JP2007297574A - New method for producing resorcinol resin containing unreacted resorcinol in reduced amount - Google Patents

New method for producing resorcinol resin containing unreacted resorcinol in reduced amount Download PDF

Info

Publication number
JP2007297574A
JP2007297574A JP2006147418A JP2006147418A JP2007297574A JP 2007297574 A JP2007297574 A JP 2007297574A JP 2006147418 A JP2006147418 A JP 2006147418A JP 2006147418 A JP2006147418 A JP 2006147418A JP 2007297574 A JP2007297574 A JP 2007297574A
Authority
JP
Japan
Prior art keywords
resorcin
resorcinol
resin
unreacted
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147418A
Other languages
Japanese (ja)
Inventor
Toshio Honda
壽男 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006147418A priority Critical patent/JP2007297574A/en
Publication of JP2007297574A publication Critical patent/JP2007297574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resorcinol resin having excellent flowability and having a reduced unreacted resorcinol content. <P>SOLUTION: This method for producing the resorcinol resin containing unreacted resorcinol in a reduced amount comprises reacting resorcinol with formaldehyde in the presence of an acidic catalyst, 2-butanol, and an aqueous solution of a resorcinol water solubility inhibitor which is a salt for inhibiting and limiting the water solubility of the resorcinol and the resorcinol resin, batching off a 2-butanol phase, distilling off the 2-butanol, heating the produced resorcinol resin to a melted state, and then blowing a gas inactive in the resorcinol resin on the surface of the resin to exhaust the gas and a sufficient amount of the unreacted resorcinol outside the system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はレゾルシン樹脂の製造法に関する。さらに詳しくは、未反応レゾルシン量を低減したレゾルシン樹脂の製造法に関する。  The present invention relates to a method for producing a resorcin resin. More specifically, the present invention relates to a method for producing a resorcin resin in which the amount of unreacted resorcin is reduced.

レゾルシンホルムアルデヒド樹脂は接着剤、塗料、硬化剤、表面処理剤、コート剤等として用いられる。そして出発物質つまり原料のレゾルシンが常温の水に溶解し、硬化反応の後は不溶不融の樹脂に変化し、その硬化速度が速いので大変有用な樹脂である。本樹脂の使用方法としては原料のレゾルシンとホルムアルデヒドにアルカリ性触媒又は酸性触媒を加えてそのまま使用ヶ所で加熱反応硬化させて用いる場合が多いが、硬化初期の流動性や被覆性を重視する場合はレゾルシンホルムアルデヒド樹脂の前駆的予備重縮合体を使用する場合がある。  The resorcinol formaldehyde resin is used as an adhesive, paint, curing agent, surface treatment agent, coating agent, and the like. The starting material, that is, the raw material resorcin is dissolved in water at room temperature, and after the curing reaction, it is changed to an insoluble and infusible resin, and its curing rate is fast, so it is a very useful resin. This resin is often used by adding an alkaline catalyst or an acidic catalyst to the raw materials resorcinol and formaldehyde, followed by heating and curing at the point of use. Precursor precondensates of formaldehyde resin may be used.

この前駆的予備重縮合体はレゾルシンに対して低モル比量のホルムアルデヒドを酸性触媒下に反応させて得られる。流動性を確保するにはこの前駆的予備重縮合体の平均重縮合度が低い事が望ましい。その為には、ホルムアルデヒドの量をレゾルシンに対して十分に少なくする必要がある。生成物の重縮合度分布はレゾルシンとホルムアルデヒドのモル比の関数として下記の理論式で表す事が出来る。  This precursor prepolycondensate is obtained by reacting a low molar ratio of formaldehyde with resorcin under an acidic catalyst. In order to ensure fluidity, it is desirable that the average degree of polycondensation of the precursor prepolycondensate is low. For this purpose, the amount of formaldehyde must be sufficiently reduced relative to resorcin. The polycondensation degree distribution of the product can be expressed by the following theoretical formula as a function of the molar ratio of resorcin to formaldehyde.

