JP2007299571A - Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display - Google Patents

Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display Download PDF

Info

Publication number
JP2007299571A
JP2007299571A JP2006125295A JP2006125295A JP2007299571A JP 2007299571 A JP2007299571 A JP 2007299571A JP 2006125295 A JP2006125295 A JP 2006125295A JP 2006125295 A JP2006125295 A JP 2006125295A JP 2007299571 A JP2007299571 A JP 2007299571A
Authority
JP
Japan
Prior art keywords
phosphor
layer
melting point
amorphous layer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125295A
Other languages
Japanese (ja)
Inventor
Yuko Arai
裕子 新井
Toshiaki Kiyono
俊明 清野
Takashi Ebisawa
孝 海老沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006125295A priority Critical patent/JP2007299571A/en
Publication of JP2007299571A publication Critical patent/JP2007299571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallization method of a phosphor layer in which light is irradiated on a non-crystal layer having a component to constitute a phosphor and the phosphor layer is formed by crystallizing the non-crystal layer of the phosphor without giving a high temperature and obtain the phosphor layer of high luminance while realizing energy-saving. <P>SOLUTION: A non-crystal layer having a component to constitute the phosphor is formed by a film-forming means on the upper side of a positive electrode substrate having a transparent electrode 3 on a transparent substrate 2, and it is made a non-crystal layer 8 of the phosphor in which a low melting point component and the other component with a higher melting point than the low melting point component are mixed, then light 25 is irradiated on the non-crystal layer 8 of the phosphor and the low melting point component out of the components constituting the phosphor is selectively melted and the non-crystal layer 8 of the phosphor is crystallized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜状の蛍光体層の結晶化方法及びその装置並びにディスプレイ用の薄膜蛍光体に関するものである。   The present invention relates to a method and an apparatus for crystallizing a thin film phosphor layer, and a thin film phosphor for a display.

従来、電界放射型ディスプレイ(以下、「FED」という。)は、蛍光体を成膜した陽極基板と、電子源を配置した陽極基板とを、わずかな空間(間隔)を置いて貼り合わせた構造をなしている。一般的に、基板にはガラス基板が使用され、陽極では、この基板上に透明電極が成膜され、更に、透明電極上に蛍光体が成膜されている。このような蛍光体で現在使用されているものは、スクリーン印刷法やインクジェット法等を用いて透明電極上に粉末蛍光体を成膜しているが、成膜時に、蛍光体は増粘剤や有機溶媒等と混合されて成膜に適した状態にしている。このため、成膜後にこれらを気化させるための焼成作業が必要となる。   Conventionally, a field emission display (hereinafter referred to as “FED”) has a structure in which an anode substrate on which a phosphor film is formed and an anode substrate on which an electron source is arranged are bonded to each other with a small space (interval). I am doing. In general, a glass substrate is used as the substrate, and in the anode, a transparent electrode is formed on the substrate, and a phosphor is further formed on the transparent electrode. In such phosphors currently used, a powder phosphor is formed on a transparent electrode by using a screen printing method, an ink jet method, or the like. It is mixed with an organic solvent or the like to make it suitable for film formation. For this reason, the baking operation | work for vaporizing these after film-forming is needed.

特許文献1によると、この焼成作業のみでは元の粉末に比べて輝度が低くなる点を改善するため、原因である蛍光体の欠陥を取り除き、輝度を向上させる目的で、レーザ照射を施している。その結果、結晶性が改善し、輝度も向上しているものの、この方法では、従来の熱処理に加えてレーザ照射を行うため、生産効率が低いという技術的課題がある。   According to Patent Document 1, in order to improve the point that the luminance is lower than that of the original powder only by this firing operation, laser irradiation is performed for the purpose of removing the defect of the phosphor that is the cause and improving the luminance. . As a result, although the crystallinity is improved and the luminance is also improved, this method has a technical problem that the production efficiency is low because laser irradiation is performed in addition to the conventional heat treatment.

特許文献2では、FEDへの使用を目的とした蛍光体膜として、母体材料をアルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca Sr Ba))とする蛍光体層を多元蒸着法(MSD)法によつて成膜後、ヒータによる熱処理を施している。 In Patent Document 2, as a phosphor film intended for use in an FED, a phosphor layer in which a base material is an alkaline earth metal thiogallate (M-Ga 2 S 4 (M = Ca Sr Ba)) is a multi-source deposition method. After film formation by the (MSD) method, heat treatment is performed by a heater.

特許文献3によると、 特許文献2ではアルカリ土類金属チオガレイトの熱アニール方法については結晶性改善による高い発光効率を得るための最適温度が800℃であり、処理時間はより長い方が有効であるとされているが、現在、一般的にディスプレイに使用されている基板は耐熱温度が600℃程度のガラス基板であるので、最適温度である800℃の熱処理を施すことは困難であることを指摘し、熱アニールの代用としてレーザアニールを行つている。   According to Patent Literature 3, in Patent Literature 2, the optimum temperature for obtaining high luminous efficiency by improving the crystallinity is 800 ° C. for the thermal annealing method of alkaline earth metal thiogallate, and a longer treatment time is more effective. However, since the substrate generally used for displays is a glass substrate with a heat-resistant temperature of about 600 ° C, it is difficult to perform heat treatment at the optimum temperature of 800 ° C. However, laser annealing is performed as a substitute for thermal annealing.

特許文献4では、MOCVD法及びスパッタ法により成膜した薄膜蛍光体(結晶膜)へレーザ照射を行い、結晶性を向上する方法を示している。従つて、成膜された蛍光体膜はいずれも結晶性を有する。そして、成膜後の結晶は単結晶ではないため、結晶間に粒界が多く存在し、乱反射が生じて発光効率が低いため、レーザ照射を行つて再結晶化し、粒界を除去することによつて発光効率を向上させている。
特開2002−83549号公報 特開平10−261367号公報 特開2004−111333号公報 特開平11−339681号公報
Patent Document 4 shows a method for improving crystallinity by irradiating a thin film phosphor (crystal film) formed by MOCVD method and sputtering method with laser. Therefore, any phosphor film formed has crystallinity. And since the crystal after film formation is not a single crystal, there are many grain boundaries between crystals, diffuse reflection occurs and the light emission efficiency is low, so laser irradiation is performed to recrystallize and remove the grain boundaries. Therefore, the luminous efficiency is improved.
JP 2002-83549 A Japanese Patent Laid-Open No. 10-261367 JP 2004-111333 A JP 11-339682 A

しかしながら、特許文献1記載の発明では、元々結晶である粉末蛍光体を有機溶媒などに溶かして使用しているため、成膜後に行つている熱処理は、有機溶媒等を気化させるための焼成であり、蛍光体の結晶化が目的ではない。その後、結晶性の向上のため、レーザ照射を行つている。仮に、焼成を行つていない蛍光膜にレーザ光を照射した場合、膜中に存在する増粘材や有機溶媒と蛍光体が結合する可能性がある。そのため、特許文献1記載の発明では、有機溶媒などの気化及び結晶化の熱処理工程がそれぞれ必要となり、生産効率が低い。従つて、成膜手段として、増粘剤や有機溶媒を使用せずに蛍光体を構成する成分を蛍光体の輝度が高くなる比率で有する非結晶層を成膜することができるスパッタ法を含む手段を採用することが望まれる。   However, in the invention described in Patent Document 1, since the powder phosphor, which is originally a crystal, is used after being dissolved in an organic solvent or the like, the heat treatment performed after film formation is firing for vaporizing the organic solvent or the like. The purpose is not to crystallize the phosphor. Thereafter, laser irradiation is performed to improve crystallinity. If a fluorescent film that has not been fired is irradiated with laser light, the thickener or organic solvent present in the film may bind to the phosphor. For this reason, the invention described in Patent Document 1 requires heat treatment steps for vaporization and crystallization of an organic solvent or the like, and the production efficiency is low. Accordingly, the film forming means includes a sputtering method capable of forming an amorphous layer having a component that constitutes the phosphor at a ratio that increases the luminance of the phosphor without using a thickener or an organic solvent. It is desirable to adopt means.

また、特許文献2記載の発明では、成膜後に高温の熱処理が長時間必要となる。加えて、現在一般的に使用されているガラス基板は、その性質を維持できる耐熱温度が600℃程度であるため、特許文献2の方法の実現には、高温でも使用可能な石英基板などを用いなければならない。そのため、コスト高になり、実用的な方法とはいえない。   In the invention described in Patent Document 2, high-temperature heat treatment is required for a long time after film formation. In addition, since the glass substrate that is currently used generally has a heat-resistant temperature of about 600 ° C. that can maintain its properties, a quartz substrate that can be used even at high temperatures is used to realize the method of Patent Document 2. There must be. For this reason, the cost becomes high and it cannot be said that it is a practical method.

