JP2004111333A - Method and device for crystallization of phosphor layer of field emission display - Google Patents

Method and device for crystallization of phosphor layer of field emission display Download PDF

Info

Publication number
JP2004111333A
JP2004111333A JP2002275848A JP2002275848A JP2004111333A JP 2004111333 A JP2004111333 A JP 2004111333A JP 2002275848 A JP2002275848 A JP 2002275848A JP 2002275848 A JP2002275848 A JP 2002275848A JP 2004111333 A JP2004111333 A JP 2004111333A
Authority
JP
Japan
Prior art keywords
phosphor layer
phosphor
film
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275848A
Other languages
Japanese (ja)
Inventor
Yoichiro Nakanishi
中西 洋一郎
Toshiyuki Ishida
石田 稔幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002275848A priority Critical patent/JP2004111333A/en
Publication of JP2004111333A publication Critical patent/JP2004111333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a conventional thiogallate thin film phosphor layer, of which base material is an alkaline-earth metal thiogallate compound, is inferior in crystallization and productivity. <P>SOLUTION: In this crystallization method of the phosphor layer 10 formed in a thin film on the upper side of an anode substrate having a glass substrate 2 and a transparent electrode 3, the phosphor layer 1 formed of a thin film containing the alkaline-earth metal thiogallate on the upper side of the anode substrates 2, 3 is formed by a deposition means, and then with a laser A1 in an ultraviolet region, the phosphor layer 1 is irradiated to be crystallized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電界放射型ディスプレイの蛍光体層の結晶化方法及びその装置に関するものである。
【0002】
【従来の技術及びその課題】
従来、電界放射型ディスプレイ(フィールドエミッションディスプレイ)において、陽極に蛍光体膜が使用されている。この蛍光体膜は、ガラス等の基板上の透明電極の上にパターン化されて形成されている。
【0003】
この種の蛍光体膜として、母体材料をアルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca,Sr,Ba)とする薄膜蛍光体層を、多元蒸着法(MSD)によつて成膜した後、ヒータによる熱処理を施して形成するものが知られている(電子情報通信学会信学技報2001年12月 1〜6頁 財団法人 電子情報通信学会 発行、特開平10−261367)。
【0004】
しかしながら、このような従来の蛍光体膜にあつては、チオガレイト薄膜蛍光体層を基板上に堆積させた後にH2 S減圧雰囲気中で800℃程度の熱処理を行い、結晶性を改善させているため、熱処理に長時間を要して生産効率が低いという技術的課題がある。
【0005】
図7に、Sr−Ga2 4 :Ce蛍光体(ストロンチウムチオガレイト蛍光体)に対し、熱処理前as−depo及び下線を付して示すように熱処理時間を相違させたX線回折パターン特性を示す。熱処理時間は15,30,45,60分であり、熱処理の加熱源には赤外線ヒータを用いた。同図から分かるように、熱処理前as−depoに比して熱処理による効果が見られると共に、熱処理時間が15〜60分の範囲では、長時間の方がX線回折の強度(INTENSITY)が大きく、▼印で示すSr−Ga2 4 蛍光体に関して結晶性を改善させる効果が出ていることが分かる。従つて、熱処理に長時間を要する。
【0006】
また、蛍光体膜は、500〜2000nmの厚い膜厚で形成される(特開平10−261367)。これは、特に、チオガレイト薄膜蛍光体では、500nm未満の薄い蛍光体膜にすると、結晶性が損なわれると共に、電子が蛍光体膜を透過し易くなり、発光効率が低下する、と考えられていたためである。
【0007】
しかしながら、電界放射型ディスプレイの蛍光体膜にあつては、エミッタ・ゲート側とアノード側との間の絶縁破壊を防止するため、電子の加速電圧となる陽極電圧を数kV(5kV)以下にすることが望まれる。本発明者は、この陽極電圧における電子の侵入深さは、チオガレイト薄膜蛍光体にあつては表面から100nm以下であり、これを超える厚さに電子が侵入しないことを知得した。
【0008】
更に、結晶性改善による効果である発光効率は、図8に示すようであり、加速電圧が数kV(5kV)以下であつても最適温度として800℃を与える必要があることが分かる。
【0009】
しかしながら、電界放射型ディスプレイの蛍光体膜にあつては、ガラス基板及び透明電極の上に形成するため、800℃の加熱温度はガラス基板及び透明電極の損傷原因となる。熱処理に長時間を要し、かつ、高温(800℃)を与える必要を生ずる主たる原因は、蛍光体層の厚い膜厚及び熱処理方法にあると考えられる。
【0010】
一方、基板上にゾル−ゲル法又はスプレー熱分解法により遷移金属カルコゲニド含有ゲル膜を形成させた後、これにレーザ光を照射させて半導体からなる蛍光体膜を製造する方法も知られている(特許第3032827号)。
【0011】
しかしながら、このような従来の蛍光体膜にあつては、ヒータに代えてレーザ光による結晶化を行つているが、遷移金属カルコゲニドからなるゲル膜をゾル−ゲル法又はスプレー熱分解法によつて基板上に形成するものに限定されている。また、この半導体は,蛍光体膜としての使用が予定されているが、電界放射型ディスプレイに専用のものではない。