Figure 2007297574
Figure 2007297574

この式はレゾルシンとホルムアルデヒドの酸性触媒下のノボラック型の反応が完全に終了し、レゾルシン及びホルムアルデヒドは共に二官能分子であり、ホルムアルデヒドの二つの結合の手はレゾルシンと結合しているものと仮定している。ここでDはレゾルシン1モルに対してホルムアルデヒドをPモル反応させた場合の分子中にn個のレゾルシン核を有する反応生成物の反応生成物全量に対する重量割合つまり重量分率を示す。nは反応生成物がレゾルシンの何量体であるかを示す事になるから重縮合度の目安になる。ここでn=1の生成物は未反応のレゾルシンを表すから、n=1の時のDは未反応レゾルシンの重量分率を示す事になる。次に種々のP及びnに対応するDの計算値並びに実測値を下記表1示す。  This equation assumes that the novolak-type reaction of resorcin and formaldehyde under an acidic catalyst is complete, both resorcin and formaldehyde are bifunctional molecules, and the two bonds of formaldehyde are bound to resorcin. ing. Here, D represents the weight ratio, that is, the weight fraction, of the reaction product having n resorcin nuclei in the molecule when formaldehyde is reacted in P mole with respect to 1 mole of resorcin. n is a measure of the degree of polycondensation because it indicates how many resorcins the reaction product is. Here, since the product of n = 1 represents unreacted resorcin, D when n = 1 represents the weight fraction of unreacted resorcin. Next, Table 1 shows calculated values and actually measured values of D corresponding to various P and n.

Figure 2007297574
Figure 2007297574

この表の番号1,2,3、4はPとnの値を変えた場合の上式によるDの計算結果を示す。番号5はゲルパーミエーションクロマトグラフイ(以下G.P.Cと略する。)実測値の各ピーク面積から割り出したデータであるが、同じ値のPの場合の番号3のデータと概ね一致している。  The numbers 1, 2, 3, and 4 in this table indicate the calculation results of D according to the above equation when the values of P and n are changed. No. 5 is data calculated from each peak area of gel permeation chromatography (hereinafter abbreviated as GPC), which is almost consistent with the data of No. 3 in the case of P having the same value. ing.

上表から自明であるように前駆的予備重縮合体を低分子化するにはホルムアルデヒドのレゾルシンに対するモル比を下げる事が最も効果的である。しかし当然の事ながらここには大きな障害がある。それは未反応のレゾルシンが多量に残留する事である。レゾルシンは常温では結晶であるが加熱硬化時にその微量が気化するので作業現場では注意しなければならない。さらに硬化後も未反応レゾルシンが残留すると製品性能に悪影響をもたらす。従って従来は前駆的予備重縮合体から抽出その他の方法で未反応レゾルシンを除去する面倒にして複雑な操作が行われてきたが、その効果は十分とは云えない。本発明は未反応レゾルシン含量が極めて低く、且つ流動性に優れたレゾルシンとホルムアルデヒドの前駆的予備重縮合体(以下簡明を期してレゾルシン樹脂とする。)の製造を目的とする。  As is obvious from the above table, it is most effective to lower the molar ratio of formaldehyde to resorcin to lower the molecular weight of the precursor prepolycondensate. But of course there are major obstacles here. That is, a large amount of unreacted resorcin remains. Resorcin is a crystal at room temperature, but a small amount of it evaporates during heat curing, so care must be taken at the work site. Furthermore, residual unreacted resorcin after curing will adversely affect product performance. Therefore, conventionally, complicated and complicated operations have been performed to remove unreacted resorcin by extraction or other methods from the precursor prepolycondensate, but the effect is not sufficient. An object of the present invention is to produce a precursor prepolycondensate of resorcin and formaldehyde (hereinafter referred to as resorcin resin for the sake of simplicity) having an extremely low unreacted resorcin content and excellent fluidity.

