DC voltage for charging the battery 1. It also has a function to convert.

さらに、電力変換部2は、直流電圧のレベル変換を行なう昇降圧コンバータ(図示せず)をさらに含んでもよい。このような昇降圧コンバータを配置することにより、バッテリ1の供給電圧よりも高電圧を振幅とする交流電圧によって電動機3を駆動することができるので、モータ駆動効率を向上することができる。   Further, power conversion unit 2 may further include a step-up / down converter (not shown) that performs level conversion of a DC voltage. By arranging such a step-up / step-down converter, the motor 3 can be driven by an AC voltage whose amplitude is higher than the supply voltage of the battery 1, so that the motor drive efficiency can be improved.

エンジン4は、燃料供給装置10から燃料(たとえばガソリン)が供給されることによって動作する。動力分割機構5は、エンジン4によって生じた駆動力を、減速機7を介して駆動輪8a,8bへ伝達する経路と、ジェネレータ6へ伝達する経路とに分割可能である。ジェネレータ6は、動力分割機構5を介して伝達されたエンジン4からの駆動力によって回転されて発電する。ジェネレータ6による発電電力は、電力変換部2によって、バッテリ1の充電電力、あるいは電動機3の駆動電力として用いられる。   The engine 4 operates when fuel (for example, gasoline) is supplied from the fuel supply device 10. The power split mechanism 5 can divide the driving force generated by the engine 4 into a path for transmitting to the drive wheels 8 a and 8 b via the speed reducer 7 and a path for transmitting to the generator 6. The generator 6 is rotated by the driving force from the engine 4 transmitted through the power split mechanism 5 to generate electric power. The power generated by the generator 6 is used by the power conversion unit 2 as charging power for the battery 1 or driving power for the electric motor 3.

電動機3は、電力変換部2から供給された交流電圧によって回転駆動されて、その駆動力は、減速機7を介して駆動輪8a,8bへ伝達される。また、電動機3が駆動輪8a,8bの減速に伴って回転される回生制動動作時には、電動機3は発電機として作用する。   The electric motor 3 is rotationally driven by the AC voltage supplied from the power conversion unit 2, and the driving force is transmitted to the drive wheels 8 a and 8 b via the speed reducer 7. In addition, during the regenerative braking operation in which the electric motor 3 is rotated as the drive wheels 8a and 8b are decelerated, the electric motor 3 acts as a generator.

ハイブリッド自動車100では、発進時ならびに低速走行時あるいは緩やかな坂を下るとき等の軽負荷時には、エンジン効率の悪い領域を避けるために、エンジン4の駆動力を用いることなく、電動機3による駆動力で走行する。したがって、この場合には、暖機運転が必要な場合を除いてエンジン4の運転が停止される。なお、暖機運転が必要な場合には、エンジン4はアイドル運転される。   In the hybrid vehicle 100, at the time of starting, at low speed, or at a light load such as when going down a gentle slope, the driving force of the electric motor 3 is used without using the driving force of the engine 4 in order to avoid a region where the engine efficiency is poor. Run. Therefore, in this case, the operation of the engine 4 is stopped except when the warm-up operation is necessary. When warm-up operation is required, the engine 4 is idled.

一方、通常走行時には、エンジン4が始動され、エンジン4から出力された駆動力は、動力分割機構5によって駆動輪8a,8bの駆動力と、ジェネレータ6での発電用駆動力とに分割される。ジェネレータ6による発電電力は、電動機3の駆動に用いられる。したがって、通常走行時には、エンジン4による駆動力を電動機3による駆動力でアシストして、駆動輪8a,8bが駆動される。ECU9は、動力分割機構5による動力分割比率を、全体の比率が最大となるように制御する。   On the other hand, during normal travel, the engine 4 is started, and the driving force output from the engine 4 is divided by the power split mechanism 5 into driving force for the driving wheels 8 a and 8 b and driving force for power generation by the generator 6. . The electric power generated by the generator 6 is used to drive the electric motor 3. Therefore, during normal travel, the driving wheels 8a and 8b are driven by assisting the driving force of the engine 4 with the driving force of the electric motor 3. The ECU 9 controls the power split ratio by the power split mechanism 5 so that the overall ratio becomes maximum.

さらに、全開加速時には、バッテリ1から供給される電力が電動機3の駆動にさらに用いられて、駆動輪8a,8bの駆動力がさらに増加する。   Furthermore, at the time of full open acceleration, the electric power supplied from the battery 1 is further used for driving the electric motor 3, and the driving force of the driving wheels 8a and 8b is further increased.

減速および制動時には、電動機3は、駆動輪8a,8bによって回転駆動されて発電する。電動機3の回生発電によって回収された電力は、電力変換部2によって直流電圧に変換されてバッテリ1の充電に用いられる。さらに、車両停止時には、エンジン4は自動的に停止される。   At the time of deceleration and braking, the electric motor 3 is rotationally driven by the drive wheels 8a and 8b to generate electric power. The electric power recovered by the regenerative power generation of the electric motor 3 is converted into a DC voltage by the power conversion unit 2 and used for charging the battery 1. Further, when the vehicle is stopped, the engine 4 is automatically stopped.

このように、ハイブリッド自動車100は、エンジン4によって発生された機械的動力(駆動力)と電気エネルギを源として電動機3によって発生された機械的動力(駆動力)との組合せによって、すなわち車両状況に応じてエンジン4および電動機3の動作を制御することにより燃費を向上させた車両運転を行なう。別の表現を用いると、ECU9は車両状況に応じて、車両の全駆動力に対するエンジン4と電動機3との駆動力の配分比を決定する。   As described above, the hybrid vehicle 100 has a combination of mechanical power (driving force) generated by the engine 4 and mechanical power (driving force) generated by the electric motor 3 using electric energy as a source, that is, in a vehicle situation. Accordingly, the operation of the engine 4 and the electric motor 3 is controlled to drive the vehicle with improved fuel efficiency. If another expression is used, ECU9 will determine the distribution ratio of the driving force of the engine 4 and the electric motor 3 with respect to the total driving force of a vehicle according to a vehicle condition.

図2は、図1の燃料供給装置10の構成を示す図である。
図2を参照して、燃料供給装置10は、燃料タンク11と、複数のインジェクタ12と、燃料配管13と、戻り配管14と、電磁弁15と、デリバリパイプ16と、燃料圧レギュレータ17と、燃料ポンプ18と、燃料フィルタ19とを含む。
FIG. 2 is a diagram showing a configuration of the fuel supply device 10 of FIG.
Referring to FIG. 2, the fuel supply device 10 includes a fuel tank 11, a plurality of injectors 12, a fuel pipe 13, a return pipe 14, an electromagnetic valve 15, a delivery pipe 16, a fuel pressure regulator 17, A fuel pump 18 and a fuel filter 19 are included.