【0012】
加えて、遷移金属カルコゲニド膜のバンドギャップよりも高いエネルギーの波長のレーザ光を照射するため、電界放射型ディスプレイに使用する蛍光体膜に必要な結晶化された膜厚をレーザ光の照射によつて簡易に得難くなる。レーザ光のエネルギーが高いほど、波長は短くなり、膜内に侵入するレーザ光の深さが浅くなるためである。
【0013】
本発明は、電界放射型ディスプレイの蛍光体層の結晶化方法及びその装置の提供を目的としてなされたものであり、母体材料をアルカリ土類金属チオガレイトとするチオガレイト薄膜蛍光体層を、多元蒸着法(MSD)又は分子線エピタキシー法(MBE)によつて成膜した後、紫外領域のレーザ光を照射させて結晶性を向上させることにより、結晶性に優れる蛍光体膜を能率的に製造する方法及びその装置を提供することをその目的としている。
【0014】
【課題を解決するための手段】
本発明は、このような従来の技術的課題に鑑みてなされたもので、その構成は、次の通りである。
請求項1の発明は、ガラス基板2及び透明電極3を有する陽極基板の上側に薄膜状に形成する蛍光体層10の結晶化方法において、陽極基板の上側にアルカリ土類金属チオガレイト含有薄膜からなる蛍光体層10を成膜手段によつて形成した後、該蛍光体層10に紫外領域のレーザ光A1を照射して結晶化することを特徴とする電界放射型ディスプレイの蛍光体層の結晶化方法である。
請求項2の発明は、前記成膜手段が、多元蒸着法又は分子線エピタキシー法であることを特徴とする請求項1の電界放射型ディスプレイの蛍光体層の結晶化方法である。
請求項3の発明は、前記紫外領域のレーザ光A1が、蛍光体層10のバンドギャップよりも低いエネルギーの波長領域であることを特徴とする請求項1又は2の電界放射型ディスプレイの蛍光体層の結晶化方法である。
請求項4の発明は、前記蛍光体層10の表面から100nm以下の厚さで結晶化するように、前記紫外領域のレーザ光A1を照射することを特徴とする請求項1,2又は3の電界放射型ディスプレイの蛍光体層の結晶化方法である。
請求項5の発明は、ガラス基板2及び透明電極3を有する陽極基板の上側にアルカリ土類金属チオガレイト含有薄膜からなる蛍光体層10を形成する成膜手段と、レーザ発振器20で生じさせた紫外領域のレーザ光A1を照射するレーザアニール装置とを備え、
前記蛍光体層10を成膜手段によつて形成した後、該蛍光体層10に紫外領域のレーザ光24を照射して結晶化することを特徴とする電界放射型ディスプレイの蛍光体層の結晶化装置である。
【0015】
【発明の実施の形態】
図1は、本発明に係る電界放射型ディスプレイの蛍光体層を備える陽極を示す。この陽極は、透明電極3及びガラス基板2を有する陽極基板並びにブラックマトリクス5によつて区画された蛍光体膜1を有する。蛍光体膜1は、図示を省略した陰極の所定のものからの電子線20が蛍光体膜1に照射されることにより、ブラックマトリクス5によつて区画された所定の蛍光体膜1が電子線励起発光するので、これを透明電極3及びガラス基板2を透して視認することができる。7は帯電防止層である。
【0016】
このような蛍光体膜1は、図2に示すようにして蛍光体層10を有する中間基板19を形成した後、紫外領域のレーザ光を照射して結晶化することにより製作される。先ず、絶縁性及び光透過性を有するガラス基板2の上に透明電極3及びブラックマトリクス5を形成したものを準備する。ブラックマトリクス5は、黒色カーボンを材料としてレーザアブレーション法によつて形成することができる。
【0017】
次に、後述する薄膜形成手段により、蛍光体膜1となるべき蛍光体層10を形成する。蛍光体層10は、図2(a)に示すようにブラックマトリクス5を覆う適当なマスク8を配置した状態で、図2(b)に示すように透明電極3の上に形成する。蛍光体層10が形成されたなら、必要に応じて蛍光体膜1のチャージアップを防止する帯電防止層7を形成し、蛍光体層10を有する中間基板19とする。蛍光体層10を薄膜化すれば、表面での帯電が抑制される蛍光体膜1となし得るので、帯電防止層7を省略できる可能性も生ずる。
【0018】
蛍光体層10は、具体的には、ブラックマトリクス5を覆うマスク8を適当に配置し、多元蒸着法(MSD)により成膜する。多元蒸着法(MSD)は、図3に示すように、真空ポンプ31に接続される真空容器30内にマスク8を付属する中間基板19を設置して適用する。中間基板19の上方には温度センサー32及びヒータ34が順次に配置され、中間基板19の下方には開口部36aを有する開口板36及びシャッタ38が順次に配置される。また、シャッタ38の下方には第1〜第3の蒸着源40a,40b,40cを配置する。第1の蒸着源40aには、Sr金属(金属ストロンチウム)が収容され、第3の蒸着源40cには、Ga2 3 粉が収容されている。Sr金属及びGa2 3 粉は、母材を形成する材料である。第2の蒸着源40bには、発光中心を形成するための蒸着物質としてのEuCl3 粉(塩化ユーロピウム)が収容されている。
【0019】
成膜条件は、中間基板19の温度450〜600℃、真空度10−6〜10−9Torr(133−5〜133−8Pa)、室温までの温度降下速度5°/分とし、Ga2 3 /Sr供給比約60とした。これにより、結晶化のための100nm以下の厚さのSr−Ga2 4 :Euを有する蛍光体層10を形成した。Sr−Ga2 4 :Euは、緑色の発光色を呈する材料である。
【0020】
次に、紫外領域のレーザ光による照射処理をすることにより、蛍光体層10を結晶化させ、蛍光体膜1とする。
【0021】
レーザ処理(アニール)に用いたレーザアニール装置を図4に示す。パルス・レーザからなるエキシマレーザを発生させるレーザ発振器20で生じさせたレーザ光A1を光学系容器29内に導き、アッテネータ21によつてエネルギーを自動設定すると共に、反射ミラー27で方向転換させ、長軸ホモジナイザー22a及び短軸ホモジナイザー22bを通して整形して強度を均一化させた後、再度、反射ミラー28で方向転換させ、集光レンズ23を通すことにより、長軸×短軸が、例えば200×0.4mmのレーザ光24に整形し、蛍光体層10に照射する。蛍光体層10を有する中間基板19は、レーザアニール装置のレーザ処理用チャンバー内に設置されている。
【0022】
レーザ光A1の照射に際しては、蛍光体層10を収容するレーザ処理用チャンバー内を真空・希ガス等の処理材料に適した雰囲気に設定し、適当なエネルギー密度のレーザ光A1を所定回数で照射するように照射条件を選定することが、良好な結晶化を得る上で望まれる。レーザ処理用チャンバー内の酸素及び水分を十分に除去すれば、蛍光体が酸化されることを防止できる。
【0023】
レーザ光A1のエネルギー密度などを変えて結晶化させた蛍光体膜1を形成した複数の陽極を作製し、それらをSEM(走査型電子顕微鏡)等で直接観察し、結晶性の良好なものから最適なエネルギー密度などの照射条件を決定し、その照射条件により、蛍光体層10を結晶化させる。
【0024】