上記目的を達成するために、本発明においてはレゾルシン及びレゾルシン樹脂の水溶性を抑制制限する塩類(以下レゾルシン水溶性抑制剤とする。)の水溶液及び2−ブタノンの存在下レゾルシンとホルムアルデヒドを酸性触媒下反応させた後、2ブタノン相を分取し2−ブタノンを留去し生成したレゾルシン樹脂を溶融状態迄加熱し、その樹脂表面にレゾルシン樹脂に対して不活性な気体を送り未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除し未反応レゾルシン量を低減したレゾルシン樹脂を製造した。  To achieve the above object, in the present invention, an aqueous solution of salts of resorcin and resorcin resin that inhibits water solubility (hereinafter referred to as a resorcinol water-soluble inhibitor) and an acid catalyst containing resorcin and formaldehyde in the presence of 2-butanone. After the lower reaction, the 2-butanone phase is separated, 2-butanone is distilled off, and the generated resorcin resin is heated to a molten state, and an inert gas is sent to the resin surface with the unreacted resorcin. A sufficient amount of unreacted resorcin was removed from the system by discharging it out of the system to produce a resorcin resin with a reduced amount of unreacted resorcin.

従来、レゾルシン樹脂中の未反応レゾルシンの含量は13%以上であったが、本発明によってその含量は7%以下に低減する事が可能になった。この為レゾルシン樹脂を使用する作業現場の環境が著しく改善され且つレゾルシン樹脂の性能も向上した。  Conventionally, the content of unreacted resorcin in the resorcin resin was 13% or more, but according to the present invention, the content can be reduced to 7% or less. For this reason, the environment at the work site where the resorcin resin is used is remarkably improved, and the performance of the resorcin resin is also improved.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明について詳細に説明する。レゾルシン水溶性抑制剤水溶液と2−ブタノンの共存下レゾルシンとホルムアルデヒドを酸性触媒下反応させると反応液は二相に分かれる。反応は主として水相で進む。反応生成物の分子量は次第に増大するが、水相にはレゾルシン水溶性抑制剤が存在する為分子量が比較的大きい生成物は2−ブタノン相に移行する。反応後未反応レゾルシンの相当量が水相に残留する。しかしながら生成した各分子量の分子はレゾルシン水溶性抑制剤の種類と量に応じてある分配率により両相に分配される。よって両相中には共に分子量分布が存在する。この結果無視出来ない量の未反応レゾルシンが2−ブタノン相に移行しているのが分析の結果分かっている。従ってこの方法だけでは十分に未反応レゾルシンを除去する事は出来ないので、2−ブタノン相を純水で洗浄する等の方法が採られているが、その効果は十分とは言えず工程が煩雑で2−ブタノンの回収に苦労する。  The present invention will be described in detail below. When resorcinol and formaldehyde are reacted in the presence of an aqueous solution of resorcinol and 2-butanone in the presence of an acidic catalyst, the reaction solution is divided into two phases. The reaction proceeds mainly in the aqueous phase. Although the molecular weight of the reaction product gradually increases, the product having a relatively large molecular weight shifts to the 2-butanone phase because of the presence of the resorcinol water-soluble inhibitor in the aqueous phase. After the reaction, a considerable amount of unreacted resorcin remains in the aqueous phase. However, the generated molecules of each molecular weight are distributed in both phases with a certain distribution ratio depending on the kind and amount of the resorcinol water-soluble inhibitor. Thus, there is a molecular weight distribution in both phases. As a result of the analysis, it is known that an unreactable amount of unreacted resorcin has been transferred to the 2-butanone phase. Accordingly, since this method alone cannot sufficiently remove unreacted resorcin, a method such as washing the 2-butanone phase with pure water has been adopted, but the effect is not sufficient and the process is complicated. Therefore, it is difficult to recover 2-butanone.

