JP2007301538A - Ultrasonic cleaner - Google Patents

Ultrasonic cleaner Download PDF

Info

Publication number
JP2007301538A
JP2007301538A JP2006155323A JP2006155323A JP2007301538A JP 2007301538 A JP2007301538 A JP 2007301538A JP 2006155323 A JP2006155323 A JP 2006155323A JP 2006155323 A JP2006155323 A JP 2006155323A JP 2007301538 A JP2007301538 A JP 2007301538A
Authority
JP
Japan
Prior art keywords
ultrasonic
khz
cleaning
frequency
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006155323A
Other languages
Japanese (ja)
Inventor
Kazumasa Onishi
一正 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006155323A priority Critical patent/JP2007301538A/en
Publication of JP2007301538A publication Critical patent/JP2007301538A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic cleaner wherein roughly uniform ultrasonic vibration is generated in a cleaning solution in a cleaning tub and contamination of a cleaning object is evenly removed in a short time. <P>SOLUTION: A bottom plate 4 composing a bottom face of the cleaning tub 2 is made of a stainless steel (SUS316 ) plate of 236 mm square and 2 mm thick, and has 108 pieces of piezoelectric ceramics 9 jointed thereto with epoxy resin. One piece of the piezoelectric ceramic 9 is 58 mm in length, 2.0 mm in thickness and 3.0 mm in width. A polarization direction is in the thickness direction. Resonance frequency of a desired vibration mode of only one piezoelectric ceramic 9 is about 460 KHz, while resonance frequency of an ultrasonic vibrator composed by jointing the bottom plate 4 with 108 pieces of piezoelectric ceramics 9 is about 440 KHz. A. C. voltage of a frequency of about 415 KHz is applied to the piezoelectric ceramics via a lead wire from an ultrasonic drive circuit (not shown). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超音波洗浄器に関する。  The present invention relates to an ultrasonic cleaner.

超音波洗浄器は、眼鏡や指輪などの日用品、カメラや時計に用いる精密機械部品、そして半導体素子の作製に用いるウエハなどの様々な物品の洗浄に用いられている。超音波洗浄器は、容器(洗浄槽)に入れた洗浄液中に洗浄対象の物品を浸し、そして洗浄液に超音波を付与することによって、物品に付着した汚れを取り除く器具である。超音波洗浄器は、洗浄液を入れる洗浄槽と、洗浄液に超音波を付与するための超音波振動子などから構成されている。洗浄液としては、物品に付与した汚れの種類により水、有機溶媒、酸性溶液もしくはアルカリ性溶液が用いられる。  Ultrasonic cleaners are used for cleaning various articles such as daily necessities such as glasses and rings, precision mechanical parts used for cameras and watches, and wafers used for manufacturing semiconductor elements. The ultrasonic cleaner is an instrument that removes dirt adhered to an article by immersing the article to be cleaned in a cleaning liquid placed in a container (cleaning tank) and applying ultrasonic waves to the cleaning liquid. The ultrasonic cleaner is composed of a cleaning tank for storing a cleaning liquid, an ultrasonic vibrator for applying ultrasonic waves to the cleaning liquid, and the like. As the cleaning liquid, water, an organic solvent, an acidic solution, or an alkaline solution is used depending on the type of dirt applied to the article.

図1から図3は、非特許文献1に記載の従来の超音波洗浄器の代表的な構成を示す断面図である。  1 to 3 are cross-sectional views illustrating a typical configuration of a conventional ultrasonic cleaner described in Non-Patent Document 1. FIG.

図1の超音波洗浄器は、洗浄槽タイプと呼ばれており、洗浄液1を入れる洗浄槽2の底面に、超音波振動子3が固定された構成を有している。  The ultrasonic cleaner shown in FIG. 1 is called a cleaning tank type, and has a configuration in which an ultrasonic transducer 3 is fixed to the bottom surface of a cleaning tank 2 into which a cleaning liquid 1 is placed.

図2の超音波洗浄器は、洗浄板タイプと呼ばれており、洗浄槽2の底板4が取り外し可能とされ、この底板4に超音波振動子3が固定された構成を有している。洗浄槽の底板4は、ボルト6やナット7などの固定具により洗浄槽2の底部に固定されている。洗浄槽2の底部には、洗浄液1の漏れを防止するパッキン5が備えられている。  The ultrasonic cleaner of FIG. 2 is called a cleaning plate type, and has a configuration in which the bottom plate 4 of the cleaning tank 2 is removable and the ultrasonic transducer 3 is fixed to the bottom plate 4. The bottom plate 4 of the cleaning tank is fixed to the bottom of the cleaning tank 2 by a fixture such as a bolt 6 or a nut 7. A packing 5 that prevents the cleaning liquid 1 from leaking is provided at the bottom of the cleaning tank 2.