そして、蛍光体層10の表面から100nm以下の厚みの範囲でアモルファス状態の蛍光体層10を結晶化する。所定の陽極電圧を与えることが望まれる電界放射型ディスプレイのチオガレイト薄膜蛍光体膜にあつては、表面から100nmを超える厚さに電子が侵入することはなく、従つて結晶化させる膜厚も100nm以下で良いためである。透明電極3及びガラス基板2からなる陽極基板側には、レーザ光A1の影響を受けず、結晶化していない蛍光体層10が所定厚さで残存する。これにより、透明電極3及びガラス基板2へのレーザ光A1の直接照射を防止すると共に、レーザ光A1の照射に起因して、透明電極3及びガラス基板2が過度に昇温することを抑制させる。この紫外領域のレーザ光A1の照射処理により、照射部分に結晶化が生ずると共に、表面が平坦化し、結晶性が向上する。
【0025】
このとき、バンドギャップより低いエネルギーをもつ波長の紫外領域のレーザ光A1を照射して、結晶性の改善を図ることができる。Sr−Ga2 4 のバンドギャップは4.4eVである。バンドギャップ未満のエネルギーをもつ波長の紫外領域レーザ光A1を照射すれば、レーザ光のエネルギーが低くなり、波長は長くなり、膜内に侵入するレーザ光A1の深さが深くなり、蛍光体層10の表面から100nm以下の厚さで結晶性を簡易に改善させることができるためである。
【0026】
蛍光体膜1の走査型電子顕微鏡(SEM)による写真を図5に示す。図5(a)に示す熱処理(熱アニール)による場合と比較して、図5(b)に示す紫外領域レーザ光A1の照射処理(レーザアニール)によれば、蛍光体膜1の表面の平坦化が顕著に得られることが分かる。これにより、表面抵抗の減少による帯電の抑制が得られると共に、表面積の減少により、電子線20の衝突に伴う蛍光体膜1からの酸素、水分、二酸化炭素等のガスの放出の抑制が得られ、これらのガスによつて電界放射型ディスプレイの内部が損傷を受け、耐久性を低下させることが抑制される。
【0027】
図6に、蛍光体膜1に電子線を照射した発光スペクトルを示す。但し、308nmの波長を発生するエキシマであるXeCLからの複数のエネルギー密度(300〜400mJ/cm2 )のエキシマレーザを使用し、窒素ガス雰囲気中にて幅0.4mmのレーザ光24に整形して蛍光体層10に照射し、複数の蛍光体膜1を得た。同図において、縦軸は電子線励起発光による平均強度(任意単位)であり、横軸は波長(nm)である。同図において破線Aは熱処理による特性を示し、実線Bはバンドギャップより低い紫外領域レーザ光A1を照射したレーザ処理(レーザアニール)による特性を示す。実線Bの方が結晶性が良い結果、スペクトルの半値幅が狭く、緑色以外の不必要な色成分が減少することが分かる。レーザ光A1の照射により、蛍光体膜1の多数の結晶が、ガラス基板2及び透明電極3の上側に100nm以下の厚さで整然と均一に配列する結果であると考えられる。
【0028】
更に、レーザ光A1による照射処理によれば、表層部のみに100nm以下の厚さで結晶化を与えることが可能であり、その結果、電子の侵入深度程度のみの結晶化を行わせることが可能であり、蛍光体層10全体の結晶化を行う必要が無くなる。また、レーザ光A1による照射処理によれば、短時間処理となり、レーザ処理に伴う蛍光体層10を構成する原料の気化が抑制されるため、成膜に必要な原材料の総量を減少させることが可能になる。
【0029】
ところで、上記1実施の形態にあつては、蛍光体膜1としてSr−Ga2 4 :Euを形成したが、蛍光体膜1は、広くアルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca,Sr,Ba)含有薄膜とすることができる。金属ストロンチウムに代えて金属カルシウム(固体無機材料)を使用すれば、カルシウムチオガレイト蛍光体からなる蛍光体膜1を作製でき、金属ストロンチウムに代えて金属バリウム(固体無機材料)を使用すれば、バリウムチオガレイト蛍光体からなる蛍光体膜1を作製できる。ユーロピウム添加カルシウムチオガレイト蛍光体、及びユーロピウム添加バリウムチオガレイト蛍光体も緑色の発光色を有する。なお、Ca−Ga2 4 のバンドギャップは4.2eV、Ba−Ga2 4 のバンドギャップは4.1eVであるから、これらのバンドギャップより低いエネルギーをもつ波長の紫外領域レーザ光A1を照射して、上記1実施の形態と同様の結晶性の改善を図ることができる。
【0030】
EuCl3 (塩化ユーロピウム)に代えて、CeCl3 (塩化セリウム)を発光中心材料として用いたストロンチウムチオガレイト蛍光体(Sr−Ga2 4 :Ce)は、青色の発光色を有する。アルカリ土類金属チオガレイト(M−Ga2 4 (M=Ca,Sr,Ba)の1種を母体とし、発光中心材料として希土類又は遷移金属を添加することで、青色、緑色、赤色系の基本3原色を発光させることが可能である。
【0031】
紫外領域レーザ光A1の照射により、アルカリ土類金属チオガレイト(M−Ga2 S4 (M=Ca,Sr,Ba)含有薄膜からなる蛍光体層10に対し、上記結晶性の改善が得られる。
【0032】
また、多元蒸着法(MSD)により成膜することに代えて、分子線エピタキシー法(MBE)によつて成膜しても、不純物の含有の少ない、高品質の蛍光体層10を得ることができ、これに対する紫外領域のレーザ光A1の照射によつても上記1実施の形態と同様の結晶性の改善が得られる。
【0033】
【発明の効果】
以上の説明によつて理解されるように、本発明に係る電界放射型ディスプレイの蛍光体層の結晶化方法及びその装置によれば、紫外領域のレーザ光を照射して、陽極基板を過熱することなく、蛍光体層の表層部のみを短時間に結晶化することができる。その結果、結晶化後の蛍光体膜の歩留を向上させながら、電界放射型ディスプレイの製造コストを低下させることができる。電界放射型ディスプレイは、大画面、特に40インチ以上の大画面用ディスプレイとして期待されており、短時間かつ基板の全体に均一に結晶化を施すことによる効果は大きい。
【0034】
成膜手段が、多元蒸着法又は分子線エピタキシー法のいずれかであれば、不純物の混入の少ない蛍光体層を形成できることと相まつて、ガスの発生が抑制されて耐久性に優れる蛍光体膜が得られる。
【0035】
紫外領域のレーザ光が、蛍光体層のバンドギャップよりも低いエネルギーの波長領域であれば、エネルギーが比較的低く、波長は紫外領域で比較的長くなり、侵入するレーザ光の深さを深くすることができる。その結果、必要な膜厚で結晶化された蛍光体膜をレーザ光の照射によつて簡易に得ることができる。
【0036】
紫外領域のレーザ光を蛍光体層の表面から100nm以下の厚さで結晶化するように照射すれば、アルカリ土類金属チオガレイト含有薄膜からなる蛍光体膜に対し、加速電圧を数kV(5kV)以下とし絶縁破壊を抑制しながら、電子の侵入深さに合わせて効果的に結晶化させることができる。
【図面の簡単な説明】
【図1】本発明の1実施の形態に係る蛍光体膜を備える電界放射型ディスプレイの陽極を示す断面図。
【図2】同じく蛍光体層の製作工程を示し、(a)は蛍光体層の形成前、(b)蛍光体層の形成後を示す説明図。
【図3】同じく多元蒸着装置を示す概略図。
【図4】同じくレーザアニール装置を示し、(イ)は正面図、(ロ)は右側面図。
【図5】同じく蛍光体膜の走査型電子顕微鏡による写真を示し、(a)は熱処理による蛍光体膜表面、(b)は紫外領域のレーザ光の照射による蛍光体膜表面を示す図。
【図6】同じく縦軸を平均強度(任意単位)とし、横軸を波長(nm)する電子線励起発光の発光スペクトルを示す線図。
【図7】従来の蛍光体膜のX線回折パターン特性を、縦軸を強度(任意単位)とし、横軸を回折角2θ(deg.)とし、熱処理前(as−depo)及び熱処理時間(分)を相違させて示す線図。