一方レゾルシン樹脂を溶融状態まで加熱するとその中に含まれている未反応のレゾルシンは揮発性が少しあるので幾分か蒸発する。しかし蒸留して回収出来る程には蒸発しない。そしてレゾルシン分子は減圧空気中でもその飛翔距離は非常に短いので減圧蒸留でも系外に取り出す事は困難である。加熱温度を極度に上げれば少しは効果があるが、樹脂が酸化劣化する恐れがある。又分圧が低いので水を加えて蒸留する水蒸気蒸留の方法が考えられるが実際にははかばかしい結果は得られない。  On the other hand, when the resorcin resin is heated to a molten state, the unreacted resorcin contained in the resorcin resin has some volatility, so that it evaporates somewhat. However, it does not evaporate to the extent that it can be recovered by distillation. The resorcin molecule has a very short flight distance even in reduced-pressure air, so it is difficult to take it out of the system even under reduced-pressure distillation. If the heating temperature is extremely raised, there is a slight effect, but the resin may be oxidized and deteriorated. In addition, since the partial pressure is low, a steam distillation method in which water is added for distillation is conceivable, but in practice, a ridiculous result cannot be obtained.

本発明ではこの状況を改善する為、2−ブタノンを留去した後の加熱した生成樹脂表面にレゾルシンを酸化する恐れのない気体を送りその気体を系外に排出する事により樹脂表面近傍に気化しているレゾルシンを強制的に系外へ誘導する事が可能な事を見出した。この場合気化しているレゾルシンは系外の比較的低温の器壁に結晶となって付着する。連続的に気体を送る事により、連続的に未反応レゾルシンのみを樹脂から分離し取り出す事が可能になった。結晶したレゾルシンは非常に純粋であるので再使用が可能である。使用可能な気体には空気、窒素ガス、炭酸ガス、水蒸気、及びアルゴン等の不活性気体等があるが最も安価で使い易いのは空気である。 空気による樹脂の酸化は樹脂の温度を160℃以下に抑えておけば許容出来る。従って樹脂の溶融温度は120℃から160℃程度までの温度に保つのが好ましい。  In the present invention, in order to improve this situation, a gas that does not oxidize resorcin is sent to the heated resin surface after distilling off 2-butanone, and the gas is discharged out of the system, so that the gas near the resin surface is discharged. It was found that it is possible to forcibly induce resorcinol out of the system. In this case, the resorcinol vaporized adheres as crystals to a relatively low temperature vessel wall outside the system. By continuously sending the gas, it was possible to continuously separate only the unreacted resorcin from the resin. Crystallized resorcin is so pure that it can be reused. Usable gases include air, nitrogen gas, carbon dioxide gas, water vapor, and inert gases such as argon, but air is the cheapest and easiest to use. Oxidation of the resin with air is acceptable if the temperature of the resin is kept below 160 ° C. Accordingly, the melting temperature of the resin is preferably maintained at a temperature from about 120 ° C. to about 160 ° C.

一般にレゾルシン樹脂の流動性を確保するには一分子中に二個乃至三個のレゾルシンが結合している反応生成物、言い換えればレゾルシンの二量体や三量体を多量に含む樹脂である事が望ましい。つまり表1においてn=2又はn=3のDの値を大きくする事が反応生成物の流動性を大きくするために効果がある。従って本発明においてはその目的にそう形でレゾルシン水溶性抑制剤の種類と量を選択すれば良い。本発明の方法では反応中のレゾルシン水溶性抑制剤の存在によってレゾルシン樹脂の平均分子量の増大が抑制される。  In general, in order to ensure the fluidity of resorcin resin, a reaction product in which two to three resorcins are bound in one molecule, in other words, a resin containing a large amount of resorcin dimer or trimer. Is desirable. That is, in Table 1, increasing the value of D with n = 2 or n = 3 is effective for increasing the fluidity of the reaction product. Therefore, in the present invention, the type and amount of the resorcinol water-soluble inhibitor may be selected for that purpose. In the method of the present invention, the increase in the average molecular weight of the resorcin resin is suppressed by the presence of the water-soluble resorcin inhibitor during the reaction.