特許文献3では、特許文献2に対し、低温での蛍光体製造工程を挙げ、レーザアニールを熱アニールの代用としているものの、成膜時の基板の温度が450〜600℃と高いため、熱処理工程を完全にレーザ照射へと置き換えた方法とはいい難い。つまり、成膜時に少なくとも一部は反応し、蛍光体の結晶化に関与し難い高融点の化合物が多く形成されている。   Patent Document 3 gives a phosphor manufacturing process at a low temperature as compared to Patent Document 2 and uses laser annealing as a substitute for thermal annealing. However, since the temperature of the substrate during film formation is as high as 450 to 600 ° C., the heat treatment process It is hard to say that this is completely replaced with laser irradiation. In other words, at least a part of the compound reacts during the film formation, and many high melting point compounds that are hardly involved in phosphor crystallization are formed.

特許文献4記載の発明で用いられているMOCVD法による蛍光体の成膜では、結晶性を有する蛍光体が得られる。しかし、成膜後の結晶は、多結晶のために粒界で乱反射や吸収が生じ、発光効率が低い。そのため、熱アニールや代用としてのレーザ光を照射することによつて多結晶を再結晶化し、発光効率の向上を図つている。熱アニールは、基板温度300〜1000℃、数秒から数十分間行うとし、レーザ照射にはXeClのエキシマレーザを使用するとしている。   In the phosphor film formation by the MOCVD method used in the invention described in Patent Document 4, a phosphor having crystallinity is obtained. However, since the crystal after film formation is polycrystalline, irregular reflection and absorption occur at the grain boundary, and the light emission efficiency is low. For this reason, polycrystals are recrystallized by applying thermal annealing or laser light as a substitute to improve luminous efficiency. Thermal annealing is performed at a substrate temperature of 300 to 1000 ° C. for several seconds to several tens of minutes, and XeCl excimer laser is used for laser irradiation.

しかしながら、一般的なガラス基板を使用するためには、熱処理温度は600℃が上限となるため、これ以上の基板加熱は困難である。また、特許文献4におけるレーザ照射は、熱アニールの代わりに蛍光結晶膜に対して行われるとし、結晶化している蛍光膜に対してレーザ照射を行うとしている。従つて、結晶性を有する蛍光体膜へのレーザ照射に限り有効な方法であるといわざる得ない。また、レーザ照射では、局部的に高エネルギーを与えることができるが、単に熱アニールの代りとしてレーザ光を照射しただけでは、高エネルギーのレーザ光によつて、ガラス基板や透明電極の損傷の恐れがあり、蛍光結晶膜を再結晶化することは困難であると考えられる。すなわち、完全に結晶化している蛍光膜に対してレーザ照射を行うことは無意味であると共に、一旦、結晶化している蛍光膜に対してレーザ照射を行つて再結晶化させるには、高温加熱が必要になる。   However, in order to use a general glass substrate, the upper limit of the heat treatment temperature is 600 ° C., so that further substrate heating is difficult. Further, in Patent Document 4, laser irradiation is performed on a fluorescent crystal film instead of thermal annealing, and laser irradiation is performed on a crystallized fluorescent film. Therefore, it can be said that this is an effective method only for laser irradiation of the phosphor film having crystallinity. In addition, high energy can be applied locally by laser irradiation. However, if laser light is simply irradiated instead of thermal annealing, the glass substrate or the transparent electrode may be damaged by the high energy laser light. Therefore, it is considered difficult to recrystallize the fluorescent crystal film. In other words, it is meaningless to perform laser irradiation on a completely crystallized fluorescent film, and once the crystallized fluorescent film is irradiated with laser, it is heated at a high temperature. Is required.

ところで、従来、蛍光体の熱処理は、固相反応によつて行われてきた。これは、従来の熱アニールには炉を使用しているため、融点が非常に高い蛍光体を溶融させて、結晶性の高い蛍光体を製造することが困難であるためである。また、溶融させたとしても、蒸気圧の違いから、融点の低い構成元素が蒸発してしまう可能性があり、組成比の制御が難しく、低融点成分の不足による結晶中の欠陥が生じ易くなり、意図した輝度に優れる組成比の蛍光体の作製は困難である。しかも、従来の炉による熱アニールでは、加熱・冷却に時間を要するので、構成元素が蒸発し易い方法であるといえる。   By the way, conventionally, heat treatment of a phosphor has been performed by a solid phase reaction. This is because it is difficult to manufacture a phosphor having a high crystallinity by melting a phosphor having a very high melting point because a conventional thermal annealing uses a furnace. In addition, even if melted, constituent elements with low melting points may evaporate due to the difference in vapor pressure, making it difficult to control the composition ratio, and defects in crystals due to lack of low melting point components are likely to occur. Therefore, it is difficult to produce a phosphor having a composition ratio excellent in intended brightness. In addition, in the conventional thermal annealing using a furnace, it takes time for heating and cooling, so it can be said that this is a method in which constituent elements are easily evaporated.

また、従来、高輝度蛍光体の作製には高温の熱処理が不可欠であるが、ディスプレイに使用されているガラス基板の耐熱温度の問題上、十分な熱を与えることができない。つまり、ガラス基板の耐熱温度を考慮して600℃程度の熱処理を行つても、結晶性の良い蛍光体の作製は難しい。その対応策として、結晶性を向上させるべく蛍光体膜へのレーザ照射が検討されてきたため、従来は、特許文献1,3に記載のようにガラス基板が品質を維持できる基板温度での成膜や熱処理によつて既に結晶性を有する状態の蛍光体膜を得、この蛍光体膜へのレーザ照射が行われてきた。しかし、蛍光体の融点は非常に高く、更に一度結晶化した化合物を融解させるためには、更に高いエネルギーが必要となる。レーザ照射を用いれば、蛍光体膜に非常に高いエネルギーを与えることが可能であるが、レーザ照射は、極端に短い時間での加熱・冷却になるため、元々存在する化合物を極短時間で溶かし、更により高い結晶性の蛍光体にすることは困難といえる。   Conventionally, a high-temperature heat treatment is indispensable for the production of a high-luminance phosphor, but sufficient heat cannot be applied due to the problem of the heat-resistant temperature of the glass substrate used in the display. That is, it is difficult to produce a phosphor with good crystallinity even if heat treatment at about 600 ° C. is performed in consideration of the heat resistant temperature of the glass substrate. As a countermeasure, laser irradiation on the phosphor film has been studied in order to improve crystallinity. Conventionally, as described in Patent Documents 1 and 3, film formation at a substrate temperature at which the quality of the glass substrate can be maintained. A phosphor film already having crystallinity has been obtained by heat treatment or heat treatment, and this phosphor film has been irradiated with laser. However, the melting point of the phosphor is very high, and higher energy is required to melt the compound once crystallized. If laser irradiation is used, it is possible to give very high energy to the phosphor film. However, since laser irradiation heats and cools in an extremely short time, it dissolves the originally existing compound in a very short time. Further, it can be said that it is difficult to obtain a phosphor with higher crystallinity.

従つて、本発明は、上記のような従来の製造方法では実現できなかつた蛍光体膜の結晶化技術を実現することを目的とするもので、蛍光体を構成する成分を有する非結晶の層を成膜手段によつて形成すると共に、比較的低い温度を与える光、特にレーザ照射によつて蛍光体層に高い結晶性を得ようとするものである。すなわち、特にアルカリ土類金属チオガレイト蛍光体を有する非結晶層に、蛍光体を構成する成分の内、融点の低い成分が選択的又は効果的に吸収して融解する波長の光を照射することにより、光照射部分の蛍光体の非結晶層の一部が溶融した状態を経て、目的とする高品質な結晶を製造することができる薄膜状の蛍光体層の結晶化方法及びその装置、更にはディスプレイ用の薄膜蛍光体を提供することを目的としている。   Accordingly, an object of the present invention is to realize a phosphor film crystallization technique that cannot be realized by the conventional manufacturing method as described above, and an amorphous layer having components constituting the phosphor. Is formed by a film forming means, and high crystallinity is obtained in the phosphor layer by light that gives a relatively low temperature, particularly by laser irradiation. That is, by irradiating a non-crystalline layer having an alkaline earth metal thiogallate phosphor with light having a wavelength at which a component having a low melting point selectively or effectively absorbs and melts the phosphor. A method and apparatus for crystallizing a thin-film phosphor layer capable of producing a target high-quality crystal through a state in which a part of the amorphous layer of the phosphor in the light irradiation portion is melted, and further, It aims at providing the thin film fluorescent substance for a display.