【図8】従来の熱処理による蛍光体膜の特性を、縦軸を発光効率(lm/w)とし、横軸を加速電圧(kV)として示す線図。
【符号の説明】
1:蛍光体膜、2:ガラス基板、3:透明電極、10:蛍光体層、20:レーザ発振器、22a:長軸ホモジナイザー、22b:短軸ホモジナイザー、A1:紫外領域のレーザ光。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for crystallizing a phosphor layer of a field emission display.
[0002]
[Prior art and its problems]
2. Description of the Related Art Conventionally, in a field emission display (field emission display), a phosphor film is used for an anode. This phosphor film is formed by patterning on a transparent electrode on a substrate such as glass.
[0003]
As phosphor film of this type, alkaline earth and host material metal thiogallate (M-Ga 2 S 4 ( M = Ca, Sr, a thin-film phosphor layer and Ba), by connexion formed in multi-source deposition method (MSD) It is known that the film is formed by performing a heat treatment with a heater after the film is formed (IEICE Technical Report December 2001, pp. 1-6, published by the Institute of Electronics, Information and Communication Engineers, Japanese Patent Laid-Open No. 10-26167).
[0004]
However, in such a conventional phosphor film, a thiogallate thin-film phosphor layer is deposited on a substrate and then heat-treated at about 800 ° C. in a reduced pressure atmosphere of H 2 S to improve crystallinity. Therefore, there is a technical problem that heat treatment takes a long time and production efficiency is low.
[0005]
FIG. 7 shows the X-ray diffraction pattern characteristics of the Sr—Ga 2 S 4 : Ce phosphor (strontium thiogallate phosphor) with the as-depo before the heat treatment and with different heat treatment times as indicated by underlining. Is shown. The heat treatment time was 15, 30, 45, or 60 minutes, and an infrared heater was used as a heat source for the heat treatment. As can be seen from the figure, the effect of the heat treatment is seen as compared with the as-depo before the heat treatment, and in the range of the heat treatment time of 15 to 60 minutes, the intensity of the X-ray diffraction (INTENSITY) is larger in the longer time. It can be seen that the effect of improving the crystallinity of the Sr—Ga 2 S 4 phosphor shown by the symbols ▼ and ▼ is obtained. Therefore, a long time is required for the heat treatment.
[0006]
Further, the phosphor film is formed to have a large thickness of 500 to 2000 nm (Japanese Patent Laid-Open No. 10-26167). This is because, in particular, in the case of a thiogallate thin-film phosphor, it was thought that, when a thin phosphor film having a thickness of less than 500 nm was used, the crystallinity was impaired, and electrons were easily transmitted through the phosphor film, so that the luminous efficiency was reduced. It is.
[0007]
However, in the case of a phosphor film of a field emission display, the anode voltage, which is the accelerating voltage of electrons, is set to several kV (5 kV) or less in order to prevent dielectric breakdown between the emitter / gate side and the anode side. It is desired. The inventor has found that the penetration depth of electrons at this anode voltage is 100 nm or less from the surface of the thiogallate thin-film phosphor, and that the electrons do not penetrate beyond this thickness.
