JP2007100058A - Method for reducing unreacted resorcine in resorcine resin - Google Patents

Method for reducing unreacted resorcine in resorcine resin Download PDF

Info

Publication number
JP2007100058A
JP2007100058A JP2005317382A JP2005317382A JP2007100058A JP 2007100058 A JP2007100058 A JP 2007100058A JP 2005317382 A JP2005317382 A JP 2005317382A JP 2005317382 A JP2005317382 A JP 2005317382A JP 2007100058 A JP2007100058 A JP 2007100058A
Authority
JP
Japan
Prior art keywords
resorcin
resin
molecular weight
unreacted
resorcine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317382A
Other languages
Japanese (ja)
Inventor
Toshio Honda
壽男 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005317382A priority Critical patent/JP2007100058A/en
Publication of JP2007100058A publication Critical patent/JP2007100058A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resorcine resin with reduced content of unreacted resorcine and excellent in flowability. <P>SOLUTION: The invention relates to the method for reducing amount of the unreacted resorcine comprising heating the resorcine resin to a molten state and removing sufficient amount of the vaporized unreacted resorcine to outside by feeding an inert gas to the surface of the resorcine resin and discharging the gas with the unreacted resorcine to outside of the system. The invention relates to the method for reducing amount of the unreacted resorcine which comprises following steps for improving efficiency, a dividing step to divide the resorcin resin into a comparatively high molecular weight component and a comparatively low molecular weight component and then heating the low molecular weight component to a molten state and removing the vaporized unreacted resorcine to outside by feeding an inert gas to the surface of the resorcine to remove sufficient amount of the unreacted resorcine and joining it with the high molecular weight polymer component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はレゾルシン樹脂の製造法に関する。さらに詳しくは、未反応レゾルシン量を低減したレゾルシン樹脂の製造法に関する。  The present invention relates to a method for producing a resorcin resin. More specifically, the present invention relates to a method for producing a resorcin resin in which the amount of unreacted resorcin is reduced.

レゾルシンホルムアルデヒド樹脂は接着剤、塗料、硬化剤、表面処理剤、コート剤等として用いられる。そして出発物質つまり原料のレゾルシンが常温の水に溶解し、硬化反応の後は不溶不融の樹脂に変化し、その硬化速度が速いので大変有用な樹脂である。本樹脂の使用方法としては原料のレゾルシンとホルムアルデヒドにアルカリ性触媒又は酸性触媒を加えてそのまま使用ヶ所で加熱反応硬化させて用いる場合が多いが、硬化初期の流動性や被覆性を重視する場合はレゾルシンホルムアルデヒド樹脂の前駆的予備重縮合体を使用する場合がある。  The resorcinol formaldehyde resin is used as an adhesive, paint, curing agent, surface treatment agent, coating agent, and the like. The starting material, that is, the raw material resorcin is dissolved in water at room temperature, and after the curing reaction, it is changed to an insoluble and infusible resin, and its curing rate is fast, so it is a very useful resin. This resin is often used by adding an alkaline catalyst or an acidic catalyst to the raw materials resorcin and formaldehyde, followed by heating and curing at the point of use. Precursor prepolycondensates of formaldehyde resin may be used.

この前駆的予備重縮合体はレゾルシンに対して低モル比量のホルムアルデヒドを酸性触媒下に反応させて得られる。流動性を確保するにはこの前駆的予備重縮合体の平均重縮合度が低い事が望ましい。その為には、ホルムアルデヒドの量をレゾルシンに対して十分に少なくする必要がある。生成物の重縮合度分布はレゾルシンとホルムアルデヒドのモル比の関数として下記の理論式で表す事が出来る。  This precursor prepolycondensate is obtained by reacting a low molar ratio of formaldehyde with resorcin under an acidic catalyst. In order to ensure fluidity, it is desirable that the average degree of polycondensation of the precursor prepolycondensate is low. For this purpose, the amount of formaldehyde must be sufficiently reduced relative to resorcin. The polycondensation degree distribution of the product can be expressed by the following theoretical formula as a function of the molar ratio of resorcin to formaldehyde.

数1Number 1

D=nP(n−1.0)(1.0−P)2.0 D = nP (n-1.0) (1.0-P) 2.0

この式はレゾルシンとホルムアルデヒドの酸性触媒下のノボラック型の反応が完全に終了し、レゾルシン及びホルムアルデヒドは共に二官能分子であり、ホルムアルデヒドの二つの結合の手はレゾルシンと結合しているものと仮定している。ここでDはレゾルシン1モルに対してホルムアルデヒドをPモル反応させた場合の分子中にn個のレゾルシン核を有する反応生成物の反応生成物全量に対する重量割合つまり重量分率を示す。nは反応生成物がレゾルシンの何量体であるかを示す事になるから重縮合度の目安になる。ここでn=1の生成物は未反応のレゾルシンを表すから、n=1の時のDは未反応レゾルシンの重量分率を示す事になる。次に種々のP及びnに対応するDの計算値並びに実測値を下記表1示す。  This equation assumes that the novolak-type reaction of resorcin and formaldehyde under an acidic catalyst is complete, both resorcin and formaldehyde are bifunctional molecules, and the two bonds of formaldehyde are bound to resorcin. ing. Here, D represents the weight ratio, that is, the weight fraction, of the reaction product having n resorcin nuclei in the molecule when formaldehyde is reacted in P mole with respect to 1 mole of resorcin. n is a measure of the degree of polycondensation because it indicates how many resorcins the reaction product is. Here, since the product of n = 1 represents unreacted resorcin, D when n = 1 represents the weight fraction of unreacted resorcin. Next, Table 1 shows calculated values and actually measured values of D corresponding to various P and n.

Figure 2007100058
Figure 2007100058

この表の番号1,2,3、4はPとnの値を変えた場合の上式によるDの計算結果を示す。番号5はゲルパーミエーションクロマトグラフイ(以下G.P.Cと略する。)実測値の各ピーク面積から割り出したデータであるが、同じ値のPの場合の番号3のデータと概ね一致している。  The numbers 1, 2, 3, and 4 in this table indicate the calculation results of D according to the above equation when the values of P and n are changed. No. 5 is data calculated from each peak area of gel permeation chromatography (hereinafter abbreviated as GPC), which is almost consistent with the data of No. 3 in the case of P having the same value. ing.