請求項1の発明は、透明基板2及び透明電極3を有する陽極基板の上側に、蛍光体を構成する成分を有する非結晶の層を成膜手段によつて形成し、低融点成分と低融点成分よりも高融点の他成分とが混在する蛍光体の非結晶層8となした後、光25を蛍光体の非結晶層8に照射して、蛍光体を構成する成分の内の低融点成分を選択的に溶融させ、蛍光体の非結晶層8を結晶化して蛍光体層1となすことを特徴とする蛍光体層の結晶化方法である。
請求項2の発明は、前記成膜手段が、蛍光体を構成する成分を蛍光体の輝度が高くなる比率で有する非結晶層8を成膜することができるスパッタ法を含む手段であると共に、蛍光体の非結晶層8を300℃以下の温度として成膜することを特徴とする請求項1の蛍光体層の結晶化方法である。
請求項3の発明は、前記低融点成分が溶融した際、溶融した低融点成分中に高融点の他成分が分散していることを特徴とする請求項1の蛍光体層の結晶化方法である。
請求項4の発明は、ガラス基板2及び透明電極3を有する陽極基板の上側に、蛍光体を構成する成分を有し、低融点成分と低融点成分よりも高融点の他成分とが混在する非結晶の層からなる蛍光体の非結晶層8を形成する成膜手段と、蛍光体の非結晶層8の蛍光体を構成する成分の内の低融点成分を選択的に溶融させる光25を発生する光照射装置とを備え、前記光照射装置の光25が蛍光体の非結晶層8に照射されることにより、蛍光体の非結晶層8が結晶化されて蛍光体層1が形成されることを特徴とする蛍光体層の結晶化装置である。
請求項5の発明は、透明基板2及び透明電極3を有する陽極基板の上側に、結晶化させた薄膜蛍光体層1を有するディスプレイ用の薄膜蛍光体であつて、
前記薄膜蛍光体層1が、蛍光体を構成する成分を有する非結晶の層として成膜手段によつて形成され、低融点成分と低融点成分よりも高融点の他成分とが混在する蛍光体の非結晶層8に対し、光25を照射して、蛍光体を構成する成分の内の低融点成分を選択的に溶融させ、蛍光体の非結晶層8が結晶化されて形成されていることを特徴とするディスプレイ用の薄膜蛍光体である。
According to the first aspect of the present invention, an amorphous layer having a component constituting the phosphor is formed on the upper side of the anode substrate having the transparent substrate 2 and the transparent electrode 3 by the film forming means. After the non-crystalline layer 8 of the phosphor in which other components having a higher melting point than the components are mixed, the non-crystalline layer 8 of the phosphor is irradiated with light 25 to lower the low melting point of the components constituting the phosphor. The phosphor layer crystallization method is characterized by selectively melting components to crystallize the phosphor amorphous layer 8 to form the phosphor layer 1.
The invention of claim 2 is a means including a sputtering method in which the film forming means can form a non-crystalline layer 8 having a component constituting the phosphor at a ratio of increasing the luminance of the phosphor, 2. The method for crystallizing a phosphor layer according to claim 1, wherein the amorphous layer 8 of the phosphor is formed at a temperature of 300 ° C. or lower.
The invention according to claim 3 is the method for crystallizing a phosphor layer according to claim 1, wherein when the low melting point component is melted, other components having a high melting point are dispersed in the melted low melting point component. is there.
The invention of claim 4 has a component constituting the phosphor on the upper side of the anode substrate having the glass substrate 2 and the transparent electrode 3, and a low melting point component and other components having a higher melting point than the low melting point component are mixed. Film forming means for forming the phosphor amorphous layer 8 composed of an amorphous layer, and light 25 for selectively melting the low melting point component of the components constituting the phosphor of the phosphor amorphous layer 8 A phosphor layer 1 is formed by crystallizing the phosphor amorphous layer 8 by irradiating the phosphor amorphous layer 8 with the light 25 of the light irradiation device. The phosphor layer crystallization apparatus is characterized in that:
The invention of claim 5 is a thin film phosphor for display having a crystallized thin film phosphor layer 1 on the upper side of an anode substrate having a transparent substrate 2 and a transparent electrode 3,
The thin film phosphor layer 1 is formed by a film forming means as an amorphous layer having a component constituting the phosphor, and a phosphor in which a low melting point component and other components having a higher melting point than the low melting point component are mixed. The amorphous layer 8 is irradiated with light 25 to selectively melt the low melting point component of the constituents of the phosphor, and the amorphous layer 8 of the phosphor is crystallized. This is a thin film phosphor for a display.

請求項1,4に係る発明によれば、透明基板上に透明電極を有する陽極基板の上側に、目的とする蛍光体を構成する成分を有する非結晶の層(蛍光体の非結晶層)を成膜手段によつて形成し、この非結晶層に光を照射することにより、非結晶のものを高い結晶性の蛍光体になすことが可能である。そして、光の照射は、蛍光体を構成する成分の内、融点の低い成分を選択的に溶融・固化するように与えれば充分であるため、非結晶であることとも相まつて、従来に比して低エネルギーの光の照射によつて短時間で高輝度の蛍光体層を製作することができ、省エネルギーを図ることもできる。そして、請求項5に係る発明によれば、省エネルギーを図りながら、能率的に製作された高輝度のディスプレイ用の薄膜蛍光体を得ることができる。   According to the first and fourth aspects of the invention, the non-crystalline layer (the non-crystalline layer of the phosphor) having the component constituting the target phosphor is disposed on the upper side of the anode substrate having the transparent electrode on the transparent substrate. By forming the film by a film forming means and irradiating the amorphous layer with light, it is possible to make an amorphous material into a highly crystalline phosphor. In addition, since it is sufficient for the light irradiation to be provided so as to selectively melt and solidify components having a low melting point among the components constituting the phosphor, it is amorphous, as compared with the conventional case. In addition, a high-luminance phosphor layer can be manufactured in a short time by irradiation with low-energy light, and energy saving can be achieved. According to the fifth aspect of the invention, it is possible to obtain a thin-film phosphor for a high-luminance display that is efficiently manufactured while saving energy.

請求項2に係る発明によれば、成膜手段により、蛍光体の非結晶層を300℃以下の温度として成膜するので、非結晶層の成膜時に、蛍光体を構成する成分の一部が反応し、高融点化合物が生成されることを良好に抑制することができる。その結果、蛍光体の非結晶層を高度に結晶化させて、輝度に優れる蛍光体を作製することが容易になる。   According to the second aspect of the present invention, since the amorphous layer of the phosphor is deposited at a temperature of 300 ° C. or less by the film deposition means, a part of the components constituting the phosphor is formed during the deposition of the amorphous layer. Can be satisfactorily suppressed from reacting and producing a high melting point compound. As a result, it is easy to produce a phosphor having excellent luminance by highly crystallizing the amorphous layer of the phosphor.

請求項3に係る発明によれば、低融点成分が溶融状態になり、溶融状態の低融点成分に他成分が瞬時に拡散した状態から溶融成分が冷却固化しているので、蛍光体層の成分が均質化され、輝度に優れる良好な結晶状態を得ることができる。   According to the invention of claim 3, the low melting point component is in a molten state, and the molten component is cooled and solidified from the state in which the other components are instantaneously diffused into the molten low melting point component. Can be homogenized and a good crystal state with excellent luminance can be obtained.

図1〜図8は、本発明に係る蛍光体層の結晶化装置の1実施の形態を示す。先ず、図1を参照して、本発明に係る蛍光体層を適用することが可能な、電界放射型ディスプレイ(フィールドエミッションディスプレイ)の陽極について説明する。   1 to 8 show an embodiment of a phosphor layer crystallization apparatus according to the present invention. First, the anode of a field emission display (field emission display) to which the phosphor layer according to the present invention can be applied will be described with reference to FIG.