[0008]
Further, the luminous efficiency, which is the effect of improving the crystallinity, is as shown in FIG. 8, and it is understood that 800 ° C. needs to be given as the optimum temperature even when the acceleration voltage is several kV (5 kV) or less.
[0009]
However, since a phosphor film of a field emission display is formed on a glass substrate and a transparent electrode, a heating temperature of 800 ° C. causes damage to the glass substrate and the transparent electrode. It is considered that the main reasons that the heat treatment takes a long time and that a high temperature (800 ° C.) needs to be given are due to the thick film thickness of the phosphor layer and the heat treatment method.
[0010]
On the other hand, there is also known a method of forming a transition metal chalcogenide-containing gel film on a substrate by a sol-gel method or a spray pyrolysis method, and then irradiating the gel film with a laser beam to produce a phosphor film made of a semiconductor. (Japanese Patent No. 3032827).
[0011]
However, in such a conventional phosphor film, crystallization is performed by laser light instead of a heater. However, a gel film made of a transition metal chalcogenide is formed by a sol-gel method or a spray pyrolysis method. It is limited to those formed on a substrate. Although this semiconductor is expected to be used as a phosphor film, it is not dedicated to a field emission display.
[0012]
In addition, since the laser light having a wavelength higher than the band gap of the transition metal chalcogenide film is irradiated, the crystallized film thickness required for the phosphor film used in the field emission display is adjusted by the laser light irradiation. It is difficult to obtain easily. This is because the higher the energy of the laser light, the shorter the wavelength, and the shallower the depth of the laser light that enters the film.
[0013]
SUMMARY OF THE INVENTION The present invention has been made for the purpose of providing a method and apparatus for crystallizing a phosphor layer of a field emission display, and a thiogallate thin-film phosphor layer whose base material is an alkaline earth metal thiogallate is formed by a multiple vapor deposition method. (MSD) or molecular beam epitaxy (MBE), and then irradiating a laser beam in an ultraviolet region to improve crystallinity, thereby efficiently producing a phosphor film having excellent crystallinity. And its apparatus.
[0014]
[Means for Solving the Problems]
The present invention has been made in view of such a conventional technical problem, and has the following configuration.
The invention according to claim 1 is a method for crystallizing a phosphor layer 10 formed in a thin film on an anode substrate having a glass substrate 2 and a transparent electrode 3, comprising an alkaline earth metal thiogallate-containing thin film on the anode substrate. After the phosphor layer 10 is formed by a film forming means, the phosphor layer 10 is irradiated with a laser beam A1 in an ultraviolet region to be crystallized. Is the way.
The invention according to claim 2 is the method for crystallizing a phosphor layer of a field emission display according to claim 1, wherein the film forming means is a multi-source evaporation method or a molecular beam epitaxy method.
The invention according to claim 3 is the phosphor according to claim 1 or 2, wherein the laser beam A1 in the ultraviolet region is in a wavelength region having an energy lower than the band gap of the phosphor layer 10. This is a layer crystallization method.
The invention according to claim 4 is characterized in that the laser beam A1 in the ultraviolet region is irradiated so as to crystallize from the surface of the phosphor layer 10 to a thickness of 100 nm or less. This is a method for crystallizing a phosphor layer of a field emission display.
The invention according to claim 5 is a film forming means for forming a phosphor layer 10 made of a thin film containing an alkaline earth metal thiogallate on an anode substrate having a glass substrate 2 and a transparent electrode 3, and an ultraviolet light generated by a laser oscillator 20. A laser annealing device for irradiating the area with the laser light A1,
After the phosphor layer 10 is formed by a film forming means, the phosphor layer 10 is irradiated with a laser beam 24 in an ultraviolet region to be crystallized. Device.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an anode provided with a phosphor layer of a field emission display according to the present invention. This anode has an anode substrate having a transparent electrode 3 and a glass substrate 2, and a phosphor film 1 partitioned by a black matrix 5. The phosphor film 1 is irradiated with an electron beam 20 from a predetermined cathode (not shown), so that the predetermined phosphor film 1 partitioned by the black matrix 5 is irradiated with the electron beam. Since the light is excited and emitted, it can be visually recognized through the transparent electrode 3 and the glass substrate 2. 7 is an antistatic layer.
[0016]
Such a phosphor film 1 is manufactured by forming an intermediate substrate 19 having the phosphor layer 10 as shown in FIG. 2, and then irradiating a laser beam in an ultraviolet region to crystallize. First, a substrate in which a transparent electrode 3 and a black matrix 5 are formed on a glass substrate 2 having an insulating property and a light transmitting property is prepared. The black matrix 5 can be formed by a laser ablation method using black carbon as a material.
[0017]
Next, a phosphor layer 10 to be the phosphor film 1 is formed by a thin film forming means described later. The phosphor layer 10 is formed on the transparent electrode 3 as shown in FIG. 2B with a suitable mask 8 covering the black matrix 5 arranged as shown in FIG. After the phosphor layer 10 has been formed, an antistatic layer 7 for preventing charge-up of the phosphor film 1 is formed as necessary, and an intermediate substrate 19 having the phosphor layer 10 is obtained. If the phosphor layer 10 is reduced in thickness, the phosphor film 1 can be formed to suppress charging on the surface, so that there is a possibility that the antistatic layer 7 can be omitted.
[0018]
Specifically, the phosphor layer 10 is formed by appropriately arranging a mask 8 that covers the black matrix 5 and forming a film by a multiple vapor deposition (MSD) method. As shown in FIG. 3, the multi-source deposition method (MSD) is applied by installing an intermediate substrate 19 with a mask 8 in a vacuum vessel 30 connected to a vacuum pump 31. Above the intermediate substrate 19, a temperature sensor 32 and a heater 34 are sequentially arranged, and below the intermediate substrate 19, an opening plate 36 having an opening 36a and a shutter 38 are sequentially arranged. Further, below the shutter 38, first to third evaporation sources 40a, 40b, and 40c are arranged. The first evaporation source 40a contains Sr metal (metal strontium), and the third evaporation source 40c contains Ga 2 S 3 powder. Sr metal and Ga 2 S 3 powder are materials forming a base material. The second deposition source 40b contains EuCl 3 powder (europium chloride) as a deposition material for forming a light emission center.