発明が解決しようとする課題Problems to be solved by the invention

上表から自明であるように前駆的予備重縮合体を低分子化するにはホルムアルデヒドのレゾルシンに対するモル比を下げる事が最も効果的である。しかし当然の事ながらここには大きな障害がある。それは未反応のレゾルシンが多量に残留する事である。レゾルシンは常温では結晶であるが加熱硬化時にその微量が気化するので作業現場では注意しなければならない。さらに硬化後も未反応レゾルシンが残留すると製品性能に悪影響をもたらす。従って従来は前駆的予備重縮合体から抽出その他の方法で未反応レゾルシンを除去する面倒にして複雑な操作が行われてきたが、その効果は十分とは云えない。本発明は未反応レゾルシン含量が極めて低く、且つ流動性に優れたレゾルシンとホルムアルデヒドの前駆的予備重縮合体(以下簡明を期してレゾルシン樹脂とする。)の製造を目的とする。  As is obvious from the above table, it is most effective to lower the molar ratio of formaldehyde to resorcin to lower the molecular weight of the precursor prepolycondensate. But of course there are major obstacles here. That is, a large amount of unreacted resorcin remains. Resorcin is a crystal at room temperature, but a small amount of it evaporates during heat curing, so care must be taken at the work site. Furthermore, residual unreacted resorcin after curing will adversely affect product performance. Therefore, conventionally, complicated and complicated operations have been performed to remove unreacted resorcin by extraction or other methods from the precursor prepolycondensate, but the effect is not sufficient. An object of the present invention is to produce a precursor prepolycondensate of resorcin and formaldehyde (hereinafter referred to as resorcin resin for the sake of simplicity) having an extremely low unreacted resorcin content and excellent fluidity.

課題を解決するための手段Means for solving the problem

上記目的を達成するために、本発明においてはレゾルシン樹脂を溶融状態迄加熱し、その樹脂表面にレゾルシン樹脂に対して不活性な気体を送り更に未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除し未反応レゾルシン量を低減したレゾルシン樹脂を製造した。
更に効率向上の目的で、レゾルシン樹脂に比較的高分子量の高分子量成分と比較的低分子量の低分子量成分に分割する分割処理を施し低分子量成分を溶融状態迄加熱し、その低分子量成分の表面にレゾルシン樹脂に対して不活性な気体を送り更に未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除し、次に前記高分子量成分と合一する事により未反応レゾルシン量を低減したレゾルシン樹脂を製造した。
In order to achieve the above object, in the present invention, the resorcin resin is heated to a molten state, an inert gas to the resorcin resin is sent to the surface of the resin, and discharged together with unreacted resorcin. A sufficient amount of unreacted resorcin was excluded from the system to produce a resorcin resin with a reduced amount of unreacted resorcin.
Furthermore, for the purpose of improving efficiency, the resorcin resin is divided into a high molecular weight component having a relatively high molecular weight and a low molecular weight component having a relatively low molecular weight, and the low molecular weight component is heated to a molten state. An inert gas with respect to the resorcin resin is sent to the system and further discharged together with the unreacted resorcin to remove a sufficient amount of the unreacted resorcin from the system, and then combined with the high molecular weight component. Thus, a resorcin resin with a reduced amount of unreacted resorcin was produced.

分割処理の方法はレゾルシン樹脂析出剤の存在下、レゾルシンとホルムアルデヒドを酸性触媒を使用し水中で反応させて比較的高分子量の成分を析出させ、水相から有機溶媒抽出で比較的低分子量の成分を得る方法である。  Resolving method is a method of reacting resorcin and formaldehyde in water using an acidic catalyst in water in the presence of a resorcin resin precipitation agent to precipitate a relatively high molecular weight component, and then extracting a relatively low molecular weight component from the aqueous phase by organic solvent extraction. Is the way to get.

又上記の低分子量成分とケトン類を反応させた後前述の様に未反応レゾルシンを排除する事により未反応レゾルシンを幾分かではあるが更に低減させる事が出来た。同時に得られた樹脂の耐熱性が向上する事も分かった。  Further, by reacting the low molecular weight component with the ketones and then removing the unreacted resorcin as described above, the unreacted resorcin could be reduced to some extent. It was also found that the heat resistance of the obtained resin was improved.