陽極は、通常ガラス基板からなる透明基板2上に透明電極3を有する陽極基板を備え、この陽極基板の上側つまり一側に、薄膜状の蛍光体層1を有する。蛍光体層1は、ブラックマトリクス4によつて区画した構造となつている。このような蛍光体層1は、図示を省略した陰極の所定のものからの電子線6が照射されることにより、蛍光体層1が適宜に電子線励起されて発光するので、これを透明基板2及び透明電極3を透かして視認することができる。5は、帯電防止層である。   The anode includes an anode substrate having a transparent electrode 3 on a transparent substrate 2 usually made of a glass substrate, and has a thin-film phosphor layer 1 on the anode substrate, that is, on one side. The phosphor layer 1 has a structure partitioned by a black matrix 4. Such a phosphor layer 1 is irradiated with an electron beam 6 from a predetermined cathode (not shown), so that the phosphor layer 1 is appropriately excited and emits light. 2 and the transparent electrode 3 can be seen through. Reference numeral 5 denotes an antistatic layer.

このような蛍光体層1は、図2(b)に示す蛍光体を構成する成分を有する非結晶層8を有する中間基板9を成膜手段によつて形成した後、光25(紫外線領域のレーザ光)を蛍光体の非結晶層8に照射して作製される。先ず、図2(a)に示すように、絶縁性及び光透過性を有する透明基板2の上に透明電極3を及びブラックマトリクス4を形成したものを準備する。ブラックマトリクス4は、黒色カーボンを材料として、レーザアブレーション法によつて形成することができる。   Such a phosphor layer 1 is obtained by forming an intermediate substrate 9 having an amorphous layer 8 having components constituting the phosphor shown in FIG. Laser light) is applied to the amorphous layer 8 of the phosphor. First, as shown to Fig.2 (a), what formed the transparent electrode 3 and the black matrix 4 on the transparent substrate 2 which has insulation and light transmittance is prepared. The black matrix 4 can be formed by a laser ablation method using black carbon as a material.

次に、後述する成膜手段により、非結晶層8つまり蛍光体を構成する成分を有する非結晶の層を形成する。非結晶層8は、薄膜をなし、蛍光体を構成する成分が非結晶の状態(蛍光体の結晶を形成しない、或いは蛍光体の結晶の生成を抑制した状態)で散在するもので、低融点成分と低融点成分よりも高融点の他成分とが混在している。   Next, an amorphous layer 8, that is, an amorphous layer having a component constituting the phosphor is formed by a film forming means described later. The amorphous layer 8 is a thin film, and the components constituting the phosphor are scattered in a non-crystalline state (the phosphor crystal is not formed or the generation of the phosphor crystal is suppressed), and has a low melting point. The component and other components having a higher melting point than the low melting point component are mixed.

非結晶層8は、図2(a)に示すようにブラックマトリクス4を覆う適当なマスク7を配置した状態で、図2(b)に示すように透明電極3の表面上に形成する。蛍光体の非結晶層8が形成されたなら、必要に応じて蛍光体層1のチャージアップを防止する帯電防止層5を形成し、蛍光体の非結晶層8を有する中間基板9となす。蛍光体の非結晶層8が数百nm程度の厚さに薄膜化すれば、表面での帯電が抑制される蛍光体層1となし得るので、帯電防止層5は省略可能になる。   The amorphous layer 8 is formed on the surface of the transparent electrode 3 as shown in FIG. 2B, with an appropriate mask 7 covering the black matrix 4 arranged as shown in FIG. If the phosphor non-crystalline layer 8 is formed, an antistatic layer 5 for preventing the phosphor layer 1 from being charged up is formed as necessary to form an intermediate substrate 9 having the phosphor non-crystalline layer 8. If the non-crystalline layer 8 of the phosphor is thinned to a thickness of about several hundreds of nanometers, the anti-static layer 5 can be omitted because the phosphor layer 1 can be prevented from being charged on the surface.

蛍光体の非結晶層8は、具体的には、ブラックマトリクス4を覆うマスク7を適当に配置し、例えばスパッタ法により成膜して形成することができる。成膜手段であるスパッタ法は、図3に示すように、真空ポンプ11に接続される真空容器10内にマスク7を付属する中間基板9を設置して適用する。中間基板9の上方にはヒータ13が設置され、中間基板9の下方には開口部を有する開口板14及びシャッタ15が順次配置される。また、シャッタ15の下方にはEuを発光中心材料とするスパッタターゲットSrGa2 4 :Eu16を配置する。 Specifically, the phosphor amorphous layer 8 can be formed by appropriately arranging a mask 7 covering the black matrix 4 and forming a film by, for example, sputtering. As shown in FIG. 3, the sputtering method, which is a film forming means, is applied by installing an intermediate substrate 9 with a mask 7 in a vacuum vessel 10 connected to a vacuum pump 11. A heater 13 is installed above the intermediate substrate 9, and an opening plate 14 having an opening and a shutter 15 are sequentially arranged below the intermediate substrate 9. Further, a sputter target SrGa 2 S 4 : Eu 16 having Eu as a light emission center material is disposed below the shutter 15.

成膜条件は、中間基板9の温度を300℃以下、真空度10-1〜10-3Torr(約133×10-1〜10-3Pa)、投入電力100〜300Wとし、Arガス12雰囲気下において、緑色蛍光体であるSrGa2 4 :Eu16の非結晶層8を形成した。中間基板9ひいては非結晶層8の温度を300℃以下に維持して成膜するのは、非結晶層8の成膜時に、蛍光体を構成する成分の一部が反応し、化合物化が進行することを防止するためである。また、蛍光体の構成成分の中で硫黄Sが最も欠損率が高いため、使用ガスをArに代えてH2 Sとすることによつて、沸点が低い硫黄Sの欠損を防ぐことが可能であり、高輝度な発光が得られる組成比の蛍光体の作製に非常に有効である。 The film forming conditions are as follows: the temperature of the intermediate substrate 9 is 300 ° C. or less, the degree of vacuum is 10 −1 to 10 −3 Torr (about 133 × 10 −1 to 10 −3 Pa), the input power is 100 to 300 W, and the atmosphere of Ar gas 12 Below, an amorphous layer 8 of SrGa 2 S 4 : Eu16, which is a green phosphor, was formed. The reason why the intermediate substrate 9 and the amorphous layer 8 are formed while maintaining the temperature at 300 ° C. or lower is that, when the amorphous layer 8 is formed, some of the components constituting the phosphor react and the compounding proceeds. This is to prevent this. In addition, since sulfur S has the highest deficiency among the constituent components of the phosphor, it is possible to prevent deficiency of sulfur S having a low boiling point by using H 2 S instead of Ar. In other words, it is very effective for the production of a phosphor having a composition ratio capable of obtaining light emission with high luminance.

非結晶層8を有する中間基板9が作製されたなら、光照射装置から発する光25を非結晶層8に照射し、非結晶層8の蛍光体を構成する成分の内の低融点成分を選択的に溶融させる。低融点成分の溶解により、溶融状態の低融点成分に固相状態の他成分を拡散させた状態として低融点成分と他成分とを反応させると共に瞬時に冷却させ、蛍光体の非結晶層8の全体を高度に結晶化し、蛍光体層1とする。成膜手段により、蛍光体の結晶の生成を抑制した非結晶層8を形成するので、既に形成された蛍光体の結晶によつて移動が阻害されることなく、溶融状態の低融点成分中に固相状態の他成分が良好に拡散する。   When the intermediate substrate 9 having the amorphous layer 8 is produced, the light 25 emitted from the light irradiation device is irradiated to the amorphous layer 8 and the low melting point component selected from the components constituting the phosphor of the amorphous layer 8 is selected. To melt. By dissolving the low melting point component, the low melting point component and the other component are allowed to react with each other in a state where other components in the solid phase are diffused into the low melting point component in the molten state, and the amorphous layer 8 of the phosphor is allowed to cool instantaneously. The whole is highly crystallized to form a phosphor layer 1. Since the non-crystalline layer 8 in which the generation of the phosphor crystal is suppressed is formed by the film forming means, the movement is not hindered by the already formed phosphor crystal, and in the low melting point component in the molten state. The other components in the solid phase diffuse well.

成膜後の蛍光体の非結晶層8は、光の透過率の吸収端が約300nmに現われる。このため、約300nm未満の波長の光25を照射することにより、光25は非結晶層8の構成成分に吸収されるので、248nmの波長のレーザを発生するKrFエキシマレーザ光の照射が理論的にも有効になる。   In the phosphor amorphous layer 8 after film formation, the absorption edge of light transmittance appears at about 300 nm. For this reason, by irradiating the light 25 having a wavelength of less than about 300 nm, the light 25 is absorbed by the constituent components of the amorphous layer 8, so that it is theoretically irradiated with a KrF excimer laser beam that generates a laser having a wavelength of 248 nm. Also effective.