図3の超音波洗浄器は、投込振動子タイプと呼ばれており、洗浄槽2の内部に、水密容器8の内側面に超音波振動子3が固定された構成の超音波付与装置が配置された構成を有している。  The ultrasonic cleaner shown in FIG. 3 is called a throwing vibrator type, and an ultrasonic applicator having a configuration in which the ultrasonic vibrator 3 is fixed to the inner surface of the watertight container 8 inside the cleaning tank 2. It has an arranged configuration.

また、上記非特許文献1には、図1から図3に示す超音波洗浄器の他にも、洗浄槽の側面に超音波振動子が付設されたものなど、様々な構成の超音波洗浄器が記載されている。  In addition to the ultrasonic cleaners shown in FIGS. 1 to 3, the non-patent document 1 includes ultrasonic cleaners having various configurations such as an ultrasonic vibrator attached to the side surface of the cleaning tank. Is described.

超音波洗浄器には、小型のものを除いて、通常複数個の超音波振動子が用いられている。例えば、上記の洗浄槽タイプの超音波洗浄器の場合においては、その洗浄槽の底面に複数個の超音波振動子が固定される。このような構成の超音波洗浄器の場合、物品の洗浄ムラの発生を低減するためには、洗浄槽の底面に複数個の超音波振動子を高密度に配置して、洗浄槽の底面の全体をなるべく均一に超音波振動(上下方向に振動)させることが好ましい。ただし、一般には、超音波洗浄器の製造コストを考慮して、用いる超音波振動子の個数の上限が決定される。  In general, a plurality of ultrasonic vibrators are used in the ultrasonic cleaner except for a small one. For example, in the case of the above-described cleaning tank type ultrasonic cleaner, a plurality of ultrasonic vibrators are fixed to the bottom surface of the cleaning tank. In the case of an ultrasonic cleaner having such a configuration, in order to reduce the occurrence of uneven cleaning of articles, a plurality of ultrasonic vibrators are arranged at high density on the bottom surface of the cleaning tank, It is preferable to ultrasonically vibrate the whole as much as possible (vibrates in the vertical direction). However, in general, the upper limit of the number of ultrasonic transducers to be used is determined in consideration of the manufacturing cost of the ultrasonic cleaner.

複数個の超音波振動子を備える超音波洗浄器の場合、洗浄槽の底板の全体をなるべく均一に超音波振動させるために、各々の超音波振動子としては、底面との接触面積が大きい形状、すなわち横長の形状のもの(例、板状の圧電振動子)が適しているとされている。  In the case of an ultrasonic cleaner equipped with a plurality of ultrasonic vibrators, each ultrasonic vibrator has a large contact area with the bottom surface in order to vibrate the entire bottom plate of the cleaning tank as uniformly as possible. That is, a horizontally long shape (eg, a plate-like piezoelectric vibrator) is considered suitable.

特許文献1においては、磁器製の洗浄槽の底面に音響整合層を介して板状の超音波振動子が固定された構成の超音波洗浄器が開示され、洗浄槽を磁器から形成することによって、腐食性を示す薬液を用いた薬液を用いた洗浄が実現できるとされている。  In patent document 1, the ultrasonic cleaner of the structure by which the plate-shaped ultrasonic vibrator was fixed to the bottom face of the washing tank made from porcelain via the acoustic matching layer was disclosed, and by forming the washing tank from porcelain It is said that cleaning using a chemical solution using a corrosive chemical solution can be realized.

特許文献2においては、洗浄槽の底面に、合成樹脂中に複数個の角柱状の圧電体を整列配置させ、その上下面を一対の電極で挟んだ構成の超音波振動子が固定された超音波洗浄器が開示され、上記角柱状の圧電体が板状の圧電体よりも電気機械変換効率が高く、この圧電体を備えた超音波振動子により1MHz程度以上の高い周波数の高エネルギーの超音波を洗浄槽内に、発振できるため、サブミクロン単位の汚れを容易に洗浄できるとされている。しかし、超音波放射面積が25平方センチを超えると超音波振動子の製作は非常に困難であり、当然高価なものになってしまう。また、500KHz以下の周波数の超音波振動子の製作はさらに困難となる。  In Patent Document 2, an ultrasonic transducer having a structure in which a plurality of prismatic piezoelectric bodies are aligned in a synthetic resin and sandwiched between a pair of electrodes on a bottom surface of a cleaning tank is fixed. A sonic cleaner is disclosed, and the above-mentioned prismatic piezoelectric body has higher electromechanical conversion efficiency than a plate-like piezoelectric body, and an ultrasonic vibrator provided with this piezoelectric body has a high-frequency superhigh frequency of about 1 MHz or more. It is said that since the sonic wave can be oscillated in the cleaning tank, the submicron dirt can be easily cleaned. However, when the ultrasonic radiation area exceeds 25 square centimeters, it is very difficult to manufacture the ultrasonic vibrator, and naturally it becomes expensive. In addition, it becomes more difficult to manufacture an ultrasonic transducer having a frequency of 500 KHz or less.