[0019]
Deposition conditions include a temperature 450 to 600 ° C. of the intermediate substrate 19, a vacuum degree of 10 -6 ~10 -9 Torr (133 -5 ~133 -8 Pa), the temperature lowering speed 5 ° / min and up to room temperature, Ga 2 The S 3 / Sr supply ratio was set to about 60. Thus, the phosphor layer 10 having Sr—Ga 2 S 4 : Eu with a thickness of 100 nm or less for crystallization was formed. Sr—Ga 2 S 4 : Eu is a material that emits green light.
[0020]
Next, the phosphor layer 10 is crystallized by performing irradiation treatment with a laser beam in an ultraviolet region, and the phosphor film 1 is obtained.
[0021]
FIG. 4 shows a laser annealing apparatus used for laser processing (annealing). A laser beam A1 generated by a laser oscillator 20 for generating an excimer laser composed of a pulsed laser is guided into an optical system container 29, the energy is automatically set by an attenuator 21, and the direction is changed by a reflection mirror 27. After shaping through the axis homogenizer 22a and the short axis homogenizer 22b to make the intensity uniform, the direction is changed again by the reflection mirror 28, and the light is passed through the condenser lens 23. The laser beam 24 is shaped into a laser beam 24 of 0.4 mm, and is irradiated on the phosphor layer 10. The intermediate substrate 19 having the phosphor layer 10 is set in a laser processing chamber of a laser annealing apparatus.
[0022]
When irradiating the laser beam A1, the inside of the laser processing chamber accommodating the phosphor layer 10 is set to an atmosphere suitable for a processing material such as vacuum or a rare gas, and the laser beam A1 having an appropriate energy density is irradiated a predetermined number of times. It is desired to select irradiation conditions so as to obtain good crystallization. By sufficiently removing oxygen and moisture in the laser processing chamber, it is possible to prevent the phosphor from being oxidized.
[0023]
A plurality of anodes having the phosphor film 1 crystallized by changing the energy density of the laser beam A1 and the like are produced, and they are directly observed with an SEM (scanning electron microscope) or the like. Irradiation conditions such as optimum energy density are determined, and the phosphor layer 10 is crystallized according to the irradiation conditions.
[0024]
Then, the phosphor layer 10 in an amorphous state is crystallized within a range of a thickness of 100 nm or less from the surface of the phosphor layer 10. In the case of a thiogallate thin-film phosphor film of a field emission display in which it is desired to apply a predetermined anode voltage, electrons do not penetrate to a thickness exceeding 100 nm from the surface, and accordingly, the film thickness to be crystallized is also 100 nm. This is because the following is good. On the anode substrate side composed of the transparent electrode 3 and the glass substrate 2, the uncrystallized phosphor layer 10 having a predetermined thickness remains unaffected by the laser beam A1. This prevents direct irradiation of the transparent electrode 3 and the glass substrate 2 with the laser beam A1 and also suppresses excessive heating of the transparent electrode 3 and the glass substrate 2 due to the irradiation of the laser beam A1. . By the irradiation treatment with the laser light A1 in the ultraviolet region, crystallization occurs in the irradiated portion, and the surface is flattened, and the crystallinity is improved.
[0025]
At this time, the crystallinity can be improved by irradiating the laser beam A1 in the ultraviolet region having a wavelength having energy lower than the band gap. The band gap of Sr—Ga 2 S 4 is 4.4 eV. When the ultraviolet laser beam A1 having a wavelength less than the band gap is irradiated, the energy of the laser beam is reduced, the wavelength is increased, the depth of the laser beam A1 penetrating into the film is increased, and the phosphor layer is irradiated. This is because crystallinity can be easily improved at a thickness of 100 nm or less from the surface of No. 10.
[0026]
FIG. 5 shows a photograph of the phosphor film 1 by a scanning electron microscope (SEM). Compared with the case of the heat treatment (thermal annealing) shown in FIG. 5A, the irradiation treatment (laser annealing) of the ultraviolet region laser beam A1 shown in FIG. It can be seen that remarkable formation is obtained. As a result, charging can be suppressed due to the decrease in surface resistance, and the emission of gas such as oxygen, moisture, and carbon dioxide from the phosphor film 1 due to the collision of the electron beam 20 can be suppressed due to the decrease in surface area. In addition, it is possible to prevent the inside of the field emission display from being damaged by these gases and to reduce the durability.
[0027]
FIG. 6 shows an emission spectrum obtained by irradiating the phosphor film 1 with an electron beam. However, an excimer laser having a plurality of energy densities (300 to 400 mJ / cm 2 ) from XeCL, which is an excimer that generates a wavelength of 308 nm, is used and shaped into a laser beam 24 having a width of 0.4 mm in a nitrogen gas atmosphere. To irradiate the phosphor layer 10 to obtain a plurality of phosphor films 1. In the figure, the vertical axis represents the average intensity (arbitrary unit) due to the electron beam excitation light emission, and the horizontal axis represents the wavelength (nm). In the same figure, the broken line A shows the characteristics by the heat treatment, and the solid line B shows the characteristics by the laser treatment (laser annealing) irradiating the ultraviolet region laser light A1 lower than the band gap. It can be seen that the solid line B has better crystallinity, so that the half width of the spectrum is narrower and unnecessary color components other than green are reduced. It is considered that the result of the irradiation of the laser beam A1 is that a large number of crystals of the phosphor film 1 are orderly and uniformly arranged on the glass substrate 2 and the transparent electrode 3 with a thickness of 100 nm or less.
[0028]
Furthermore, according to the irradiation treatment with the laser beam A1, it is possible to crystallize only the surface layer portion with a thickness of 100 nm or less, and as a result, it is possible to perform crystallization only to the depth of the electron penetration. This eliminates the need to crystallize the entire phosphor layer 10. In addition, according to the irradiation process using the laser beam A1, the process is performed in a short time, and the vaporization of the raw material constituting the phosphor layer 10 due to the laser process is suppressed, so that the total amount of raw materials necessary for film formation can be reduced. Will be possible.