発明の効果The invention's effect

従来、レゾルシン樹脂中の未反応レゾルシンの含量は13%以上であったが、本発明によってその含量は7%以下に低減する事が可能になった。この為レゾルシン樹脂を使用する作業現場の環境が著しく改善され且つレゾルシン樹脂の性能も向上した。  Conventionally, the content of unreacted resorcin in the resorcin resin was 13% or more, but according to the present invention, the content can be reduced to 7% or less. For this reason, the environment at the work site where the resorcin resin is used is remarkably improved, and the performance of the resorcin resin is also improved.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明について詳細に説明する。レゾルシン樹脂を溶融状態まで加熱するとその中に含まれている未反応のレゾルシンは揮発性が少しあるので幾分か蒸発する。しかし蒸留して回収出来る程には蒸発しない。そしてレゾルシン分子の空気中での飛翔距離は非常に短いので減圧蒸留でも系外に取り出す事は困難である。加熱温度を極度に上げれば少しは効果があるが、樹脂が酸化劣化するおそれがある。又分圧が低いので水を加えて蒸留する水蒸気蒸留の方法が考えられるが実際にははかばかしい結果は得られない。本発明ではこの状況を改善する為加熱した樹脂表面にレゾルシンを酸化する恐れのない気体を送りその気体を系外に排出する事により樹脂表面近傍に気化しているレゾルシンを強制的に系外へ誘導する事が可能な事を見出した。この場合気化しているレゾルシンは系外の比較的低温の器壁に結晶となって付着する。連続的に気体を送る事により、連続的に未反応レゾルシンのみを樹脂から分離し取り出す事が可能になった。結晶したレゾルシンは非常に純粋であるので再使用が可能である。使用可能な気体には空気、窒素ガス、炭酸ガス、水蒸気、及びアルゴン等の不活性気体等があるが最も安価で使い易いのは空気である。
空気による樹脂の酸化は樹脂の温度を160℃以下に抑えておけば許容出来る。従って樹脂の溶融温度は120℃から160℃程度までの温度に保つのが好ましい。
The present invention will be described in detail below. When the resorcin resin is heated to a molten state, the unreacted resorcin contained in the resorcin resin has a little volatility, so that it evaporates somewhat. However, it does not evaporate to the extent that it can be recovered by distillation. And since the flight distance of resorcin molecules in the air is very short, it is difficult to extract out of the system by vacuum distillation. If the heating temperature is extremely raised, there is a slight effect, but the resin may be oxidized and deteriorated. In addition, since the partial pressure is low, a steam distillation method in which water is added for distillation is conceivable, but in practice, a ridiculous result cannot be obtained. In the present invention, in order to improve this situation, a gas that does not oxidize resorcin is sent to the heated resin surface and the resorcin vaporized near the resin surface is forced out of the system by discharging the gas out of the system. I found that it was possible to guide. In this case, the resorcinol vaporized adheres as crystals to a relatively low temperature vessel wall outside the system. By continuously sending the gas, it was possible to continuously separate only the unreacted resorcin from the resin. Crystallized resorcin is so pure that it can be reused. Usable gases include air, nitrogen gas, carbon dioxide gas, water vapor, and inert gases such as argon, but air is the cheapest and easiest to use.
Oxidation of the resin with air is acceptable if the temperature of the resin is kept below 160 ° C. Accordingly, the melting temperature of the resin is preferably maintained at a temperature from about 120 ° C. to about 160 ° C.

本発明方法を更に効率化するにはレゾルシン樹脂を予め比較的高分子量の成分と比較的低分子量の成分に分割処理し、得られた低分子量成分に上記の方法を適用すればなお効果的である。その理由は次の様に考えられる。分割処理により殆どの未反応レゾルシンは低分子成分に移行する為、低分子成分中の未反応レゾルシンの割合は元の樹脂に比べ高くなる。レゾルシンの単位時間での蒸発量は樹脂中の未反応レゾルシンの割合に依存するので、低分子成分を加熱すれば未反応レゾルシンの蒸発量も必然的に多くなる。又低分子成分は高分子成分に比べ粘度が低い。その為樹脂中の未反応レゾルシンの拡散移動も容易になる。その上加熱溶融状態での外力による攪拌や回転、あるいは熱運動により新しい樹脂表面が出来やすい。種々相俟って蒸発量が増加するので、未反応レゾルシンの回収を迅速に行える。  In order to further improve the efficiency of the method of the present invention, it is still effective if the resorcin resin is divided into a relatively high molecular weight component and a relatively low molecular weight component in advance, and the above method is applied to the obtained low molecular weight component. is there. The reason is considered as follows. Since most of the unreacted resorcin is transferred to the low molecular component by the splitting treatment, the proportion of the unreacted resorcin in the low molecular component is higher than that of the original resin. Since the evaporation amount of resorcin per unit time depends on the proportion of unreacted resorcin in the resin, the amount of evaporation of unreacted resorcin inevitably increases when the low molecular component is heated. The low molecular component has a lower viscosity than the high molecular component. Therefore, the diffusion movement of unreacted resorcin in the resin is facilitated. In addition, a new resin surface can be easily formed by agitation, rotation, or thermal motion by external force in the heated and melted state. Since the amount of evaporation increases due to various factors, unreacted resorcin can be recovered quickly.

次に上記分割処理の方法について説明する。一般にレゾルシン樹脂の流動性を確保するには一分子中に二個乃至三個のレゾルシンが結合している反応生成物、言い換えればレゾルシンの二量体や三量体を多量に含む樹脂である事が望ましい。つまり表1においてn=2又はn=3のDの値を大きくする事が反応生成物の流動性を大きくするために効果がある。従って本発明においてはその目的にそう形でレゾルシン樹脂析出剤(以下析出剤とする。)の種類と量を選択すれば良い。  Next, the method of the division process will be described. In general, in order to ensure the fluidity of resorcin resin, a reaction product in which two to three resorcins are bound in one molecule, in other words, a resin containing a large amount of resorcin dimer or trimer. Is desirable. That is, in Table 1, increasing the value of D with n = 2 or n = 3 is effective for increasing the fluidity of the reaction product. Therefore, in the present invention, the type and amount of the resorcin resin precipitation agent (hereinafter referred to as precipitation agent) may be selected depending on the purpose.

本発明分割処理の方法では反応中の析出剤の存在によってレゾルシン樹脂の平均分子量の増大が抑制される。この点が他の分割方法に比べ法に比べやや煩雑になるが大きな利点となる。  In the split treatment method of the present invention, an increase in the average molecular weight of the resorcin resin is suppressed by the presence of the precipitant during the reaction. Although this point is slightly more complicated than the other division methods, it is a great advantage.

本発明でいう析出剤とはレゾルシンホルムアルデヒド反応生成物の分子量を調節するある種の塩である。塩とは陽イオンと陰イオンが電荷を中和する形で生じた化合物の総称であるが、本発明における析出剤とは陰イオンがホフマイスター順列において塩素イオン以上の水和性を有する陰イオンであり、陽イオンが同順列において一価の場合はナトリウムイオン以上、二価の場合はカルシウムイオン以上の水和性を示す陽イオンであるところの塩である。ホフマイスター順列とはホフマイスターが1888年に発表した各イオンの水和性の程度を示す順列である。それを下記の化1に示す。  The precipitant referred to in the present invention is a certain salt that adjusts the molecular weight of the resorcinol formaldehyde reaction product. A salt is a general term for compounds formed in a form in which a cation and an anion neutralize electric charge, but a precipitant in the present invention is an anion whose hydration is higher than that of a chloride ion in the Hofmeister permutation. In the same permutation, the salt is a cation that exhibits hydration properties that are higher than sodium ions, and that that is more than calcium ions in the case of divalent ions. The Hoffmeister permutation is a permutation indicating the degree of hydration of each ion announced by Hofmeister in 1888. This is shown in Chemical Formula 1 below.