燃料タンク11はエンジン4に供給する燃料を蓄える。燃料タンク11に蓄えられた燃料は、電動機駆動式の燃料ポンプ18により所定圧で吐出される。なお燃料ポンプ18は、ECU9の出力信号に基づいて制御される。   The fuel tank 11 stores fuel to be supplied to the engine 4. The fuel stored in the fuel tank 11 is discharged at a predetermined pressure by an electric motor-driven fuel pump 18. The fuel pump 18 is controlled based on an output signal from the ECU 9.

燃料ポンプ18から吐出された燃料は、燃料フィルタ19を介して燃料圧レギュレータ17へ供給される。燃料圧レギュレータ17は、デリバリパイプ16の上流側に配置されて、燃料ポンプ18からの吐出燃料の燃料圧が所定の設定燃料圧よりも高くなると吐出燃料の一部を燃料タンク11へ戻すように構成される。したがって、燃料圧レギュレータ17の下流側において、燃料圧は、上記設定燃料圧よりも高くならないように維持される。   The fuel discharged from the fuel pump 18 is supplied to the fuel pressure regulator 17 through the fuel filter 19. The fuel pressure regulator 17 is arranged on the upstream side of the delivery pipe 16 so that a part of the discharged fuel is returned to the fuel tank 11 when the fuel pressure of the discharged fuel from the fuel pump 18 becomes higher than a predetermined set fuel pressure. Composed. Accordingly, on the downstream side of the fuel pressure regulator 17, the fuel pressure is maintained so as not to become higher than the set fuel pressure.

図1に示すエンジン4は、複数の気筒(たとえば4つの気筒)を備える。複数のインジェクタ12(図2では4つのインジェクタ12)が複数の気筒のそれぞれに対応して設けられる。   The engine 4 shown in FIG. 1 includes a plurality of cylinders (for example, four cylinders). A plurality of injectors 12 (four injectors 12 in FIG. 2) are provided corresponding to each of the plurality of cylinders.

燃料ポンプ18の吐出側は、燃料フィルタ19、燃料圧レギュレータ17、および燃料配管13を介して各インジェクタ12を備えた管体として形成されたデリバリパイプ16と連結される。すなわち、デリバリパイプ16は、燃料配管13を介して燃料ポンプ18により吐出された燃料を上流側から受けて各インジェクタ12へ分配し、エンジン内へ噴射させる。   The discharge side of the fuel pump 18 is connected to a delivery pipe 16 formed as a tubular body having each injector 12 via a fuel filter 19, a fuel pressure regulator 17, and a fuel pipe 13. That is, the delivery pipe 16 receives the fuel discharged from the fuel pump 18 via the fuel pipe 13 from the upstream side, distributes it to each injector 12, and injects it into the engine.

燃料配管13と戻り配管14との分岐部には電磁弁15が設けられる。電磁弁15は、ECU9からの制御信号に応答して、燃料配管13内の燃料の流れを戻り配管14に分岐するか否かを切換える。戻り配管14に導かれた燃料は燃料タンク11に戻される。戻り配管14に燃料が導かれることによって燃料の循環経路が形成される。   A solenoid valve 15 is provided at a branch portion between the fuel pipe 13 and the return pipe 14. In response to a control signal from the ECU 9, the electromagnetic valve 15 switches whether or not to branch the fuel flow in the fuel pipe 13 to the return pipe 14. The fuel guided to the return pipe 14 is returned to the fuel tank 11. A fuel circulation path is formed by introducing the fuel to the return pipe 14.

一方、電磁弁15は、燃料の流れを分岐させない場合には燃料ポンプ18より吐出される燃料をそのまま燃料配管13およびデリバリパイプ16に流すよう燃料の供給経路を設定する。   On the other hand, the solenoid valve 15 sets a fuel supply path so that the fuel discharged from the fuel pump 18 flows directly to the fuel pipe 13 and the delivery pipe 16 when the fuel flow is not branched.

なお、電磁弁15は、ECU9からの制御信号に応じて、燃料配管13(およびデリバリパイプ16)を経由してエンジン4に送られる燃料の流量と、戻り配管14を経由して燃料タンク11に戻される燃料の流量との流量比を0%から100%までの間で連続的(無段階)に変化させる。ここで流量比が0%であるとは燃料ポンプ18より吐出される燃料がすべて燃料配管13およびデリバリパイプ16に送られる(エンジン4に送られる)ことを意味し、流量比が100%であるとは燃料ポンプ18より吐出される燃料がすべて戻り配管14を経由して燃料タンク11に戻されることを意味する。   The electromagnetic valve 15 is supplied to the fuel tank 11 via the fuel pipe 13 (and delivery pipe 16) and the fuel flow rate sent to the engine 4 via the return pipe 14 and the return pipe 14 in response to a control signal from the ECU 9. The flow rate ratio with the flow rate of the returned fuel is continuously (steplessly) changed from 0% to 100%. Here, the flow rate ratio of 0% means that all the fuel discharged from the fuel pump 18 is sent to the fuel pipe 13 and the delivery pipe 16 (sent to the engine 4), and the flow rate ratio is 100%. Means that all the fuel discharged from the fuel pump 18 is returned to the fuel tank 11 via the return pipe 14.

燃料タンク11に隣接してバッテリ1を収容するケース20が設けられる。ケース20の外壁には複数の放熱フィン201が設けられる。またケースの内部にはバッテリ1の温度を検出するための温度センサSNSが設けられる。   A case 20 for housing the battery 1 is provided adjacent to the fuel tank 11. A plurality of heat radiation fins 201 are provided on the outer wall of the case 20. A temperature sensor SNS for detecting the temperature of the battery 1 is provided inside the case.

なお図2ではケース20とバッテリ1との間には空間が存在するよう示されるが、バッテリ1からケース20への熱伝達を良くするため、バッテリ1の外壁はケース20の内壁に密着することが好ましい。   2 shows that there is a space between the case 20 and the battery 1, the outer wall of the battery 1 is in close contact with the inner wall of the case 20 in order to improve heat transfer from the battery 1 to the case 20. Is preferred.

バッテリ1は燃料タンク11に隣接して設けられているので、バッテリの熱は燃料タンク11内の燃料に伝達される。ECU9は温度センサSNSの検出結果に基づいてバッテリ1の冷却が必要か否かを判定する。バッテリ1の冷却が必要な場合には、ECU9は燃料タンク11から出た燃料の一部あるいは全部が戻り配管14を経由して再び燃料タンク11に戻るように電磁弁15を制御する。燃料がこの経路を循環する際に燃料から熱が逃げる。つまりバッテリ1と燃料との間で熱交換が行なわれる。よってバッテリ1が冷却される。   Since the battery 1 is provided adjacent to the fuel tank 11, the heat of the battery is transmitted to the fuel in the fuel tank 11. The ECU 9 determines whether or not the battery 1 needs to be cooled based on the detection result of the temperature sensor SNS. When the battery 1 needs to be cooled, the ECU 9 controls the electromagnetic valve 15 so that part or all of the fuel that has come out of the fuel tank 11 returns to the fuel tank 11 again via the return pipe 14. Heat escapes from the fuel as it circulates in this path. That is, heat exchange is performed between the battery 1 and the fuel. Therefore, the battery 1 is cooled.