特許文献3には、母材樹脂中に高弾性繊維が整列配置された構成の音響振動制御材料が接合された圧電振動子が開示されている。音響振動制御材料の高弾性繊維は、その長さ方向に直交する方向に振動する音響振動を伝達する。このため、圧電振動子の振動方向を、音響振動制御材料の高弾性繊維の長さ方向に直交する方向に制御できるとされている。
二橋裕之、「最新強力超音波技術」、初版、株式会社総合技術センター、昭和62年9月、p.223−224、p.228−232 特開2001−29907号公報(第1図) 特公平5−83313号公報 特開平7−284198号公報
Patent Document 3 discloses a piezoelectric vibrator in which an acoustic vibration control material having a configuration in which high-elastic fibers are arranged and arranged in a base material resin is bonded. The highly elastic fiber of the acoustic vibration control material transmits acoustic vibration that vibrates in a direction orthogonal to the length direction. For this reason, it is supposed that the vibration direction of the piezoelectric vibrator can be controlled in a direction orthogonal to the length direction of the highly elastic fiber of the acoustic vibration control material.
Hiroyuki Futahashi, “Latest Powerful Ultrasonic Technology”, first edition, General Technology Center, Inc., September 1987, p. 223-224, p. 228-232 JP 2001-29907 A (FIG. 1) Japanese Patent Publication No. 5-83313 JP 7-284198 A

上記のように、複数個の超音波振動子あるいは特許文献3に記載の超音波振動子の複数個の振動部(各々の圧電体がある部分)により、洗浄槽の底面をある程度は均一に超音波振動させることができるため、洗浄ムラの発生を低減することはできる。しかしながら、超音波振動子の共振周波数を正確に追尾しないと効率のよい洗浄ができない。しかし、複数の超音波振動子を持つ場合、それぞれの超音波振動子の固有振動数が異なるため、すべての超音波振動子を効率よく動作させることができない。さらに洗浄液中に超音波振動の節が発生してしまうので場所によって洗浄能力の小さいところができてしまう。  As described above, the bottom surface of the cleaning tank is uniformly superposed to some extent by a plurality of ultrasonic vibrators or a plurality of vibration parts (parts having respective piezoelectric bodies) of the ultrasonic vibrator described in Patent Document 3. Since the sound waves can be vibrated, the occurrence of uneven cleaning can be reduced. However, efficient cleaning cannot be performed unless the resonance frequency of the ultrasonic transducer is accurately tracked. However, when there are a plurality of ultrasonic transducers, since the natural frequencies of the ultrasonic transducers are different, it is not possible to operate all the ultrasonic transducers efficiently. Furthermore, since ultrasonic vibration nodes are generated in the cleaning liquid, a place having a small cleaning ability is created depending on the place.

また、特に100KHzを超える超音波洗浄器においては、超音波振動子の発熱が大きく、洗浄液の温度が上昇してしまうことがある。さらに、電力を大きく消費してしまう問題点もある。  In particular, in an ultrasonic cleaner exceeding 100 KHz, the ultrasonic vibrator generates a large amount of heat, and the temperature of the cleaning liquid may increase. Furthermore, there is a problem that power is consumed greatly.

超音波洗浄器は、半導体素子作成用のウエハなどのように極めて均一に洗浄することが必要とされる物品の洗浄に用いられるため、洗浄ムラの発生をさらに低減することが望ましい。  Since the ultrasonic cleaner is used for cleaning an article that needs to be cleaned extremely uniformly, such as a wafer for manufacturing a semiconductor element, it is desirable to further reduce the occurrence of cleaning unevenness.

したがって、本発明の目的は、電力消費量が小さく、かつ洗浄ムラの発生を低減することのできる超音波洗浄器を提供することにある。  Accordingly, an object of the present invention is to provide an ultrasonic cleaner that consumes less power and can reduce the occurrence of cleaning unevenness.

洗浄液に超音波振動を与える弾性板に接合した圧電セラミックにおいて、超音波を放射する面の形状が長方形状であり、この放射面と直交する圧電セラミックの厚さに対して、長方形の長辺の長さが厚さ方向の2倍以上であり、幅方向が1倍未満であり、かつ弾性板に接合した圧電セラミックが複数であり、そして弾性板が金属製でありそしてその厚さが5mm以下である超音波洗浄装置とするものである。  In the piezoelectric ceramic bonded to the elastic plate that applies ultrasonic vibration to the cleaning liquid, the shape of the surface that radiates ultrasonic waves is rectangular, and the rectangular long side of the piezoelectric ceramic is perpendicular to the thickness of the piezoelectric ceramic. The length is 2 times or more of the thickness direction, the width direction is less than 1 time, and there are a plurality of piezoelectric ceramics bonded to the elastic plate, and the elastic plate is made of metal and its thickness is 5 mm or less. This is an ultrasonic cleaning apparatus.