Figure 2007100058
Figure 2007100058

具体的にはクエン酸ナトリウム、クエン酸カルシウム、酒石酸ナトリウム、酒石酸カルシウム、酢酸ナトリウム、酢酸カルシウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウム等が本発明で析出剤として使用できる。中でも塩化カルシウムが効果の点と取り扱いの容易な事から本発明では最も優れた析出剤である。  Specifically, sodium citrate, calcium citrate, sodium tartrate, calcium tartrate, sodium acetate, calcium acetate, sodium chloride, magnesium chloride, calcium chloride and the like can be used as a precipitant in the present invention. Among them, calcium chloride is the most excellent precipitation agent in the present invention because of its effect and easy handling.

レゾルシンとホルムアルデヒドを水中で反応させると、表1に示したようにレゾルシンとホルムアルデヒドの量的な比率に応じてある確率で低分子から高分子までの生成物が得られる。しかしそこに析出剤が存在すると、生成物が高分子になる過程で水に対する溶解度が急激に低下するので、反応が進行してある縮合度の生成物がある量に達するとその生成物分子は析出する傾向がある。その場合各縮合度の生成物は析出剤の濃度に応じて水に対するある溶解度を持っているがその溶解度は単独に存在する場合と同族体が多量に存在する場合は違った値になりかなり複雑であるので、一概には決定出来ない。又析出物もある一定の分子量以上の生成物だけからなると云う画然たる明確な線があるわけではなくて、少量の未反応レゾルシンおも含むあるパターンの分子量分布を有している。ただ高分子量の成分の割合が分割処理をしない場合の樹脂に比べ格段に多くなっている。しかし析出剤の使用により析出剤が存在しない場合に比べ樹脂全体の平均分子量が低くくなる傾向にある事も確かである。この場合析出した高分子量成分とホルムアルデヒドの反応速度は水中に未だ残存している未反応レゾルシンや低分子量成分とホルムアルデヒドとの反応速度に比べると格段に遅いと考えるのが妥当である。従って析出した樹脂の成長即ち分子量の増加はない。
次に母液中に残っている低分子量成分に言及すると、これも同様にある一定の分子量以下の生成物だけからなると言う画然たる明確な線があるわけではなく少量の高分子量の成分おも含むあるパターンの分子量分布を有している。ただ低分子量成分中の未反応レゾルシンの割合が分割処理をしなかった場合の樹脂中の未反応レゾルシンの割合に比べ各段に増加している。
When resorcin and formaldehyde are reacted in water, as shown in Table 1, products from low to high molecular weight are obtained with a certain probability according to the quantitative ratio of resorcin and formaldehyde. However, when a precipitant is present, the solubility in water rapidly decreases in the process of the product becoming a polymer, so when a certain amount of product with a certain degree of condensation proceeds, the product molecule There is a tendency to precipitate. In that case, the product of each degree of condensation has a certain solubility in water depending on the concentration of the precipitating agent, but the solubility is different when there is a large amount of homologs when it is present alone and is quite complex. Therefore, it is not possible to make a general decision. Also, the precipitate does not have a distinctly clear line consisting only of a product having a certain molecular weight or more, but has a pattern of molecular weight distribution including a small amount of unreacted resorcin. However, the proportion of the high molecular weight component is significantly higher than that of the resin in the case of no splitting treatment. However, it is also certain that the average molecular weight of the whole resin tends to be lower than the case where no precipitant is present due to the use of the precipitant. In this case, it is reasonable to think that the reaction rate of the deposited high molecular weight component and formaldehyde is much slower than the reaction rate of unreacted resorcin or low molecular weight components still remaining in water. Therefore, there is no growth of the precipitated resin, that is, no increase in molecular weight.
Next, when referring to the low molecular weight component remaining in the mother liquor, there is no clear line that it consists only of a product having a certain molecular weight or less. It has a molecular weight distribution with a certain pattern. However, the proportion of unreacted resorcin in the low molecular weight component is increased in each stage compared to the proportion of unreacted resorcin in the resin when the splitting treatment is not performed.

本発明において析出剤の量はこれを無水塩として計算した場合、水溶液として析出剤の濃度が15%から40%の間、好ましくは20%から30%の間に調整すればよい。反応を開始する時のレゾルシンの量はその水溶液中でレゾルシンが溶解する最大濃度近傍に設定すればよい。例えば24%塩化カルシウム水溶液100gは常温に於いて約8.2gのレゾルシンを溶解する。塩化カルシウムの濃度を24%よりも濃くするとレゾルシンが析出する傾向がある。析出剤が少ないと効果が無く、多すぎるとレゾルシン自体が温度を上げても溶解しなくなる。  In the present invention, when the amount of the precipitating agent is calculated as an anhydrous salt, the concentration of the precipitating agent as an aqueous solution may be adjusted between 15% and 40%, preferably between 20% and 30%. The amount of resorcin at the start of the reaction may be set near the maximum concentration at which resorcin is dissolved in the aqueous solution. For example, 100 g of a 24% calcium chloride aqueous solution dissolves about 8.2 g of resorcin at normal temperature. When the concentration of calcium chloride is higher than 24%, resorcin tends to precipitate. If the amount of the precipitating agent is small, there is no effect. If the amount is too large, resorcin itself does not dissolve even when the temperature is raised.

本発明反応におけるのホルムアルデヒドの量はレゾルシン1.0モルに対して0.05モルから0.8モルの間、好ましくは0.2モルから0.7モルの間である。ホルムアルデヒドの量が少ないと沈澱量が少なく、多すぎると高分子量成分の生成が多くなる。  The amount of formaldehyde in the reaction of the present invention is between 0.05 mol and 0.8 mol, preferably between 0.2 mol and 0.7 mol, per 1.0 mol of resorcin. If the amount of formaldehyde is small, the amount of precipitation is small, and if it is too large, the production of high molecular weight components increases.