[0029]
By the way, in the first embodiment, Sr—Ga 2 S 4 : Eu was formed as the phosphor film 1, but the phosphor film 1 is widely used in alkaline earth metal thiogallate (M-Ga 2 S 4 ( (M = Ca, Sr, Ba) can be used.If calcium metal (solid inorganic material) is used instead of metal strontium, the phosphor film 1 made of a calcium thiogallate phosphor can be produced. If metal barium (solid inorganic material) is used instead of strontium, it is possible to produce a phosphor film 1 made of a barium thiogallate phosphor, a europium-doped calcium thiogallate phosphor, and a europium-doped barium thiogallate phosphor. also it has a green luminescent color. Here, the band gap of the Ca-Ga 2 S 4 is 4.2 eV, the band of Ba-Ga 2 S 4 gap It is because it is 4.1 eV, it is possible to irradiate the ultraviolet region laser beam A1 of a wavelength having an energy lower than those of the band gap, improve the same crystalline as in the above one embodiment.
[0030]
EuCl 3 in place of (europium chloride), CeCl 3 strontium thiogallate phosphor used (cerium chloride) as the emission center material (Sr-Ga 2 S 4: Ce) has a blue emission color. By using one kind of alkaline earth metal thiogallate (M-Ga 2 S 4 (M = Ca, Sr, Ba) as a base material and adding a rare earth or transition metal as a luminescent center material, blue, green and red bases are obtained. It is possible to emit light of three primary colors.
[0031]
By the irradiation of the ultraviolet region laser beam A1, the above crystallinity can be improved with respect to the phosphor layer 10 composed of a thin film containing an alkaline earth metal thiogallate (M-Ga2S4 (M = Ca, Sr, Ba)).
[0032]
Further, even if the film is formed by the molecular beam epitaxy (MBE) instead of the film formation by the multi-source vapor deposition (MSD), the high-quality phosphor layer 10 containing less impurities can be obtained. Irradiation with the laser beam A1 in the ultraviolet region can provide the same improvement in crystallinity as in the first embodiment.
[0033]
【The invention's effect】
As will be understood from the above description, according to the method and the apparatus for crystallizing the phosphor layer of the field emission display according to the present invention, the anode substrate is heated by irradiating the laser beam in the ultraviolet region. Thus, only the surface layer of the phosphor layer can be crystallized in a short time. As a result, the manufacturing cost of the field emission display can be reduced while improving the yield of the phosphor film after crystallization. The field emission display is expected as a large screen, particularly a large screen display of 40 inches or more, and the effect of uniformly crystallizing the entire substrate in a short time is great.
[0034]
If the film forming means is any of the multi-source vapor deposition method or the molecular beam epitaxy method, a phosphor film with reduced gas generation and excellent durability can be formed, in contrast to the fact that a phosphor layer with less contamination of impurities can be formed. can get.
[0035]
If the laser light in the ultraviolet region is in a wavelength region having an energy lower than the band gap of the phosphor layer, the energy is relatively low, the wavelength is relatively long in the ultraviolet region, and the depth of the penetrating laser light is increased. be able to. As a result, a phosphor film crystallized with a required film thickness can be easily obtained by irradiating a laser beam.
[0036]
When the laser light in the ultraviolet region is irradiated so as to crystallize from the surface of the phosphor layer to a thickness of 100 nm or less, the acceleration voltage is several kV (5 kV) with respect to the phosphor film composed of the alkaline earth metal thiogallate-containing thin film. It is possible to effectively crystallize according to the penetration depth of electrons while suppressing dielectric breakdown as follows.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an anode of a field emission display including a phosphor film according to an embodiment of the present invention.
FIGS. 2A and 2B are explanatory views showing a manufacturing process of the phosphor layer, wherein FIG. 2A shows a state before the phosphor layer is formed and FIG. 2B shows a state after the phosphor layer is formed.
FIG. 3 is a schematic diagram showing a multi-source vapor deposition apparatus.
4A and 4B show a laser annealing apparatus, wherein FIG. 4A is a front view, and FIG. 4B is a right side view.
5A and 5B show photographs of the phosphor film by a scanning electron microscope, wherein FIG. 5A shows the surface of the phosphor film by heat treatment, and FIG. 5B shows the surface of the phosphor film by irradiation of laser light in an ultraviolet region.
FIG. 6 is a diagram showing an emission spectrum of electron-beam-excited light emission in which the vertical axis represents average intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
FIG. 7 shows the X-ray diffraction pattern characteristics of a conventional phosphor film, wherein the vertical axis represents intensity (arbitrary unit), the horizontal axis represents diffraction angle 2θ (deg.), And the heat treatment time (as-depo) and heat treatment time ( FIG.
FIG. 8 is a diagram showing characteristics of a phosphor film obtained by a conventional heat treatment, in which the vertical axis represents luminous efficiency (lm / w) and the horizontal axis represents acceleration voltage (kV).
[Explanation of symbols]
1: phosphor film, 2: glass substrate, 3: transparent electrode, 10: phosphor layer, 20: laser oscillator, 22a: long-axis homogenizer, 22b: short-axis homogenizer, A1: laser light in the ultraviolet region.