上記の圧電セラミックに印加する電圧の周波数が洗浄液を入れた超音波洗浄装置の超音波振動子の共振周波数より小さく、かつ駆動周波数が共振周波数の85%から98%であるの超音波洗浄装置とするものである。  An ultrasonic cleaning device in which the frequency of the voltage applied to the piezoelectric ceramic is smaller than the resonance frequency of the ultrasonic vibrator of the ultrasonic cleaning device containing the cleaning liquid, and the driving frequency is 85% to 98% of the resonance frequency; To do.

上記の圧電セラミックに印加する電圧が100KHz以上の交流である超音波洗浄装置とするものである。  The ultrasonic cleaning apparatus in which the voltage applied to the piezoelectric ceramic is an alternating current of 100 KHz or more.

まず、本発明の構成の超音波洗浄器を、図面を用いて説明する。図4は、本発明の構成の超音波洗浄器の底板の平面図であり、底板が取り外し可能な洗浄板タイプである。なお底板に圧電セラミックが接合されている。そして図5はその側面図である。また、図6はこの底板に接合されている圧電セラミックの斜視図である。そして図7は図4の平面図で示した底板を用いた超音波洗浄器の側面図である。  First, an ultrasonic cleaner having a configuration of the present invention will be described with reference to the drawings. FIG. 4 is a plan view of the bottom plate of the ultrasonic cleaner having the configuration of the present invention, which is a cleaning plate type in which the bottom plate is removable. A piezoelectric ceramic is bonded to the bottom plate. FIG. 5 is a side view thereof. FIG. 6 is a perspective view of the piezoelectric ceramic bonded to the bottom plate. FIG. 7 is a side view of an ultrasonic cleaner using the bottom plate shown in the plan view of FIG.

洗浄槽2の底面を構成する底板4は、236mm角で厚さが2mmのステンレス(SUS316)板である。そして108個の圧電セラミック9を、ステンレス(SUS316)板にエポキシ樹脂を用いて接合している。1個の圧電セラミック9の形状は、長さ58mm、幅2.0mmそして厚さ3.0mmである。また、分極方向は厚さ方向である。なお、1個の圧電セラミック9だけの所望の振動モードの共振周波数は約460KHzであるが、底板4と108個の圧電セラミック9を接合した構成の超音波振動子の共振周波数は、約440KHzである。  The bottom plate 4 constituting the bottom surface of the cleaning tank 2 is a stainless steel (SUS316) plate having a 236 mm square and a thickness of 2 mm. Then, 108 piezoelectric ceramics 9 are joined to a stainless steel (SUS316) plate using an epoxy resin. One piezoelectric ceramic 9 has a length of 58 mm, a width of 2.0 mm, and a thickness of 3.0 mm. The polarization direction is the thickness direction. The resonance frequency of the desired vibration mode of only one piezoelectric ceramic 9 is about 460 KHz. However, the resonance frequency of the ultrasonic vibrator configured by joining the bottom plate 4 and 108 piezoelectric ceramics 9 is about 440 KHz. is there.

圧電セラミック9の板厚方向の両面には銀電極が設けられている。そしてステンレス板と接する圧電セラミック9の面をグランドに接続する。反対側の面をリード線によりすべて並列に接続する。  Silver electrodes are provided on both sides of the piezoelectric ceramic 9 in the plate thickness direction. The surface of the piezoelectric ceramic 9 in contact with the stainless steel plate is connected to the ground. Connect the opposite side in parallel with all lead wires.

上記の構成の底板を、パッキンを挟んでボルトにより洗浄槽に取り付ける。そして洗浄液を洗浄槽に入れる。  The bottom plate having the above structure is attached to the cleaning tank with bolts with a packing interposed therebetween. Then, the cleaning solution is put into a cleaning tank.

次に図示しない超音波駆動回路より電流値を一定にして400KHzから500KHzまでの交流電圧を、リード線を通して超音波振動子に印加して音圧を測定した。その結果、図8の実線で示すように約415KHzと475KHzが最も音圧が高かった。  Next, an AC voltage from 400 KHz to 500 KHz was applied to the ultrasonic transducer through a lead wire with a constant current value from an ultrasonic drive circuit (not shown), and the sound pressure was measured. As a result, the sound pressure was highest at about 415 KHz and 475 KHz as indicated by the solid line in FIG.

しかし、図8の点線で示すように約415KHzの入力電力が約200Wであるのに、475KHzでは約1100Wであった。このことより約415KHzが最も効率よく超音波を洗浄液に与えることができたことがわかる。  However, as indicated by the dotted line in FIG. 8, the input power at about 415 KHz is about 200 W, but at 475 KHz it is about 1100 W. From this, it can be seen that the ultrasonic wave was most efficiently applied to the cleaning liquid at about 415 KHz.

また、洗浄液を入れたときの超音波洗浄器の超音波振動子の周波数特性を測定した結果を図9に示すが、そのときの共振周波数は約440KHzであり、また反共振周波数は約475KHzであった。  FIG. 9 shows the result of measuring the frequency characteristics of the ultrasonic vibrator of the ultrasonic cleaner when the cleaning liquid is added. The resonance frequency at that time is about 440 KHz, and the anti-resonance frequency is about 475 KHz. there were.