本発明でいうレゾルシン水溶性抑制剤とはレゾルシンホルムアルデヒド反応生成物の分子量を調節するある種の塩である。塩とは陽イオンと陰イオンが電荷を中和する形で生じた化合物の総称であるが、本発明におけるレゾルシン水溶性抑制剤とは陰イオンがホフマイスター順列において塩素イオン以上の水和性を有する陰イオンであり、陽イオンが同順列において一価の場合はナトリウムイオン以上、二価の場合はカルシウムイオン以上の水和性を示す陽イオンであるところの塩である。ホフマイスター順列とはホフマイスターが1888年に発表した各イオンの水和性の程度を示す順列である。それを下記の化1に示す。  The resorcinol water-soluble inhibitor referred to in the present invention is a kind of salt that adjusts the molecular weight of the resorcinol formaldehyde reaction product. A salt is a general term for compounds formed in a form in which a cation and an anion neutralize an electric charge, but a resorcinol water-soluble inhibitor in the present invention is a hydratability that is higher than a chloride ion in a Hofmeister permutation. In the same permutation, the cation is a salt that is a cation exhibiting hydration properties when it is monovalent or higher, and when it is divalent, it is a cation that exhibits hydration properties higher than calcium ion. The Hoffmeister permutation is a permutation indicating the degree of hydration of each ion announced by Hofmeister in 1888. This is shown in Chemical Formula 1 below.

Figure 2007297574
Figure 2007297574

具体的にはクエン酸ナトリウム、クエン酸カルシウム、酒石酸ナトリウム、酒石酸カルシウム、酢酸ナトリウム、酢酸カルシウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウム等が本発明でレゾルシン水溶性抑制剤として使用できる。中でも塩化カルシウムが効果の点と取り扱いの容易な事から本発明では最も優れたレゾルシン水溶性抑制剤である。  Specifically, sodium citrate, calcium citrate, sodium tartrate, calcium tartrate, sodium acetate, calcium acetate, sodium chloride, magnesium chloride, calcium chloride and the like can be used as a resorcinol water-soluble inhibitor in the present invention. Among them, calcium chloride is the most excellent resorcinol water-soluble inhibitor in the present invention because of its effectiveness and easy handling.

本発明においてレゾルシン水溶性抑制剤の量はこれを無水塩として計算した場合、水溶液としてレゾルシン水溶性抑制剤の濃度が15%から40%の間、好ましくは20%から30%の間に調整すればよい。反応を開始する時のレゾルシンの量はその水溶液中でレゾルシンが溶解する最大濃度近傍に設定すればよい。例えば24%塩化カルシウム水溶液100gは常温に於いて約8.2gのレゾルシンを溶解する。塩化カルシウムの濃度を24%よりも濃くするとレゾルシンが析出する傾向がある。レゾルシン水溶性抑制剤が少ないと効果が無く、多すぎるとレゾルシン自体が温度を上げても溶解しなくなる。  In the present invention, when the amount of the resorcin-soluble inhibitor is calculated as an anhydrous salt, the concentration of the resorcin-soluble inhibitor as an aqueous solution is adjusted between 15% and 40%, preferably between 20% and 30%. That's fine. The amount of resorcin at the start of the reaction may be set near the maximum concentration at which resorcin is dissolved in the aqueous solution. For example, 100 g of a 24% calcium chloride aqueous solution dissolves about 8.2 g of resorcin at normal temperature. When the concentration of calcium chloride is higher than 24%, resorcin tends to precipitate. If there is little resorcinol water-soluble inhibitor, it will not be effective, and if it is too much, resorcin itself will not dissolve even if the temperature is raised.

2−ブタノンの量はレゾルシンの1/10量から10倍量の間になる様に設定する。通常2倍量から6倍量の間である。
本発明反応におけるのホルムアルデヒドの量はレゾルシン1.0モルに対して0.05モルから0.8モルの間、好ましくは0.2モルから0.7モルの間である。
The amount of 2-butanone is set to be between 1/10 and 10 times the amount of resorcin. Usually between 2 and 6 times the amount.
The amount of formaldehyde in the reaction of the present invention is between 0.05 mol and 0.8 mol, preferably between 0.2 mol and 0.7 mol, per 1.0 mol of resorcin.