光照射装置の代表例として、レーザアニール装置として機能するレーザ照射装置を図4に示す。パルスレーザからなるエキシマレーザを発生させるレーザ発振器17で生じさせた光25であるレーザ光を光学機器24内に導き、アッテネータ18によつてエネルギーを自動設定すると共に、反射ミラー22で方向転換させ、長軸ホモジナイザー19a及び短軸ホモジナイザー19bを通して整形して強度を均一化させた後、再度、反射ミラー23で方向転換させ、集光レンズ20を通すことにより、長軸×短軸が例えば200×0.4mmのレーザ光21(光25)に整形し、蛍光体の非結晶層8に照射する。蛍光体の非結晶層8を有する中間基板9は、レーザ照射装置のレーザ処理用チャンバー内に設置されている。   As a typical example of the light irradiation apparatus, a laser irradiation apparatus functioning as a laser annealing apparatus is shown in FIG. Laser light, which is light 25 generated by a laser oscillator 17 that generates an excimer laser consisting of a pulsed laser, is guided into an optical device 24, energy is automatically set by an attenuator 18, and direction is changed by a reflecting mirror 22, After shaping through the long-axis homogenizer 19a and the short-axis homogenizer 19b to make the intensity uniform, the direction is again changed by the reflecting mirror 23 and passed through the condenser lens 20, so that the long axis × short axis is, for example, 200 × 0. The laser light 21 (light 25) of 4 mm is shaped and irradiated on the amorphous layer 8 of the phosphor. An intermediate substrate 9 having an amorphous layer 8 of phosphor is placed in a laser processing chamber of a laser irradiation apparatus.

レーザ光21の照射に際しては、蛍光体の非結晶層8を収容するレーザ処理用チャンバー内を一旦Arガスで置換し、更にH2 Sなどで硫黄雰囲気とし、適当なエネルギー密度のパルスレーザ光21を所定回数の照射となるようにレーザ光21を相対移動させながら照射するように照射条件を選定することが、蛍光体の良好な結晶化を得る上で望まれる。レーザ光21の照射前にレーザ処理用チャンバー内の酸素及び水素を除去すれば、蛍光体の非結晶層8が酸化されることを防止できる。 When irradiating the laser beam 21, the inside of the laser processing chamber that accommodates the amorphous layer 8 of the phosphor is temporarily replaced with Ar gas, and is further made into a sulfur atmosphere with H 2 S or the like, and the pulsed laser beam 21 having an appropriate energy density. In order to obtain good crystallization of the phosphor, it is desirable to select the irradiation condition so that the laser beam 21 is irradiated while being relatively moved so that the laser beam is irradiated a predetermined number of times. If oxygen and hydrogen in the laser processing chamber are removed before irradiation with the laser beam 21, the phosphor amorphous layer 8 can be prevented from being oxidized.

レーザ光21のエネルギー密度などを変えて結晶化させた蛍光体層1を形成した複数の陽極を作製し、それらをSEM(走査型電子顕微鏡)などで観察し、結晶性の良好なものから最適なエネルギー密度などの照射条件を決定し、その照射条件により蛍光体の非結晶層8を結晶化させる。   A plurality of anodes formed with the phosphor layer 1 crystallized by changing the energy density of the laser light 21 are prepared, and observed with an SEM (scanning electron microscope) or the like. Irradiation conditions such as an appropriate energy density are determined, and the amorphous layer 8 of the phosphor is crystallized according to the irradiation conditions.

このとき、非結晶層8の構成成分の内、融点が低い成分が選択的又は効果的に吸収して溶融する波長を選ぶことにより、融点が低い成分を選択的に溶融させることができ、融点が低い成分と融点が高い成分とが良好に結合した結晶性の高い蛍光体層1が得られる。   At this time, by selecting a wavelength at which a component having a low melting point selectively or effectively absorbs and melts among the constituent components of the amorphous layer 8, a component having a low melting point can be selectively melted. A phosphor layer 1 having high crystallinity in which a component having a low melting point and a component having a high melting point are well bonded can be obtained.

更に、レーザ光21によれば、パルス幅が狭いこともあつて短時間処理となり、レーザ処理に伴う蛍光体の構成成分の過度な蒸発が抑制されるため、成膜に必要な原材料の総量を減少させることが可能になる。   Furthermore, according to the laser beam 21, since the pulse width is narrow, the processing is performed for a short time, and excessive evaporation of the constituent components of the phosphor accompanying the laser processing is suppressed. Therefore, the total amount of raw materials necessary for film formation can be reduced. It becomes possible to decrease.

KrFエキシマレーザ光を照射して製作した蛍光体層1に電子線を照射したところ、約530nmにピークをもつ緑色発光が確認できた。また、X線回折測定において、成膜後、レーザ光の照射前では蛍光体であるSrGa2 4 のピークは確認できなかつたが、レーザ光の照射後の測定では確認することができた。つまり、蛍光体の非結晶層8にレーザ光を照射することによつて高輝度な薄膜蛍光体となるに十分な結晶性を有する目的の蛍光体層1が作製されていた。その結果を図5に示す。レーザ光照射前後の両者に観察される回折角:22°付近を中心とする幅の広いピークは、試験の際に基板に用いた石英に起因する回折ピークである。レーザ光照射前では、22°付近を中心とするもの以外に強度のピークは観察されず、蛍光体であるSrGa2 4 は結晶化していないといえる。他方、レーザ光照射後のX線回折測定では、▼印で示すようにSrGa2 4 の鋭いピークが現われていることから、レーザ光照射によつて蛍光体であるSrGa2 4 が良好に結晶化していることが判る。 When the phosphor layer 1 manufactured by irradiating the KrF excimer laser beam was irradiated with an electron beam, green light emission having a peak at about 530 nm was confirmed. Further, in the X-ray diffraction measurement, the peak of SrGa 2 S 4 which is a phosphor could not be confirmed after film formation and before laser light irradiation, but it could be confirmed in the measurement after laser light irradiation. That is, the target phosphor layer 1 having sufficient crystallinity to be a high-brightness thin film phosphor has been produced by irradiating the phosphor amorphous layer 8 with laser light. The result is shown in FIG. A broad peak centered around a diffraction angle of about 22 ° observed before and after laser light irradiation is a diffraction peak caused by quartz used for the substrate during the test. Before the laser beam irradiation, no intensity peak is observed except for the region around 22 °, and it can be said that the phosphor SrGa 2 S 4 is not crystallized. On the other hand, the laser beam irradiation X-ray diffraction measurement after, ▼ since appearing sharp peak SrGa 2 S 4 as indicated by the symbol, SrGa 2 S 4 has favorably a by connexion phosphor laser beam irradiation It turns out that it crystallizes.

なお、表1に示すように、SrGa2 4 の融点は1230℃であるが、Sr+2Ga+4Sが単結晶の混合状態にあれば、Sr−Sの反応は200〜400℃で起こり、2Ga−3Sの反応は950℃程度で起こるとされており、Ga2 3 の融点は1255℃であるため、Sr−Sの反応及び2Ga−3Sの反応は1255℃で概ね終了するとされている。 As shown in Table 1, the melting point of SrGa 2 S 4 is 1230 ° C., but if Sr + 2Ga + 4S is in a single crystal mixed state, the reaction of Sr—S occurs at 200 to 400 ° C. The reaction is supposed to occur at about 950 ° C., and since the melting point of Ga 2 S 3 is 1255 ° C., the reaction of Sr—S and the reaction of 2Ga-3S are said to be almost completed at 1255 ° C.