反応触媒には無機酸、有機酸のいずれも使用できる。その中で最も使用し易いのは塩酸である。反応触媒の量はレゾルシン1.0モルに対して0.0001モルから0.1モルの間であり、好ましくは0.005から0.03モルの間である。触媒の量が少ないと反応に時間がかかり、多すぎると反応速度が大きくなり分子量の調節が十分になされない。反応生成物が飽和濃度に達した後、析出するまでにはある程度の時間を要するからである。  Either an inorganic acid or an organic acid can be used as the reaction catalyst. Of these, hydrochloric acid is the easiest to use. The amount of the reaction catalyst is between 0.0001 mol and 0.1 mol, preferably between 0.005 and 0.03 mol, relative to 1.0 mol of resorcin. If the amount of the catalyst is small, the reaction takes time. If the amount is too large, the reaction rate increases and the molecular weight is not sufficiently adjusted. This is because it takes a certain time until the reaction product precipitates after reaching the saturated concentration.

反応温度は大気圧下の条件では0℃以上100℃以下の温度で可能であるが、好ましくは0℃以上70℃以下の条件が良い。更に好ましいのは常温近傍の温度である。温度が低いと析出剤が存在する場合レゾルシンが溶解しない時もある。温度が高いと反応速度が速くなりすぎるばかりでなく、高分子量成分が析出剤が存在しても析出しなくなる恐れがある。  The reaction temperature can be 0 ° C. or higher and 100 ° C. or lower under atmospheric pressure, but preferably 0 ° C. or higher and 70 ° C. or lower. Further preferred is a temperature near room temperature. If the temperature is low, the resorcin may not dissolve in the presence of the precipitant. When the temperature is high, not only the reaction rate becomes too high, but also the high molecular weight component may not be precipitated even if a precipitant is present.

析出した高分子量成分はさらさらした感じの沈澱であるので圧搾濾過あるいは吸引濾過等の方法で低分子量成分が溶解している反応母液を十分に分離する事が出来る。しかし母液を完全に除去する事はできないので、除去出来ない少量の母液に含まれている低分子量成分は高分子量成分側に残留する事になるがそれは仕方がない。  Since the precipitated high molecular weight component is a free-flowing precipitate, the reaction mother liquor in which the low molecular weight component is dissolved can be sufficiently separated by a method such as compression filtration or suction filtration. However, since the mother liquor cannot be completely removed, low molecular weight components contained in a small amount of mother liquor that cannot be removed remain on the high molecular weight component side, but this is unavoidable.

析出剤は高分子量成分中に残留する。用途によってこの事が問題になる場合は通常公知の方法で析出剤を除去すれば良い。例えば反応生成物は溶解するが析出剤は溶解しない溶媒を用いる選択溶媒法、イオン交換法、イオン交換膜電気透析法、析出剤の陽イオンと反応して不溶化する試薬を投入する沈澱法等々がある。析出剤が塩化カルシウムの場合は選択溶媒法として2−ブタノン、メチルイソブチルケトン、テトラハイドロフラン、酢酸エチル等の有機溶剤を用いる事ができる。  The precipitating agent remains in the high molecular weight component. If this becomes a problem depending on the application, the precipitation agent may be removed by a generally known method. For example, a selective solvent method using a solvent that dissolves the reaction product but not a precipitation agent, an ion exchange method, an ion exchange membrane electrodialysis method, a precipitation method in which a reagent that reacts with the cation of the precipitation agent and insolubilizes is added. is there. When the precipitating agent is calcium chloride, an organic solvent such as 2-butanone, methyl isobutyl ketone, tetrahydrofuran, or ethyl acetate can be used as a selective solvent method.

濾過によって分離した反応母液中には低分子量成分が溶解している。低分子量成分は有機溶剤抽出法で反応母液中から抽出可能である。抽出には2−ブタノン、メチルイソブチルケトン、テトラハイドロフラン、酢酸エチル等の有機溶剤を用いる事ができる。抽出された低分子量成分溶液は析出剤を含まないので甚だ都合が良い。有機溶剤を蒸留により留去すれば低分子量成分が得られる。これで分割処理は終了した事になる。  Low molecular weight components are dissolved in the reaction mother liquor separated by filtration. Low molecular weight components can be extracted from the reaction mother liquor by organic solvent extraction. For extraction, an organic solvent such as 2-butanone, methyl isobutyl ketone, tetrahydrofuran, or ethyl acetate can be used. Since the extracted low molecular weight component solution does not contain a precipitant, it is very convenient. A low molecular weight component can be obtained by distilling off the organic solvent by distillation. This completes the division process.

低分子量成分から未反応レゾルシンを除去する工程に移るが、その前に低分子量成分とケトン類を反応させておく事も可能である。レゾルシンあるいはレゾルシン樹脂は酸性触媒下では容易にケトン類と反応する。この場合ケトン類はホルムアルデヒドと同じく二官能化合物として反応するので、過度に反応させると長大な分子が生成し水に対する溶解度が低下して好ましくない。レゾルシン樹脂も高分子量成分が多いと同様に水に対する溶解度が低下して好ましくない。その意味でケトン類は低分子量成分と反応させるのが目的に適っている。又あまり長時間反応させるのも同様の危険性があるので好ましくない。ケトンに2−ブタノンを選んだ場合、2−ブタノンに低分子量成分を溶解した後、2−ブタノンの沸点温度で約2時間反応させる程度で経験上十分である。この場合溶液の色が赤黄色から緑黄色に変化するので反応の進行が判別出来る。低分子量成分とケトン類を反応させる事でケトン類が未反応レゾルシンとも反応するので若干なりとも未反応レゾルシンの低減に有利である。又樹脂の耐熱性も幾分か向上する。  The process proceeds to a step of removing unreacted resorcin from the low molecular weight component, but it is also possible to react the low molecular weight component and ketones before that. Resorcin or resorcin resin easily reacts with ketones under an acidic catalyst. In this case, since ketones react as a bifunctional compound like formaldehyde, excessive reaction is not preferable because long molecules are formed and the solubility in water is lowered. If the resorcin resin has a large amount of high molecular weight components, the solubility in water similarly decreases, which is not preferable. In that sense, ketones are suitable for the purpose of reacting with low molecular weight components. It is not preferable to react for a long time because there is a similar danger. When 2-butanone is selected as the ketone, it is sufficient from experience that a low molecular weight component is dissolved in 2-butanone and then reacted at the boiling temperature of 2-butanone for about 2 hours. In this case, since the color of the solution changes from red yellow to green yellow, the progress of the reaction can be determined. By reacting the low molecular weight component and the ketones, the ketones also react with the unreacted resorcin, which is advantageous for reducing the unreacted resorcin. Also, the heat resistance of the resin is somewhat improved.