Claims (5)

ガラス基板(2)及び透明電極(3)を有する陽極基板の上側に薄膜状に形成する蛍光体層(10)の結晶化方法において、陽極基板の上側にアルカリ土類金属チオガレイト含有薄膜からなる蛍光体層(10)を成膜手段によつて形成した後、該蛍光体層(10)に紫外領域のレーザ光(A1)を照射して結晶化することを特徴とする電界放射型ディスプレイの蛍光体層の結晶化方法。In a method for crystallizing a phosphor layer (10) formed in a thin film on an anode substrate having a glass substrate (2) and a transparent electrode (3), a fluorescent light comprising an alkaline earth metal thiogallate-containing thin film is formed on the anode substrate. After the body layer (10) is formed by a film forming means, the phosphor layer (10) is irradiated with a laser beam (A1) in an ultraviolet region to be crystallized. A method for crystallizing a body layer. 前記成膜手段が、多元蒸着法又は分子線エピタキシー法であることを特徴とする請求項1の電界放射型ディスプレイの蛍光体層の結晶化方法。2. The method for crystallizing a phosphor layer of a field emission display according to claim 1, wherein said film forming means is a multi-source evaporation method or a molecular beam epitaxy method. 前記紫外領域のレーザ光(A1)が、蛍光体層(10)のバンドギャップよりも低いエネルギーの波長領域であることを特徴とする請求項1又は2の電界放射型ディスプレイの蛍光体層の結晶化方法。3. The crystal of the phosphor layer of the field emission display according to claim 1, wherein the laser beam (A1) in the ultraviolet region is a wavelength region having an energy lower than a band gap of the phosphor layer (10). Method. 前記蛍光体層(10)の表面から100nm以下の厚さで結晶化するように、前記紫外領域のレーザ光(A1)を照射することを特徴とする請求項1,2又は3の電界放射型ディスプレイの蛍光体層の結晶化方法。The field emission type according to claim 1, 2 or 3, wherein the laser light (A1) in the ultraviolet region is irradiated so as to be crystallized with a thickness of 100 nm or less from the surface of the phosphor layer (10). A method for crystallizing a phosphor layer of a display. ガラス基板(2)及び透明電極(3)を有する陽極基板の上側にアルカリ土類金属チオガレイト含有薄膜からなる蛍光体層(10)を形成する成膜手段と、レーザ発振器(20)で生じさせた紫外領域のレーザ光(A1)を照射するレーザアニール装置とを備え、
前記蛍光体層(10)を成膜手段によつて形成した後、該蛍光体層(10)に紫外領域のレーザ光(24)を照射して結晶化することを特徴とする電界放射型ディスプレイの蛍光体層の結晶化装置。
Film forming means for forming a phosphor layer (10) made of an alkaline earth metal thiogallate-containing thin film on the upper side of an anode substrate having a glass substrate (2) and a transparent electrode (3), and a laser oscillator (20). A laser annealing device for irradiating a laser beam (A1) in an ultraviolet region,
After the phosphor layer (10) is formed by a film forming means, the phosphor layer (10) is irradiated with a laser beam (24) in an ultraviolet region to be crystallized. Phosphor layer crystallization apparatus.
JP2002275848A 2002-09-20 2002-09-20 Method and device for crystallization of phosphor layer of field emission display Pending JP2004111333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275848A JP2004111333A (en) 2002-09-20 2002-09-20 Method and device for crystallization of phosphor layer of field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275848A JP2004111333A (en) 2002-09-20 2002-09-20 Method and device for crystallization of phosphor layer of field emission display

Publications (1)

Publication Number Publication Date
JP2004111333A true JP2004111333A (en) 2004-04-08

Family

ID=32271926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275848A Pending JP2004111333A (en) 2002-09-20 2002-09-20 Method and device for crystallization of phosphor layer of field emission display

Country Status (1)

Country Link
JP (1) JP2004111333A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299571A (en) * 2006-04-28 2007-11-15 Japan Steel Works Ltd:The Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display
JP2011168656A (en) * 2010-02-16 2011-09-01 Nippon Hoso Kyokai <Nhk> Thin film fluorophor, display, and film-forming apparatus
CN112289823A (en) * 2019-07-24 2021-01-29 陕西坤同半导体科技有限公司 Method for preparing ferroelectric element in display panel, display panel and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299571A (en) * 2006-04-28 2007-11-15 Japan Steel Works Ltd:The Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display
JP2011168656A (en) * 2010-02-16 2011-09-01 Nippon Hoso Kyokai <Nhk> Thin film fluorophor, display, and film-forming apparatus
CN112289823A (en) * 2019-07-24 2021-01-29 陕西坤同半导体科技有限公司 Method for preparing ferroelectric element in display panel, display panel and manufacturing method

Similar Documents

Publication Publication Date Title
JP4613373B2 (en) Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
JPH088188A (en) Multisource reactive deposition method of blue-radiant phosphorescent substance layer for ac tfel apparatus
JP4567910B2 (en) Semiconductor crystal growth method
US4900584A (en) Rapid thermal annealing of TFEL panels
JP2008044803A (en) Method for manufacturing thin film of crystallized metal oxide and its use
JP3542031B2 (en) Cold cathode forming method, electron-emitting device, and applied device
JP4272467B2 (en) Manufacturing method of oxide semiconductor light emitting device
JP2004111333A (en) Method and device for crystallization of phosphor layer of field emission display
US20030087129A1 (en) Treated phosphor, making method, thin film making apparatus, and EL device
JP5116016B2 (en) Method for manufacturing phosphor thin film
KR100918225B1 (en) Method for producing fluorescent substance films
JP2002056773A (en) Film forming method for plasma display panel, and film forming equipment for plasma display panel
JP4609860B2 (en) Thin film phosphor manufacturing method, thin film phosphor, inorganic EL light emitting device, and field emission display
JP2008308725A (en) Method for depositing film of phosphor
JP2005290038A (en) Fluorescent substance thin film, method for producing the same and apparatus for producing the same
US20080213559A1 (en) Phosphor film and method of producing the phosphor film
JP2002241929A (en) Method for producing luminescent material, luminescent material and display device
JP2007299571A (en) Crystallization method of phosphor layer, its apparatus, and thin film phosphor for display
JP2000087031A (en) Thin blue phosphor film and its preparation
JP2003003159A (en) Epitaxial phosphor thin film and method for producing the same
JPH08203672A (en) Manufacture of thin film electroluminescent element, and manufacturing device thereof
JP3584574B2 (en) EL element and manufacturing method thereof
JP2007109489A (en) Positive electrode, manufacturing method thereof, and fluorescent lamp
JPH04192289A (en) Manufacture of electroluminescence element
JP4656441B2 (en) Method and apparatus for crystallizing thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314