Figure 2007299571
Figure 2007299571

従つて、先ず、薄膜形成時に化合物を生ずる反応を極力抑制して非結晶層8を生成し、次に、光25を非結晶層8に照射し、Ga及びSという低融点成分を選択的に溶かし、Srを固相のままとして、蛍光体層1であるSrGa2 4 を高度に結晶化させることが、高輝度の薄膜蛍光体層1を得る上で重要である。すなわち、蛍光体の薄膜形成時には、Sr−Sの反応、Ga−Sの反応及び2Ga−3Sの反応を抑制させ、更にはSrGa2 4 の生成をも抑制させることが重要である。このため、蛍光体の非結晶層8は、中間基板9の温度を300℃未満の温度、好ましくは200℃以下の温度、更に好ましくは150℃以下の温度として成膜する。 Accordingly, first, the reaction that generates a compound during the formation of the thin film is suppressed as much as possible to generate the amorphous layer 8, and then the amorphous layer 8 is irradiated with light 25, and low melting point components such as Ga and S are selectively selected. It is important to obtain a high-brightness thin-film phosphor layer 1 by melting it and keeping Sr in a solid phase so that SrGa 2 S 4 as the phosphor layer 1 is highly crystallized. That is, when forming a phosphor thin film, it is important to suppress the Sr—S reaction, the Ga—S reaction, and the 2Ga-3S reaction, and also suppress the generation of SrGa 2 S 4 . For this reason, the phosphor amorphous layer 8 is formed by setting the temperature of the intermediate substrate 9 to a temperature lower than 300 ° C., preferably 200 ° C. or lower, more preferably 150 ° C. or lower.

スパッタ法により中間基板9の温度150℃として蛍光体の薄膜を形成すると、図6(a)に概念的に示すように高融点化合物(SrS,Ga2 3 ,GaSなど)やSrGa2 4 の化合物が殆ど形成されず、○印で示すようにSr,Ga,Sの構成成分が非結晶層8として形成され、また、特許文献3のように中間基板の温度450℃として蛍光体の薄膜を形成すると、図6(b)に概念的に示すように高融点化合物(SrS,Ga2 3 ,GaSなど)(□印で示す)やSrGa2 4 (△印で示す)が結晶化されて若干形成され、中間基板の温度600℃として蛍光体の薄膜を形成すると、図6(c)に概念的に示すように高融点化合物(SrS,Ga2 3 ,GaSなど)(□印で示す)に加え、SrGa2 4 (△印で示す)が多量に形成される。 When a phosphor thin film is formed by sputtering at a temperature of the intermediate substrate 9 of 150 ° C., a high melting point compound (SrS, Ga 2 S 3 , GaS, etc.) or SrGa 2 S 4 as conceptually shown in FIG. The compound of Sr, Ga, S is formed as an amorphous layer 8 as indicated by a circle, and the phosphor thin film is formed at an intermediate substrate temperature of 450 ° C. as in Patent Document 3. As shown in FIG. 6B, refractory compounds (SrS, Ga 2 S 3 , GaS, etc.) (indicated by □) and SrGa 2 S 4 (indicated by Δ) are crystallized. When a phosphor thin film is formed at an intermediate substrate temperature of 600 ° C., a high melting point compound (SrS, Ga 2 S 3 , GaS, etc.) (□ mark) is conceptually shown in FIG. in addition to the illustrated) by, shown in SrGa 2 S 4 (△ mark) is It is formed on the amount.

また、スパッタ法により中間基板9の温度300℃として蛍光体の非結晶層8を試料に形成し、X線回折測定を行つた結果を図7に示す。同図から判るように、試験の際に基板に用いた石英に起因する回折ピークが回折角:22°付近を中心として観察されるのみで、それ以外に強度のピークは観察されず、化合物化の進行は事実上認められない。   FIG. 7 shows the result of X-ray diffraction measurement performed by forming the phosphor amorphous layer 8 on the sample with the temperature of the intermediate substrate 9 set to 300 ° C. by sputtering. As can be seen from the figure, the diffraction peak due to the quartz used for the substrate during the test is only observed with a diffraction angle of around 22 ° as the center, and no other intensity peak is observed, and the compound is compounded. Progress is not allowed in practice.

なお、多元蒸着法により中間基板の温度450℃として蛍光体の非結晶層を形成し、非結晶層のX線回折測定を行つた結果を図8に示す。同図から判るように、GaSの生成に伴う回折ピーク(△印で示す)が明確に確認され、SrSの回折ピーク(■印で示す)も確認できる。沸点(444.674℃)の低い硫黄が蒸発し易いためであると考えられるが、硫黄の比が低いGaSの方がGa2 3 よりも明確に観察されている。 In addition, the result of having performed the X-ray-diffraction measurement of the non-crystalline layer after forming the non-crystalline layer of the phosphor with the temperature of the intermediate substrate of 450 ° C. by the multi-source deposition method is shown in FIG. As can be seen from the figure, a diffraction peak (indicated by Δ) accompanying the generation of GaS is clearly confirmed, and a diffraction peak of SrS (indicated by ■) can also be confirmed. This is probably because sulfur having a low boiling point (444.674 ° C.) is likely to evaporate, but GaS having a lower sulfur ratio is more clearly observed than Ga 2 S 3 .

蛍光体の薄膜形成の段階で蛍光体の結晶化を含む化合物化が生ずると、化合物の溶融には表1から判るように970〜1255℃を超えるような高温度を与える必要が生じ、熱処理時における高輝度が得られる組成比での蛍光体の結晶化が妨げられることになるから、蛍光体の薄膜形成の段階での化合物の生成及び蛍光体の結晶化は極力抑制させることが望ましい。そして、光25の照射により、蛍光体を構成する成分の内の低融点成分(Ga,S)を選択的に溶融させることにより、溶融状態の低融点成分に他成分を拡散させ、各種成分の均一性に優れる分布状態を与えることができ、SrGa2 4 の反応つまり蛍光体の結晶化が良好に起こるようになる。なお、蛍光体の薄膜形成の段階でSr−Sの反応が生ずると、表1に示すようにSrSの融点は>2000℃であるから、レーザー照射での溶解が困難になり、ひいてはSr,Sの不足を惹起し、SrGa2 4 などの高輝度が得られる組成比での蛍光体の生成反応が高度には起こり得なくなる。 When compounding including crystallization of the phosphor occurs at the stage of forming the phosphor thin film, it is necessary to apply a high temperature exceeding 970 to 1255 ° C. as shown in Table 1 to melt the compound. Therefore, it is desirable to suppress the generation of the compound and the crystallization of the phosphor at the stage of forming the phosphor thin film as much as possible. Then, the low melting point component (Ga, S) among the components constituting the phosphor is selectively melted by the irradiation of the light 25, thereby diffusing other components into the molten low melting point component, A distribution state having excellent uniformity can be provided, and the reaction of SrGa 2 S 4 , that is, the crystallization of the phosphor can occur satisfactorily. When Sr—S reaction occurs in the stage of forming the phosphor thin film, the melting point of SrS is> 2000 ° C. as shown in Table 1, so that it becomes difficult to dissolve by laser irradiation, and Sr, S Insufficiency of SrGa 2 S 4 is caused, and the production reaction of the phosphor at a composition ratio that can obtain high luminance such as SrGa 2 S 4 cannot occur to a high degree.

なお、表1に示す通りであるが、融点はSrGa2 4 :1230℃、Ga2 3 :1255℃、SrS:>2000℃、GaS:970℃、Sr:769℃、Ga:29.78℃、S:112.8℃である。また、沸点は、Sr:1384、Ga:2403℃、S:444.674℃である。中間基板9ひいては非結晶層8の温度を300℃以下に維持して成膜すれば、Sの蒸発も防ぐことができる。 As shown in Table 1, the melting points are SrGa 2 S 4 : 1230 ° C., Ga 2 S 3 : 1255 ° C., SrS:> 2000 ° C., GaS: 970 ° C., Sr: 769 ° C., Ga: 29.78. ° C, S: 112.8 ° C. Moreover, a boiling point is Sr: 1384, Ga: 2403 degreeC, S: 444.674 degreeC. If the intermediate substrate 9 and thus the amorphous layer 8 are formed at a temperature of 300 ° C. or lower, the evaporation of S can be prevented.

ところで、上記の1実施の形態にあつては、成膜手段のスパッタ用ターゲットとして、発光中心材料としてEuを添加したSrGa2 4 を使用したが、蛍光体の構成成分の割合を変えて混合し、成形したものをスパッタ用ターゲットとすることにより、任意の組成比の蛍光体の非結晶の層である非結晶層8を作製することが可能である。また、成膜手段のスパッタターゲットとして、Sr,Ga,Sをそれぞれ別個に配置し、また、EuはSrターゲットの上に所定割合で配置し、透明基板2上の透明電極3の上側に、蛍光体を構成する成分を有する非結晶の層を成膜することも可能である。 By the way, in the above-described one embodiment, SrGa 2 S 4 to which Eu is added as the emission center material is used as the sputtering target of the film forming means, but mixing is performed by changing the ratio of the constituent components of the phosphor. The amorphous layer 8 that is a non-crystalline layer of a phosphor having an arbitrary composition ratio can be produced by using the molded target as a sputtering target. Further, Sr, Ga, and S are separately disposed as sputtering targets of the film forming means, and Eu is disposed at a predetermined ratio on the Sr target, and fluorescent light is disposed on the transparent electrode 3 on the transparent substrate 2. It is also possible to form an amorphous layer having components constituting the body.