使用できるケトン類にはアセトン、2−ブタノン、ジエチルケトン、メチルブチルケトン、メチルイソブチルケトンなどがある。反応性はケトン類の分子量が増加するにつれ弱くなる。酸性触媒にはレゾルシンとホルムアルデヒドの反応に使用した化合物と同様の酸性化合物が使用できる。その量はレゾルシン1.0モルに対して0.0001モルから0.1モルの間であり、好ましくは0.005から0.03モルの間である。  Examples of ketones that can be used include acetone, 2-butanone, diethyl ketone, methyl butyl ketone, and methyl isobutyl ketone. The reactivity becomes weaker as the molecular weight of the ketones increases. As the acidic catalyst, an acidic compound similar to the compound used for the reaction of resorcin and formaldehyde can be used. The amount is between 0.0001 mol and 0.1 mol, preferably between 0.005 mol and 0.03 mol, relative to 1.0 mol resorcin.

次に低分子量成分を中和した後、未反応レゾルシンを上述の方法で除去する。得られた低分子量成分を中性の2−ブタノン、メチルイソブチルケトン、テトラハイドロフラン、酢酸エチル等の有機溶剤に溶解し前述の別に用意した高分子量成分の有機溶剤溶液と合一し適量の水を加えて有機溶剤及びかなりの水を蒸留法で留去すれば未反応レゾルシンを低減したレゾルシン樹脂の高濃度水溶液が得られる。水溶液の濃度は40%以上にする事が可能である。この液には放置時間と共に少量の高分子量の成分が析出する事もあるが実用上は差し支えない。
次に本発明の実施例によって更に具体的に本発明を説明するが、本実施例は本発明の典型例を示すものであって、本発明の範囲内においていろいろの変化適用例が存在する事を否定するものではない。
Next, after neutralizing the low molecular weight component, unreacted resorcin is removed by the method described above. The obtained low molecular weight component is dissolved in an organic solvent such as neutral 2-butanone, methyl isobutyl ketone, tetrahydrofuran, ethyl acetate, etc., and combined with the organic solvent solution of the high molecular weight component separately prepared as described above, and an appropriate amount of water. And a high concentration aqueous solution of resorcin resin with reduced unreacted resorcin can be obtained by distilling off the organic solvent and considerable water by distillation. The concentration of the aqueous solution can be 40% or more. A small amount of a high molecular weight component may be deposited in this solution with the standing time, but this is practically acceptable.
Next, the present invention will be described in more detail by way of examples of the present invention. However, the present examples show typical examples of the present invention, and various change applications exist within the scope of the present invention. Is not to deny.

発明の実施例Embodiment of the Invention

レゾルシン46.70gを水421.10gに溶解し、塩化カルシウム138.00gを加えた。溶解熱が発生したので、22℃まで冷却した。レゾルシンは完全に溶解しており析出分はなかった。次に3.6%塩酸11.00gを加え良く攪拌しながら、37%ホルムアルデヒド水21.50gを一度に滴下した。約1時間マグネチックスターラーで攪拌し、攪拌を停止してそのまま室温22℃で約12時間放置した。ホルムアルデヒド水を加えてから約30分後高分子量成分の白色沈澱が析出し始めた。約12時間後反応液には多量のさらさらした感じの白色沈澱が生成していた。この沈澱は攪拌棒にまとわりつき粘着する様な事はなかった。反応液中の塩酸を中和する為等モル量の3%苛性ソーダ水溶液を攪拌しながら滴下した。反応液のpHは1から4に上昇した。  46.70 g of resorcin was dissolved in 421.10 g of water, and 138.00 g of calcium chloride was added. Since heat of dissolution occurred, it was cooled to 22 ° C. Resorcin was completely dissolved and no precipitate was present. Next, 21.50 g of 37% formaldehyde water was added dropwise at a time while adding 11.00 g of 3.6% hydrochloric acid and stirring well. The mixture was stirred for about 1 hour with a magnetic stirrer, and the stirring was stopped and left at room temperature of 22 ° C. for about 12 hours. About 30 minutes after the addition of formaldehyde water, a white precipitate of a high molecular weight component started to precipitate. After about 12 hours, a large amount of white precipitate was formed in the reaction solution. This precipitate did not cling to the stir bar and did not stick. In order to neutralize hydrochloric acid in the reaction solution, an equimolar amount of 3% aqueous sodium hydroxide solution was added dropwise with stirring. The pH of the reaction solution increased from 1 to 4.

次に反応液を吸引濾過した。沈澱は湿潤状態で91.75gあった。この沈澱に124.20gの2−ブタノンを加えて溶解した。液は上層に2−ブタノン相、下層に水相が現れた。上層の2−ブタノン相を分液ロートで分取した。2−ブタノン相は154.75g水相は43.95gであった。2−ブタノン相の濃度を測定した結果、25.37%であったので高分子量成分の固形分は39.26gとなる。  Next, the reaction solution was subjected to suction filtration. The precipitate was 91.75 g in a wet state. 124.20 g of 2-butanone was added to the precipitate and dissolved. The liquid showed a 2-butanone phase in the upper layer and an aqueous phase in the lower layer. The upper 2-butanone phase was separated with a separatory funnel. The 2-butanone phase was 154.75 g and the aqueous phase was 43.95 g. As a result of measuring the concentration of the 2-butanone phase, it was 25.37%, so the solid content of the high molecular weight component was 39.26 g.