また、ガソリンの気化温度が低い(約30〜40度)ため、ガソリンの気化の際にバッテリ1から熱を奪うことによりバッテリ1を冷却することも可能である。   Moreover, since the vaporization temperature of gasoline is low (about 30 to 40 degrees), it is possible to cool the battery 1 by removing heat from the battery 1 when the gasoline is vaporized.

このように本実施の形態ではバッテリ1の冷却媒体として内燃機関の燃料を用いるので、冷却ファン等の冷却装置を用いなくてもバッテリ1を冷却できる。よって本実施の形態によればバッテリ1の冷却を簡単な構成で実現できる。   Thus, in this embodiment, since the fuel of the internal combustion engine is used as the cooling medium of the battery 1, the battery 1 can be cooled without using a cooling device such as a cooling fan. Therefore, according to the present embodiment, cooling of battery 1 can be realized with a simple configuration.

また、バッテリ1の冷却が開始されるまでの間、あるいはバッテリ1の冷却期間には燃料タンク11内の燃料がバッテリ1によって暖められる。これにより燃料の霧化が促進されるので低燃費化およびエミッション性能の向上を図ることができる。   Further, the fuel in the fuel tank 11 is warmed by the battery 1 until the cooling of the battery 1 is started or during the cooling period of the battery 1. As a result, atomization of the fuel is promoted, so that fuel consumption can be reduced and emission performance can be improved.

なお、戻り配管14の外壁には放熱フィン141が設けられる。これにより戻り配管14を流れる燃料の放熱が促進される。   Note that heat radiating fins 141 are provided on the outer wall of the return pipe 14. Thereby, heat dissipation of the fuel flowing through the return pipe 14 is promoted.

また、戻り配管14は車両の下部に配置され、かつ露出していることが好ましい。これによって車両の走行時に戻り配管14は走行風を受けることができるので、戻り配管14を流れる燃料からの放熱が促進される。   Moreover, it is preferable that the return piping 14 is arrange | positioned at the lower part of a vehicle, and is exposed. As a result, the return pipe 14 can receive a running wind when the vehicle is traveling, and thus heat radiation from the fuel flowing through the return pipe 14 is promoted.

また、戻り配管14はバッテリ1のケース20の外表面に沿って蛇行するように設けられていてもよい。これによりバッテリ1の冷却性能をより高めることが可能になる。   Further, the return pipe 14 may be provided so as to meander along the outer surface of the case 20 of the battery 1. As a result, the cooling performance of the battery 1 can be further enhanced.

図3は、図2のECU9によって実行される燃料循環処理を説明するフローチャートである。   FIG. 3 is a flowchart for explaining a fuel circulation process executed by the ECU 9 of FIG.

図3および図2を参照して参照して処理が開始されると、まずステップS1において、ECU9は温度センサSNSからバッテリ1の温度に関する情報を取得する。そしてECU9はこの情報に基づいて、バッテリ1の冷却が必要か否かを判定する。   When the process is started with reference to FIG. 3 and FIG. 2, first, in step S <b> 1, the ECU 9 acquires information on the temperature of the battery 1 from the temperature sensor SNS. Based on this information, the ECU 9 determines whether or not the battery 1 needs to be cooled.

ステップS1において、ECU9は温度センサSNSが検出したバッテリ1の温度が所定の温度(たとえば60度)を超えた場合にバッテリ1の冷却が必要であると判定してもよいし、所定の期間(たとえば数秒間)におけるバッテリ1の温度上昇の割合が所定の割合を上回る場合にバッテリ1の冷却が必要であると判定してもよい。   In step S1, the ECU 9 may determine that the battery 1 needs to be cooled when the temperature of the battery 1 detected by the temperature sensor SNS exceeds a predetermined temperature (for example, 60 degrees), or for a predetermined period ( For example, it may be determined that the battery 1 needs to be cooled when the rate of the temperature rise of the battery 1 in a few seconds exceeds a predetermined rate.

ECU9はバッテリ1の冷却が必要であると判定する場合(ステップS1においてYES)、ステップS2において燃料を循環させる。   When ECU 9 determines that cooling of battery 1 is necessary (YES in step S1), the fuel is circulated in step S2.

ステップS2において、ECU9は、まず、図1のハイブリッド自動車100の全駆動力に対するエンジン4と電動機3との駆動力の配分比に基づいて、燃料配管13(およびデリバリパイプ16)を経由してエンジン4に送られる燃料の流量と、戻り配管14を経由して燃料タンク11に戻される燃料の流量との流量比を決定する。   In step S2, the ECU 9 first determines the engine via the fuel pipe 13 (and the delivery pipe 16) based on the distribution ratio of the driving force between the engine 4 and the electric motor 3 to the total driving force of the hybrid vehicle 100 of FIG. The flow rate ratio between the flow rate of the fuel sent to 4 and the flow rate of the fuel returned to the fuel tank 11 via the return pipe 14 is determined.

上述したように、ハイブリッド自動車100は、軽負荷時にはエンジン4の駆動力を用いることなく、電動機3による駆動力で走行する。この場合には、ECU9は燃料ポンプ18から吐出された燃料がすべて戻り配管14を経由して燃料タンク11に戻る経路が形成されるよう電磁弁15を制御する。すなわちECU9は流量比を100%に設定する。そしてECU9は燃料ポンプ18を動作させる。これにより燃料の循環が行なわれ、バッテリ1が冷却される。   As described above, the hybrid vehicle 100 travels with the driving force of the electric motor 3 without using the driving force of the engine 4 at a light load. In this case, the ECU 9 controls the solenoid valve 15 so that a path for returning all the fuel discharged from the fuel pump 18 to the fuel tank 11 via the return pipe 14 is formed. That is, the ECU 9 sets the flow rate ratio to 100%. Then, the ECU 9 operates the fuel pump 18. Thereby, the fuel is circulated and the battery 1 is cooled.

なお、軽負荷時においてバッテリ1の冷却とエンジン4の暖機運転とを行なう場合には、ECU9は、燃料ポンプ18から吐出された燃料の一部が燃料配管13およびデリバリパイプ16に送られ、残りが戻り配管14に送られるように電磁弁15を制御する。たとえばECU9は流量比を80%に設定する。   When the battery 1 is cooled and the engine 4 is warmed up at a light load, the ECU 9 sends a part of the fuel discharged from the fuel pump 18 to the fuel pipe 13 and the delivery pipe 16. The electromagnetic valve 15 is controlled so that the remainder is sent to the return pipe 14. For example, the ECU 9 sets the flow rate ratio to 80%.