また、上記1実施の形態にあつては、蛍光体層1としてSrGa2 4 :Euを形成したが、蛍光体層1は広くアルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca,Sr,Ba)含有薄膜とすることができる。上記の成膜手段や構成元素を別個のターゲットとして基板上側に成膜する方法であれば良く、ストロンチウム(Sr)に代えてカルシウム(Ca)やバリウム(Ba)を使用すれば、カルシウムチオガレイト蛍光体やバリウムチオガレイト蛍光体からなる蛍光体層1の作製が可能である。ユーロピウム(Eu)添加カルシウムチオガレイト蛍光体、及びユーロピウム添加バリウムチオガレイト蛍光体も緑色の発光色を示す。CaGa2 4 及びBaGa2 4 についても、それぞれの構成成分の内、融点が低い成分が効果的に吸収して溶解する波長の光を照射するなどして、光照射部分の蛍光体の非結晶層の一部を溶解し、液相−固相反応によつて化合させて蛍光体を結晶化することが理論上可能である。 In the first embodiment, SrGa 2 S 4 : Eu is formed as the phosphor layer 1, but the phosphor layer 1 is widely used in alkaline earth metal thiogallate (M-Ga 2 S 4 (M = Ca , Sr, Ba) -containing thin film as long as the film forming means and the constituent elements are formed on the upper side of the substrate as separate targets, and instead of strontium (Sr), calcium (Ca), If barium (Ba) is used, it is possible to produce a phosphor layer 1 made of calcium thiogallate phosphor or barium thiogallate phosphor, europium (Eu) added calcium thiogallate phosphor, and europium added The barium thiogallate phosphor also shows a green emission color, and CaGa 2 S 4 and BaGa 2 S 4 are also effectively composed of components having a low melting point. By irradiating light with a wavelength that absorbs and dissolves, a part of the amorphous layer of the phosphor in the light irradiation part is dissolved and combined by a liquid phase-solid phase reaction to crystallize the phosphor. It is theoretically possible.

Euに代えてCe(セリウム)を発光中心材料とするストロンチウムチオガレイト蛍光体SrGa2 4 :Ceは、青色の発光色を有する。アルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca,Sr,Ba)の1種を母体とし、発光中心材料として希土類又は遷移金属を添加することで、青色,緑色,赤色の基本三原色を発光させることが可能である。更に、アルカリ土類金属チオガレイト蛍光体の結晶化に限らず、他の薄膜蛍光体や半導体への適用も可能であると考えられる。構成成分によつては、レーザ光の照射による蒸発が避けられない成分も存在する。その場合、予め、陽極基板上に蒸発分を過剰に供給しておくことにより、高輝度を得る組成比として最適な成分比での蛍光体の結晶化を行うことが可能である。 The strontium thiogallate phosphor SrGa 2 S 4 : Ce using Ce (cerium) as the emission center material instead of Eu has a blue emission color. The basic three colors of blue, green, and red are obtained by adding one of alkaline earth metal thiogallate (M-Ga 2 S 4 (M = Ca, Sr, Ba)) and adding rare earth or transition metal as the luminescent center material. Furthermore, it is considered that the present invention is not limited to crystallization of alkaline earth metal thiogallate phosphors, but can be applied to other thin film phosphors and semiconductors. There are components that cannot avoid evaporation due to laser light irradiation, in which case, by supplying an excessive amount of evaporated components on the anode substrate in advance, fluorescence with the optimum component ratio is obtained as a composition ratio for obtaining high brightness. It is possible to crystallize the body.

また、スパッタ法により成膜することに代えて、多元蒸着(MSD)法によつて成膜した蛍光体の非結晶の層である非結晶層8を得、この非結晶層8に紫外線領域のレーザ光を照射することによつても上記1実施の形態と同様に所要の結晶性を有する蛍光体層1を得ることができる。つまり、成膜手段としては、中間基板9ひいては非結晶層8の温度を300℃以下に維持して成膜すると共に、増粘材や有機溶媒を使用せずに蛍光体を構成する成分を蛍光体の輝度が高くなる比率で有する非結晶層を成膜することができるスパッタ法を含む手段を採用することが望まれる。   Further, instead of forming a film by sputtering, an amorphous layer 8 which is an amorphous layer of a phosphor formed by a multi-source deposition (MSD) method is obtained, and this amorphous layer 8 has an ultraviolet region. By irradiating with laser light, the phosphor layer 1 having required crystallinity can be obtained as in the first embodiment. That is, as a film forming means, the temperature of the intermediate substrate 9 and thus the amorphous layer 8 is maintained at 300 ° C. or lower, and the component constituting the phosphor is made fluorescent without using a thickener or an organic solvent. It is desirable to adopt means including a sputtering method capable of forming an amorphous layer having a ratio of increasing the luminance of the body.

本発明に係る蛍光体層1の結晶化方法は、陽極基板の上側つまり一側に、蛍光体を構成する成分を有する非結晶の層を成膜手段によつて形成するものに広く適用が可能であり、FED、有機EL(有機エレクトロルミネッセンス)のディスプレイのみならず、無機ELのディスプレイのように結晶化させた蛍光体層1を絶縁層で挟んだ構造に対しても同様に適用が可能である。   The method for crystallizing the phosphor layer 1 according to the present invention can be widely applied to a method in which an amorphous layer having components constituting the phosphor is formed on the upper side, that is, one side of the anode substrate by a film forming means. This is applicable not only to FED and organic EL (organic electroluminescence) displays, but also to structures in which the crystallized phosphor layer 1 is sandwiched between insulating layers, such as inorganic EL displays. is there.

本発明の1実施の形態に係る蛍光体層を備える電界放射型ディスプレイの陽極を示す断面図。Sectional drawing which shows the anode of a field emission display provided with the fluorescent substance layer which concerns on one embodiment of this invention. 同じく蛍光体層の製作工程を断面で示し、図2(a)は蛍光体層の製作前を示す説明図、図2(b)は蛍光体層の製作後を示す説明図。Similarly, the manufacturing process of the phosphor layer is shown in cross section, FIG. 2 (a) is an explanatory diagram showing the phosphor layer before fabrication, and FIG. 2 (b) is an explanatory diagram showing the phosphor layer after fabrication. 同じくスパッタ法を示す説明図。Explanatory drawing which similarly shows a sputtering method. 同じくレーザ照射装置を示し、図4(イ)は正面図、図4(ロ)は右側面図。FIG. 4A is a front view and FIG. 4B is a right side view of the laser irradiation apparatus. 同じく成膜後及びレーザ光の照射後のSrGa2 4 のX線回折の結果を示す線図。Similarly graph showing the results of X-ray diffraction of SrGa 2 S 4 after irradiation of the film formation and after the laser beam. 同じく各種中間基板の温度として蛍光体の薄膜を形成したときの膜内の様子示す説明図であり、図6(a)は中間基板の温度を150℃とした説明図、図6(b)は中間基板の温度を450℃とした説明図、図6(c)は中間基板の温度を600℃とした説明図。Similarly, it is explanatory drawing which shows the mode in the film | membrane when the thin film of a fluorescent substance is formed as temperature of various intermediate substrates, FIG.6 (a) is explanatory drawing which set the temperature of the intermediate substrate to 150 degreeC, FIG.6 (b) is FIG. FIG. 6C is an explanatory diagram in which the temperature of the intermediate substrate is 450 ° C., and FIG. 6C is an explanatory diagram in which the temperature of the intermediate substrate is 600 ° C. 同じく成膜後の蛍光体の薄膜のX線回折の結果を示す線図。The diagram which similarly shows the result of the X-ray diffraction of the thin film of the fluorescent substance after film-forming. 中間基板の温度を450℃として成膜後の蛍光体の薄膜のX線回折の結果を示す線図。The diagram which shows the result of the X-ray diffraction of the thin film of the fluorescent substance after film-forming by making the temperature of an intermediate substrate into 450 degreeC.