一方吸引濾過の濾液は536.45gであった。分液ロート中でこの濾液に2−ブタノン150.00gを加えて良く震盪し溶解している低分子量成分を抽出した。2−ブタノン相を分取したら143.10gであった。濃度を測定した結果、8.10%であったので低分子量成分の固形分は11.69gとなる。  On the other hand, the filtrate of suction filtration was 536.45 g. In a separatory funnel, 150.00 g of 2-butanone was added to this filtrate and shaken well to extract the low molecular weight components dissolved therein. The fraction of 2-butanone phase was 143.10 g. As a result of measuring the concentration, it was 8.10%, so the solid content of the low molecular weight component was 11.69 g.

次に高分子量成分と低分子量成分の分子量分布がどうなっているかを知る為G.P.C分析にかけた。その結果は次の様になった。各データは各ピーク面積の%を表す。又一量体とは未反応レゾルシンを意味する。

Figure 2007100058
この結果から低分子量成分中には多量の未反応レゾルシンが存在する事が分かった。Next, in order to know what the molecular weight distribution of the high molecular weight component and the low molecular weight component is. P. C analysis was performed. The result was as follows. Each data represents the percentage of each peak area. Monomer means unreacted resorcin.
Figure 2007100058
From this result, it was found that a large amount of unreacted resorcin was present in the low molecular weight component.

上記低分子量成分の2−ブタノン溶液を300mlのなす型フラスコに移して3.6%塩酸を1g加え、冷却管を取り付けて環流しながら二時間加熱し低分子量成分と2−ブタノンを反応させた。液の色は赤黄色から薄い緑黄色に変化した。次に低分子成分中の塩酸の量に見合う量の3%苛性ソーダ水溶液を加えpHが4になる様に中和した。この反応液をG.P.C分析にかけたところ、未反応レゾルシンは55.85%であった。未反応レゾルシンが幾分か減少した事が分かった。  The 2-butanone solution of the low molecular weight component was transferred to a 300 ml-shaped flask and 1 g of 3.6% hydrochloric acid was added, and a low temperature component and 2-butanone were reacted by heating for 2 hours while refluxing. . The color of the liquid changed from reddish yellow to light greenish yellow. Next, a 3% aqueous solution of caustic soda corresponding to the amount of hydrochloric acid in the low molecular component was added to neutralize the solution to pH 4. This reaction solution was dissolved in G.P. P. When subjected to C analysis, the amount of unreacted resorcin was 55.85%. It was found that unreacted resorcin decreased somewhat.

なす型フラスコを逆流防止トラップを介してロータリーエバポレータに取り付けた。この時トラップとなす型フラスコの頸部摺合部分に厚紙を挟ンで固定し、エバポレータをアスピレータにつなぎ減圧したところ外部の空気が摺り合わせ部分の隙間から流入し反応液の液面が波打つのが観察された。この状態で水浴加熱蒸留して殆どの2−ブタノンを留去した。次に水浴を油浴に交換し油浴の温度を140℃に設定して同様に空気を吹き込みながら、なす型フラスコの頸部摺合部分を除きその下方部分が殆ど油浴に浸かる様にして回転加熱した。しばらくすると未反応レゾルシン分子の蒸発飛翔が始まりトラップとエバポレータの壁面に純白のレゾルシンの結晶が付着した。三時間後この操作を終了し、なす型フラスコ内の低分子量成分を計量したところ6.04gであった。かなりの量の未反応レゾルシンが除去された事が分かる。G.P.C分析の結果未反応レゾルシンの量は20.16%であった。  An eggplant-shaped flask was attached to the rotary evaporator via a backflow prevention trap. At this time, a cardboard is fixed on the neck sliding part of the trap flask, and the evaporator is connected to the aspirator to reduce the pressure. Observed. In this state, most 2-butanone was distilled off by heating in a water bath. Next, the water bath is replaced with an oil bath, and the temperature of the oil bath is set to 140 ° C. and the air is blown in the same manner. Heated. After a while, the unreacted resorcin molecule began to evaporate and the pure white resorcin crystals adhered to the walls of the trap and the evaporator. After 3 hours, this operation was terminated, and the low molecular weight component in the eggplant flask was weighed to be 6.04 g. It can be seen that a significant amount of unreacted resorcin has been removed. G. P. As a result of C analysis, the amount of unreacted resorcin was 20.16%.

低分子量成分をテトラハイドロフラン30.80gに溶解し前述の高分子量成分2−ブタノン溶液と合一し水75.00gを加えて蒸留した。有機溶剤とかなりの水が留去されてなす型フラスコ内の液が透明になった。この時点で蒸留を停止した。濃度42.52%のレゾルシン樹脂液92.5gが得られた。この樹脂をG.P.C分析したところ未反応レゾルシンは6.34%であった。  The low molecular weight component was dissolved in 30.80 g of tetrahydrofuran, combined with the aforementioned high molecular weight component 2-butanone solution, and 75.00 g of water was added and distilled. The liquid in the flask made transparent by distilling off the organic solvent and considerable water became transparent. At this point, the distillation was stopped. 92.5 g of a resorcin resin solution having a concentration of 42.52% was obtained. This resin is referred to as G.I. P. As a result of C analysis, the amount of unreacted resorcin was 6.34%.

レゾルシン樹脂はアルカリ性の水に良く溶ける為有機可燃性溶媒を使わなくて済む事、比較的無害な樹脂である事、硬化速度が大きい事等から極めて有用な接着剤の主成分である。現在自動車用タイヤに用いる各種タイヤコードとゴムの接着に広く使用されている。本発明により未反応のレゾルシンが除去される為に作業環境が改善され、併せて製品の性能が向上する。本発明が産業上極めて有用な技術として発展するのは確実である。  Resorcin resin is a main component of an extremely useful adhesive because it dissolves well in alkaline water and does not require the use of an organic flammable solvent, is a relatively harmless resin, and has a high curing rate. Currently, it is widely used to bond various tire cords and rubber used in automobile tires. Since unreacted resorcin is removed by the present invention, the working environment is improved and the performance of the product is improved. It is certain that the present invention will develop as an extremely useful technology in the industry.