ここで、もう一度図8の周波数と音圧の関係を見ると、図中のBで示すピークは共振周波数とほぼ一致する。また図中のCで示すピークは反共振周波数とほぼ一致する。図中のAの約415KHzのピークでは、洗浄液に縦振動を非常に効率高く励起できるような振動がステンレス板に発生していると考えられる。Bの共振周波数で、Aで示す音圧と同じ大きさを得るためには、約3倍以上の600W以上の電力を与えなければならない。また図中のCで示すピークは反共振周波数では1100Wが必要であり、Aに対して5倍以上の電力が必要になる。  Here, looking at the relationship between the frequency and the sound pressure in FIG. 8 once again, the peak indicated by B in the figure almost coincides with the resonance frequency. In addition, the peak indicated by C in the figure almost coincides with the antiresonance frequency. In the peak of about 415 KHz of A in the figure, it is considered that vibration that can excite longitudinal vibration in the cleaning liquid very efficiently is generated in the stainless steel plate. In order to obtain the same magnitude as the sound pressure indicated by A at the resonance frequency of B, it is necessary to apply a power of 600 W or more, which is approximately three times or more. In addition, the peak indicated by C in the figure requires 1100 W at the antiresonance frequency, and 5 times or more of power is required for A.

超音波振動子の約440KHzの共振周波数における振動モードは図10に示すようなものであると考えられる。圧電セラミックの振動変位が最も大きくなっていると考えられる。一方、最も効率よく洗浄液に超音波振動を付与することができる約415KHzの振動モードは、図11に示すようにステンレス板が面に垂直方向に最も大きく振動するモードになっていると考えられる。超音波洗浄装置の超音波振動子の共振周波数の約440KHzでは、アドミッタンスが最大であり最も電流が流れるが、音圧は最大にならない。このことは洗浄液と接するステンレス板に効率的に縦振動が励起されていないことを示す。一方、約415KHzでは電力は約440KHzに比較して、半分以下であるが音圧は最大になる。これは、ステンレス板が主に振動していると推測される。  The vibration mode at the resonance frequency of about 440 KHz of the ultrasonic transducer is considered to be as shown in FIG. The vibration displacement of the piezoelectric ceramic is considered to be the largest. On the other hand, the vibration mode of about 415 KHz that can impart ultrasonic vibration to the cleaning liquid most efficiently is considered to be the mode in which the stainless steel plate vibrates most in the direction perpendicular to the surface as shown in FIG. At the resonance frequency of about 440 KHz of the ultrasonic vibrator of the ultrasonic cleaning device, the admittance is the maximum and the most current flows, but the sound pressure is not the maximum. This indicates that the longitudinal vibration is not efficiently excited on the stainless steel plate in contact with the cleaning liquid. On the other hand, at about 415 KHz, the power is less than half compared to about 440 KHz, but the sound pressure is maximized. This is presumed that the stainless steel plate mainly vibrates.

ここで、超音波振動子の共振周波数の振動モードとステンレス板が面に垂直方向に最も大きく振動するモードの周波数は大きく離れない。なぜなら、共振周波数と大きく異なる周波数では、ステンレス板に振動変位を付与できない。このことからステンレス板が面に垂直方向に最も大きく振動するモードの周波数は、共振周波数の85%から98%になると考えられる。  Here, the vibration mode of the resonance frequency of the ultrasonic vibrator and the frequency of the mode in which the stainless steel plate vibrates most in the direction perpendicular to the surface are not greatly different. This is because vibration displacement cannot be imparted to the stainless steel plate at a frequency that is significantly different from the resonance frequency. From this, the frequency of the mode in which the stainless steel plate vibrates most in the direction perpendicular to the surface is considered to be 85% to 98% of the resonance frequency.