また、軽負荷時から通常走行時に切換った直後においてバッテリ1の冷却1が必要な場合、あるいは、全開加速時においてバッテリ1の冷却が必要な場合には、ECU9は、燃料ポンプ18から吐出された燃料の一部が燃料配管13およびデリバリパイプ16に送られ、残りが戻り配管14に送られるように電磁弁15を制御する。たとえばECU9は流量比を20%に設定する。   In addition, when the cooling 1 of the battery 1 is necessary immediately after switching from the light load to the normal running, or when the battery 1 needs to be cooled at the time of full opening acceleration, the ECU 9 is discharged from the fuel pump 18. The solenoid valve 15 is controlled so that a part of the fuel is sent to the fuel pipe 13 and the delivery pipe 16 and the rest is sent to the return pipe 14. For example, the ECU 9 sets the flow rate ratio to 20%.

これにより通常走行時にはエンジン4に駆動力を出力させながらバッテリ1を冷却することができる。また全開加速時にはエンジン4に駆動力を出力させることができるとともに、バッテリ1の放電時にバッテリ1の温度が大幅に上昇することを抑えることができる。   As a result, the battery 1 can be cooled while the driving force is output to the engine 4 during normal traveling. In addition, the driving force can be output to the engine 4 at the time of full opening acceleration, and the temperature of the battery 1 can be prevented from significantly increasing when the battery 1 is discharged.

一方、ECU9はバッテリ1の冷却が不要であると判定した場合(ステップS1においてNO)、ステップS3において燃料の循環を行なわないよう電磁弁15を制御する。これにより、通常走行時あるいは全開加速時には燃料ポンプ18から吐出された燃料のすべてが燃料配管13およびデリバリパイプ16に送られる。すなわちECU9は流量比を0%に設定する。   On the other hand, when ECU 9 determines that cooling of battery 1 is not required (NO in step S1), it controls electromagnetic valve 15 so as not to circulate the fuel in step S3. As a result, all of the fuel discharged from the fuel pump 18 is sent to the fuel pipe 13 and the delivery pipe 16 during normal running or fully open acceleration. That is, the ECU 9 sets the flow rate ratio to 0%.

ステップS2またはステップS3の処理が終了すると、全体の処理は再びステップS1に戻る。   When the process of step S2 or step S3 ends, the entire process returns to step S1 again.

このようにECU9は、車両状況(エンジン4と電動機3との駆動力の配分比)に応じて流量比を決定する。そしてECU9は決定した流量比に応じた制御信号を電磁弁15に送る。電磁弁15は、制御信号に応じて流量比を変化させる。よって本実施の形態によれば、特にエンジンの駆動力を用いて走行する場合において、走行に影響を与えることなくバッテリ1を冷却できる。   In this way, the ECU 9 determines the flow rate ratio according to the vehicle situation (the distribution ratio of the driving force between the engine 4 and the electric motor 3). Then, the ECU 9 sends a control signal corresponding to the determined flow rate ratio to the electromagnetic valve 15. The electromagnetic valve 15 changes the flow rate ratio according to the control signal. Therefore, according to the present embodiment, battery 1 can be cooled without affecting traveling, particularly when traveling using the driving force of the engine.

なお、バッテリ1としては様々な2次電池を用いることができる。特に本実施の形態では2次電池として「バイポーラ2次電池」を用いることが好ましい。   Various secondary batteries can be used as the battery 1. In particular, in this embodiment, it is preferable to use a “bipolar secondary battery” as the secondary battery.

近年、ハイブリッド自動車や電気自動車等の大容量電源として、高エネルギー密度、高出力密度を達成できるリチウム2次イオン電池が開発され使用されている。リチウム2次イオン電池をハイブリッド自動車や電気自動車等に用いる場合には、大出力を確保するために複数の単位電池(電池セル)が直列に接続される。   In recent years, lithium secondary ion batteries capable of achieving high energy density and high output density have been developed and used as large-capacity power sources for hybrid vehicles and electric vehicles. When a lithium secondary ion battery is used in a hybrid vehicle, an electric vehicle, or the like, a plurality of unit batteries (battery cells) are connected in series in order to ensure a large output.

しかし、接続部材(バスバー等)を介して電池を接続すると接続部材の電気抵抗によって電池の出力が低下する。さらに電池の全体の体積に対して接続部材が占有する体積の割合が大きくなるほど電池の電池の出力密度やエネルギー密度が低下する。   However, when a battery is connected via a connection member (such as a bus bar), the output of the battery is reduced due to the electrical resistance of the connection member. Furthermore, as the ratio of the volume occupied by the connection member to the entire volume of the battery increases, the output density and energy density of the battery of the battery decrease.

バイポーラ2次電池はこのような問題を解決可能な電池の1つであり、電池セル間の抵抗を低減することを可能にするともに小型化を可能にする。バイポーラ2次電池は一般的に電解質を介して複数のバイポーラ電極を積層した構造を有する。ここで、バイポーラ電極とは、たとえばシート状に形成された集電部材の一方の面に正極活物質層が形成され、集電部材の他方の面に負極活物質層が形成された電極のことを意味するものとする。   The bipolar secondary battery is one of the batteries that can solve such a problem, and allows the resistance between the battery cells to be reduced and enables the miniaturization. Bipolar secondary batteries generally have a structure in which a plurality of bipolar electrodes are stacked via an electrolyte. Here, the bipolar electrode is, for example, an electrode in which a positive electrode active material layer is formed on one surface of a current collecting member formed in a sheet shape and a negative electrode active material layer is formed on the other surface of the current collecting member. Means.

バイポーラ電極を薄くすることによって、バイポーラ2次電池の厚みを小さくすることができるとともにバイポーラ2次電池の軽量化を図ることができる。よって、バッテリ1にバイポーラ2次電池を用いることによってハイブリッド自動車におけるバッテリの配置の自由度を高くすることができる。   By reducing the thickness of the bipolar electrode, the thickness of the bipolar secondary battery can be reduced and the weight of the bipolar secondary battery can be reduced. Therefore, by using a bipolar secondary battery for the battery 1, the degree of freedom of battery arrangement in the hybrid vehicle can be increased.

すなわちバッテリ1にバイポーラ2次電池を用いることで図2に示すように燃料タンク11に隣接してバッテリ1を設けることが容易になる。   That is, by using a bipolar secondary battery for the battery 1, it becomes easy to provide the battery 1 adjacent to the fuel tank 11 as shown in FIG.

図4は、図1のバッテリ1を示す斜視図である。
図4を参照して、バッテリ(バイポーラ2次電池)1は、複数の電池セル25が積層されて形成されている。バッテリ1は、略直方体形状を有する。
FIG. 4 is a perspective view showing the battery 1 of FIG.
Referring to FIG. 4, a battery (bipolar secondary battery) 1 is formed by stacking a plurality of battery cells 25. The battery 1 has a substantially rectangular parallelepiped shape.