Claims (5)

レゾルシン樹脂を溶融状態まで加熱し、その樹脂表面にレゾルシン樹脂に対して不活性な気体を送り、更に未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除する事からなる未反応レゾルシン量を低減したレゾルシン樹脂の製造方法。  The resorcin resin is heated to a molten state, a gas inert to the resorcin resin is sent to the resin surface, and a sufficient amount of unreacted resorcin is discharged outside the system together with unreacted resorcin. A method for producing a resorcin resin in which the amount of unreacted resorcin is reduced. レゾルシン樹脂に比較的高分子量の高分子量成分と比較的低分子量の低分子量成分に分割する分割処理を施しその低分子量成分を溶融状態まで加熱し、その成分の表面にレゾルシン樹脂に対して不活性な気体を送り、更に未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除した後、前記高分子量成分と合一する事からなる未反応レゾルシン量を低減したレゾルシン樹脂の製造方法。  The resorcin resin is divided into a high molecular weight component having a relatively high molecular weight and a low molecular weight component having a relatively low molecular weight, and the low molecular weight component is heated to a molten state, and the surface of the component is inert to the resorcin resin. A sufficient amount of unreacted resorcin is removed from the system by removing the sufficient amount of unreacted resorcin from the system. Method for producing reduced resorcin resin. レゾルシン樹脂析出剤の存在下、レゾルシンとホルムアルデヒドを酸性触媒を使用し水中で反応させて比較的高分子量の成分を析出させ、水相から有機溶媒抽出で比較的低分子量の成分を得る分割処理を施してなる請求項1記載のレゾルシン樹脂の未反応レゾルシンを低減する方法。  In the presence of resorcin resin precipitants, a process of reacting resorcin and formaldehyde in water using an acidic catalyst to precipitate a relatively high molecular weight component and extracting a relatively low molecular weight component from the aqueous phase by organic solvent extraction. A method for reducing unreacted resorcin in the resorcin resin according to claim 1. レゾルシン樹脂析出剤がホフマイスター順列において塩素イオン以上の水和性を有する陰イオンと同順列において一価の場合はナトリウムイオン以上、二価の場合はカルシウムイオン以上の水和性を示す陽イオンからなる塩である請求項3記載の未反応レゾルシン量を低減したレゾルシン樹脂の製造法。  In the same permutation, the resorcin resin precipitant in the Hofmeister permutation is a cation that exhibits a hydration property greater than sodium ion in the same permutation, and a hydration property greater than calcium ion in the divalent case. The method for producing a resorcin resin with a reduced amount of unreacted resorcin according to claim 3, which is a salt comprising: 低分子量成分を有機溶媒に溶解して酸性触媒の存在下ケトン類と反応させた後溶媒を留去し溶融状態迄加熱し、その低分子成分の表面にレゾルシン樹脂に対して不活性な気体を送り更に未反応レゾルシンと共に系外に排出する操作をなして十分な量の未反応レゾルシンを系外に排除する事からなる請求項2記載の未反応レゾルシン量を低減したレゾルシン樹脂の製造法。  The low molecular weight component is dissolved in an organic solvent and reacted with ketones in the presence of an acidic catalyst, and then the solvent is distilled off and heated to a molten state. A gas inert to the resorcin resin is formed on the surface of the low molecular component. 3. The method for producing a resorcin resin with a reduced amount of unreacted resorcin according to claim 2, wherein a sufficient amount of unreacted resorcin is removed from the system by feeding and discharging to the outside of the system together with unreacted resorcin.
JP2005317382A 2005-10-04 2005-10-04 Method for reducing unreacted resorcine in resorcine resin Pending JP2007100058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317382A JP2007100058A (en) 2005-10-04 2005-10-04 Method for reducing unreacted resorcine in resorcine resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317382A JP2007100058A (en) 2005-10-04 2005-10-04 Method for reducing unreacted resorcine in resorcine resin

Publications (1)

Publication Number Publication Date
JP2007100058A true JP2007100058A (en) 2007-04-19

Family

ID=38027306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317382A Pending JP2007100058A (en) 2005-10-04 2005-10-04 Method for reducing unreacted resorcine in resorcine resin

Country Status (1)

Country Link
JP (1) JP2007100058A (en)

Similar Documents

Publication Publication Date Title
JP2021042221A (en) Improved process for making diaryl sulfones
JPWO2005035611A1 (en) Method for producing resorcin formalin resin
JPWO2006080331A1 (en) Ketone-modified resorcin formalin resin
JP4170660B2 (en) Low molecular weight resorcin formaldehyde reaction product
JP2006265222A (en) Method for synthesizing tetrafluoro-paraxylene
JP2007100058A (en) Method for reducing unreacted resorcine in resorcine resin
JP4256828B2 (en) Ketone-modified resorcin formalin resin
JP5658744B2 (en) Method for producing sevelamer
CN111377812A (en) Preparation method of butynedioic acid
JPH09165449A (en) Production of diorganopolysiloxane
CN112456462B (en) Recovery processing method of sodium tetrachloroaluminate catalyst composition
JP2007297574A (en) New method for producing resorcinol resin containing unreacted resorcinol in reduced amount
JP4885828B2 (en) Resorcin formalin resin
JP4566642B2 (en) Method for producing sulfonium compound
JP2007100057A (en) Method for reducing unreacted resorcin in resorcin resin
JP2007277498A (en) Process for purification of epoxy resin
JPS63264622A (en) Polyfunctional epoxy resin
JP2008127286A (en) Method for producing dihydroxybenzene derivative
JP7209718B2 (en) Modified polymerization initiator and method for producing the same
JP4885104B2 (en) Method for producing ketone-modified resorcin formalin resin
JP2013515144A5 (en)
JP5087232B2 (en) Resorcin-methyl ethyl ketone-formalin resin
JP2012136624A (en) Method for producing aromatic polyether sulfone
JPH0223555B2 (en)
JPH01252624A (en) Production of polyphenol glycidyl ether