超音波洗浄装置の超音波振動子の共振周波数は約440KHzであるが、インダクタンスを超音波振動子に直列に接続して、このインダクタンスを含む共振周波数が約415KHzになるようにインダクタンス値を決定する。超音波振動子の共振周波数付近の等価回路は図12に示すものである。図12に示すCdは制動容量、Rmは等価抵抗、Cmは等価容量、Lmは等価インダクタンスを示すものである。なお、超音波振動子の等価回路については非特許文献2に詳しく記述してある。そして図13に示すように、共振周波数を約415KHzにするインダクタンス値は約3.6μHである。またこのインダクタンスは超音波振動子の制動容量を低減する。このことにより無効電力を小さくできる。参考までに制動容量を打ち消すインダクタンス値は約7.4μHであり、このときのインダクタンスを含む共振周波数が約400KHzになる。したがって、周波数が低くなりすぎ所望の約415KHzでは駆動できないため採用できない。  The resonance frequency of the ultrasonic vibrator of the ultrasonic cleaning device is about 440 KHz, and an inductance value is determined so that the resonance frequency including this inductance is about 415 KHz by connecting the inductance in series with the ultrasonic vibrator. . An equivalent circuit near the resonance frequency of the ultrasonic transducer is shown in FIG. In FIG. 12, Cd represents a braking capacity, Rm represents an equivalent resistance, Cm represents an equivalent capacity, and Lm represents an equivalent inductance. The equivalent circuit of the ultrasonic transducer is described in detail in Non-Patent Document 2. As shown in FIG. 13, the inductance value for setting the resonance frequency to about 415 KHz is about 3.6 μH. This inductance also reduces the braking capacity of the ultrasonic transducer. This can reduce reactive power. For reference, the inductance value for canceling the braking capacity is about 7.4 μH, and the resonance frequency including the inductance at this time is about 400 KHz. Accordingly, the frequency becomes too low to be driven at a desired level of about 415 KHz and cannot be employed.

池田拓郎、「圧電材料学の基礎」、株式会社オーム社、昭和59年11月、p.99−102Takuro Ikeda, “Basics of Piezoelectric Materials”, Ohm Co., Ltd., November 1984, p. 99-102

なお、図12、図13に示す等価回路の周波数特性を図14に示す。図12に示す等価回路の周波数特性を実線で、図13に示す等価回路の周波数特性を点線で示す。この周波数特性でわかることは、超音波振動子に直列にインダクタンスを接続することで、さらにインピーダンスが低くなり電力の消費が小さくなることが予測される。  The frequency characteristics of the equivalent circuits shown in FIGS. 12 and 13 are shown in FIG. The frequency characteristics of the equivalent circuit shown in FIG. 12 are indicated by solid lines, and the frequency characteristics of the equivalent circuit shown in FIG. 13 are indicated by dotted lines. It can be seen from this frequency characteristic that impedance is further reduced and power consumption is reduced by connecting an inductance in series with the ultrasonic transducer.

音圧が最も高くなる周波数は、共振周波数より小さく、その大きさは共振周波数の85%〜98%が望ましい。なぜなら、85%より小さいときは、超音波振動子に接続するインダクタンスが制動容量を打ち消すものより大きくなりすぎる。そして共振周波数の98%を超えると超音波振動子の共振モードを励起してしまうことが予想され、共振モードが励起されると電力を多く必要になってしまうためである。  The frequency at which the sound pressure is highest is smaller than the resonance frequency, and the magnitude is desirably 85% to 98% of the resonance frequency. This is because when it is smaller than 85%, the inductance connected to the ultrasonic transducer is too large to cancel the braking capacity. If the resonance frequency exceeds 98%, the resonance mode of the ultrasonic transducer is expected to be excited, and if the resonance mode is excited, a large amount of power is required.

これに対して従来の超音波洗浄装置は超音波振動子の共振周波数で、最も音圧が高くなるため、制動容量を打ち消すか、または低減するインダクタンスを直列に接続すると共振周波数が低下してしまい、音圧の最も高い周波数で駆動できなくなる。このため、超音波振動子の共振周波数で駆動するしかなく、制動容量を打ち消すか、または低減することができないため、無効な電力を供給しなければならないため電力効率は低くなる。  On the other hand, the conventional ultrasonic cleaning apparatus has the highest sound pressure at the resonance frequency of the ultrasonic vibrator, and therefore the resonance frequency is reduced when the damping capacity is canceled or the inductance to be reduced is connected in series. It becomes impossible to drive at the highest frequency of sound pressure. For this reason, since there is no choice but to drive at the resonance frequency of the ultrasonic vibrator and the braking capacity cannot be canceled or reduced, the power efficiency is lowered because invalid power must be supplied.

本発明の超音波洗浄器の構成に上記の回路構成を用いると超音波洗浄器の超音波振動子の振動モードの効果とともに洗浄液に超音波振動を与える効率を高める。超音波振動子の制動容量は減少し、電気的効率が向上する。したがって、必要とされる超音波駆動回路の電気容量は減少するので、超音波駆動回路を安価に製作できる。また、超音波振動子に供給する電力も小さくできるので省エネ対策になる。  When the above circuit configuration is used for the configuration of the ultrasonic cleaning device of the present invention, the efficiency of applying ultrasonic vibration to the cleaning liquid is enhanced along with the effect of the vibration mode of the ultrasonic vibrator of the ultrasonic cleaning device. The damping capacity of the ultrasonic transducer is reduced and the electrical efficiency is improved. Therefore, since the required electric capacity of the ultrasonic drive circuit is reduced, the ultrasonic drive circuit can be manufactured at low cost. Moreover, since the electric power supplied to the ultrasonic transducer can be reduced, it becomes an energy saving measure.