図5は、図4のV−V線に従う断面図である。
図5および図4を参照して、電池セル25は、正極をなす正極活物質層28と、負極をなす負極活物質層26と、正極活物質層28と負極活物質層26との間に介在する電解質層27とから構成されている。電解質層27は、イオン伝導性を示す材料から形成される層である。電解質層27は、固体電解質であっても良いし、ゲル状電解質であっても良い。電解質層27を介在させることによって、正極活物質層28および負極活物質層26間のイオン伝導がスムーズになり、バイポーラ2次電池の出力を向上させることができる。
FIG. 5 is a cross-sectional view taken along line VV in FIG.
5 and 4, the battery cell 25 includes a positive electrode active material layer 28 that forms a positive electrode, a negative electrode active material layer 26 that forms a negative electrode, and a positive electrode active material layer 28 and a negative electrode active material layer 26. It comprises an intervening electrolyte layer 27. The electrolyte layer 27 is a layer formed from a material exhibiting ionic conductivity. The electrolyte layer 27 may be a solid electrolyte or a gel electrolyte. By interposing the electrolyte layer 27, ion conduction between the positive electrode active material layer 28 and the negative electrode active material layer 26 becomes smooth, and the output of the bipolar secondary battery can be improved.

複数の電池セル25は、積層方向に隣り合う位置で正極活物質層28と負極活物質層26とが対向するように積層されている。複数の電池セル25間には、それぞれシート状の集電箔29が設けられている。集電箔29の一方の面29bに正極活物質層28が形成され、集電箔29の他方の面29aに負極活物質層26が形成されている。正極活物質層28および負極活物質層26は、たとえばスパッタリングにより集電箔29の表面上に形成されている。   The plurality of battery cells 25 are stacked such that the positive electrode active material layer 28 and the negative electrode active material layer 26 face each other at positions adjacent to each other in the stacking direction. Between each of the battery cells 25, a sheet-like current collecting foil 29 is provided. A positive electrode active material layer 28 is formed on one surface 29 b of the current collector foil 29, and a negative electrode active material layer 26 is formed on the other surface 29 a of the current collector foil 29. The positive electrode active material layer 28 and the negative electrode active material layer 26 are formed on the surface of the current collector foil 29 by sputtering, for example.

電池セル25の積層方向に隣り合う電解質層27間に配置された、正極活物質層28、集電箔29および負極活物質層26の組が、バイポーラ電極30を構成している。バイポーラ2次電池では、1つのバイポーラ電極30に、正極をなす正極活物質層28と負極をなす負極活物質層26との双方が形成されている。   A set of the positive electrode active material layer 28, the current collector foil 29, and the negative electrode active material layer 26 disposed between the electrolyte layers 27 adjacent to each other in the stacking direction of the battery cells 25 constitutes the bipolar electrode 30. In a bipolar secondary battery, both a positive electrode active material layer 28 forming a positive electrode and a negative electrode active material layer 26 forming a negative electrode are formed on one bipolar electrode 30.

複数の電池セル25は、負極集電板21に最も近い側に配置される電池セル25mと、正極集電板23に最も近い側に配置される電池セル25nとを含む。電池セル25mは、負極集電板21側の端に負極活物質層26が配置されるように設けられている。電池セル25nは、正極集電板23側の端に正極活物質層28が配置されるように設けられている。これにより電池セル25mの負極活物質層26に負極集電板21が接触され、電池セル25nの正極活物質層28に接触するように正極集電板23が積層される。   The plurality of battery cells 25 include a battery cell 25 m disposed on the side closest to the negative electrode current collector plate 21 and a battery cell 25 n disposed on the side closest to the positive electrode current collector plate 23. The battery cell 25m is provided such that the negative electrode active material layer 26 is disposed at the end on the negative electrode current collector plate 21 side. The battery cell 25n is provided so that the positive electrode active material layer 28 is disposed at the end on the positive electrode current collector plate 23 side. As a result, the negative electrode current collector plate 21 is brought into contact with the negative electrode active material layer 26 of the battery cell 25m, and the positive electrode current collector plate 23 is laminated so as to be in contact with the positive electrode active material layer 28 of the battery cell 25n.

負極集電板21の表面に接触するように絶縁フィルム24が積層される。また正極集電板23の表面に接触するように絶縁フィルム24が積層される。これによりバイポーラ2次電池を図2に示す燃料タンク11に直接接触させることが可能になるのでバイポーラ2次電池の冷却効率を高くすることができる。なお、燃料タンク11にバイポーラ2次電池を直接接触させる場合、たとえばバイポーラ2次電池は燃料タンク11の底面に接触し、かつ、支持部材により固定される。   An insulating film 24 is laminated so as to contact the surface of the negative electrode current collector plate 21. An insulating film 24 is laminated so as to be in contact with the surface of the positive electrode current collector plate 23. As a result, the bipolar secondary battery can be brought into direct contact with the fuel tank 11 shown in FIG. 2, so that the cooling efficiency of the bipolar secondary battery can be increased. When the bipolar secondary battery is brought into direct contact with the fuel tank 11, for example, the bipolar secondary battery comes into contact with the bottom surface of the fuel tank 11 and is fixed by a support member.

続いて、図4および図5中のバッテリ1(バイポーラ2次電池)を構成する各部材について詳細な説明を行なう。集電箔29は、たとえばアルミニウムから形成されている。この場合、集電箔29の表面に設けられる活物質層が固体高分子電解質を含んでも、集電箔29の機械的強度を十分に確保することができる。集電箔29は、銅、チタン、ニッケル、ステンレス鋼(SUS)もしくはこれらの合金等、アルミニウム以外の金属の表面にアルミニウムを被膜することによって形成されても良い。   Subsequently, each member constituting the battery 1 (bipolar secondary battery) in FIGS. 4 and 5 will be described in detail. The current collector foil 29 is made of, for example, aluminum. In this case, even if the active material layer provided on the surface of the current collector foil 29 contains a solid polymer electrolyte, the mechanical strength of the current collector foil 29 can be sufficiently ensured. The current collector foil 29 may be formed by coating aluminum on the surface of a metal other than aluminum, such as copper, titanium, nickel, stainless steel (SUS), or an alloy thereof.

正極活物質層28は、正極活物質および固体高分子電解質を含む。正極活物質層28は、イオン伝導性を高めるための支持塩(リチウム塩)、電子伝導性を高めるための導電助剤、スラリー粘度の調整溶媒としてのNMP(N−メチル−2−ピロリドン)、重合開始剤としてのAIBN(アゾビスイソブチロニトリル)等を含んでも良い。   The positive electrode active material layer 28 includes a positive electrode active material and a solid polymer electrolyte. The positive electrode active material layer 28 includes a supporting salt (lithium salt) for increasing ion conductivity, a conductive auxiliary agent for increasing electronic conductivity, NMP (N-methyl-2-pyrrolidone) as a solvent for adjusting slurry viscosity, AIBN (azobisisobutyronitrile) as a polymerization initiator may be included.