反応触媒には無機酸、有機酸のいずれも使用できる。その中で最も使用し易いのは塩酸である。反応触媒の量はレゾルシン1.0モルに対して0.0001モルから0.1モルの間であり、好ましくは0.005から0.03モルの間である。触媒の量が少ないと反応に時間がかかり、多すぎると反応速度が大きくなり分子量の調節が十分になされない。  Either an inorganic acid or an organic acid can be used as the reaction catalyst. Of these, hydrochloric acid is the easiest to use. The amount of the reaction catalyst is between 0.0001 mol and 0.1 mol, preferably between 0.005 and 0.03 mol, relative to 1.0 mol of resorcin. If the amount of the catalyst is small, the reaction takes time. If the amount is too large, the reaction rate increases and the molecular weight is not sufficiently adjusted.

反応温度は大気圧下の条件では0℃以上75℃以下の温度で可能であるが、好ましくは10℃以上60℃以下、更に好ましいのは常温近傍から50℃の間の温度である。  The reaction temperature can be 0 ° C. or higher and 75 ° C. or lower under atmospheric pressure, but is preferably 10 ° C. or higher and 60 ° C. or lower, more preferably a temperature between about normal temperature and 50 ° C.

次に本発明の実施例によって更に具体的に本発明を説明するが、本実施例は本発明の典型例を示すものであって、本発明の範囲内においていろいろの変化適用例が存在する事を否定するものではない。  Next, the present invention will be described in more detail by way of examples of the present invention. However, the present examples show typical examples of the present invention, and various change applications exist within the scope of the present invention. Is not to deny.

レゾルシン78.75gを水332.25gに溶解し、塩化カルシウム213.80gを加えた。溶解熱が発生したので、22℃まで冷却した。レゾルシンは完全に溶解しており析出分はなかった。更に2−ブタノンを300.8gを加えた。反応液は二相になった。次に3.6%塩酸9.0gを加え良く攪拌しながら、37%ホルムアルデヒド水33.0gを一度に滴下した。約4時間攪拌した後反応液に希水酸化ナトリウム水溶液でpH4.0になるまで加えて反応を停止させた。反応液全量を分液ロートに移し2−ブタノン相を分取し、頸部の内径が約27mmのなす型フラスコに移した。この時反応生成樹脂中の未反応レゾルシンの量はG.P.C分析で11.5%であった。  78.75 g of resorcin was dissolved in 332.25 g of water, and 213.80 g of calcium chloride was added. Since heat of dissolution occurred, it was cooled to 22 ° C. Resorcin was completely dissolved and no precipitate was present. Further, 300.8 g of 2-butanone was added. The reaction solution became two-phase. Next, 9.0 g of 3.6% hydrochloric acid was added and 33.0 g of 37% formaldehyde water was added dropwise at a time while stirring well. After stirring for about 4 hours, the reaction was stopped by adding to the reaction solution with dilute aqueous sodium hydroxide until pH 4.0. The entire amount of the reaction solution was transferred to a separatory funnel, and the 2-butanone phase was collected and transferred to a type flask having an inner diameter of the neck of about 27 mm. At this time, the amount of unreacted resorcin in the reaction product resin is G.P. P. C analysis showed 11.5%.