すなわち、超音波振動子の共振周波数と音圧が最も高い周波数が異なり、かつ超音波振動子の共振周波数より音圧が最も高い周波数が小さいことが必要である。  That is, the resonance frequency of the ultrasonic transducer and the frequency with the highest sound pressure are different, and the frequency with the highest sound pressure is lower than the resonance frequency of the ultrasonic transducer.

このような構成にするには、ステンレス板の厚みが小さく撓み易いことが必要であり、ステンレス板の厚さは10mm以下、好ましくは5mm以下が望ましい。  In order to achieve such a configuration, it is necessary that the thickness of the stainless steel plate is small and easy to bend, and the thickness of the stainless steel plate is 10 mm or less, preferably 5 mm or less.

またインダクタンスに容量を接続して、超音波振動子に印加する波形を正弦波に近似させることもできる。  Further, it is possible to approximate the waveform applied to the ultrasonic transducer to a sine wave by connecting a capacitance to the inductance.

図4には隣り合う圧電セラミックの間隔を示していないが、長さ方向は約4mm、幅方向は約3mmである。圧電セラミックと圧電セラミックのステンレス板は、撓み振動が発生し易くなっている。  Although the interval between adjacent piezoelectric ceramics is not shown in FIG. 4, the length direction is about 4 mm and the width direction is about 3 mm. Piezoelectric ceramics and piezoelectric ceramic stainless plates are susceptible to bending vibration.

そして、圧電セラミックの個数が少なくても5個以上望ましくは10個以上を同一の超音波放射面に配置し、そして圧電セラミックの形状および配置と底板の材料と形状により超音波振動子の共振周波数と音圧が最も高い周波数が異なり、かつ超音波振動子の共振周波数より音圧が最も高い周波数が小さくなる。  Further, at least 5 or more, preferably 10 or more piezoelectric ceramics are arranged on the same ultrasonic radiation surface, and the resonance frequency of the ultrasonic vibrator depends on the shape and arrangement of the piezoelectric ceramic and the material and shape of the bottom plate. The frequency with the highest sound pressure is different, and the frequency with the highest sound pressure is smaller than the resonance frequency of the ultrasonic transducer.

このような超音波振動子の共振周波数と音圧の最も高い周波数の異なる超音波洗浄器は、従来にない全く新規な構成である。  Such an ultrasonic cleaning device having different resonance frequencies of the ultrasonic transducers and the highest frequency of the sound pressure has a completely new configuration.

以上のように、圧電セラミックを接合した金属板の厚さと圧電セラミックの形状と配置を制御することにより、洗浄槽の液中にほぼ均一に超音波振動を伝播させることができ、しかも圧電セラミックに印加する電力を小さくできる超音波洗浄器を提供できる。  As described above, by controlling the thickness of the metal plate to which the piezoelectric ceramic is bonded and the shape and arrangement of the piezoelectric ceramic, it is possible to propagate ultrasonic vibrations almost uniformly in the liquid in the cleaning tank, and to the piezoelectric ceramic. An ultrasonic cleaner capable of reducing the applied power can be provided.

本発明の超音波洗浄器は、様々な物体の洗浄に用いることができる。  The ultrasonic cleaner of the present invention can be used for cleaning various objects.

従来の超音波洗浄器の構成例を示す断面図である。  It is sectional drawing which shows the structural example of the conventional ultrasonic cleaner. 従来の超音波洗浄器の別の構成例を示す断面図である。  It is sectional drawing which shows another structural example of the conventional ultrasonic cleaner. 従来の超音波洗浄器のさらに別の構成例を示す断面図である。  It is sectional drawing which shows another structural example of the conventional ultrasonic cleaner. 本発明の超音波洗浄器の底板を示す平面図である。  It is a top view which shows the baseplate of the ultrasonic cleaner of this invention. 本発明の超音波洗浄器の底板を示す側面図である。  It is a side view which shows the baseplate of the ultrasonic cleaner of this invention. 本発明の超音波洗浄器の底板に接合した圧電セラミックの斜視図である。  It is a perspective view of the piezoelectric ceramic joined to the bottom plate of the ultrasonic cleaner of the present invention. 本発明の超音波洗浄器の側面図である。  It is a side view of the ultrasonic cleaner of the present invention. 本発明の超音波洗浄器の音圧と入力電力の周波特性を示す図である。  It is a figure which shows the frequency characteristic of the sound pressure of the ultrasonic cleaner of this invention, and input electric power. 本発明の超音波洗浄器の超音波振動子の周波特性を示す図である。  It is a figure which shows the frequency characteristic of the ultrasonic transducer | vibrator of the ultrasonic cleaner of this invention. 約440KHzのステンレス板の振動変位を示す概略図である。  It is the schematic which shows the vibration displacement of about 440 KHz stainless steel plate. 約415KHzのステンレス板の振動変位を示す概略図である。  It is the schematic which shows the vibration displacement of the stainless steel plate of about 415 KHz. 超音波振動子の共振周波数付近の等価回路示す図である。  It is a figure which shows the equivalent circuit of the resonance frequency vicinity of an ultrasonic transducer | vibrator. 超音波振動子にインダクタンスを接続した等価回路示す図である。  It is a figure which shows the equivalent circuit which connected the inductance to the ultrasonic transducer | vibrator. 図12、図13で示す等価回路の周波数特性を示す図である。  It is a figure which shows the frequency characteristic of the equivalent circuit shown in FIG. 12, FIG.