符号の説明Explanation of symbols

1:蛍光体層
2:透明基板
3:透明電極
8:蛍光体の非結晶層
21:レーザ光21(光)
25:光
1: Phosphor layer 2: Transparent substrate 3: Transparent electrode 8: Amorphous layer of phosphor 21: Laser light 21 (light)
25: Light

Claims (5)

透明基板(2)及び透明電極(3)を有する陽極基板の上側に、蛍光体を構成する成分を有する非結晶の層を成膜手段によつて形成し、低融点成分と低融点成分よりも高融点の他成分とが混在する蛍光体の非結晶層(8)となした後、光(25)を蛍光体の非結晶層(8)に照射して、蛍光体を構成する成分の内の低融点成分を選択的に溶融させ、蛍光体の非結晶層(8)を結晶化して蛍光体層(1)となすことを特徴とする蛍光体層の結晶化方法。 On the upper side of the anode substrate having the transparent substrate (2) and the transparent electrode (3), an amorphous layer having a component constituting the phosphor is formed by a film forming means, and the lower melting point component and the lower melting point component are formed. After forming the phosphor amorphous layer (8) mixed with other components having a high melting point, light (25) is irradiated to the phosphor amorphous layer (8), and among the components constituting the phosphor. A method for crystallizing a phosphor layer, wherein the low melting point component is selectively melted and the amorphous layer (8) of the phosphor is crystallized to form the phosphor layer (1). 前記成膜手段が、蛍光体を構成する成分を蛍光体の輝度が高くなる比率で有する非結晶層(8)を成膜することができるスパッタ法を含む手段であると共に、蛍光体の非結晶層(8)を300℃以下の温度として成膜することを特徴とする請求項1の蛍光体層の結晶化方法。 The film forming means includes means including a sputtering method capable of forming an amorphous layer (8) having a component constituting the phosphor at a ratio of increasing the luminance of the phosphor, and the phosphor non-crystal. The method for crystallizing a phosphor layer according to claim 1, wherein the layer (8) is formed at a temperature of 300 ° C or lower. 前記低融点成分が溶融した際、溶融した低融点成分中に高融点の他成分が分散していることを特徴とする請求項1の蛍光体層の結晶化方法。 2. The phosphor layer crystallization method according to claim 1, wherein when the low melting point component is melted, other components having a high melting point are dispersed in the melted low melting point component. ガラス基板(2)及び透明電極(3)を有する陽極基板の上側に、蛍光体を構成する成分を有し、低融点成分と低融点成分よりも高融点の他成分とが混在する非結晶の層からなる蛍光体の非結晶層(8)を形成する成膜手段と、蛍光体の非結晶層(8)の蛍光体を構成する成分の内の低融点成分を選択的に溶融させる光(25)を発生する光照射装置とを備え、前記光照射装置の光(25)が蛍光体の非結晶層(8)に照射されることにより、蛍光体の非結晶層(8)が結晶化されて蛍光体層(1)が形成されることを特徴とする蛍光体層の結晶化装置。 An amorphous substrate having a component constituting a phosphor on the upper side of an anode substrate having a glass substrate (2) and a transparent electrode (3), wherein a low melting point component and other components having a higher melting point than the low melting point component are mixed. Film forming means for forming a phosphor amorphous layer (8) composed of layers, and light for selectively melting a low-melting-point component among the components constituting the phosphor of the phosphor amorphous layer (8) ( 25), and the non-crystalline layer (8) of the phosphor is crystallized by irradiating the non-crystalline layer (8) of the phosphor with the light (25) of the light irradiating device. The phosphor layer crystallization apparatus is characterized in that the phosphor layer (1) is formed. 透明基板(2)及び透明電極(3)を有する陽極基板の上側に、結晶化させた薄膜蛍光体層(1)を有するディスプレイ用の薄膜蛍光体であつて、
前記薄膜蛍光体層(1)が、蛍光体を構成する成分を有する非結晶の層として成膜手段によつて形成され、低融点成分と低融点成分よりも高融点の他成分とが混在する蛍光体の非結晶層(8)に対し、光(25)を照射して、蛍光体を構成する成分の内の低融点成分を選択的に溶融させ、蛍光体の非結晶層(8)が結晶化されて形成されていることを特徴とするディスプレイ用の薄膜蛍光体。
A thin film phosphor for display having a crystallized thin film phosphor layer (1) on the upper side of an anode substrate having a transparent substrate (2) and a transparent electrode (3),
The thin film phosphor layer (1) is formed by a film forming means as an amorphous layer having components constituting the phosphor, and a low melting point component and other components having a higher melting point than the low melting point component are mixed. The amorphous layer (8) of the phosphor is irradiated with light (25) to selectively melt the low melting point component of the components constituting the phosphor, so that the amorphous layer (8) of the phosphor is formed. A thin film phosphor for a display, characterized by being formed by crystallization.
JP2006125295A 2006-04-28 2006-04-28 Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display Pending JP2007299571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125295A JP2007299571A (en) 2006-04-28 2006-04-28 Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125295A JP2007299571A (en) 2006-04-28 2006-04-28 Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display

Publications (1)

Publication Number Publication Date
JP2007299571A true JP2007299571A (en) 2007-11-15

Family

ID=38768902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125295A Pending JP2007299571A (en) 2006-04-28 2006-04-28 Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display

Country Status (1)

Country Link
JP (1) JP2007299571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095837A (en) * 2016-12-07 2018-06-21 日本電気硝子株式会社 Method for producing wavelength conversion member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294852A (en) * 2000-04-14 2001-10-23 Tdk Corp Fluorescent substance, method for producing the same, apparatus for producing thin film, and el element
JP2004111333A (en) * 2002-09-20 2004-04-08 Japan Steel Works Ltd:The Method and device for crystallization of phosphor layer of field emission display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294852A (en) * 2000-04-14 2001-10-23 Tdk Corp Fluorescent substance, method for producing the same, apparatus for producing thin film, and el element
JP2004111333A (en) * 2002-09-20 2004-04-08 Japan Steel Works Ltd:The Method and device for crystallization of phosphor layer of field emission display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095837A (en) * 2016-12-07 2018-06-21 日本電気硝子株式会社 Method for producing wavelength conversion member

Similar Documents

Publication Publication Date Title
JP4258536B2 (en) Method for producing crystallized metal oxide thin film
JP2014086255A (en) Ultraviolet light generating target, electron beam exciting ultraviolet light source, and process of manufacturing ultraviolet light generating target
JP3542031B2 (en) Cold cathode forming method, electron-emitting device, and applied device
WO2008072454A1 (en) Production method of crystalline semiconductor film and heating control method of semiconductor film and semiconductor crystallizing device
JP5116016B2 (en) Method for manufacturing phosphor thin film
JP2007299571A (en) Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display
US6017579A (en) Method of forming magnesium oxide films on glass substrate for use in plasma display panels
US20030087129A1 (en) Treated phosphor, making method, thin film making apparatus, and EL device
KR100918225B1 (en) Method for producing fluorescent substance films
JP5339683B2 (en) Method of manufacturing phosphor film using multi-source vacuum deposition method
JP4609860B2 (en) Thin film phosphor manufacturing method, thin film phosphor, inorganic EL light emitting device, and field emission display
JP2007046002A (en) Composite oxide phosphor, method for producing the same, and light emitting device
JP4952956B2 (en) Phosphor with crystallized metal oxide thin film
WO2010005111A1 (en) Group iii nitride semiconductor laminate structure and process for producing the group iii nitride semiconductor laminate structure
JP2004111333A (en) Method and device for crystallization of phosphor layer of field emission display
JP2005290038A (en) Fluorescent substance thin film, method for producing the same and apparatus for producing the same
JP2000087031A (en) Thin blue phosphor film and its preparation
JP5145490B2 (en) Method for manufacturing phosphor for inorganic EL
JP2007073941A (en) Method of crystallizing non-crystal semiconductor film, and device of manufacturing substrate to be treated for crystallization
JP4157091B2 (en) Thin film manufacturing method, compound semiconductor, thin film phosphor, and anode panel of field emission display
McKittrick et al. Enhanced photoluminescent emission of thin phosphor films via pulsed excimer laser melting
JP2007231165A (en) Green fluorescent substance and method for producing the same
JP5441321B2 (en) Method for manufacturing phosphor laminated film
DE102004048378A1 (en) Zinc oxide film substance for photographic film manufacture for scintillation detector for time-of-flight mass spectrometer
JPH08203672A (en) Manufacture of thin film electroluminescent element, and manufacturing device thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111130