正極活物質としては、リチウムイオン2次電池で一般的に用いられる、リチウムと遷移金属との複合酸化物を使用することができる。正極活物質として、たとえば、LiCoO等のLi・Co系複合酸化物、LiNiO等のLi・Ni系複合酸化物、スピネルLiMn等のLi・Mn系複合酸化物、LiFeO等のLi・Fe系複合酸化物などが挙げられる。その他、LiFePO等の遷移金属とリチウムとのリン酸化合物や硫酸化合物;V、MnO、TiS、MoS、MoO等の遷移金属酸化物や硫化物;PbO、AgO、NiOOH等が挙げられる。 As the positive electrode active material, a composite oxide of lithium and a transition metal, which is generally used in a lithium ion secondary battery, can be used. As the positive electrode active material, for example, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, such as LiFeO 2 Examples include Li · Fe-based composite oxides. In addition, transition metal oxides such as LiFePO 4 and lithium and sulfuric acid compounds; transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , MoO 3 ; PbO 2 , AgO, NiOOH etc. are mentioned.

固体高分子電解質は、イオン伝導性を示す高分子であれば、特に限定されず、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体などが挙げられる。このようなポリアルキレンオキシド系高分子は、LiBF、LiPF、LiN(SOCF、LiN(SO等のリチウム塩を容易に溶解する。固体高分子電解質は、正極活物質層28および負極活物質層26の少なくとも一方に含まれる。より好ましくは、固体高分子電解質は、正極活物質層28および負極活物質層26の双方に含まれる。 The solid polymer electrolyte is not particularly limited as long as it is a polymer exhibiting ion conductivity, and examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. Such a polyalkylene oxide polymer readily dissolves lithium salts such as LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 . The solid polymer electrolyte is contained in at least one of the positive electrode active material layer 28 and the negative electrode active material layer 26. More preferably, the solid polymer electrolyte is included in both the positive electrode active material layer 28 and the negative electrode active material layer 26.

支持塩としては、Li(CSON、LiBF、LiPF、LiN(SO、もしくはこれらの混合物等を使用することができる。導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト等を使用することができる。 As the supporting salt, Li (C 2 F 5 SO 2 ) 2 N, LiBF 4 , LiPF 6 , LiN (SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used. As the conductive auxiliary agent, acetylene black, carbon black, graphite or the like can be used.

負極活物質層26は、負極活物質および固体高分子電解質を含む。負極活物質層は、イオン伝導性を高めるための支持塩(リチウム塩)、電子伝導性を高めるための導電助剤、スラリー粘度の調整溶媒としてのNMP(N−メチル−2−ピロリドン)、重合開始剤としてのAIBN(アゾビスイソブチロニトリル)等を含んでも良い。   The negative electrode active material layer 26 includes a negative electrode active material and a solid polymer electrolyte. The negative electrode active material layer is composed of a supporting salt (lithium salt) for increasing ion conductivity, a conductive auxiliary agent for increasing electronic conductivity, NMP (N-methyl-2-pyrrolidone) as a solvent for adjusting slurry viscosity, polymerization AIBN (azobisisobutyronitrile) as an initiator may be included.

負極活物質としては、リチウムイオン2次電池で一般的に用いられる材料を使用することができる。但し、固体電解質を使用する場合、負極活物質として、カーボンもしくはリチウムと金属酸化物もしくは金属との複合酸化物を用いることが好ましい。より好ましくは、負極活物質は、カーボンもしくはリチウムと遷移金属との複合酸化物である。さらに好ましくは、遷移金属はチタンである。つまり、負極活物質は、チタン酸化物もしくはチタンとリチウムとの複合酸化物であることがさらに好ましい。   As a negative electrode active material, the material generally used with a lithium ion secondary battery can be used. However, when a solid electrolyte is used, it is preferable to use a composite oxide of carbon or lithium and a metal oxide or metal as the negative electrode active material. More preferably, the negative electrode active material is a composite oxide of carbon or lithium and a transition metal. More preferably, the transition metal is titanium. That is, the negative electrode active material is more preferably titanium oxide or a composite oxide of titanium and lithium.

電解質層27を形成する固体電解質としては、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体等、固体高分子電解質を使用することができる。固体電解質は、イオン伝導性を確保するための支持塩(リチウム塩)を含む。支持塩としては、LiBF、LiPF、LiN(SOCF、LiN(SO、もしくはこれらの混合物等を使用することができる。 As the solid electrolyte for forming the electrolyte layer 27, for example, a solid polymer electrolyte such as polyethylene oxide (PEO), polypropylene oxide (PPO), or a copolymer thereof can be used. The solid electrolyte includes a supporting salt (lithium salt) for ensuring ionic conductivity. As the supporting salt, LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used.

さらに、正極活物質層28、負極活物質層26および電解質層27を形成する材料の具体例を表1から表3に示す。表1は、電解質層27が有機系固体電解質である場合の具体例を示し、表2は、電解質層27が無機系固体電解質である場合の具体例を示し、表3は、電解質層27がゲル状電解質である場合の具体例を示す。   Further, specific examples of materials for forming the positive electrode active material layer 28, the negative electrode active material layer 26, and the electrolyte layer 27 are shown in Tables 1 to 3. Table 1 shows specific examples when the electrolyte layer 27 is an organic solid electrolyte, Table 2 shows specific examples when the electrolyte layer 27 is an inorganic solid electrolyte, and Table 3 shows that the electrolyte layer 27 is A specific example in the case of a gel electrolyte is shown.

Figure 2007302123
Figure 2007302123

Figure 2007302123
Figure 2007302123

Figure 2007302123
Figure 2007302123

図6は、本実施の形態の自動車においてバイポーラ2次電池を搭載した状態を示す図である。なお図6は図1のハイブリッド自動車100の下側から見た図である。   FIG. 6 is a diagram showing a state where a bipolar secondary battery is mounted in the automobile of the present embodiment. 6 is a view as seen from the lower side of the hybrid vehicle 100 of FIG.

図6を参照して、ハイブリッド自動車100の下側に燃料タンク11と、バッテリ1と、燃料配管13と、戻り配管14と、電磁弁15とが配置される。バッテリ1(バイポーラ2次電池)は燃料タンク11の底面に取り付けられる。なお、図6に示すようにバッテリ1(バイポーラ2次電池)には複数の放熱フィン201が取り付けられる。これによりハイブリッド自動車の走行時には走行風によって複数の放熱フィン201からの放熱が促進される。   Referring to FIG. 6, fuel tank 11, battery 1, fuel pipe 13, return pipe 14, and electromagnetic valve 15 are arranged below hybrid vehicle 100. The battery 1 (bipolar secondary battery) is attached to the bottom surface of the fuel tank 11. As shown in FIG. 6, a plurality of heat radiation fins 201 are attached to the battery 1 (bipolar secondary battery). Thus, when the hybrid vehicle is traveling, heat radiation from the plurality of heat radiation fins 201 is promoted by the traveling wind.