符号の説明Explanation of symbols

1 洗浄液
2 洗浄槽
3 超音波振動子
4 底板
5 パッキン
6 ボルト
7 ナット
8 水密容器
9 圧電セラミック
10 ボルト穴
11 ステンレス板の振動変位
DESCRIPTION OF SYMBOLS 1 Cleaning liquid 2 Cleaning tank 3 Ultrasonic vibrator 4 Bottom plate 5 Packing 6 Bolt 7 Nut 8 Watertight container 9 Piezoelectric ceramic 10 Bolt hole 11 Vibration displacement of stainless steel plate

Claims (3)

洗浄液に超音波振動を与える弾性板に接合した圧電セラミックにおいて、超音波を放射する面の形状が長方形状であり、この放射面と直交する圧電セラミックの厚さに対して、長方形の長辺の長さが厚さ方向の2倍以上であり、幅方向が1倍未満であり、かつ弾性板に接合した圧電セラミックが複数であり、そして弾性板が金属製でありそしてその厚さが5mm以下であることを特徴とする超音波洗浄装置。  In the piezoelectric ceramic bonded to the elastic plate that applies ultrasonic vibration to the cleaning liquid, the shape of the surface that radiates ultrasonic waves is rectangular, and the rectangular long side of the thickness of the piezoelectric ceramic orthogonal to the radiation surface is The length is 2 times or more of the thickness direction, the width direction is less than 1 time, and there are a plurality of piezoelectric ceramics bonded to the elastic plate, and the elastic plate is made of metal and its thickness is 5 mm or less. An ultrasonic cleaning apparatus characterized by being: 上記の圧電セラミックに印加する電圧の周波数が洗浄液を入れた超音波洗浄装置の超音波振動子の共振周波数より小さく、かつ駆動周波数が共振周波数の85%から98%であることを特徴とする請求項1に記載の超音波洗浄装置。  The frequency of the voltage applied to the piezoelectric ceramic is smaller than the resonance frequency of the ultrasonic vibrator of the ultrasonic cleaning apparatus containing the cleaning liquid, and the drive frequency is 85% to 98% of the resonance frequency. Item 2. The ultrasonic cleaning apparatus according to Item 1. 上記の圧電セラミックに印加する電圧が100KHz以上の交流であることを特徴とする請求項1および請求項2に記載の超音波洗浄装置。  The ultrasonic cleaning apparatus according to claim 1 or 2, wherein a voltage applied to the piezoelectric ceramic is an alternating current of 100 KHz or more.
JP2006155323A 2006-05-08 2006-05-08 Ultrasonic cleaner Withdrawn JP2007301538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155323A JP2007301538A (en) 2006-05-08 2006-05-08 Ultrasonic cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155323A JP2007301538A (en) 2006-05-08 2006-05-08 Ultrasonic cleaner

Publications (1)

Publication Number Publication Date
JP2007301538A true JP2007301538A (en) 2007-11-22

Family

ID=38835938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155323A Withdrawn JP2007301538A (en) 2006-05-08 2006-05-08 Ultrasonic cleaner

Country Status (1)

Country Link
JP (1) JP2007301538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517441A (en) * 2009-12-22 2013-05-16 フィリップス,ウィリアム,ラッシュ Equipment for cleaning industrial parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517441A (en) * 2009-12-22 2013-05-16 フィリップス,ウィリアム,ラッシュ Equipment for cleaning industrial parts

Similar Documents

Publication Publication Date Title
CA2645933C (en) Megasonic processing apparatus with frequency sweeping of thickness mode transducers
KR101226071B1 (en) Apparatus for generating acoustic energy and method of constructing the same
US9610617B2 (en) Megasonic multifrequency apparatus with matched transducer
JP2007301538A (en) Ultrasonic cleaner
JP3839154B2 (en) Ultrasonic vibration generator and ultrasonic cleaning device
JP2005296813A (en) Ultrasonic cleaner
JP2004130248A (en) Ultrasonic cleaner, vibration plate for ultrasonic cleaner, and ultrasonic wave application apparatus for ultrasonic cleaner
JP5517227B2 (en) Ultrasonic precision cleaning equipment
JP2002126668A (en) Ultrasonic cleaning apparatus
KR100986586B1 (en) The ultrasonic oscillator
JPWO2006095738A1 (en) Ultrasonic cleaner
JP2008068221A (en) Ultrasonic cleaning device
JP2003326226A (en) Ultrasonic vibrator and ultrasonic cleaner using the same
JP2009082900A (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2006095349A (en) Ultrasonic wave generating device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804