なす型フラスコを逆流防止トラップを介してロータリーエバポレータに取り付けた。この時トラップとなす型フラスコの頸部摺合部分に厚さ約1mm、幅約5mm、長さ約30mmの厚紙を挟ンで外部の空気が流入出来る程の隙間を作って固定し、エバポレータをアスピレータにつなぎ減圧排気した。この摺合部分の填め合いはトラップが凸、なす型が凹になっているので摺合部分の隙間から流入した空気は2−ブタノン溶液に衝突し溶液面が波打つのが観察された。導入された空気はなす型フラスコ内容物の表面で反転しトラップ及びエバポレータ冷却部を経由してアスピレータから外部に排気された。この状態で水浴加熱蒸留して殆どの2−ブタノンを留去した。次に水浴を油浴に交換し油浴の温度を140℃に設定して同様に空気を吹き込みながら、なす型フラスコの頸部摺合部分を除きその下方部分が殆ど油浴に浸かる様にして回転加熱した。しばらくすると未反応レゾルシン分子の蒸発飛翔が始まりトラップとその上部のエバポレータの壁面に純白のレゾルシンの結晶が付着した。三時間後この操作を終了し、なす型フラスコ内の樹脂を計量したところ80.5gであった。G.P.C分析の結果樹脂中の未反応レゾルシンの量は5.46%であった。  An eggplant-shaped flask was attached to the rotary evaporator via a backflow prevention trap. At this time, a thick paper with a thickness of about 1 mm, a width of about 5 mm, and a length of about 30 mm is sandwiched between the neck of the flask that forms the trap, and a gap is created so that external air can flow in, and the evaporator is fixed. The vacuum exhaust was performed. In the fitting of the sliding portion, the trap was convex and the formed mold was concave. Therefore, it was observed that the air flowing from the gap of the sliding portion collided with the 2-butanone solution and the solution surface was undulated. The introduced air was reversed at the surface of the contents of the flask flask and was exhausted from the aspirator to the outside via the trap and the evaporator cooling section. In this state, most 2-butanone was distilled off by heating in a water bath. Next, the water bath is replaced with an oil bath, and the temperature of the oil bath is set to 140 ° C. and the air is blown in the same manner. Heated. After a while, the unreacted resorcin molecule began to evaporate, and pure white resorcin crystals were deposited on the trap and the evaporator wall. Three hours later, this operation was terminated, and the resin in the eggplant flask was weighed to be 80.5 g. G. P. As a result of C analysis, the amount of unreacted resorcin in the resin was 5.46%.

レゾルシン樹脂はアルカリ性の水に良く溶ける為有機可燃性溶媒を使わなくて済む事、比較的無害な樹脂である事、硬化速度が大きい事等から極めて有用な接着剤の主成分である。現在自動車用タイヤに用いる各種タイヤコードとゴムの接着に広く使用されている。本発明により未反応のレゾルシンが除去される為に作業環境が改善され、併せて製品の性能が向上する。本発明が産業上極めて有用な技術として発展するのは確実である。  Resorcin resin is a main component of an extremely useful adhesive because it dissolves well in alkaline water and does not require the use of an organic flammable solvent, is a relatively harmless resin, and has a high curing rate. Currently, it is widely used to bond various tire cords and rubber used in automobile tires. Since unreacted resorcin is removed by the present invention, the working environment is improved and the performance of the product is improved. It is certain that the present invention will develop as an extremely useful technology in the industry.

Claims (2)

レゾルシン及びレゾルシン樹脂の水溶性を抑制制限する塩類であるレゾルシン水溶性抑制剤の水溶液と酸性触媒及び2−ブタノンの存在下レゾルシンとホルムアルデヒドを反応させた後、2ブタノン相を分取して2−ブタノンを留去し、生成したレゾルシン樹脂を溶融状態迄加熱し、その樹脂表面にレゾルシン樹脂に対して不活性な気体を送り未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除し未反応レゾルシン量を低減したレゾルシン樹脂の新しい製造法。  Resorcin and an aqueous solution of a water-soluble inhibitor of resorcin, which is a salt that restricts the water-solubility of a resorcin resin, and an acid catalyst and 2-butanone are reacted with resorcin and formaldehyde, and then the 2-butanone phase is separated to give 2- Butanone is distilled off, the produced resorcin resin is heated to a molten state, an inert gas is sent to the resin surface and discharged together with unreacted resorcin, and a sufficient amount of unresorcinated resin is discharged. A new production method of resorcin resin that reduces the amount of unreacted resorcin by eliminating reactive resorcin outside the system. レゾルシン水溶性抑制剤がホフマイスター順列において塩素イオン以上の水和性を有する陰イオンと同順列において一価の場合はナトリウムイオン以上、二価の場合はカルシウムイオン以上の水和性を示す陽イオンからなる塩である請求項1記載の未反応レゾルシン量を低減したレゾルシン樹脂の新しい製造法。  In the same permutation, the resorcin-soluble water-soluble inhibitor is monovalent or higher in the same permutation as an anion having a hydration property greater than or equal to the chloride ion. 2. A new method for producing a resorcin resin having a reduced amount of unreacted resorcin according to claim 1, which is a salt comprising ions.
JP2006147418A 2006-04-27 2006-04-27 New method for producing resorcinol resin containing unreacted resorcinol in reduced amount Pending JP2007297574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147418A JP2007297574A (en) 2006-04-27 2006-04-27 New method for producing resorcinol resin containing unreacted resorcinol in reduced amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147418A JP2007297574A (en) 2006-04-27 2006-04-27 New method for producing resorcinol resin containing unreacted resorcinol in reduced amount