燃料タンク11からエンジン(図6に示さず)に燃料を供給する場合には燃料タンク11から燃料配管13に燃料が流れる。一方、バッテリ1の冷却を行なう場合には燃料タンク11から流れる燃料は燃料配管13、電磁弁15および戻り配管14を経由して再び燃料タンクに戻る。   When fuel is supplied from the fuel tank 11 to the engine (not shown in FIG. 6), the fuel flows from the fuel tank 11 to the fuel pipe 13. On the other hand, when the battery 1 is cooled, the fuel flowing from the fuel tank 11 returns to the fuel tank again via the fuel pipe 13, the electromagnetic valve 15 and the return pipe 14.

バッテリ1の熱が燃料タンク11内のガソリンに伝達されることにより、たとえば燃料タンクから出るガソリンの温度は40度となる。ガソリンは戻り配管14を流れるうちに走行風によって冷却される。燃料タンク11に戻るときのガソリンの温度はたとえば約20度になる。   By transferring the heat of the battery 1 to the gasoline in the fuel tank 11, for example, the temperature of the gasoline coming out of the fuel tank becomes 40 degrees. Gasoline is cooled by the traveling wind while flowing through the return pipe 14. The temperature of gasoline when returning to the fuel tank 11 is, for example, about 20 degrees.

なお、図6では燃料タンク11およびバッテリ1は後輪42a,42bに近い位置に配置されるよう示されるが、特にこの位置に燃料タンク11およびバッテリ1が配置されるよう限定されるものではなく、燃料タンク11およびバッテリ1の配置は適切に設定される。   In FIG. 6, the fuel tank 11 and the battery 1 are shown to be arranged at positions close to the rear wheels 42a and 42b, but the fuel tank 11 and the battery 1 are not particularly limited to be arranged at this position. The arrangement of the fuel tank 11 and the battery 1 is set appropriately.

なお、本実施の形態では、本発明の冷却システムを搭載する自動車の例としてエンジンと電動機とを動力源とするハイブリッド自動車を示した。しかし、本発明はたとえば直流電源に燃料電池を用いた燃料電池車にも適用可能である。   In the present embodiment, a hybrid vehicle using an engine and an electric motor as power sources is shown as an example of a vehicle equipped with the cooling system of the present invention. However, the present invention can also be applied to a fuel cell vehicle using a fuel cell as a DC power source, for example.

一般に、燃料電池車においては、モータの回生時に発生した回生エネルギーを回収するための蓄電池が備えられている。そして、このような燃料電池車においては、モータの回生動作時にモータが発生した電力を用いて蓄電池を充電したり、燃料電池と蓄電池とを併用したりして、より高電圧の電力をモータへ供給することが行なわれる。燃料電池は、たとえば水素などの燃料と酸化剤との化学反応によって発生する化学反応エネルギーから電気エネルギーを得る直流電力発電電池である。たとえばこのような燃料電池車においてバイポーラ2次電池を水素タンクに接触させることにより冷却してもよい。   Generally, a fuel cell vehicle is provided with a storage battery for recovering regenerative energy generated during motor regeneration. In such a fuel cell vehicle, the storage battery is charged using the electric power generated by the motor during the regenerative operation of the motor, or the fuel cell and the storage battery are used together to supply higher voltage electric power to the motor. Supply is performed. A fuel cell is a DC power generation cell that obtains electrical energy from chemical reaction energy generated by a chemical reaction between a fuel such as hydrogen and an oxidant. For example, in such a fuel cell vehicle, the bipolar secondary battery may be cooled by contacting it with a hydrogen tank.

また、動力源としてエンジンのみが搭載され、エアコンディショナ等の補機に電源を供給するために蓄電池が搭載される自動車に対しても本発明は適用可能である。   Further, the present invention can be applied to an automobile in which only an engine is mounted as a power source and a storage battery is mounted to supply power to an auxiliary machine such as an air conditioner.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本実施の形態のハイブリッド自動車の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle of an embodiment. 図1の燃料供給装置10の構成を示す図である。It is a figure which shows the structure of the fuel supply apparatus 10 of FIG. 図2のECU9によって実行される燃料循環処理を説明するフローチャートである。It is a flowchart explaining the fuel circulation process performed by ECU9 of FIG. 図1のバッテリ1を示す斜視図である。It is a perspective view which shows the battery 1 of FIG. 図4のV−V線に従う断面図である。It is sectional drawing according to the VV line | wire of FIG. 本実施の形態の自動車においてバイポーラ2次電池を搭載した状態を示す図である。It is a figure which shows the state which mounted the bipolar secondary battery in the motor vehicle of this Embodiment.

符号の説明Explanation of symbols

1 バッテリ、2 電力変換部、3 電動機、4 エンジン、5 動力分割機構、6 ジェネレータ、7 減速機、8a,8b 駆動輪、10 燃料供給装置、11 燃料タンク、12 インジェクタ、13 燃料配管、14 戻り配管、15 電磁弁、16 デリバリパイプ、17 燃料圧レギュレータ、18 燃料ポンプ、19 燃料フィルタ、20 ケース、21 負極集電板、23 正極集電板、24 絶縁フィルム、25,25m,25n 電池セル、26 負極活物質層、27 電解質層、28 正極活物質層、29 集電箔、29a,29b 面、30 バイポーラ電極、41 マフラー、42a,42b 後輪、100 ハイブリッド自動車、141,201 放熱フィン、S1〜S3 ステップ、SNS 温度センサ。   DESCRIPTION OF SYMBOLS 1 Battery, 2 Electric power conversion part, 3 Electric motor, 4 Engine, 5 Power split mechanism, 6 Generator, 7 Reducer, 8a, 8b Drive wheel, 10 Fuel supply apparatus, 11 Fuel tank, 12 Injector, 13 Fuel piping, 14 Return Piping, 15 Solenoid valve, 16 Delivery pipe, 17 Fuel pressure regulator, 18 Fuel pump, 19 Fuel filter, 20 Case, 21 Negative current collector, 23 Positive current collector, 24 Insulating film, 25, 25 m, 25 n Battery cell, 26 Negative electrode active material layer, 27 Electrolyte layer, 28 Positive electrode active material layer, 29 Current collector foil, 29a, 29b surface, 30 Bipolar electrode, 41 Muffler, 42a, 42b Rear wheel, 100 Hybrid vehicle, 141, 201 Radiation fin, S1 ~ S3 step, SNS temperature sensor.