Publications (1)

Publication Number Publication Date
JP2007297574A true JP2007297574A (en) 2007-11-15

Family

ID=38767336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147418A Pending JP2007297574A (en) 2006-04-27 2006-04-27 New method for producing resorcinol resin containing unreacted resorcinol in reduced amount

Country Status (1)

Country Link
JP (1) JP2007297574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079673A1 (en) * 2009-01-09 2010-07-15 昭和高分子株式会社 Novolac resin and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079673A1 (en) * 2009-01-09 2010-07-15 昭和高分子株式会社 Novolac resin and method for producing same
JP2010159362A (en) * 2009-01-09 2010-07-22 Showa Highpolymer Co Ltd Novolac resin and process for producing the same
KR101348994B1 (en) * 2009-01-09 2014-01-09 쇼와 덴코 가부시키가이샤 Novolac resin and method for producing same
TWI465488B (en) * 2009-01-09 2014-12-21 Showa Denko Kk Novolac resin and method for producing the same

Similar Documents

Publication Publication Date Title
CN103328538B (en) A kind of method for preparing polycondensation product
JP2020520360A (en) Method for producing 1,4-bis(4-phenoxybenzoyl)benzene using terephthaloyl chloride that is substantially unhydrolyzed
JP2013508368A5 (en)
JP2009035496A (en) METHOD FOR PRODUCING beta-NITROSTYRENE COMPOUND
JP2007297574A (en) New method for producing resorcinol resin containing unreacted resorcinol in reduced amount
JP4118914B2 (en) Method for producing resorcin formalin resin
JPWO2006080331A1 (en) Ketone-modified resorcin formalin resin
JP4170660B2 (en) Low molecular weight resorcin formaldehyde reaction product
JP4256828B2 (en) Ketone-modified resorcin formalin resin
JP2007100058A (en) Method for reducing unreacted resorcine in resorcine resin
JP2005255441A (en) Method for producing layered double hydroxide having ion-exchangeable anion by removing carbonate ion from hydrotalcite and use of the hydroxide
JP6682968B2 (en) Method for producing epoxy compound
CN108026064A (en) The method for preparing the derivative of benzodioxole
JPS63264622A (en) Polyfunctional epoxy resin
JP2007500671A (en) Corrosion prevention additive for compositions that come into contact with iron-based substrates
JP4885828B2 (en) Resorcin formalin resin
JP2008285544A (en) Epoxy compound containing fluorene ring and its manufacturing method
JP2017504584A (en) Process for liberating alkylene oxides to produce polyetherols
JP2011089008A (en) Method for producing curable resin composition
JP5856629B2 (en) Method for producing alkylene oxide adduct
JP2012136624A (en) Method for producing aromatic polyether sulfone
JP2007100057A (en) Method for reducing unreacted resorcin in resorcin resin
JP4791747B2 (en) Method for producing tetrakis (hydroxyphenyl) alkane
JP2013543046A5 (en)
JPH01252624A (en) Production of polyphenol glycidyl ether