Claims (6)

内燃機関と、
前記内燃機関に燃料を供給するための燃料供給装置と、
前記燃料との間で熱交換を行なう蓄電池とを備える、自動車。
An internal combustion engine;
A fuel supply device for supplying fuel to the internal combustion engine;
An automobile comprising a storage battery that exchanges heat with the fuel.
前記燃料供給装置は、
前記燃料を蓄える燃料タンクを含み、
前記蓄電池は、前記燃料タンクに隣接して配置される、請求項1に記載の自動車。
The fuel supply device includes:
A fuel tank for storing the fuel;
The automobile according to claim 1, wherein the storage battery is disposed adjacent to the fuel tank.
前記蓄電池は、バイポーラ2次電池である、請求項2に記載の自動車。   The automobile according to claim 2, wherein the storage battery is a bipolar secondary battery. 前記燃料供給装置は、
前記燃料タンクから前記内燃機関に向けて前記燃料を流す燃料配管と、
前記燃料配管内の前記燃料を前記燃料タンクに戻す戻り配管と、
前記燃料配管と前記戻り配管との分岐部に設けられ、前記燃料配管内の前記燃料の流れを前記戻り配管に分岐するか否かを切換えるバルブとをさらに含む、請求項2に記載の自動車。
The fuel supply device includes:
Fuel piping for flowing the fuel from the fuel tank toward the internal combustion engine;
A return pipe for returning the fuel in the fuel pipe to the fuel tank;
The vehicle according to claim 2, further comprising a valve provided at a branch portion between the fuel pipe and the return pipe and configured to switch whether or not to branch the fuel flow in the fuel pipe to the return pipe.
前記自動車は、
前記蓄電池の温度を検出する温度センサと、
前記温度センサの検出結果に基づいて前記バルブを制御する制御部とをさらに備える、請求項4に記載の自動車。
The car is
A temperature sensor for detecting the temperature of the storage battery;
The automobile according to claim 4, further comprising a control unit that controls the valve based on a detection result of the temperature sensor.
前記バルブは、制御信号に応じて、前記燃料配管を経由して前記内燃機関に送られる前記燃料の流量と、前記戻り配管を経由して前記燃料タンクに戻される前記燃料の流量との流量比を連続的に変化させることが可能であり、
前記内燃機関は、前記自動車の駆動源であり、
前記自動車は、
前記内燃機関の他の駆動源であり、かつ、前記蓄電池から電源供給されて動作する電動機をさらに備え、
前記制御部は、車両状況に応じて、前記自動車の全駆動力に対する前記内燃機関と前記電動機とへの配分比を決定し、前記温度センサの検出結果が所定の温度を上回る場合には、前記配分比に応じて前記流量比を決定し、決定結果を示す前記制御信号を前記バルブに送る、請求項5に記載の自動車。
The valve is a flow rate ratio between a flow rate of the fuel sent to the internal combustion engine via the fuel pipe and a flow rate of the fuel returned to the fuel tank via the return pipe in response to a control signal. Can be changed continuously,
The internal combustion engine is a drive source of the automobile,
The car is
An electric motor that is another driving source of the internal combustion engine and that is operated by being supplied with power from the storage battery;
The control unit determines a distribution ratio between the internal combustion engine and the electric motor with respect to a total driving force of the automobile according to a vehicle situation, and when a detection result of the temperature sensor exceeds a predetermined temperature, The automobile according to claim 5, wherein the flow rate ratio is determined according to a distribution ratio, and the control signal indicating the determination result is sent to the valve.
JP2006132904A 2006-05-11 2006-05-11 Automobile Withdrawn JP2007302123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132904A JP2007302123A (en) 2006-05-11 2006-05-11 Automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132904A JP2007302123A (en) 2006-05-11 2006-05-11 Automobile

Publications (1)

Publication Number Publication Date
JP2007302123A true JP2007302123A (en) 2007-11-22

Family

ID=38836436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132904A Withdrawn JP2007302123A (en) 2006-05-11 2006-05-11 Automobile

Country Status (1)

Country Link
JP (1) JP2007302123A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094892A (en) * 2015-11-24 2017-06-01 トヨタ自動車株式会社 Hybrid vehicle
DE102018201112B3 (en) 2018-01-24 2019-01-24 Ford Global Technologies, Llc Assembly for a hybrid electric vehicle and hybrid electric vehicle
DE102018201116B3 (en) 2018-01-24 2019-03-28 Ford Global Technologies, Llc Assembly for a hybrid electric vehicle and hybrid electric vehicle
DE102018201117B3 (en) 2018-01-24 2019-07-04 Ford Global Technologies, Llc Assembly for a vehicle, in particular hybrid electric vehicle and vehicle, in particular hybrid electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094892A (en) * 2015-11-24 2017-06-01 トヨタ自動車株式会社 Hybrid vehicle
DE102018201112B3 (en) 2018-01-24 2019-01-24 Ford Global Technologies, Llc Assembly for a hybrid electric vehicle and hybrid electric vehicle
DE102018201116B3 (en) 2018-01-24 2019-03-28 Ford Global Technologies, Llc Assembly for a hybrid electric vehicle and hybrid electric vehicle
DE102018201117B3 (en) 2018-01-24 2019-07-04 Ford Global Technologies, Llc Assembly for a vehicle, in particular hybrid electric vehicle and vehicle, in particular hybrid electric vehicle
US20190225110A1 (en) * 2018-01-24 2019-07-25 Ford Global Technologies, Llc Assembly and method for cooling a traction battery of a vehicle using fuel
US10780794B2 (en) 2018-01-24 2020-09-22 Ford Global Technologies, Llc Assembly and method for cooling a traction battery of a vehicle using fuel
US10894486B2 (en) 2018-01-24 2021-01-19 Ford Global Technologies, Llc Assembly and method for cooling a traction battery of a vehicle using fuel
US10899248B2 (en) 2018-01-24 2021-01-26 Ford Global Technologies, Llc Assembly and method for cooling a traction battery of a vehicle using at least one cooling rib

Similar Documents

Publication Publication Date Title
US8047316B2 (en) Storage battery system, on-vehicle power supply system, vehicle and method for charging storage battery system
JP4857896B2 (en) Battery pack and vehicle
CN109070758B (en) Battery temperature and charge regulation system and method
EP1932707B1 (en) Cooling device for on-vehicle machinery
US7420339B2 (en) Regenerative braking system of fuel cell vehicle using super capacitor
KR101758002B1 (en) Non-aqueous electrolyte secondary battery
JP4376874B2 (en) Power supply device and vehicle
JP6264362B2 (en) Battery system for electric vehicles
JPH06140065A (en) Fuel cell power generating system
US20110195321A1 (en) Rechargeable metal-air battery
JP2008027661A (en) Battery pack
JP2014197554A (en) High-efficiency operation-enabled hybrid battery pack
US11715861B2 (en) Battery cell venting system for electrified vehicle batteries
JP2010279124A (en) Moving vehicle
JP2007302123A (en) Automobile
JP2021057127A (en) Fuel cell system, control method for fuel cell system, and program
JP2021044860A (en) All solid lithium ion secondary battery system, and charging device for all solid lithium ion secondary battery
JP2009255774A (en) Vehicle
JP2018156791A (en) Operation control method and operation control system for fuel cell vehicle
JPH08130805A (en) Electric automobile
JP2010184538A (en) Low floor type electric vehicle
Wei et al. The Technology and Development of New Energy Vehicles
US20240194963A1 (en) Battery cell assemblies, thermal management systems, and control logic with cell-level internal cooling
JP7363845B2 (en) vehicle
JP2014150055A (en) Combined battery system and electrically propelled vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804